

1 **Adding *MASP1* to the lectin pathway – leprosy association**
2 **puzzle: hints from gene polymorphisms and protein levels.**

3

4

5 Hellen Weinschutz Mendes^{1, #}, Angelica Winter Boldt^{1,2}, Ewalda Stahlke³,
6 Jens Christian Jensenius⁴, Steffen Thiel⁴, Iara J. Taborda Messias-Reason^{1*}

7

8 ¹Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Clinical
9 Hospital, Federal University of Paraná, Curitiba, Brazil.

10 ²Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of
11 Paraná, Curitiba, Brazil.

12 ³Health State Department of Paraná, Curitiba, Brazil

13 ⁴Department of Biomedicine, Aarhus University, Aarhus, Denmark.

14 #Current address: Department of Biology, University of Ottawa, Ottawa, Ontario, Canada

15

16 *Corresponding author:

17 email: iarar.reason@hc.ufpr.br

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 **ABSTRACT**

38

39 **Background:** Deposition of complement factors on *Mycobacterium leprae*
40 may enhance phagocytosis. Such deposition may occur through the lectin
41 pathway of complement. Three proteins of the lectin pathway are produced
42 from the gene *MASP1*: Mannan-binding lectin-associated serine protease 1
43 (MASP-1) and MASP-3 and mannan-binding lectin-associated protein of 44
44 kDa (MAp44). Despite their obvious importance, the roles played by these
45 proteins have never been investigated in leprosy disease. **Methodology:** We
46 haplotyped five *MASP1* polymorphisms by multiplex sequence-specific PCR
47 (intronic *rs7609662**G>A and *rs13064994**C>T, exon 12 3'-untranslated
48 *rs72549262**C>G, *rs1109452**C>T and *rs850314**G>A) and measured
49 MASP-1, MASP-3 and MAp44 serum levels in 196 leprosy patients (60%,
50 lepromatous) and 193 controls. **Principal findings:** Lower MASP-3 and
51 MAp44 levels were observed in patients, compared with controls ($P=0.0002$
52 and $P<0.0001$, respectively) and in lepromatous, compared with non-
53 lepromatous patients ($P=0.008$ and $P=0.002$, respectively). Higher MASP-3
54 levels occurred in controls carrying variants/haplotypes associated with
55 leprosy resistance (*rs13064994**T, *rs1109452*_*rs850314**CG within *GT_CCG*
56 and *rs850314**A: OR=0.5-0.6, Pcorr=0.01-0.04). Controls with *rs1109452**T,
57 included in susceptibility haplotypes (*GT_GTG/GT_CTG*: OR=2.0,
58 Pcorr=0.03), had higher MASP-1 and lower MASP-3 levels ($P\leq0.009$). Those
59 with *GC_CCG*, presented increasing susceptibility (OR=1.7, Pcorr=0.006) and
60 had higher MAp44 levels ($P=0.015$). MASP-3 expression decreased in
61 patients, compared with controls carrying *rs1109452*_*rs850314**CA or CG
62 ($P\leq0.02$), which may rely on exon 12 CpG methylation and/or miR-2861/miR-
63 3181 mRNA binding. **Conclusion:** Polymorphisms regulating MASP-3/MAp44
64 availability in serum modulate leprosy susceptibility, underlining the
65 importance of lectin pathway regulation against pathogens that exploit
66 phagocytosis to parasitize host macrophages.

67

68 **Author summary**

69 Since immemorial times, *Mycobacterium leprae* inflicts permanent injuries in
70 human kind, within a wide symptomatic spectrum ranging from insensitive
71 skin patches to disabling physical lesions. Innate resistance to this parasite is
72 well recognized, but poorly understood. The complement system is one of the
73 most important arms of the innate response, and several lines of evidence
74 indicate that it may be usurped by the parasite to enhance its entrance into
75 host cells. These include our recent work on genetic association of the
76 disease with lectin pathway components and the complement receptor CR1,
77 whose polymorphisms modulate susceptibility to infection and clinical
78 presentation. Here, we add another pivotal piece in the leprosy parasite-host
79 interaction puzzle: polymorphisms and serum levels of three different lectin
80 pathway proteins, all encoded by the same gene, namely mannan-binding
81 lectin-associated serine protease 1 (*MASP1*). We found lower levels of two of
82 these proteins, MASP-3 and MAp44, in leprosy patients. Higher MASP-
83 3/lower MASP-1 levels were associated with protective haplotypes, containing
84 two side-by-side polymorphisms located in the exclusive untranslated region
85 of MASP-3 exon 12, which may regulate exon splicing and/or translation
86 efficiency. The associations revealed in this study reflect the pleiotropic nature
87 of this gene. They further illustrate the complexity of the response mounted
88 against the parasite, which places *MASP1* products in the regulatory
89 crossroad between the innate and adaptive arms of the immunological
90 system, modulating leprosy susceptibility.

91

92

93 **INTRODUCTION**

94

95 Leprosy is a chronic infectious disease caused by the obligate
96 intracellular bacteria *Mycobacterium leprae*, irreversibly disabling about 8% of
97 about 210,000 new cases every year, with Brazil ranking second in worldwide
98 prevalence (1). To assist infection, *M. leprae* bacteria usurp complement
99 activation to be opsonized and more readily phagocytosed into macrophages,
100 one of their preferred host cells. Complement gene polymorphisms modulate

101 the abundance of the cascade components and susceptibility to leprosy. One
102 way to mediate deposition of complement factors onto a surface is via the so-
103 called lectin pathway of complement activation. One of the initiating proteins
104 of this pathway is mannan-binding lectin, produced from the *MBL2* gene.
105 Since the first suggestion of a balancing selection operating on *MBL2*
106 polymorphisms due to protection against mycobacterial diseases (2), much
107 has been done investigating the possible roles played by genes of the lectin
108 pathway of complement and their products on susceptibility to leprosy and
109 tuberculosis (3) (4) (5) (6)(7) (8) (9) (10)(11). However, the exact role played
110 by the lectin pathway components is still under investigation.

111 The very ancient origin of the complement system (12) (13), made it an
112 ideal platform to coevolve with pathogens, like *M. leprae*, employing opsonins
113 such as C3b to enter host phagocytic cells. In fact, the lectin pathway has
114 long being recognized as favoring establishment of infection (2) (5) (4) (14) (6)
115 (11). There is evidence that activation of complement modulate the course of
116 the disease towards the Th1 or Th2 pole, from the paucibacillary tuberculoid,
117 to the multibacillary lepromatous presentations of the disease, respectively (7)
118 (3) (8) (15) (5). The lectin pathway of complement starts with the recognition
119 of pathogen- or damaged/ altered cell-associated patterns of carbohydrates or
120 patterns of acetylated groups by pattern recognition molecules molecules
121 (PRMs), i.e. collectins (Collectin-LK and mannose-binding lectin (MBL)) and
122 the ficolins (FCNs), H-Ficolin (aka Ficolin-3), L-ficolin (Ficolin-2) and M-ficolin
123 (Ficolin-1)) (16) (17) (18). These PRMs form circulating complexes with
124 homodimers of MBL-associated serine proteases (MASPs) or MBL-
125 associated proteins (MAPs). Upon collectin/ficolin binding to a target, MASP-1
126 autoactivates and transactivates MASP-2, leading to cleavage of complement
127 factors C2 and C4 in order to form the C3 convertase. This leads to enhanced
128 deposition of the C3b molecule on the target, resulting in destruction by
129 phagocytosis through complement receptors (CRs) or to the generation of
130 membrane penetrating pores (membrane attack complexes) formed by C5b
131 and the last complement components C6, C7, C8 and C9 (19) (20). Another
132 result of complement activation is the generation of anaphylatoxins attracting
133 cells to the site of activation. Another piece in the puzzle of the complement
134 system is the alternative pathway, which is at least as old as the lectin

135 pathway. It becomes activated when the enzyme factor D is allowed to cleave
136 other complement factors to allow for the generation of the alternative
137 pathway C3 convertase, i.e. amplifying opsonization of microorganism. The
138 enzyme Factor D becomes active when the enzyme MASP-3 cleaves pro-
139 Factor D (21).

