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Medetomidine has become a popular choice for anesthetizing rats during long-lasting sessions of
blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI). Despite this,
it has not yet been established how commonly reported fMRI readouts evolve over several hours of
medetomidine anesthesia and how they are affected by the precise timing, dose, and route of
administration. We used four different protocols of medetomidine administration to anesthetize
rats for up to six hours and repeatedly evaluated somatosensory stimulus-evoked BOLD responses
and resting state functional connectivity throughout. We found that the temporal evolution of fMRI
readouts strongly depended on the method of administration. Protocols that combined an initial
medetomidine bolus (0.05 mg/kg) together with a subsequent continuous infusion (0.1 mg/kg/h)
led to temporally stable measures of stimulus-evoked activity and functional connectivity. However,
when the bolus was omitted, or the dose of medetomidine lowered, the measures attenuated in a
time-dependent manner. We conclude that medetomidine can sustain consistent fMRI readouts for
up to six hours of anesthesia, but only with an appropriate administration protocol. This factor

should be considered for the design and interpretation of future preclinical fMRI studies in rats.
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Introduction

Functional magnetic resonance imaging (fMRI), relying on blood-oxygen-level dependent (BOLD)
contrast!, is being widely used for the non-invasive mapping of human brain function. Classically,
fMRI has focused on the brain’s response to a task or stimulus, but more recent task-free (resting
state fMRI) approaches have explored spontaneous low frequency fluctuations in the BOLD signal23,
and their role in the functional connectivity of healthy and diseased brains% Since the advent of
dedicated high-field MR systems, fMRI applications have expanded to experimental animals,
especially rodents®. This is a promising development for translational preclinical research, since the
same technique can be applied to both human patients and animal models. Additionally, the
expanding capacity of small animal fMRI to be combined with genetic, pharmacological and surgical
manipulations, as well as with electrophysiological and optical recordings, allows the exploration of

increasingly complex neuroscientific questionsé-9.

Nevertheless, small animal fMRI poses a methodological challenge: it necessitates the subject’s
immobility for long imaging times. Animals can be restrained and habituated to head fixation and
MR scanner noise, but this is laborious for the researcher, and often stressful for the animall0-12,
Thus, ethical and practical considerations mandate the use of anesthesia in the majority of small
animal fMRI studies. Unfortunately, anesthetics confound fMRI measurements in multiple ways:
they may alter neural activity, affect systemic cardiorespiratory physiology, and interfere with
cerebral vasculature and neurovascular coupling—the very mechanism giving rise to the BOLD
contrast1314, Therefore, there is a need for an anesthetic protocol that ideally provides sufficient,
long-lasting sedation, while maintaining neural activity and neurovascular coupling. In pursuit of
the above properties, researchers have tried multiple anesthetic agents, including a-chloralose,
medetomidine, isoflurane, propofol, urethane, and ketamine-xylazine. These agents have varying
effects on the neurovascular system, with each of them presenting a unique set of benefits and
drawbacks for fMRI applications!2-18, This has led to a substantial diversity in anesthetic protocols

used for rodent fMRI, compromising the comparability and reproducibility of results.

Of the above anesthetics, the sedative agent medetomidine—a highly selective az-adrenergic
agonist—holds perhaps the most promise for becoming a routine choice for fMRI applications in
rats. Medetomidine comes as an equal mixture of two enantiomers, with the dextro-isomer,
dexmedetomidine, being the active component!920. Dexmedetomidine decreases the activity of
noradrenergic neurons in the locus coeruleus, producing a state that mimics non-REM sleep?1.

Conveniently, the drug’s effects are reversible by a specific az-adrenergic antagonist—
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atipamezole920, A protocol based on the continuous infusion of medetomidine, first introduced by
Weber et al. in 200522, presents several advantages for fMRI studies: it sedates rats for several
hours, leads to robust stimulus-evoked BOLD responses, allows for easy subcutaneous (SC)
administration, avoids the need for intubation, and can be used for longitudinal studies with
multiple fMRI sessions?3. Other research groups have since confirmed the benefits of medetomidine
infusion and expanded its usage to resting state fMRI24-27. Medetomidine anesthesia is currently an
established practice for rat fMRI, with at least 40 published articles reporting the use of the original
medetomidine protocol, or variations of it (Supplementary Table S1). Its use is expected to rise,
owing to the practical advantages and to the increasing availability of techniques that can be

combined with rat fMRI.

