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REPLICABLE NEURAL CORRELATES OF GENERAL PSYCHOPATHOLOGY

Abstract

Transdiagnostic research has identified a general psychopathology factor — often called the ‘p’
factor — that accounts for shared variation across internalizing, externalizing, and thought
disorders in diverse samples. It has been argued that the p factor may reflect dysfunctional
thinking present in serious mental illness. In support of this, we previously used a theory-free,
data-driven multimodal neuroimaging approach to find that higher p factor scores are
associated with structural alterations within a cerebello-thalamo-cortical circuit (CTCC) and
visual association cortex, both of which are important for monitoring and coordinating
information processing in the service of executive control. Here we attempt to replicate these
associations by conducting region-of-interest analyses of CTCC and visual association cortex
using data from 875 members of the Dunedin Longitudinal Study, a five-decade study of a
population-representative birth cohort now 45 years old. We further sought to replicate a
more recent report that p factor scores can be predicted by patterns of distributed cerebellar
morphology as estimated through independent component analysis. We successfully replicated
associations between higher p factor scores and both reduced grey matter volume of the visual
association cortex and fractional anisotropy of pontine white matter pathways within the CTCC.
In contrast, we failed to replicate prior associations between cerebellar structure and p factor
scores. Collectively, our findings encourage further focus on the CTCC and visual association

cortex as core neural substrates and potential biomarkers of general psychopathology.
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Introduction

A rapidly emerging body of research has identified a general factor that captures shared
variation among multiple forms of psychopathology across diverse samples (1). This general
psychopathology or ‘p’ factor (2) accounts for the high rates of comorbidity among
internalizing, externalizing, and thought disorders. Multiple explanations of the meaning of the
p factor have been proposed, including that the p factor may index functional impairment,
negative affect, emotion dysregulation, and poor intellectual function (for a review see (3)).
One compelling argument regarding the nature of the p factor is that it captures the extent of
disordered or dysfunctional thinking present not only in thought disorders, but also in extreme
presentations of internalizing and externalizing disorders (3). Consistent with this argument,
we recently used a theory-free, data-driven approach to find that among 1246 university
students higher p factor scores were associated with structural alterations in a cerebello-
thalamo-cortico circuit (CTCC) critical for monitoring and coordinating information processing in

the service of executive control (4).

Specifically, we found that higher p factor scores were associated with reduced grey matter
volume (GMV) in neocerebellar lobule VIIb. This neocerebellar region is a component of a
specific CTCC, including the orbitofrontal, dorsolateral, and medial prefrontal cortices (5,6). We
also found evidence for decreased microstructural integrity of pontine white matter pathways,
as indexed by decreased fractional anisotropy (FA), which mediate communication of
information from the prefrontal cortex to the neocerebellum within this CTCC (7-11).
Investigators have theorized that this prefrontal CTCC plays a crucial role in comparing
intention with the execution of thoughts, emotions, and actions by continuously updating
internal models (12,13). Moreover, prefrontal CTCC dysfunction has been consistently reported
in disorders principally characterized by poor executive control and disorganized thought such
as schizophrenia (e.g., (14,15)), and individuals with cerebellar cognitive affective syndrome
following damage to the neocerebellum experience executive control dysfunction symptoms

referred to as “dysmetria of thought” (16—18).
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A subsequent report based on analyses of data from 1401 community volunteers revealed that
patterns of distributed cerebellar morphology also were associated with general
psychopathology as estimated through independent component analysis (19). Namely,
morphological features within a cerebellar component involved in cognitive functions (i.e.,
verbal working memory, retrieval, rehearsal, etc.), as well as reduced GMVs within
neocerebellar lobule VI and crus I, were associated with higher general psychopathology.
Further, these neocerebellar morphological features were the most important predictor of

general psychopathology as compared to 52 other brain-wide anatomical features.

In addition to these structural alterations within neocerebellum and broader prefrontal CTCC,
we found novel evidence for decreased GMV in the visual association cortex of individuals with
higher p factor scores (4). Subsequently, we found that higher p factor scores were associated
with patterns of inefficient intrinsic functional connectivity between visual association cortex
and networks supporting executive control and self-referential processes, which are implicated
across mental disorders (20). Collectively, these patterns are consistent with speculation that
higher p factor scores ultimately represent the likelihood of experiencing disordered thought
through a diminished capacity for basic monitoring and processing of information supported by
the prefrontal CTCC and connectome-wide intrinsic functional connectivity. Such patterns of
brain dysfunction may also contribute to negative affect, emotion dysregulation, and inefficient
information processing, all of which also have been posited as potential explanations of the p

factor (3).