140 The *MASP1* gene (3q27.3) is highly pleiotropic as it by alternative pre-
141 mRNA processing encodes the serine protease MASP-1 and MASP-3 and the
142 protein MAp44 (aka MAP-1) (22) (23) (24) (25). These three proteins circulate
143 in plasma in as homodimers in complexes with the PRMs mentioned above.

144 The substrate specificity of MASP-1 is described as being quite broad
145 resembling some of the characteristics of thrombin and trypsin. Within the
146 lectin pathway of complement activation MASP-1 can cleave MASP-2, and
147 thus activating MASP-2 leading to C4 activation. But other enzymatic activities
148 are also described. It has procoagulant activity, while it cleaves and activates
149 Factor XIII and fibrinopeptide, generating fibrinopeptide B and attracting
150 neutrophils to assist the coagulation cascade (26). It also activates
151 carboxypeptidase B2, a molecule that prevents fibrinolysis and inactivates
152 C3a and C5a anaphylatoxins (27). MASP-1 generates bradykinin from the
153 cleavage of high-molecular-weight kininogen (28). It also cleaves PAR4
154 (protease-activated receptor 4) on endothelial cells and induces MAPKp38
155 (mitogen activated protein kinase protein 38) and NFkB (nuclear factor kappa-
156 light-chain-enhancer of activated B cells) proinflammatory signaling (reviewed
157 by (29) and (30)).

158 MASP-3 exclusively cleaves pro-factor D of the alternative pathway
159 (31). This results in factor D cleavage of factor B complexed with C3b,
160 creating the alternative pathway C3 convertase (reviewed by (32)). In the
161 absence of MASP-3, only thrombin may possibly cleave some pro Factor D,
162 but under circumstances of ongoing coagulation (33). As MASP-3 shares the
163 same bindings sites on the PRMs with MASP-1 and MASP-2, it is also
164 suggested to be able to compete on binding to the PRMs and thus to inhibit
165 activation by the two other MASPs (18) (34). Some rare mutations in a highly
166 conserved region of exon 12 of the *MASP1* gene, which is exclusive of
167 MASP-3 and encodes the serine protease domain of this protein, cause the

168 3MC1 (Malpuech-Michels-Mingarelli-Carnevale) syndrome, pointing to an
169 important role in ectodermal development (35).

170 MAp44 may also compete with MASP_s for binding sites on the PRMs
171 and in such manner regulate MASP mediated complement activation, i.e. it
172 does have the ability of displacing MASP-1 and MASP-2 from within the
173 collagenous stalks of the PRMs (24) (36). It is highly expressed in the heart,
174 which suggest that it may reduce the damage which may occur with
175 uncontrolled activation of the lectin pathway, after ischemia-reperfusion injury
176 (25).

177 The role of MASP_s in the establishment of infections and in leprosy
178 progression is still poorly understood. Low MASP-2 levels, as well as *MASP2*
179 polymorphisms associated with low MASP-2 production, were associated with
180 increased susceptibility to leprosy (6). Low MBL levels and corresponding
181 *MBL2* polymorphisms, in contrast, were associated with increased resistance
182 (7) (3), and higher FCN-3 levels were more frequent in leprosy patients than
183 in controls (9). It has also been suggested that complement receptor CR1 and
184 CD91/calreticulin bind the collagenous chains of collectins and ficolins
185 deposited on pathogens or altered cells, leading to their internalization, but
186 that MASP_s and MAp_s compete with this binding site, preventing this
187 recognition (37) (38). CR1 binds opsonized *M. leprae* to enter the cell (39),
188 and may use C3b and collectins/ficolins. Interestingly, we recently found
189 polymorphisms of the *CR1* gene associated with leprosy, as well as a
190 negative correlation between the anti-inflammatory soluble CR1 and pro-
191 inflammatory MBL levels, probably preventing inflammation (10).

192 Given this context, we investigated whether *MASP1* gene variants and
193 products are associated with susceptibility to leprosy and to the different
194 clinical forms of the disease. We aim at providing a better understanding of
195 the immunological clinical spectrum of leprosy and of the role played by the
196 lectin pathway in mycobacterial infections.

197
198

199 **MATERIAL AND METHODS**

200

201 **Subjects and Samples**

202

203 We included leprosy patients comprising of a total of 196 individuals
204 with 138 being consecutive outpatients from the Clinical Hospital of the
205 Federal University of Paraná (HC-UFPR) and 58 inpatients from the Sanitary
206 and Dermatologic Hospital of Paraná both in Curitiba, Brazil. This study was
207 conducted according to the Declaration of Helsinki. The local medical ethics
208 committee of the HC-UFPR approved the study (protocol 497.079/2002–06,
209 218.104 and 279.970) and all subjects signed a written informed consent.
210 Patients were diagnosed based on clinical and histopathological features and
211 classified according to Ridley and Jopling criteria (40). The control group
212 comprised of 214 blood donors from the Hemepar and HC-UFPR blood banks
213 and were from the same socioeconomic, ethnic and geographic background.
214 Patients and controls were defined as Euro-, Afro-Brazilians or Amerindians,
215 based on physical characteristics and ancestry information. This means 9%
216 and 5% average sub-Saharan African and Amerindian ancestry respectively,
217 for the former, and at least 40% of African and 6% of Amerindian ancestry for
218 the latter, based on HLA genotyping for South Brazilian populations classified
219 in the same way (41) (42) (Table 1). Blood was collected with, or without for
220 serum collection, anticoagulant ethylenediaminetetraacetic acid (EDTA) and
221 DNA was extracted from peripheral blood mononuclear cells through
222 commercial kits (Qiagen GmbH, Hilden, Germany and GFX™ Genomic Blood
223 DNA Purification Kit, GE Healthcare, São Paulo, Brazil).

224

225

226 **Table 1. Clinical and demographic description of controls and leprosy**
227 **patients.**

228

Parameters	Controls	Patients	Exact P value
N	214	196	-
Age average [Min-Max]	38.17 [18-61]	51.31 [18-94]	<0.0001
Male (%)	116 (54.2)	119 (60.7)	0.195

Ethnical background (%)*		0.70	
Euro-Brazilian	176 (82.2)	158 (80.6)	-
Afro-descendant	34 (17.3)	36 (18.6)	-
Amerindian	4 (2.1)	2 (1.1)	-
Clinical Form (%)			
Lepromatous	n.a.	118 (60.2)	n.a.
Borderline	n.a.	27 (13.7)	n.a.
Tuberculoid	n.a.	18 (9.2)	n.a.
Indeterminate	n.a.	10 (5.1)	n.a.
Non-specified	n.a.	23 (11.7)	n.a.