However, there are several concerns revolving around the duration and stability of medetomidine
anesthesia. Medetomidine administration is always preceded by an inhalable gas anesthetic, usually
isoflurane, which is used for anesthesia induction and animal preparation. Isoflurane alters brain
metabolism?8, strongly suppresses stimulus-evoked hemodynamic responses?9-31, and may
introduce widespread correlations in functional connectivity metrics1227.32; the possibility of these
effects lingering long after isoflurane discontinuation cannot be excluded33. Then there is the issue
of medetomidine itself, which is usually given in two steps: first as a bolus loading dose and then as
a continuous infusion. Due to the drug’s strong a;-adrenergic effects??, these actions are expected to
time-dependently alter hemodynamic parameters, which could in turn affect BOLD-based readouts.
Another important concern is the restricted duration of anesthesia, with animals reported to
spontaneously wake up despite the continuous infusion of medetomidine. Tolerance to the drug’s
sedative effects has been blamed for this, with researchers proposing to counter it by stepping up
the infusion rate?s. All the above issues are further compounded by the lack of consensus regarding
the exact administration scheme; protocols vary in administration route and dose, while some

researchers choose to omit the bolus (see Supplementary Table S1).

These concerns imply that commonly reported fMRI readouts, namely stimulus-evoked BOLD
responses and resting state functional connectivity (RSFC), might not be stable over long-lasting
imaging sessions. It is unclear when a steady state is reached by these readouts, for how long it is
maintained, and how it is affected by various medetomidine administration choices. An answer to
these questions would enable researchers to design rat fMRI experiments in a way that maximizes
the duration of the steady state. This would increase the available experimental time, decrease
variance, and ultimately reduce the total number of required animals, all the while promoting

comparability among studies.
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To achieve the above goals, we examined how stimulus-evoked BOLD responses and RSFC evolve
over time during medetomidine anesthesia. We tested four different protocols for medetomidine
administration (Table 1, Fig. 1a) on two separate sessions: firstly on a laboratory bench and
secondly inside a small animal MR-system. During the latter session, we performed multiple
repeated fMRI measurements (runs), with consecutive runs being alternated between
somatosensory stimulus-evoked fMRI with electrical forepaw stimulation (EFS-fMRI) and resting
state fMRI (RS-fMRI) (see Fig. 1b-c). The acquired runs, 283 EFS-fMRI and 295 RS-fMRI in total,
spanned a period of 0.5 - 6 hours relative to the start of medetomidine administration. For each
medetomidine protocol, we report the achieved duration of anesthesia and the following measures
across time: heart and respiratory rates (HR and RR); localization and amplitude of stimulus-evoked
responses; strength and structure of RSFC. Based on our findings, we make recommendations
regarding the administration protocol of medetomidine and the timing of fMRI experiments within

the protocol.

Table 1. Medetomidine administration protocols used in this study.

Name Route Bolus Bolus dose (mg/kg) Infusion rate (mg/kg/h)
1 SC with bolus SC yes 0.05 0.1
2 IV with bolus IV yes 0.05 0.1
3 IV no bolus IV no - 0.1
4 [V lower dose IV yes 0.035 0.07

SC: subcutaneous; IV: intravenous

Results

Anesthesia duration and physiology

Out of all 48 anesthesia sessions, 27 lasted for the full six hours, while 21 ended with a spontaneous
wake-up (spontaneous movement for bench sessions; rapid rise in RR for fMRI sessions). These
wake-up incidents occurred across session types (8/24 bench; 13/24 fMRI) and medetomidine
protocols (4, 6, 7, and 4 out of 12, for protocols 1 - 4 respectively). However, only a few of those
occurred early, with 35/48 sessions (72.9%) exceeding five hours in duration (Fig. 2, left). The HR

and RR followed similar temporal trends across all four medetomidine protocols (Fig. 2, right). HR
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decreased rapidly after the introduction of medetomidine, dropping by approximately 50% within
the first hour of anesthesia. After that it showed only a slight tendency to gradually recover over
time. The RR also underwent rapid changes in the first hour: it started at 40-70 bpm under
isoflurane, decreased in response to medetomidine introduction, and gradually recovered following
the discontinuation of isoflurane. As was the case with HR, it remained mostly stable after the first

hour.

Areas activated by the stimulus

For each EFS-fMRI run we identified the active areas using a first-level general linear model
analysis. The thresholded statistical maps (cluster threshold, z > 3.1, p = 0.05) were binarized (1 for
active voxels, 0 elsewhere) and averaged across all EFS-fMRI runs to produce an activation
probability map. The probability map revealed a consistently active cluster, anatomically
corresponding to the left (contralateral to the stimulus) forelimb region of the primary
somatosensory cortex—abbreviated as S1FL (Fig. 3a left). This cluster’s center was active in 85.16%
of all EFS-fMRI runs, whereas no other area was active in more than 7% of runs. To ensure that
there was no systematic shift in the location of the active S1FL cluster, the 283 first-level activation
maps were split into 12 groups according to the applied medetomidine protocol and the time since
the start of medetomidine administration (early: 0 — 2 h; middle: 2 - 4 h; late: 4 — 6 h). Examination
of activation probability maps from all groups (Fig. 3a, right) verified that the active cluster’s

location remained stable across time and medetomidine protocols.