It is important to seek to replicate these associations, especially because our original
associations were discovered in a convenience sample of high-functioning 18 to 22 year-old
university students through the Duke Neurogenetics Study (4). Here we attempt to replicate
our original associations between prefrontal CTCC and visual association cortex structure and p
factor scores using data from the Dunedin Longitudinal Study, a five-decade longitudinal study
of a population-representative birth cohort now in midlife. Using data from the Dunedin Study,

we further sought to replicate the independent components analysis of cerebellar morphology
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and general psychopathology as reported by Moberget et al. (19) in their study of young

community volunteers.

Materials and Methods

Participants

Participants are members of the Dunedin Study, a longitudinal investigation of health and
behavior in a representative birth cohort. Study members (n=1037; 91% of eligible births; 52%
male) were all individuals born between April 1972 and March 1973 in Dunedin, New Zealand
(NZ), who were eligible based on residence in the province and who participated in the first
assessment at age 3 years (21). The cohort represented the full range of socioeconomic status
(SES) in the general population of NZ's South Island and as adults matched the NZ National
Health and Nutrition Survey on key adult health indicators (e.g., body mass index, smoking, GP
visits) and the NZ Census of citizens of the same age on educational attainment. Study
members are primarily white (93%), matching South Island demographics (21). Assessments
were carried out at birth and ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most recently
(completed April 2019) 45 years, when 94.1% (n=938) of the 997 participants still alive took
part, and 875 (93%) of these age-45 participants also completed MRI scanning (see
Supplementary Information, including Figure 1, for further details). Attrition analyses revealed
that scanned Study members did not differ from other living Study members on p factor scores,
childhood SES, or childhood 1Q (see Supplementary Information for details). The relevant ethics
committees approved each phase of the Study and informed consent was obtained from all

Study members.

Measuring the General Factor of Psychopathology, the p factor

The Dunedin Study longitudinally ascertains mental disorders every few years, interviewing
members about past-year symptoms (see Supplementary Information, including Figure 2, for
details). We studied Diagnostic and Statistical Manual of Mental Disorders (DSM)—defined
symptoms of the following disorders that were repeatedly assessed in our longitudinal study:

ADHD, alcohol dependence, cannabis dependence, dependence on hard drugs, tobacco
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dependence (assessed with the Fagerstrom Test for Nicotine Dependence (22)), conduct
disorder, major depression, generalized anxiety disorder, fears and/or phobias, eating
disorders, PTSD, obsessive compulsive disorder, mania, as well as positive and negative
schizophrenia symptoms. Ordinal measures represented the number of possible DSM-defined
symptoms associated with each disorder. Fears and/or phobias were assessed as the count of
diagnoses for simple phobia, social phobia, agoraphobia, and panic disorder that a study
member reported at each assessment. Symptoms were assessed without regard for
hierarchical exclusionary rules to facilitate the examination of comorbidity. Each of the 14
disorders were assessed at least 3 times. The past-year prevalence rates of psychiatric
disorders in the Dunedin cohort are similar to prevalence rates in nationwide surveys of the

United States and New Zealand (23,24).

The method used to compute a general factor of psychopathology in the Dunedin cohort up to
age 38 has been described previously (2); here we extend these models to include the age-45
data (see Supplementary Information for details). Briefly, we used confirmatory factor analysis
to compute a bi-factor model specifying a general psychopathology factor (labeled p)
(Supplementary Figure 3). This model included our 14 observed variables: ADHD, alcohol
dependence, cannabis dependence, dependence on hard drugs, tobacco dependence, conduct
disorder, major depression, generalized anxiety disorder, fears/phobias, eating disorders, PTSD,
obsessive-compulsive disorder, mania, as well as positive and negative schizophrenia
symptoms. The model also included method/state factors designed to pull out age-and
assessment-related variance (e.g., interviewer effects, mood effects, and age-specific

vulnerabilities) that was uncorrelated with trait propensity toward psychopathology.