229

230 **Table 1. Clinical and demographic description of controls and leprosy patients.**

231 n: number of individuals; na.: not applicable

232 *: Ethnic background based on physical characteristics and ancestral information, corroborated by
233 HLA genotyping of South-Brazilians classified in the same way (Probst et al. 2000, Braun-Prado et al.
234 2000).

235

236 **MASP1 genotyping**

237

238 A sequence-specific multiplex amplification method (multiplex PCR-
239 SSP) was optimized in order to haplotype five single nucleotide
240 polymorphisms (SNPs): rs7609662*G>A and rs13064994*C>T in intron 1 and
241 rs72549262*G>C, rs1109452*C>T and rs850314*G>A in exon 12 within the
242 3' untranslated (UTR) region (reference sequence: ENST00000337774.9).
243 We amplified a 730 bp fragment specific for rs7609662 and rs13064994 in
244 intron 1 and co-amplified a 365 bp fragment specific for rs72549262 and
245 rs1109452+rs850314 (both are adjacent SNPs) in exon 12, all in a batch of
246 four low-cost reactions, as previously described for *MASP2* (6). As a control
247 for the amplification quality, we co-amplified a 500 bp fragment in every single
248 reaction, corresponding to exon 8 of the Ficolin 2 gene (*FCN2*) by adding two

249 generic primers (**Table 2**). The protocol starts with a denaturation step of 3
250 min at 96C, followed by 35 cycles of 20 sec at 94C for denaturation, 30 sec
251 for primer annealing at variable temperatures (see below), and 30 sec DNA
252 extension at 72C, concluding with 1 min and 30 sec at 72C or extension. We
253 used three different annealing temperatures according to previously published
254 “touch-down” protocol: the 10 first cycles at 61C, followed by 10 cycles at 59C
255 and 15 cycles at 57C. The haplotypes defined by these five SNPs, were
256 identified by the presence or absence of specific bands in agarose gel, after
257 electrophoresis.

258

259 **Table 2.** *MASP1* sequence-specific primers and fragment size.

260

Forward Primers	Reverse Primers
Intron 01	
<i>MASP1</i> rs7609662_Af	5' ATATTGTTCATATGTTGAAACCA 3'
<i>MASP1</i> rs7609662_Gf	5' ATATTGTTCATATGTTGAAACCG 3'
Exon 12	
<i>MASP1</i> rs72549262_Cf	5' CCCTCTCTCTTAGTGTGATC 3'
<i>MASP1</i> rs72549262_Gf	5' CCCTCTCTCTTAGTGTGATG 3'
<i>MASP1</i> rs13064994_Cr	
<i>MASP1</i> rs13064994_Tr	
<i>MASP1</i> rs1109452_Tr	
<i>MASP1</i> rs1109452_Cr	
<i>MASP1</i> rs850314_Ar	

261 Each primer is named after the SNP it amplifies, f: forward; r: reverse. In bold: variant nucleotides; bp:
262 base pairs.

263

264

265 **MASP-3 and MAp44 levels assays**

266

267 Serum concentrations of MASP-3 and MAp44 were determined by
268 time-resolved immunofluorimetric assays (TRIFMA) for 142 and 145 patients,
269 respectively, and 116 controls, as previously described (24). Briefly, samples
270 were diluted in binding buffer, 40-fold for MAp44 detection and 100-fold for
271 MASP-3, and incubated in microtiter wells coated with a monoclonal antibody.
272 The bound protein is detected by a specific biotin-labeled monoclonal
273 antibody, which is then subsequently detected by europium-labeled
274 streptavidin. The provided signal is measured by time-resolved fluorometry.
275 Four internal controls were added to each assay plate in both assays.

276

277 **MASP-1 levels assay**

278

279 The time-resolved immunofluorimetric assay for MASP-1 is an
280 inhibition assay, where circulating MASP-1 in the sample inhibits the binding
281 of an anti-MASP-1 antibody to a surface coated with a fragment of MASP-1,
282 as previously described (36). Briefly, diluted serum samples of 141 patients
283 and 116 controls, 60-fold in binding buffer, were incubated with an equal
284 volume of diluted rat anti-MASP-1 antibody for approximately an hour and
285 then added to the coated microtiter wells. Bound rat anti-MASP-1 were
286 detected with biotinylated rabbit anti-rat-Ig followed by europium-labeled
287 streptavidin, where bound europium is measured by time-resolved
288 fluorometry. Four internal controls were also added to each plate for this
289 assay.

290

291 **Statistics**

292

293 Genotype, allele and haplotype frequencies were obtained by direct
294 counting. The expectation maximization (EM) algorithm was used to calculate
295 maximum likelihood estimates of intron 1 – exon 12 haplotype frequencies,
296 while taking into account phase ambiguity. The hypothesis of Hardy–
297 Weinberg equilibrium and of homogeneity between allelic distributions (exact
298 test of population differentiation of Raymond and Rousset) was also evaluated
299 with the ARLEQUIN software package version 3.1
300 (<http://anthro.unige.ch/arlequin/>). Protein levels were compared between the
301 groups using nonparametric Mann-Whitney/Kruskal–Wallis tests (since their
302 distribution did not pass Shapiro-Wilk normality test), using Graphpad Prism
303 5.01 (GraphPad Software, La Jolla, CA). The reduced model of multivariate
304 logistic regression was used to adjust results for demographic factors; age,
305 sex (factors that might influence protein levels (43)) and ethnic group, as well
306 as for previously published MASP-2 levels, *MBL2*, *MASP2*, *FCN1*, *FCN2* and
307 *FCN3* genotyping results (44) (3) (9) (45) using STATA v.9.2 (Statacorp, TX,
308 USA). The P values obtained with multiple comparisons in the association
309 studies were corrected with the Benjamini-Hochberg method.

310

311

312 **RESULTS**

313

314 Protein serum levels in the Southern-Brazilian patients and controls
315 were within the range reported for a Danish population (34) (24). We found
316 strong evidence for an association between MASP-3 and MAp44 serum levels
317 and leprosy. We also identified a genetic association between MASP-1 and
318 MASP-3 serum levels and *MASP1* polymorphisms, composing haplotypes
319 associated with increased resistance and susceptibility to leprosy. The results
320 are described in detail below.

321

322

323 **MASP-3 and MAp44 levels are associated with leprosy per se and**
324 **lepromatous leprosy**

325

326 Leprosy patients presented lower MASP-3 levels (median 4,488
327 [1,722-14,634] ng/mL), than controls (median 5,575 [2,149-12,579] ng/mL)
328 (Mann-Whitney $P<0.001$). In fact, the frequency of individuals with more than
329 5,500 ng/mL circulating MASP-3 in serum was higher among controls: 51.7%
330 or 60/116, compared with 31.7% or 45/142 in patients, independently of age
331 and sex distribution (logistic regression $OR=0.51$ [95%CI=0.28-0.92] $P=0.026$)
332 (S1 Fig). MASP-3 levels were even lower in lepromatous patients, who
333 present numerous severe lesions with multiple bacilli and an exacerbated Th2
334 immune response. In these severely affected, often disabled patients, the
335 median of MASP-3 levels was 4,209 [1,722-11,244] ng/mL, compared with
336 5,334 [2,021-14,634] ng/mL in patients with the other clinical forms (Mann-
337 Whitney $P=0.0083$). Individuals with MASP-3 levels higher than 5,500 ng/mL
338 were also much more frequent among non-lepromatous (50% or 18/36),
339 compared with lepromatous patients (26.8% or 26/97), independently of age
340 and sex distribution (logistic regression $OR=0.38$ [95%CI=0.16-0.90],
341 $P=0.028$).