Shape and strength of stimulus-evoked responses

The portion of the S1FL that was significantly active in at least 30% of all 283 EFS-fMRI runs was
taken as a functionally-defined region-of-interest (ROI). For each EFS-fMRI run, this ROI's mean
BOLD time course was extracted, normalized to the pre-stimulus baseline, and averaged across
stimulation blocks to produce an event-related average. This was used to extract the peak % signal
change (peak ABOLD), as a measure of stimulus-evoked BOLD response strength (Fig. 3b). The
examination of event-related averages revealed that the shape of S1IFL BOLD responses was very
similar across the four medetomidine protocols (Fig. 3c). The signal exhibited a sharp peak after
stimulus onset, followed by a plateau lasting till the end of the 30 s stimulation. The time-to-peak
was found to be consistently about 3 s for all protocols—shorter than what is assumed by the

default hemodynamic response functions of most fMRI analysis packages (Fig. 3d).
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The peak ABOLD exhibited varying temporal trends depending on the medetomidine protocol (Fig.
4a-b). Protocol 2 (IV with bolus) led to the most stable BOLD responses, with mean peak ABOLD of
2.4%, independent of time (p = 0.61, Likelihood Ratio Test). Omitting the bolus (protocol 3, IV no
bolus), or lowering the medetomidine dose (protocol 4, IV lower dose), led to stronger early
responses at around 4 - 4.5%, but these were not sustainable over time: peak ABOLD decayed with
negative slopes of 0.43% /hour (p < 0.001) and 0.47%/hour (p < 0.001) respectively. Protocol 1 (SC
with bolus) also exhibited a decreasing temporal trend, but with a smaller slope (-0.24% /hour, p =
0.02), and with the effect being driven by four exceptionally strong early BOLD responses in two of
the rats. In general, and despite their differing temporal trends, all four protocols converged to a

mean peak ABOLD of around 2.5% after two hours of medetomidine anesthesia (Fig. 4c).

Resting state functional connectivity

RSFC was probed by examining the pair-wise correlations between the BOLD time courses of 28
anatomically defined ROIs (Fig. 5a). Examination of the pair-wise correlation matrices (Fig. 5b), and
of their network representations (Fig. 5c¢), showed that the hierarchical structure of the network, i.e.
the strength of individual connections relative to each other, was consistent over time for all
medetomidine protocols. The network’s global RSFC—the mean correlation (Fisher’s Z-score)
across all unique ROI pairs—was computed for all RS-fMRI runs, and tested for time dependence
(Fig. 5d). Bolus-based medetomidine administration (protocols 1, 2 and 4) provided stable global
RSFC throughout the six hours of anesthesia: Z-scores remained at 0.57 *+ 0.27 (mean # s.d.), 0.44 +
0.17, and 0.34 *= 0.12 respectively, and exhibited no significant temporal trends (p = 0.80 for
protocol 1; p = 0.17 for protocol 2; p = 0.09 for protocol 4). When the bolus was omitted (protocol 3,
IV no bolus), global RSFC was stronger during the early period (0.85 * 0.30), but decreased time-
dependently with a slope of -0.07 /hour (p = 0.02).

Discussion

In the present study we evaluated the capacity of medetomidine—administered through four
different protocols—to anesthetize rats for up to six hours and sustain temporally stable fMRI
measures of stimulus-evoked activity and functional connectivity. We found that anesthesia
duration exceeded five hours in most sessions (35/48 or 72.9%; Fig. 2, left), heart and respiratory
rates were mostly stable after the first hour of anesthesia (Fig. 2, right), and the majority of
performed EFS-fMRI runs (241/283 or 85.16%) led to a significant and selective activation of the

expected cortical area (Fig. 3a). However, the temporal stability of both stimulus-evoked activity
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and functional connectivity was observed to strongly depend on the protocol of medetomidine

administration (Fig. 4 and 5).

Limited anesthesia duration has been referred to as a drawback of medetomidine protocols34, even
though the exact duration is not reported in most papers. According to a study that has addressed
this issue, rats anesthetized by constant IV infusion woke up spontaneously 3.5-4 hours into the
experiment25. However, the rats in that study were tracheotomized and mechanically ventilated,
while most rat fMRI experiments—including ours—are conducted in freely breathing animals. The
anesthesia durations achieved in our experiments should satisfy the needs of most researchers.
That said, the risk of spontaneous wake-ups must be taken into consideration. In our study, these
wake-ups occurred more often in fMRI than in bench sessions (13/24 versus 8/24)—a possible
effect of the scanner’s acoustic noise, and were typically preceded by an increase in RR and
arrhythmic breathing. If early wake-ups have to be avoided, other administration practices may be
warranted, such as stepping up the infusion rate?s, or adding a constant low dose of isoflurane
throughout the imaging session3>. The latter strategy has gained popularity in recent years, on the
basis that it provides near-normal physiological conditions3> and protects against epileptic
seizures—which have been reported in animals with medetomidine-only anesthesia3¢. However,
this might require mechanical ventilation, since even low doses of isoflurane, when combined with
medetomidine, have been shown to suppress the amplitude of stimulus-evoked BOLD responses in

spontaneously breathing rats3’.