All analyses were performed in Mplus version 7.12 using the weighted least squares means and
variance adjusted (WLSMV) algorithm. After respecification for a Heywood case, the bi-factor
model fit the data well (Supplementary Table 1 and Figure 3): x2(2457, N = 1000) = 3695.364,
CFl =.949, TLI = .945, RMSEA = .022, 90% confidence internal (Cl) = [.021, .024]. Loadings on

the p factor were high (all p's<.001) and averaged .612. For expository purposes, we scaled
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Study members’ p factor scores to M=100, SD=15. The p factor allows us to test for structural
brain alterations in relation to general psychopathology. Study members with higher p factor
scores experienced a greater variety of mental disorders from adolescence to midlife (r=.77;

Supplementary Figure 4).

MRI Data Acquisition

Each study member was scanned using a Siemens Skyra 3T scanner equipped with a 64-channel
head/neck coil at the Pacific Radiology imaging center in Dunedin, New Zealand. Diffusion-
weighted images providing full brain coverage were acquired with 2.5 mm isotropic resolution
and 64 diffusion weighted directions (4700 ms repetition time, 110.0 ms echo time, b value
3,000 s/mm2, 240 mm field of view, 96x96 acquisition matrix, slice thickness = 2.5 mm). Non-
weighted (b = 0) images were acquired in both the encoding (AP) and reverse encoding (PA)
directions to allow for EPI distortion correction. High resolution structural images were
obtained using a T1l-weighted MP-RAGE sequence with the following parameters: TR = 2400
ms; TE = 1.98 ms; 208 sagittal slices; flip angle, 9°; FOV, 224 mm; matrix = 256x256; slice
thickness = 0.9 mm with no gap (voxel size 0.9x0.875x0.875 mm); and total scan time = 6 min
and 52 s. All neuroimaging data were visually inspected for quality. Data were excluded for
Study members who were unable to be scanned with the 64-channel head coil, had an
incidental finding, or whose scans were of poor quality due to motion (as revealed by visual
inspection for T1-weighted images or >3 mm frame-to-frame movements for diffusion images),
resulting in a total of 854 study members eligible for diffusion analyses and 860 study members

eligible for GMV analyses.

Fractional Anisotropy

Following the methods of Romer et al. (4), diffusion tensor imaging analyses were completed
using SPM8 implemented in Matlab R2016a. All diffusion weighted scans were motion
corrected and co-registered to the mean image to correct for head movement. The tensor
model was used to calculate FA values for each voxel and non-brain tissue was removed. Each

image was normalized to MNI space and smoothed using a 4 mm FWHM Gaussian kernel. We
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note that the tensor model for derivation of FA values is not optimized for our current
diffusion-weighted image data (25), which was acquired with b = 3000 s/mm2 to facilitate
future probabilistic tractography. We are unaware of any suitable alternatives for the
derivation of FA values at higher b values. Moreover, these differences in acquisition
parameters are of less concern because visual inspection of the preprocessed images revealed
adequate registration and we did successfully replicate the association between higher p factor

scores and lower pontine FA (see below).

Grey Matter Volume

Again, following the methods of Romer et al. (4), regional GMVs were determined using the
unified segmentation (26) and DARTEL normalization (27) modules in SPM12
(http://www.fil.ion.ucl.ac.uk/spm). Using this approach, individual T1-weighted images were
segmented into grey, white, and CSF images, and then non-linearly registered to the existing IXI
template of 550 healthy subjects averaged in standard Montreal Neurological Institute (MNI)
space, available with VBMS8 (http://dbm.neuro.uni-jena.de/vbm/). Subsequently, grey matter
images were modulated for nonlinear effects of the high-dimensional normalization to preserve
the total amount of signal from each region and smoothed with an 8 mm FWHM Gaussian
kernel. The voxel size of processed images was 1.5x1.5x1.5 mm. A grey matter mask for

subsequent analyses was created by thresholding the final stage (6th) IXI template at 0.1.

Cerebellar Grey Matter Volume

In addition to the above whole-brain voxel based GMV analyses, the Spatially Unbiased
Infratentorial Toolbox (SUIT) was used for high-resolution cerebellar-specific voxel-based
morphometry analyses per the methods of Romer et al. (4). For each Study member, the
Isolate function of the toolbox was used to create a mask of the cerebellum and generate grey
and white matter segmentation maps. The masked segmentation maps were then normalized
to the SUIT template with non-linear DARTEL normalization. The resulting cerebellar grey

matter image was resliced into the SUIT atlas space and smoothed with a 4 mm FWHM
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isotropic Gaussian kernel, a small kernel to preserve precision in the definition of cerebellar

structures, in line with previous publications (28).