342 MAp44 levels followed a similar trend, but with a more conspicuous
343 difference. Leprosy patients also presented lower MAp44 levels (median
344 1,715 [719-4,843] ng/mL in patients vs. median 2,330 [1,140-4,927] ng/mL in
345 controls; Mann-Whitney $P<0.0001$) (Fig 1). As in the case of MASP-3,
346 individuals with MAp44 levels higher than 2,300 ng/mL were much more
347 frequent among controls: 50.9% or 59/116, compared with 22.1% or 32/145 in
348 patients, independently of age and sex distribution (logistic regression
349 $OR=0.26$ [95%CI=0.14-0.49] $P<0.0001$) (S1 Fig). This pattern was also
350 followed by lepromatous, compared with non-lepromatous patients: MAp44
351 median 1,646 [719-4,843] ng/mL vs. median 1,995 [985-4,359] ng/mL,
352 respectively (Mann-Whitney $P=0.0021$) (Fig 2). Individuals with MAp44 levels
353 higher than 2,300 ng/mL were also much more frequent among non
354 lepromatous (36.1% or 13/36), compared with lepromatous patients (15.5% or
355 15/97), again independent of age and sex distribution (logistic regression
356 $OR=0.34$ [95%CI=0.13-0.89], $P=0.023$).

357
358 **Figure 1: MASP-1 (A), MASP-3 (B) and MAp44 (C) serum levels in controls and leprosy**
359 **patients.** Data shown with medians and interquartile ranges and Mann-Whitney P values.
360 Open and closed symbols represent controls and patients, respectively.

361
362
363 **Figure 2: MASP-1 (A), MASP-3 (B) and MAp44 (C) serum levels in non-lepromatous and**
364 **lepromatous patients.** Data shown with medians and interquartile ranges and Mann-
365 Whitney P values. Open and closed symbols represent controls and patients, respectively.

366
367 In contrast, MASP-1 levels did not differ between patients and controls
368 (median 7,036 [2,350-14,109] ng/mL vs. 6,207 [2,521-16,624] ng/mL,
369 respectively; Mann-Whitney $P=0.173$) or among the lepromatous patients and
370 those with the other clinical forms (Mann-Whitney $P=0.603$) (Figs 1 and 2).

371 MAp44 levels correlated significantly, but weakly with the other two
372 serine proteases (MASP-1: $R=0.21$ in patients, Spearman $P<0.05$; MASP-3:
373 $R=0.05$ in patients, $R=0.36$ in controls, both with Spearman $P<0.0001$). There
374 was no correlation between MASP-1 and MASP-3 levels or MAp44 and
375 MASP-1 levels in controls (S1 Fig). These results were expected, according to
376 former reports (34) (36).

377

378

379 ***MASP1* polymorphisms and haplotypes associated with leprosy**

380

381 The allele frequencies for the investigated *MASP1* SNPs did not differ
382 from Iberians (who contributed most to the Southern-Brazilian population), as
383 well as from other Europeans, according to the 1000 Genomes project (exact
384 test of population differentiation) (2014). (Table 3). We identified three intron 1
385 haplotypes: AC, GC and GT. The GC combination accounted for more than
386 half of all intron 1 haplotypes in the investigated groups. There were also four
387 exon 12 haplotypes: CCA, CCG, CTG and GTG. Of these, CCG was the most
388 common, but none of the others presented less than 5% frequency. The
389 genotypic distributions of these haplotype combinations were in Hardy and
390 Weinberg equilibrium, excepting the distribution of exon 12 haplotypes in
391 patients ($P=0.01$). Haplotype distribution further differed between leprosy
392 patients and controls (exact test $P=0.016$), as well as between lepromatous
393 patients and controls (exact test $P=0.023$), but not between lepromatous and
394 non-lepromatous patients. In accordance, there was no association of *MASP1*
395 alleles/haplotypes/genotypes with the lepromatous clinical form of the
396 disease. Furthermore, no associations with the disease occurred with the two
397 variants located in intron 1. All other associations were still significant after
398 correction for multiple comparisons (P_{q} value) and for age (the only
399 demographic factor that remained associated with the disease in the reduced
400 logistic regression model).

401 Linkage disequilibrium between the intron 1 and exon 12 alleles
402 resulted in a total of twelve different *MASP1* haplotypes in leprosy patients
403 and thirteen in controls, among which those with frequencies higher than 10%
404 were GC_CCG, followed by GT_CCG, GC_CTG, GC_CCA and AC_CCG.
405 Three of them were associated with leprosy, independently of any other
406 demographic factor (**Table 3**).

407

408

409

410

411

Variants	Iberian	Controls	Patients	Lepromatous	Others	Model	Pati...
	% (n)	% (n)	% (n)	% (n)	% (n)		Cont...
Total genotypes	100 (107)	100 (214)	100 (196)	100 (118)	100 (55)		
rs7609662 (<i>c.5+2718G>A</i>)							OR [1]
<i>A</i>	13.6 (29)	14.1 (60)	14.6 (58)	13.5 (32)	13.6 (15)		ns
<i>G/G</i>	74.8 (80)	74.3 (159)	72 (141)	72.8 (86)	74.5 (41)		ns
<i>G/A</i>	23.4 (25)	23.3 (50)	27 (53)	27.2 (32)	23.6 (13)		ns
<i>A/A</i>	1.9 (2)	2.3 (5)	1 (2)	0 (0)	1.8 (1)		ns
rs13064994 (<i>c.6-2172C>T</i>)							
<i>T</i>	26.9 (49)	28.5 (123)	27.8 (109)	30.1 (71)	27.3 (30)		ns
<i>C/C</i>	54.2 (58)	50 (107)	50.5 (99)	45.7 (54)	54.5 (30)		ns
<i>C/T</i>	33.6 (36)	43 (92)	43.3 (85)	48.3 (57)	36.3 (20)		ns
<i>T/T</i>	12.1 (13)	7 (15)	16.1 (12)	3 (7)	9.1 (5)		ns
rs72549262 (<i>c.1304-5229C>G</i>)							
<i>G</i>	8.9 (19)	11.3 (48)	7.7 (30)	6.8 (16)	5.4 (6)		ns
<i>C/C</i>	82.2 (88)	80.8 (173)	87.2 (171)	84.7 (100)	91 (50)		ns
<i>C/G</i>	17.8 (19)	15.8 (34)	10.2 (20)	10.2 (12)	7.3 (4)		ns
<i>G/G</i>	0(0)	3.2 (7)	2.5 (5)	1.7 (2)	1.8 (1)		ns
rs1109452 (<i>c.1304-4903C>T</i>)							
<i>T</i>	25.2 (54)	33.5 (143)	33.7 (132)	35.6 (84)	30 (33)		ns
<i>C/C</i>	57.9 (62)	46.3 (99)	44.9 (88)	41.5 (49)	51 (28)		ns
<i>C/T</i>	33.6 (36)	40.6 (87)	42.8 (84)	45.7 (54)	38.2 (21)		ns
<i>T/T</i>	8.4 (9)	13.1 (28)	12.2 (24)	12.7 (15)	10.9 (6)		ns
rs850314 (<i>c.1304-4902G>A</i>)							
<i>A</i>	32.7 (70)	19.9 (86)	15.3 (60)	13.1 (31)	18.1 (20)		ns
<i>G/G</i>	47.7 (51)	64 (137)	73 (143)	75.4 (89)	71 (39)		ns
<i>G/A</i>	39.3 (42)	32.2 (69)	23.4 (46)	22.9 (27)	21.8 (12)	Dom	0.60 [1]
<i>A/A</i>	13.1 (14)	3.7 (8)	3.5 (7)	1.7 (2)	7.3 (4)		ns
Intron 1_Exon 12 Haplotypes							
<i>GT_GTG</i> *	0.7 (3)	1.8 (7)	1.7 (4)	0.9 (1)	Addit	2.19 [1]	
<i>GT_CTG</i>	6.1(26)	9.2 (36)	10.6 (25)	9.1 (10)	Dom	2.01 [1]	
<i>GT_CCG</i>	16.6 (71)	12.2 (48)	12.7 (30)	11.8 (13)	Dom	0.52 [1]	
<i>GT_CCA</i>	5.1 (22)	4.6 (18)	5.1 (12)	5.4 (6)			ns
<i>GC_GTG</i>	49.3 (40)	5.6 (22)	7.2 (17)	4.5 (5)			ns
<i>GC_CTG</i>	13.7 (59)	14 (55)	13.6 (32)	12.7 (14)			ns
<i>GC_CCA</i>	14.0 (60)	9.4 (37)	6.7 (16)	11.8 (13)	Dom	0.48 [1]	
<i>GC_CCG</i>	20.3 (87)	28.6 (112)	28.8 (68)	30 (33)	Addit	1.70 [1]	
<i>AC_CCA</i>	2.3 (10)	1.2 (5)	1.2 (3)	0.9 (1)			ns
<i>AC_CTG</i>	0.7 (3)	2.8 (11)	2.5 (6)	1.8 (2)			ns
<i>AC_GTG</i>	1.1 (5)	0.2 (1)	0 (0)	0.9 (1)			ns
<i>AC_CCG</i>	9.8 (42)	10.2 (40)	9.7 (23)	10 (11)			ns