The recorded cardiorespiratory parameters (HR and RR) underwent rapid changes in the first hour
of anesthesia, but stabilized thereafter (Fig. 2, right). The observed changes agree with
medetomidine pharmacology and with previous rat fMRI studies202338. The decrease in HR
immediately after medetomidine injection can be attributed to its well-described az-adrenergic
effects. Since the respiratory effects of medetomidine alone are considered to be minor, the
observed initial drop in RR was probably caused by medetomidine enhancing the potency of
isoflurane—and thus amplifying isoflurane-induced respiratory depression??. This interpretation is

supported by the gradual recovery of RR following the discontinuation of isoflurane.

The EFS-evoked activation of the contralateral S1FL (Fig. 3) is described by numerous other rat
fMRI studies using the same stimulus?3-25. For a subset of trials, these studies have also reported
activations in the secondary somatosensory area and in sensory thalamic nuclei. If we increase
statistical power by grouping multiple fMRI runs in a second-level analysis, we also find the same

areas being responsive to EFS (see Supplementary Fig. S2). The shape of the EFS-evoked BOLD

7


https://doi.org/10.1101/667659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/667659; this version posted June 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

response in the S1FL (sharp peak at about 3 s after the onset of stimulation, followed by a plateau
sustained till the end of EFS period; see Fig. 3c) is consistent with previous rat fMRI studies2439, but
differs considerably from what would be expected based on the standard human double-gamma
hemodynamic response function40. Specifically, the response in medetomidine-anesthetized rats
exhibits faster kinetics (Fig. 3d). The reasons for that could be diverse, including the different
species, the use of anesthesia, the higher magnetic field strength utilized in rodent studies, or a
combination of these factors. Nevertheless, since rat fMRI with medetomidine is becoming such a
common practice (see Supplementary Table S1), future studies should focus on determining the

optimal response function for this paradigm.

The temporal evolution of peak stimulus-evoked responses exhibited an interesting dependence on
the medetomidine administrations protocol (Fig. 4): the peak ABOLD differed significantly among
protocols in the early two hours of anesthesia, before eventually converging to the same value.
Specifically, combining a bolus of 0.05 mg/kg with a subsequent continuous infusion of 0.1
mg/kg/h—the most widely used medetomidine dosage in rat fMRI studies—led to temporally
stable responses, especially when administered via the IV route. Deviating from the above dosage,
either by omitting the bolus (protocol 3) or by downscaling both bolus and infusion doses (protocol
4), led to significantly stronger early responses. Omitting the bolus also had a similar effect on global
RSFC: the overall pair-wise correlation strength decreased over time. This time-dependent
attenuation of BOLD readouts in sessions that lacked the bolus could reflect a negative relationship
between the strength of these readouts and the concentration of medetomidine. Drug levels in the
central nervous system might take hours to stabilize under the continuous infusion regime, given
that the pharmacokinetics of medetomidine is characterized by a long terminal half-life of about 57
min, and a hysteresis between plasma and cerebrospinal fluid concentrations384l. Bolus
administration likely mediates a faster wash-in of the drug and an earlier establishment of the
steady state. For this interpretation, we need to accept that medetomidine dose-dependently
suppresses stimulus-evoked BOLD responses and RSFC, at least up to a certain level. Previous
studies have in fact found such a dose-dependency for RSFC, but not for stimulus-evoked
responses3?42, That said, the relevant experiments were restricted to a higher infusion rate range of
0.1 - 0.3 mg/kg/h (always preceded by a bolus), within which any effects on stimulus-evoked

responses could have been saturated.

At this point we would like to emphasize several limitations of the present study. Importantly, we
have not measured blood concentrations of medetomidine, and thus we cannot directly verify our

interpretation of the dose-dependent effects. Moreover, we have no way of dissecting the vascular
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and neuronal contributions to the observed effects on BOLD readouts: we lack electrophysiological
recordings of neural activity and important measures of vascular physiology, such as cerebral blood
flow and arterial blood gas concentrations. We also lack fMRI data for very early time points: the
earliest fMRI runs were acquired 30 - 50 minutes after the onset of medetomidine administration,
due to the time spent for animal positioning, structural image acquisition and shimming, and the
required overlap between medetomidine administration and isoflurane anesthesia. This delay was

most pronounced for protocol 3, during which the said overlap was necessarily prolonged.