Independent Component Analysis of Cerebellar Morphology

Lastly, we conducted an independent component analysis (ICA) of SUIT-based cerebellar
morphology using the method of Moberget et al. (19). Briefly, we masked the SUIT-derived
cerebellar grey matter maps using the SUIT toolbox's grey matter probability map thresholded
at 0.1 and subjected them to ICA using FSL MELODIC (29). In our sample, a model order of 9
corresponded to the highest number of clearly bilateral components, and this model was used

for further analyses.

Statistical Analyses

Exact masks were created from the three primary associations with p factor scores originally
reported in Romer et al. (4): a 272 voxel cluster in the pons, a 2353 voxel cluster in the visual
association cortex, and a 706 voxel cluster in the cerebellum. A fourth mask was created for
the 156 voxel cluster in neocerebellar lobule VIIb identified through the SUIT analysis. Moving
to the Dunedin Study data, mean values for each of these four masks were extracted for each
Study member from the FA (pons), GMV (visual association cortex and neocerebellum), and
SUIT maps, respectively. These mean extracted values were then used as the dependent
variable in linear models with p factor scores as the predictor and sex and total intracranial
volume or average total FA, respectively, as covariates to explicitly test for replication of the

original findings of Romer et al. (4).

Per the strategy of Moberget et al. (19), we also tested whether weights on our nine ICA-
derived cerebellar components could predict p factor scores using shrinkage linear regression
with 10,000 iterations of 10-fold cross-validation on randomly partitioned data. As in Moberget
et al. (19), we controlled for sex and total intracranial volume. Performance was evaluated by
comparing the distribution of Pearson correlations between predicted and observed p factor

scores to a null distribution of correlations obtained by randomly permuting the p factor scores.
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Results

White Matter Microstructural Integrity

A significant negative correlation (standardized B = -0.092; p = 0.005) indicated an association
between lower pontine FA and higher p factor scores (Figure 1A), replicating the finding of

Romer et al. (4).

Grey Matter Volume

A significant negative correlation (standardized B = -0.084; p = 0.003) indicated an association
between decreased visual association cortex GMV and higher p factor scores (Figure 1B),
replicating the finding of Romer et al. (4). An observed negative correlation between cerebellar
GMV and p factor scores was not statistically significant (standardized B = -0.033; p = 0.238;
Figure 1C). This was also true for the SUIT-based neocerebellar lobule VIib cluster

(standardized 3 =-0.036; p = 0.284; Figure 1D).

ICA-Derived Cerebellar Morphology

The nine independent components of cerebellar morphology collectively accounted for 41.47%
of the total variance in the modulated grey matter maps; each component explained between
4.08% and 4.97% of the total variance (and between 9.83% and 11.99% of the explained
variance). The nine ICA-derived components predicted p factor scores beyond chance on
average, but the difference from the empirical null distribution was not significant (mean
correlations between predicted and observed values: r = 0.13, p = 0.53; mean r > 54.89% of the

empirical null distribution; Figure 2).

Discussion

We successfully replicated two prior associations between variation in brain structure and
general psychopathology, as indexed by the p factor, using data from a population-
representative birth cohort now in midlife. Namely, we replicated associations between p

factor scores and both pontine FA and visual association cortex GMV as originally reported by
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Romer et al. (4). In contrast, we failed to replicate three prior associations between cerebellar
structure and p factor scores. First, although nominally consistent with the original report of
Romer et al. (4), neither of two tested associations between GMV in a broad cerebellar cluster
nor a smaller cluster in neocerebellar lobule VIlb were statistically significant. Second, an ICA-
based measure of global cerebellar morphology did not significantly predict p factor scores

above chance as was reported originally by Moberget et al. (19).

The replication of a negative association between pontine FA and p factor scores further
implicates the CTCC in general psychopathology. Thus, dysfunction in fundamental aspects of
monitoring and coordinating executive functions (i.e., “forward control”) through dynamic
information processing between the neocerebellum and prefrontal cortex appears to be a core
transdiagnostic feature of general psychopathology. The second replication of a negative
association between p factor scores and GMV in visual association cortex is consistent with the
importance of executive dysfunction in general psychopathology. In particular, structural
alterations in visual association cortex may manifest as more effortful or less efficient
integration of bottom-up sensory information with attentional demands and executive control

processes in individuals who meet criteria for different forms of mental disorders (20).