412

413

414 **Table 3. Association of *MASP1* variants and haplotypes with leprosy.** The intron 1 and
415 exon 12 haplotypes were unambiguously build with sequence-specific amplification. The
416 phase between them (symbolized by *_*) was inferred using the expectation maximization
417 algorithm. Official SNP nomenclature is given within parenthesis for the longest cDNA,
418 corresponding to the mRNA transcript encoding MASP-1: ENST00000337774.9. Addit:
419 Additive association model, which tests the hypothesis that homozygosity and heterozygosity
420 for the minor allele are associated with leprosy (either with protection or with susceptibility),
421 but homozygosity is stronger associated, than heterozygosity. Dom: Dominant association
422 model, which tests the hypothesis that the carrier status of the minor allele (regardless if
423 homozygous or heterozygous) is associated with leprosy (either with protection or with

424 susceptibility) All associations were corrected for age, which was the only demographic factor
425 that remained associated in the reduced model of logistic regression. *: *GT_GTG + GT_CTG*
426 association. q*: Benjamini-Hochberg corrected p values; ns: not significant; OR: odds ratio;
427 CI: confidence interval.

428

429 The strongest association was found with the most frequent *GC_CCG*
430 haplotype, which was associated with an additive (allele-dosage)
431 susceptibility effect (OR=1.70 [95%CI=1.21–2.40], P<0.005). This is explained
432 by a higher frequency of *GC_CCG* homozygotes and of
433 *GC_CCG* heterozygotes among leprosy patients (21/196 or 10.71% and
434 70/196 or 35.71%), than among controls (16/214 or 7.48% and 55/214 or
435 25.7%), respectively. A dominant, age-dependent effect towards leprosy
436 susceptibility was associated with carrying the less frequent *GT_CTG*
437 haplotype (OR=2.01 [95%CI=1.06–3.83], P=0.033). In other words, older
438 individuals with this haplotype seem more prone to develop leprosy, if
439 infected: there was 35/196 or 17.9% leprosy patients with *GT_CTG*, of which
440 26/35 or 74.3% with at least 40 years of age. In comparison, only 24/214 or
441 11.21% controls carried this haplotype, of whom only a third (8/24 or 33.3%)
442 were at their forties or older. Notwithstanding, the same analysis with either
443 *GT_CTG* and/or another uncommon haplotype with *GT* in intron 1, namely
444 *GT_GTG*, turned the association age-independent (OR=2.19 [95%CI=1.18–
445 4.03], P=0.012). Thus, age-dependency has a rather weak effect or may
446 simply result from sampling bias.

447 In contrast, two haplotypes were associated with protection against
448 leprosy. Among them, *GC_CCA* was associated with a dominant protective
449 effect (OR=0.48 [95%CI=0.29–0.82], P=0.008). This means that carriers of
450 this haplotype were much more frequent among controls (59/214 or 27.6%),
451 than among leprosy patients (36/196 or 18.4%). Similarly, controls presented
452 a higher frequency of *GT_CCG* carriers (71/214 or 33.2%), compared with
453 leprosy patients (43/196 or 21.9%). This haplotype was also associated with a
454 dominant resistance effect against the disease (OR=0.53 [95%CI=0.32–0.86],
455 P=0.011) (**Table 3**).

456

457 **MASP1 polymorphisms associated with protein serum levels**

458

459 Although there was no association between the intron 1
460 *rs7609662*G>A* variant and *MASP1* protein products, the neighboring
461 *rs13064994*C>T* polymorphism was associated with MASP-3 serum
462 concentrations. Healthy carriers with the *rs13064994*T* variant presented
463 higher MASP-3 levels, than *C/C* homozygotes (medians 6,022 [2,286-11,820]
464 ng/mL vs. 5,086 [2,149-12,580] ng/mL, respectively, $P=0.0103$). This
465 difference disappeared among leprosy patients, whose MASP-3
466 concentrations reached lower levels, independent of the genotype (medians
467 4,557 and 4,228 ng/mL, respectively) (Fig 3A).

468

469 **Figure 3: Association between variant alleles and MASP levels.** **(A)** *rs13064994* in intron
470 1 and MASP-3; **(B)** *rs850314* in exon 12 and MASP-3; **(C)** *rs1109452* in exon 12 and MASP-
471 3; **(D)** *rs1109452* in exon 12 and MASP-1.

472 Data shown with medians and interquartile ranges and Mann-Whitney P values. Open and
473 closed symbols represent controls and patients, respectively.

474

475 Regarding the exon 12 variants, there was no association with the
476 *rs72549262* variant. However, in accordance with the associated effect of the
477 intron 1 *rs13064994* polymorphism, controls with the minor *rs850314*A* allele
478 of exon 12 presented higher MASP-3 levels, than *G/G* homozygotes (6,373
479 [2,286-11,820] ng/mL vs. 5,450 [2,149-11,480] ng/mL, $P=0.0342$). This
480 difference was no longer noticeable among patients, whose MASP-3 levels
481 were generally lower (medians 4,500-4,554 ng/mL) and seemed no longer to
482 be under the same genetic control (Fig 3B). In contrast, carriers of the minor
483 *rs1109452*T* allele presented lower MASP-3 levels in controls, although they
484 did not differ between healthy and diseased carriers (Fig 3C). Contrary to
485 MASP-3 levels, MASP-1 serum concentration of *rs1109452*T* carriers were
486 higher than in *C/C* homozygotes, independent of the disease (Fig 3D).