Despite these limitations, our study does provide an empirical answer to the question of how BOLD
readouts evolve over long-lasting medetomidine anesthesia sessions, allowing us to recommend
best practices for maximizing the duration of the steady state. Whenever temporal stability is
deemed crucial, a bolus administration of medetomidine and a dosage according to the originally
published protocol?3 are strongly recommended. Both IV and SC routes can be considered: IV
administration leads to less variance in the initial two hours, but SC is easier to implement. Although
we lack fMRI data from the first hour of anesthesia, we would advise against performing functional
imaging within this period, considering the rapid changes in cardio-respiratory physiology. In
conclusion, the recommended dosage (protocols 1 and 2) is clearly sufficient to provide consistent
measures of stimulus-evoked activity and functional connectivity in the time period from one to six
hours since the bolus. We do not claim that this administration protocol is necessarily the best
choice for rat fMRI, since our study did not include all existing (see Supplementary Table S1) or
possible administration protocols. It is however reasonable to consider it as the current ‘default’
choice, in light of the wealth of available data, and in the interest of promoting comparability among

studies.

Methods

Experimental animals

All experiments followed the standards of the German Federal Law on Care and Use of Laboratory
Animals and were approved by the local government authorities (Lower Saxony State Office for
Consumer Protection and Food Safety, approval number 33.19-42502-04-15/2042). A total number
of 24 female adult Wistar rats (Charles Rivers Laboratories, Sulzfeld Germany) with a median body
weight of 308 g (interquartile range 285-350 g) were used for this study. Rats were group-housed in

cages with environmental enrichment, at a 12/12-hour light/dark cycle, with 20 - 24°C temperature
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and 45 - 55% humidity. Water and standard chow were provided ad libitum. The 24 rats were split
into four equally sized groups, each assigned to a different protocol of medetomidine administration
(see Table 1). No animal was excluded from the experiments or from the analysis. The investigators

were not blind to the group allocation.

Anesthesia and monitoring

Each animal was anesthetized on two sessions separated by a minimum of two weeks. The first
session took place on a laboratory bench-top to accommodate unrestricted access to the animal and
close monitoring of anesthesia duration and cardio-respiratory physiology (bench session). The
functional imaging took place during the second session, performed inside a dedicated small animal
MR system (fMRI session). All applied anesthetic protocols followed the same general outline, with

isoflurane being used during preparation, and medetomidine during data acquisition (Fig. 1a).

Unconsciousness was induced in a chamber filled with 5% isoflurane and maintained throughout
preparation with 2-3% isoflurane supplied through a nose cone. The eyes were covered with
ophthalmic ointment to prevent them from drying. A cannula was inserted in the SC tissue of the left
flank (protocol 1) or in a tail vein (protocols 2 - 4). Two subdermal needle electrodes were placed in
the right forepaw, between the 2nd and the 4t digit. Monitoring equipment was attached, consisting
of a rectal temperature probe, a pneumatic pressure sensor placed on the chest, and three SC needle
electrodes for electrocardiogram (ECG). After fixing the aforementioned equipment with adhesive

tape, the animal was transferred to a custom-built MRI-compatible rat bed.

Four different protocols of medetomidine administration were used: 1) SC with bolus; 2) IV with
bolus; 3) IV no bolus; 4) IV lower dose. The detailed dosing for all protocols is given in Table 1. For
protocols 1, 2, and 4, medetomidine (Dorbene vet, Zoetis Deutschland GmbH, Germany) was initially
given as a bolus loading dose, followed by a gradual reduction of isoflurane and its eventual
discontinuation 10 min later; continuous infusion of medetomidine commenced 15 min after the
bolus. The bolus was omitted for protocol 3, with continuous infusion starting directly after the
preparation phase, and isoflurane being gradually reduced to zero over the course of 20 - 25 min.
Attempts to shut off isoflurane earlier led to fast breathing, indicative of an imminent wake-up
(bench sessions). All doses were delivered using an MRI-compatible infusion pump (PHD 2000
Infuse/Withdraw; Harvard apparatus, Holliston, Massachusetts, USA). Since the start of
medetomidine administration, heart rate (HR), respiratory rate (RR), and rectal temperature were
monitored using the MR-compatible Model 1030 monitoring and gating system (Small Animal
Instruments Inc., Stony Brook, NY 11790, USA). Rectal temperature was kept at 36.5 + 1°C using a
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pad heated by circulating water. Anesthesia was maintained for six hours since the start of
medetomidine administration, except for sessions in which the rat spontaneously woke up earlier.
For bench sessions, such wake-ups were identified as spontaneous movements of the rat, and were
found to be always preceded by the RR getting progressively faster and irregular. Since direct
observation of minor animal movement is challenging during fMRI, the endpoint for fMRI sessions
was set based on respiration (RR > 90/min, irregular, and continuously rising for at least 2 min).
Anesthesia duration was defined as the time from the start of medetomidine administration (time =
0) till one of the aforementioned endpoints: spontaneous movement, rapid rise in RR, or passage of
six hours. Upon reaching an endpoint, the animal was provided with 2% isoflurane through the nose
cone and was disconnected from all electrodes, cannulas, and monitoring equipment. Finally,
isoflurane was shut off and atipamezole (Atipazole, Prodivet pharmaceuticals, Belgium) was

injected SC (0.25 mg/kg for protocols 1 - 3; 0.175 mg/kg for protocol 4) to facilitate a smooth wake-
up.