The non-significant associations between p factor scores and multiple indices of cerebellar GMV
and morphology do not necessarily undermine the importance of a prefrontal CTCC in general
psychopathology. Rather, these failures may indicate that shared variation among different
forms of psychopathology, as captured by the p factor, is more a reflection of how information
is communicated within the CTCC, particularly through pontine white matter pathways
connecting the prefrontal cortex and cerebellum, and less a reflection of how information may
be locally computed within the neocerebellum. This would be consistent with the emerging
understanding that brain function may be best characterized by distributed patterns of network
communication rather than discrete regional activity (30,31). However, there also are
pragmatic factors that may have limited our ability to replicate prior associations between p

factor scores and cerebellar structure.

10
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First, the failure to replicate cerebellar associations with p factor scores may reflect different
contributions of brain structure to risk across development. The discovery samples were
comprised of young adults (4) or children, adolescents, and young adults (19). In contrast, our
sample is comprised of individuals in midlife. Thus, the contribution of cerebellar GMV and
morphology to the p factor may be greater earlier than later in life. This difference may reflect
the still-active structural development of the cerebellum, which parallels that of the prefrontal
cortex, in both discovery samples (32). Developmental differences are hinted at by the
observation of only nine independent components of cerebellar morphology in our sample but
ten such components in the sample studied by Moberget et al. (19). Longitudinal assessment
of brain structure and p factor scores within the same individuals is necessary to evaluate a
hypothesis of developmental differences (33). Second, the nature of the sampling strategy
across the three samples also may influence replication. Unlike the population-representative
birth cohort in our current study, both discovery samples represented narrow groups of select
individuals (e.g., high-functioning university students or community volunteers). Additional
replication efforts across diverse samples are necessary to probe the implications of such
possible differences for the study of the brain basis of general psychopathology. Lastly, we may
simply have been underpowered to identify significant associations of small effect. Our current
sample is smaller than either the discovery sample of Romer et al. (4) (N=1246) or Moberget et
al. (19) (N=1401). Generally, successful replication is more likely if the test samples are larger
and thus better powered to detect often smaller effects than reported in a discovery sample
(34,35). The effect sizes in Romer et al. (4) ranged from r = 0.09 -.13 and those in Moberget et
al. (19) ranged from r =.13 -.2.

These limitations notwithstanding, the two replicable associations of the theory-free, data-
driven findings of Romer et al. (4) reported herein point to specific features of brain structure
that may be a core feature of shared variation among common forms of mental illness.
Alterations in the microstructural integrity of pontine white matter pathways may reflect

dysfunction of executive control processes supported through dynamic communication within

11
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the CTCC. Likewise, alterations in GMV of visual association cortex may reflect impairments in
the integration of bottom-up sensory information with top-down executive control and
attentional processes. Notably, both of these neuroanatomical features are consistent with a
model of the p factor as indexing increasingly disordered thought, which characterizes the most
debilitating forms of mental disorders. The extent to which these neuroanatomical features
drive the emergence of general psychopathology or emerge as a consequence of general
psychopathology are as yet unknown and require longitudinal neuroimaging assessments to

explicate.

12
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Figure Captions
Figure 1. Replication analyses in the Dunedin Study of the original structural brain associations

with p factor scores from Romer et al. (4).

A) Replication of the negative association between pontine fractional anisotropy (FA) and p
factor scores. B) Replication of the negative association between visual association cortex grey
matter volume (GMV) and p factor scores. C) Non-significant replication of the negative
association between cerebellar GMV and p factor scores. D) Non-significant replication of the
negative association between SUIT-based neocerebellar lobule VIlb GMV and p factor scores.

Per convention, p factor scores are normalized to a mean of 100 (SD = 15).

Figure 2. Replication analyses in the Dunedin Study of the original ICA-derived cerebellar

morphology associations with p factor scores from Moberget et al. (19).

A) The nine independent components resulting from data-driven decomposition of cerebellar
grey matter maps projected onto flat-maps of the cerebellar cortex (36). B) Distributions of
correlations between predicted and actual p factor scores across 10,000 iterations of the 10-
fold cross-validated model using the average of the 9 independent components from A
compared to the empirical null-distribution. The black dotted lines represent the mean for
each distribution and the grey dotted line represents the one-tailed .05 threshold. The nine
ICA-derived components predicted p factor scores beyond chance on average, but the
difference from the empirical null distribution was p = 0.53, suggesting non-significant

replication of Moberget et al. (19).
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