487 The adjacent exon 12 *rs1109452*C* and *rs850314*A*, as well as
488 *rs1109452*T* and *rs850314*G* variants, occur in absolute linkage
489 disequilibrium. The *CA*, *CG* and *TG* haplotype combinations did not present
490 any association with MASP-1 and MAp44 levels (Figs 4A and 4C), although
491 leprosy patients presented consistently lower MAp44 levels, regardless of the

492 exon 12 genotype (Fig 4C). Healthy individuals with the CA, as well as with
493 the CG haplotype, presented higher MASP-3 concentrations than those with
494 the TG haplotype (CA median 6,521 [2,286-11,820] ng/mL and CG median
495 5,858 [2,286-11,820] ng/mL vs TG median 5,071 [2,149-8,941] ng/mL). In
496 contrast to individuals with the CA and CG haplotypes, baseline levels of
497 healthy individuals carrying TG do not differ from those with leprosy (Fig 4B).
498
499

500 **Figure 4: Association between haplotypes with the rs1109452 and rs850314 adjacent**
501 **exon 12 variants and levels of MASP1 products.** Data shown with medians and
502 interquartile ranges and Mann-Whitney P values. Open and closed symbols represent
503 controls and patients, respectively. CA+: carriers of the rs1109452*C and rs850314*A
504 variants. CG+: carriers of the rs1109452*C and rs850314*G variants. TG+: carriers of the
505 rs1109452*T and rs850314*G variants. Unless if otherwise stated, comparisons were made
506 with Mann-Whitney test.
507

508 Healthy individuals carrying the GT_CCG haplotype presented higher
509 MASP-3 levels than those without it (median: 6,131 [2,286-11,820] ng/mL vs.
510 5,148 [2,149-12,580] ng/mL), a difference no longer noticed among leprosy
511 patients (Fig 5A). Similarly, controls with the GC_CCG haplotype, but not
512 patients, presented higher MAp44 levels (median 2,581 [1,355-4,927] ng/mL
513 vs. 2,272 [1,140-4,068] ng/mL) (Fig 5B).
514
515

516 **Figure 5: MASP1 haplotypes associated with (A) MASP-3 and (B) MAp44 levels.** Data
517 shown with medians and interquartile ranges and Mann-Whitney P values. Open and closed
518 symbols represent controls and patients, respectively. + with the haplotype, - without the
519 haplotype.
520

521 **Discussion**

522
523 Parasitic *Mycobacteria* species are known to usurp and efficiently
524 evade the host defense response (reviewed by (46) & (47)). However,
525 investigating the immune response elicited by *M. leprae* remains a particular

526 challenge, due to its extreme dependence on the human host. Genetic
527 disease association studies shed light on a wide range of aspects from the
528 onset of infection to disease cornification, by uncovering genes whose protein
529 products may play pivotal roles in this pathology (48). This has been the case
530 for several genes of the lectin pathway of complement; those encoding PRMs,
531 *MBL2* (3) (4) (14), *FCN1* (5), *FCN2* (4) and *FCN3* (9) and the serine
532 protease *MASP2* (6) and the possible receptor for MBL encoded by *CR1* (10).
533 The evaluation of complement protein levels adds highly relevant information
534 to this picture, as an indirect measure of gene expression, complement
535 activation and consumption. Since the seventies, these measurements have
536 been done for leprosy disease (49) (8) (7), with results currently supported by
537 transcriptome studies (50). In the present investigation, we finally added
538 *MASP1* polymorphisms and protein products, as one important piece of the
539 initiation complexes of the lectin pathway to the association of complement
540 with leprosy disease.

541 To understand the possible roles of *MASP1* products in the disease, it
542 is important to keep in mind two prevailing hypotheses that may explain the
543 role of complement proteins in leprosy disease. First, they increase infection
544 success by improving opsonization and phagocytosis of *M. leprae* by the host
545 macrophage cells. Second, they increase inflammation after the disease is
546 established, leading to more severe tissue damage.

547 Regarding the first hypothesis, it may be argued that any variant that
548 reduces the rate of opsonin deposition would be protective, whereas any
549 variant that increases opsonization would enhance susceptibility. According to
550 this, one would expect that high MASP-1 levels would aid *M. leprae*'s
551 entrance into host cells, whereas high MASP-3/MAp44 levels would block
552 activation of the lectin pathway and reduce phagocytosis of the bacteria
553 (although MASP-3 may also activate the alternative pathway). In fact, higher
554 MASP-3 and MAp44 levels were characteristic for healthy individuals,
555 although the expected effect was not seen for MASP-1 (Fig 6). With respect to
556 the second hypothesis, it is expected that variants that reduce complement
557 activation would (again) play a protective role. Indeed, we found a clear-cut
558 difference between patients, with higher MASP-3/MAp44 levels more
559 prevalent among those, less severely affected. Since it is known from former

560 studies that Dapsone and Clofazimine treatment (used by the patients in this
561 study) does not interfere with complement availability and function (51) (52), it
562 may be assumed that lower MASP-3 and MAp44 levels among patients,
563 especially among those with the most severe lepromatous condition, are
564 genetically determined (Fig 6).

565

566 **Fig 6: Proposed roles for *MASP1* products and polymorphisms in susceptibility to *M.*
567 *leprae* infection. (A)** Collectins (e.g. MBL) or ficolins (e.g. FCN-3) recognize pathogen-
568 associated molecular patterns (PAMPs), composed of sugar/acetylated groups on *M. leprae*.
569 MASP-2 (not depicted in this image) and MASP-1 homodimers complexed with them activate
570 the lectin pathway of complement, whereas MASP-3 may activate the alternative pathway.
571 Both pathways lead to C3b-opsonization and CR1-mediated internalization of the pathogen.
572 **(B)** Healthy individuals with rs1109452 and rs850314 CA or CG haplotypes express higher
573 MASP-3 levels. Higher MASP-3 and MAp44 levels were also associated with resistance
574 against the disease. **(C)** CpG methylation at the CG haplotype in exon 12 may impair mRNA
575 transcription, spliceosome assembly and mRNA processing. Reduced MASP-3 levels may
576 also result from the differential recognition of CA and CG haplotypes by miRNAs (miR-2861
577 and miR-3181, respectively). **(D)** Individuals with TG haplotypes present lower baseline
578 MASP-3 levels. Lower MASP-3 and MAp44 levels seem to predispose to the infection,
579 possibly by optimizing opsonin coverage of the parasite.

580

581

582 There are numerous polymorphisms in the *MASP1* gene that may
583 interfere with gene expression, some of which had been formerly investigated
584 by others (53) (17). We chose to investigate two SNPs located in a regulatory
585 region of intron 1, which may interfere with the production of all three *MASP1*
586 proteins, and three in exon 12, which is exclusive of MASP-3 and may
587 uniquely affect the expression level of this protein. None of them had been
588 previously investigated.

589 rs7609662*A in intron 1 is associated with higher *MASP1* mRNA levels
590 in several tissues (<https://gtexportal.org/home/snp/rs7609662>), but we did not
591 identify this effect at the protein level. The rs13064994*T had the opposite
592 effect (<https://gtexportal.org/home/snp/rs13064994>) on *MASP1* mRNA
593 expression. We found an association of this allele with higher MASP-3 protein
594 levels, but only in healthy individuals. The absence of a clear correlation
595 between mRNA levels and protein concentration in serum is not unexpected,

596 since former analyses did not consider different *MASP1* transcripts, and
597 stability of mRNA in cytoplasm may be greatly affected by regulatory
598 mechanisms that were not accounted for in previous transcriptomic
599 analyses.