The monitoring data (HR and RR traces) were recorded at a temporal resolution of 1 s and further
processed with in-house python scripts as follows. Firstly, physiologically implausible values—
corresponding to data acquisition errors—were dropped. Secondly, fMRI acquisition periods were
removed from HR traces, since the rapidly switching magnetic gradients had introduced electrical
noise in the ECG recording. Lastly, the traces were smoothed with an exponentially weighted
moving average filter (smoothing factor o = 0.02). The processed HR and RR traces from bench and
fMRI sessions closely resembled each other and were therefore pooled together. For each of the four
medetomidine protocols the mean (+ s.d.) HR/RR trace was calculated across all anesthesia

sessions.

MRI acquisition

The fMRI sessions were performed inside a 9.4 Tesla Bruker BioSpec MR system, equipped with the
BGA12 gradient, and operated via Paravision 6.0.1 software. Signal was transmitted via a resonator
volume coil (inner diameter 86 mm) and received by a rat brain 4-channel coil array (all equipment
and software from Bruker Biospin MRI GmbH, Ettlingen, Germany). Approximately 10 min after the
discontinuation of isoflurane, the rat was positioned in the isocenter of the MR system, with its body
lying supinely and its head fixed with the help of a bite bar. After obtaining low-resolution images
for object localization, a T2-weighted structural image was acquired using a TurboRARE sequence
(repetition time 5.225 s, effective echo time 33 ms; 2 averages; RARE factor 8; 30 - 50 axial slices

with a thickness of 0.5 mm; in-plane resolution 0.137 x 0.137 mm?; matrix size 256 x 256). A field
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map was measured and used for local shimming inside an ellipsoidal volume encompassing the rat
brain (MAPSHIM). This was followed by multiple 330-second-long BOLD fMRI runs, repeated
approximately every 10 min, until the experimental endpoint was reached. All fMRI runs were
acquired with a single-shot gradient-echo echo planar imaging sequence (220 repetitions; repetition
time 1.5 s; echo time 15 ms; flip angle 90°; 30 axial slices with a thickness of 0.5 mm, ascending
interleaved slice order with no slice gap; in-plane resolution 0.2 x 0.2 mm?; matrix size 128 x 96; 4
dummy scans; bandwidth 375 kHz). The fMRI slices covered the entire rat brain, excluding the
olfactory bulbs and the caudal 3/4 of the cerebellum. Consecutive fMRI runs were alternated
between somatosensory fMRI with electrical forepaw stimulation (EFS-fMRI) and resting state fMRI
(RS-fMRI) with no stimulus (Fig. 1b). This resulted in a total number of 283 EFS-fMRI and 295 RS-
fMRI runs across all rats, spanning from 0.5 up to 6 hours since the start of medetomidine
administration. EFS-fMRI runs included a baseline period of 60 s, followed by stimulation of the
right forepaw in three 30 s blocks—each paired with 60 s of rest (Fig. 1c). Each stimulus block
comprised square unipolar pulses with 3 mA amplitude and 0.3 ms pulse width, delivered at 9 Hz
(Stimulus Generator 4002, Multi Channel Systems MCS GmbH, Reutlingen, Germany). The above

parameters were chosen based on previous EFS studies in medetomidine-anesthetized rats242543,

MRI preprocessing

All MR images were first exported from Paravision to DICOM format and then converted to NIfTI
(Neuroimaging Informatics Technology Initiative; http://nifti.nimh.nih.gov) using the dcm2nii
(https://www.nitrc.org/projects/dcm?2nii/) tool. The structural T2-weighted images were used to
construct a study template with the help of the Advanced Normalization Tools software—ANTSs
(http://stnava.github.io/ANTs/). The structural image of one of the rats was chosen as the target
reference space. Every other structural image was registered to the target in two steps: a linear rigid
(3 translations and 3 rotations), and a non-linear symmetric diffeomorphic (SyN) registration4. All
24 structural images were averaged in the reference space to produce a mean anatomical image. A
down-sampled (0.2 x 0.2 x 0.5 mm3) version of this image was used to create a brain mask and
served as the study template to which all functional datasets were eventually registered. The fMRI
image series were preprocessed using functions from multiple neuroimaging toolkits, combined
into a pipeline with python’s Nipype library*s. Images were corrected for slice timing with FSL
(FMRIB Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and temporally filtered with AFNI
(https://afni.nimh.nih.gov/). A high-pass filter of 0.01 Hz was used to remove slow temporal drifts,
with an additional low-pass filter of 0.15 Hz being applied to RS-fMRI datasets only. Spatial

smoothing (FSL) was performed using a 0.5 mm 3D Gaussian kernel. We chose to skip motion
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correction and regression of nuisance variables, as these preprocessing steps were shown to have
little effect in anesthetized and head-fixed rodents#é. A rigid transformation matrix was calculated
between the mean image of each functional run and the native structural image. This matrix was
combined with the previously calculated linear and non-linear transforms into a composite warp
file, which was used to transform the preprocessed fMRI datasets into the study template space