600 All exon 12 variants (*rs72549262**G>C, *rs1109452**C>T and
601 *rs850314**G>A) are located within the 3' untranslated region. Those two most
602 downstream (*rs1109452* and *rs850314*) are adjacent to each other, and CG
603 represents the most ancestral combination. Thus, the minor alleles
604 *rs1109452**T and *rs850314**A disrupt a 5'CpG3' site (where "p" means the
605 phosphodiester bond between *rs1109452**C and *rs850314**G). The cytosine
606 of this CpG site was found methylated in the brain (54), but not in cell lines
607 from liver and female reproductive tissue, where MASP-3 mRNA production is
608 highest (<https://gtexportal.org/home/gene/MASP1>). DNA methylation in
609 alternatively spliced exons may modulate exon inclusion (55).

610 Furthermore, the CA and CG combinations are miRNA targets, as
611 predicted *in silico* using targetScan7.1 (REF), and may reduce MASP-3
612 translation. Thus, one would expect that any nucleotide substitution at these
613 loci would modify gene expression, depending on specific regulatory
614 requirements of the cell type, developmental stage, physiological and
615 immunological responses. In fact, both adjacent polymorphisms were
616 associated with MASP-3 (in the case of *rs1109452*, even MASP-1) levels.
617 However, the predicted down-regulating effects either of CpG methylation
618 and/or CA(CG miRNA binding on MASP-3 levels, were restricted to leprosy
619 patients. In the disease, MASP-3 levels of CA or CG carriers dropped to the
620 same concentration found in TG carriers, who presented the lowest MASP-3
621 levels, independent of the disease. Interestingly, among the miRNAs
622 predicted to recognize these polymorphic sites, none bind TG, but miR-3181
623 preferentially recognizes CG and miR-2861, CA. Both are expressed in the
624 liver (56), with miR-2861 being up-regulated by interleukin 6 (57), a
625 proinflammatory cytokine with a pivotal role in leprosy disease (58). It is thus
626 conceivable that these regulatory mechanisms operate after disease
627 establishment and activation of the acute phase response (Fig. 6).

628 Refining the association analysis to the haplotype level, allowed us to
629 identify the *GT_CCG* and *GC_CCA* haplotypes (containing the previously

630 mentioned *rs850314*A* variant) associated not only with higher MASP-3
631 levels, but also with higher protection against the disease. Higher MASP-3
632 levels may avoid initiation of bacterial colonization due to competition with
633 MASP-1 and MASP-2 for binding sites of recognition molecules - blocking the
634 lectin pathway, and/or by competition with binding sites on complement
635 receptors, blocking phagocytosis.

636 Yet the *GC_CCG* haplotype, associated with leprosy susceptibility, was
637 associated with higher MAp44 serum concentrations. In contrast with MASP-
638 3, however, MAp44 serum levels did not associate with the investigated
639 SNPs, which may suggest other causal variants in linkage disequilibrium with
640 *GC_CCG*, not investigated in this study. In fact, Ammitzboll et al. (2013) list
641 several variants that may modulate MAp44 levels. Furthermore, other factors
642 than those regulating MASP-3 may fit in the present scenario, where MAp44
643 levels are higher in controls, compared to patients, and in non-lepromatous
644 patients, compared to the more severely affected lepromatous patients.

645 Beside *GC_CCG*, the haplotypes *GT_CTG* and *GT_GTG* also present
646 at least an additive effect increasing almost twice susceptibility to the disease.
647 They were not associated with protein levels, although harboring the
648 *rs1109452*T* polymorphism, found associated with higher MASP-1 and lower
649 MAp44 levels. Thus, protein levels shall not be held solely responsible for the
650 association of *MASP1* products with the disease. Beside the pleiotropic nature
651 of the *MASP1* gene itself, the investigated polymorphisms may have effects
652 far beyond those affecting *MASP1*, and other variants linked with those that
653 compose the associated haplotypes, may present epistatic and/or
654 unsuspected pleiotropic effects that affect susceptibility to the disease. In fact,
655 the variants investigated in this study have been recently associated with
656 expression levels of neighboring genes as the ribosomal protein-encoding
657 gene *RPL39L* and the odorant receptor transporters *RTP1*, *RTP3* and *RTP4*
658 (<https://gtexportal.org/home/gene/MASP1> and Immunpop browser). Among
659 them, *RTP4* is strongly up-regulated by interferon I, a cytokine known to
660 suppress an adequate cellular response driven by interferon type II against *M.*
661 *leprae* (59).

662 Thus, MASP-3/MAp44 blockage of the lectin pathway may not be the
663 only explanation for resistance, since expression levels of neighboring genes

664 may be regulated by noncoding polymorphisms investigated in this study.
665 Although interpreting the evidence is not straightforward, it certainly fosters
666 more investigations on the role played by *MASP1* products in the resistance
667 against mycobacterial infections and its more severe forms. In particular,
668 MASP-3 and MAp44 may be evaluated as new therapeutic agents against
669 leprosy infection and against polarization to lepromatous disease.

670
671

672 **Acknowledgments**

673
674 We deeply thank all patients and controls that volunteered in this study. We
675 also want to thank Sandra J. dos Santos Catarino, Annette G. Hansen and
676 Lisbeth Jensen for all technical guidance and contributions to this work.
677

678
679

Supplementary data

680
681 **S1 Fig: Correlations between MASP-1, MASP-3 and MAp44 serum levels in leprosy**
682 **patients (A-B) and healthy controls (C-D)**
683 Linear regression fit, P and R values are shown.

684
685 **S1 Table. Masp-1, Masp-3 and MAp44 levels in patients an controls.**
686 n: number of individuals; *: mean protein levels in ug/mL showing: median[IQR] **Levels
687 conferring protection against Leprosy infection. Within brackets: minimum and maximal
688 values. ^a: Patients presenting all other forms except Lepromatous and Non-specified

689
690
691

692 **REFERENCES:**

693
694 1. WHO. Weekly epidemiological record. World Heal Organ [Internet]. 2015

695 [cited 2019 Mar 8];35(91):405–20. Available from:
696 http://www.who.int/neglected_diseases/me-

697 2. Garred P, Harboe M, Oettinger T, Koch C, Svejgaard A. Dual role of mannan-
698 binding protein in infections: another case of heterosis? *Eur J*
699 *Immunogenet* [Internet]. 1994 Apr [cited 2019 Mar 9];21(2):125–31.
700 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/9098426>

701 3. de Messias-Reason IJ, Boldt ABW, Moraes Braga AC, Von Rosen Seeling
702 Stahlke E, Dornelles L, Pereira-Ferrari L, et al. The association between
703 mannan-binding lectin gene polymorphism and clinical leprosy: new
704 insight into an old paradigm. *J Infect Dis* [Internet]. 2007 Nov 1 [cited 2014
705 Apr 2];196(9):1379–85. Available from:
706 <http://www.ncbi.nlm.nih.gov/pubmed/17922403>

707 4. Zhang D-F, Huang X-Q, Wang D, Li Y-Y, Yao Y-G. Genetic variants of
708 complement genes Ficolin-2, Mannose-binding lectin and Complement
709 factor H are associated with leprosy in Han Chinese from Southwest China.
710 *Hum Genet* [Internet]. 2013 Jun 20 [cited 2019 Mar 9];132(6):629–40.
711 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/23423485>