(ANTS).

fMRI analysis and statistics

Areas activated during each EFS-fMRI run were identified via a first-level general linear model
analysis carried out using FEAT (FMRI Expert Analysis Tool) Version 6.00, part of FSL%7. The
stimulus time course (1 during stimulation, 0 elsewhere) was convolved with a standard double-
gamma hemodynamic response function to generate the model predictor. The resulting statistical
maps were masked for brain, thresholded non-parametrically using clusters determined by z > 3.1
and a corrected cluster significance threshold of p = 0.05, binarized, and averaged across all 283
EFS-fMRI runs to construct an overall activation probability map. The region active in at least 30%
of all EFS-fMRI runs (contralateral S1FL; see Fig. 3a) was taken as a region-of-interest (ROI). This
ROI's mean BOLD time course was extracted from each EFS-fMRI run, normalized to the pre-
stimulus baseline, and averaged across the three stimulation blocks to produce an event-related
average. The peak % signal change (peak ABOLD) was extracted from the event-related average, as
a measure of BOLD response strength (Fig. 3b). We also performed a second-level fixed-effects
analysis (FEAT) for each medetomidine protocol, by pooling the corresponding EFS-fMRI runs and
computing the mean group effect. The resulting statistical maps were masked for brain and
thresholded non-parametrically using GRF-theory-based maximum height thresholding with a
(corrected) significance threshold of P=0.05.

Resting state functional connectivity (RSFC) analysis was performed using in-house python scripts.
All 295 preprocessed RS-fMRI datasets were normalized by subtracting the temporal mean and
dividing by the standard deviation. Normalized BOLD signal time courses were extracted from 28
ROIs (14 on each hemisphere), manually delineated based on the Paxinos-Watson rat brain atlas4s
(see Fig. 5a, left). Pearson’s correlation coefficients were calculated for all ROI pairs, transformed
into Fisher’s Z-scores, and stored as a pair-wise correlation matrix. The mean Z-score across all 378
unique ROI pairs served as a measure of global RSFC. To visualize the hierarchical structure of the
functional connectome, each correlation matrix was also represented as a weighted graph, with the

ROIs as nodes and the ROI pairs as edges. The edges were ranked by ascending correlation strength,
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and the rank was assigned as the numerical weight of the edge (strongest correlation to highest
weight). Figure 5a (right) depicts a pair-wise correlation matrix and its graph representation for an

example RS-fMRI run.

Statistical analysis was performed in R, version 3.2.5 (https://www.r-project.org/). The lme4
package*® was used to design a linear mixed effects model, separately for each of the four
medetomidine protocols. This model can account for the repeated-measures design of the study and
for missing data points (e.g. due to spontaneous earlier wake-ups). The EFS-evoked response
strength (peak ABOLD) or the global RSFC (mean Z-score) were defined as response variables, time
(onset of each fMRI run, relative to the start of medetomidine administration) as a fixed effect, and
individual rat intercepts as random effects. The fit's 95% confidence intervals were obtained
through model-based bootstrapping, using the bootMer method of the Ime4 package. To determine
whether the response variables were significantly time-dependent, a Likelihood Ratio Test was used

to compare each of the above models to a corresponding model lacking the time effect.
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Fig. 1. Anesthetic protocols and fMRI acquisition.

(a) The general outline of the applied anesthetic protocols. For all four protocols (see Table 1),
isoflurane was used to induce unconsciousness (5%) and during animal preparation (2-3%). For
protocols 1, 2, and 4, a bolus of medetomidine was given after the preparation phase, followed by a
gradual reduction of isoflurane and its eventual discontinuation 10 min later; continuous infusion of

medetomidine commenced 15 min after the bolus. The bolus was omitted for protocol 3, with

20


https://doi.org/10.1101/667659
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/667659; this version posted June 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

continuous infusion starting directly after preparation, and isoflurane being gradually reduced to
zero over the course of 20 - 25 min. Anesthesia was maintained for a maximum of six hours since
the start of medetomidine administration (time = 0). In the end, animals were provided with 2%
isoflurane and freed from all equipment. Atipamezole was injected SC to antagonize medetomidine
effects and to facilitate a smooth recovery. (b) Multiple fMRI runs were acquired per anesthesia
session, with consecutive runs being alternated between somatosensory fMRI with electrical
forepaw stimulation (EFS-fMRI) and resting state fMRI (RS-fMRI) with no stimulus. The stimulation
paradigm applied during EFS-fMRI runs is shown in (c).
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Fig. 2. Anesthesia duration and physiology.

(a) Anesthesia duration is plotted (dots) separately for bench and fMRI sessions, across all four
medetomidine protocols. The bars represent a histogram of anesthesia durations, with all 48
anesthesia sessions binned into one-hour intervals. (b) Heart and respiratory rates (in
beats/breaths per minute—bpm), pooled from both bench and fMRI sessions of each medetomidine

protocol, are plotted as an across-session mean (solid line) # s.d. (shaded area).
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Fig. 3. Areas activated by electrical forepaw stimulation (EFS).

(a) An activation probability map produced by pooling significantly active clusters across all 283
EFS-fMRI runs (left). On the right, the EFS-fMRI runs are grouped according to the applied
medetomidine protocol and to the time since the start of medetomidine administration (early: 0 - 2
h; middle: 2 - 4 h; late: 4 - 6 h), to produce separate activation probability maps for each group. All
maps are thresholded at 3% and overlaid on a T2-weighted structural study template. The asterisk
marks the crossing of the anterior commissure (AC, -0.36 mm relative to the bregma, according to

the Paxinos-Watson rat brain atlas). The rest of the slices shown on the left are taken at 1 mm
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intervals from the AC slice. On the right, only the slice containing the peak activation, 2 mm rostral
to AC, is shown for each group. (b) The only consistently active cluster across all runs corresponds
to the forelimb region of the left primary somatosensory cortex (S1FL). The location of this cluster is
shown alongside the anatomical delineation of the same area from the Paxinos-Watson rat brain
atlas. The functionally defined S1FL (area active in > 30% of all EFS-fMRI runs) is set as a region-of-
interest (ROI) for the extraction of BOLD signal time courses. Such a time course is shown for one
example EFS-fMRI run, with the stimulation blocks marked by horizontal lines. Averaging the three
stimulation blocks results in an event-related average, from which the peak % signal change (peak
ABOLD) can be extracted. Event-related average responses (mean * s.d.) are plotted for all four
medetomidine protocols (c) and compared to the model response (d). The model is generated by
convolving the stimulus paradigm (1 during EFS, 0 otherwise) with a double-gamma hemodynamic
response function (using the default parameters of FEAT version 6.00, part of FSL); it is shown here

rescaled to the y-axis range of the event-related averages, to aid visual comparison.
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Fig. 4. Temporal stability of stimulus-evoked responses.

(a) Event-related averages produced by averaging the three electrical forepaw stimulation (EFS)
blocks of each fMRI run. Single run traces are grouped according to the applied medetomidine
protocol and the time since the start of medetomidine administration (early: 0 — 2 h; middle: 2 - 4 h;
late: 4 - 6 h); each group’s mean event-related average is plotted as a thicker trace; EFS duration is

represented by horizontal lines. The peak stimulus-evoked signal change (peak ABOLD) is extracted
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from the event-related averages and plotted in (c); dots represent single run values, while bars
show the group mean. The same single-run peak ABOLD values are plotted in (b) against the exact
time of data acquisition. Solid lines correspond to the fit of a Linear Mixed Effects model (equation
shown), with peak ABOLD as a response variable, time as a fixed effect, and individual rat intercepts
as random effects; shaded areas represent the 95% confidence intervals of the fit. To test for time
dependence, the constructed models were compared to corresponding models lacking the time

effect, using a Likelihood Ratio Test; the resulting p-values are shown.
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Fig. 5. Resting state functional connectivity (RSFC).

(a) To calculate pair-wise RSFC, 28 regions-of-interest (ROIs) were defined based on the Paxinos-
Watson rat brain atlas—14 on each hemisphere. Pearson’s correlations were calculated between
the BOLD time courses of all unique ROI pairs and transformed into Fisher’s Z-scores. A pair-wise
correlation matrix is shown for one example RS-fMRI run; the mean correlation (Z-score) across all
ROI pairs constitutes the global RSFC. The matrix is also represented as a weighted network graph,
with the ROIs as nodes and their pairs as edges. For visualization clarity, only the strongest 30% of
edges are shown; edge thickness and opacity scale linearly with the relative rank of the correlation
value (the highest Z-score corresponds to the thickest edge); node radius scales with the weighted
degree (weighted sum of edges passing through the node). (b) The 295 RS-fMRI runs are split into
12 groups according to the applied medetomidine protocol and the time since the start of
medetomidine administration (early: 0 - 2 h; middle: 2 - 4 h; late: 4 - 6 h). For each group, the
upper triangular matrix represents the mean (across runs) pair-wise correlation, while the lower
triangular matrix shows the change in correlation compared to each protocol’s early period. (c) The
mean correlation matrices (upper triangles) are also visualized as network graphs, similarly to the
example graph above. (d) Global RSFC values (dots) are plotted against the time of the RS-fMRI run
acquisition. Solid lines correspond to the fit of a Linear Mixed Effects model (equation shown), with
global RSFC as a response variable, time as a fixed effect, and individual rat intercepts as random
effects; shaded areas represent the 95% confidence intervals of the fit. To test for time dependence,
the constructed model was compared to a corresponding model lacking the time effect, using a

Likelihood Ratio Test; the resulting p-values are shown.
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