712 5. Boldt ABW, Sanchez MIN, Stahlke ERS, Steffensen R, Thiel S, Jensenius JC,
713 et al. Susceptibility to Leprosy is Associated with M-ficolin Polymorphisms.
714 *J Clin Immunol* [Internet]. 2013 Jan 1 [cited 2019 Mar 9];33(1):210–9.
715 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/22941510>

716 6. Boldt ABW, Goeldner I, Stahlke ERS, Thiel S, Jensenius JC, de Messias-
717 Reason IJT. Leprosy association with low MASP-2 levels generated by
718 MASP2 haplotypes and polymorphisms flanking MAp19 exon 5. *PLoS One*
719 [Internet]. 2013 Jan [cited 2014 Mar 7];8(7):e69054. Available from:
720 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605447/>&tool=pmcentrez&rendertype=abstract

721 7. Dornelles LN, Pereira-Ferrari L, Messias-Reason I. Mannan-binding lectin
722 plasma levels in leprosy: deficiency confers protection against the
723 lepromatous but not the tuberculoid forms. *Clin Exp Immunol* [Internet].
724 2006 Sep [cited 2015 Mar 12];145(3):463–8. Available from:
725 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC170702/>&tool=pmcentrez&rendertype=abstract

728 8. Gomes GI, Nahn EP, Santos RKRG, Da Silva WD, Kipnis TL. The functional
729 state of the complement system in leprosy. *Am J Trop Med Hyg* [Internet].
730 2008 Apr;78(4):605–10. Available from:
731 <http://www.ncbi.nlm.nih.gov/pubmed/18385356>

732 9. Andrade FA, Beltrame MH, Ria Bumiller Bini V, Boslooper Gonç Alves L,
733 Beate A, Boldt W, et al. Association of a new FCN3 haplotype with high
734 ficolin-3 levels in leprosy. 2017 [cited 2019 Mar 9]; Available from:
735 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344521/pdf/pntd.0005409.pdf>

736 10. Canalli Kretzschmar G, Caroline Oliveira L, Mitsunori Nisihara R, Velavan
737 TP, rvio Tú lio Stinghen S, S Stahlke ER, et al. Complement receptor 1 (CR1,
738 CD35) association with susceptibility to leprosy. 2018 [cited 2019 Mar 8];
739 Available from: <https://doi.org/10.1371/journal.pntd.0006705>

740 11. de Messias-Reason I, Kremsner PG, Kun JFJ. Functional Haplotypes That
741 Produce Normal Ficolin-2 Levels Protect against Clinical Leprosy. *J Infect*
742 *Dis* [Internet]. 2009 Mar 15 [cited 2014 Apr 2];199(6):801–4. Available
743 from: <http://jid.oxfordjournals.org/lookup/doi/10.1086/597070>

744 12. Endo Y, Takahashi M, Kuraya M, Matsushita M, Stover CM, Schwaeble WJ,
745 et al. Functional characterization of human protease (MASP) -1 / 3 and
746 MASP-2 promoters , and comparison with the C1s promoter.
747 2002;14(10):1193–201.

748 13. Vasta GR, Quesenberry M, Ahmed H, O’Leary N. C-type lectins and galectins
749 mediate innate and adaptive immune functions: their roles in the
750 complement activation pathway. *Dev Comp Immunol* [Internet].
751 Pergamon; 1999 Jun 1 [cited 2019 Mar 9];23(4–5):401–20. Available from:
752 <https://www.sciencedirect.com/science/article/pii/S0145305X99000208?via%3Dihub>

753 14. Cardona-Pemberthy V, Rendón M, Beltrán JC, Soto-Ospina A, Muñoz-
754 Gomez A, Araque-Marín P, et al. Genetic variants, structural, and functional
755 changes of Myelin Protein Zero and Mannose-Binding Lectin 2 protein
756 involved in immune response and its allelic transmission in families of
757 patients with leprosy in Colombia. *Infect Genet Evol* [Internet]. 2018 Jul
758 [cited 2019 Mar 9];61:215–23. Available from:
759
760

761 <https://linkinghub.elsevier.com/retrieve/pii/S1567134818301758>

762 15. Monot M, Honoré N, Garnier T, Zidane N, Sherafi D, Paniz-Mondolfi A, et al.

763 Comparative genomic and phylogeographic analysis of *Mycobacterium*

764 *leprae*. *Nat Genet* [Internet]. 2009 Dec [cited 2014 Nov 27];41(12):1282–9.

765 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/19881526>

766 16. Héja D, Harmat V, Fodor K, Wilmanns M, Dobó J, Kékesi K a, et al.

767 Monospecific inhibitors show that both mannan-binding lectin-associated

768 serine protease-1 (MASP-1) and -2 Are essential for lectin pathway

769 activation and reveal structural plasticity of MASP-2. *J Biol Chem*

770 [Internet]. 2012 Jun 8 [cited 2014 Feb 15];287(24):20290–300. Available

771 from:

772 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370211/> &to

773 ol=pmcentrez&rendertype=abstract

774 17. Ingels C, Vanhorebeek I, Steffensen R, Derese I, Jensen L, Wouters PJ, et al.

775 Lectin pathway of complement activation and relation with clinical

776 complications in critically ill children. *Pediatr Res* [Internet]. 2014 Jan

777 [cited 2014 Mar 5];75(1–1):99–108. Available from:

778 <http://www.ncbi.nlm.nih.gov/pubmed/24129551>

779 18. Degn SE, Jensen L, Hansen AG, Duman D, Tekin M, Jensenius JC, et al.

780 MASP-1 is crucial for lectin pathway activation in human serum, while

781 neither MASP-1 nor MASP-3 are required for alternative pathway function.

782 *Immunobiology* [Internet]. 2012 Oct 15 [cited 2014 Feb

783 16];217(11):1218–9. Available from:

784 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC22966085/>

785 19. Ambrus G, Gal P, Kojima M, Szilagyi K, Balczer J, Antal J, et al. Natural

786 Substrates and Inhibitors of Mannan-Binding Lectin-Associated Serine

787 Protease-1 and -2: A Study on Recombinant Catalytic Fragments. *J*

788 *Immunol* [Internet]. 2003 Feb 1 [cited 2014 Nov 29];170(3):1374–82.

789 Available from:

790 <http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.170.3.1374>

791 20. Gál P, Ambrus G. Structure and function of complement activating enzyme

792 complexes: C1 and MBL-MASPs. *Curr Protein Pept Sci* [Internet]. 2001 Mar

793 [cited 2019 Mar 9];2(1):43–59. Available from:

794 <http://www.ncbi.nlm.nih.gov/pubmed/12369900>

795 21. Pihl R, Jensen L, Hansen AG, Thøgersen IB, Andres S, Dagnæs-Hansen F, et
796 al. Analysis of Factor D Isoforms in Malpuech–Michels–Mingarelli–
797 Carnevale Patients Highlights the Role of MASP-3 as a Maturase in the
798 Alternative Pathway of Complement. *J Immunol* [Internet]. 2017 Sep 15
799 [cited 2019 Mar 31];199(6):2158–70. Available from:
800 <http://www.ncbi.nlm.nih.gov/pubmed/28794230>

801 22. Yuichi Endo, Masaru Nonaka, Hidetoshi Saiga, Yuji Kakinuma, Akiko
802 Matsushita, Minoru Takahashi MM and TF. Origin of Mannose-Binding
803 Lectin-Associated Serine Protease (MASP)-1 and MASP-3 Involved in the
804 Lectin Complement Pathway Traced Back to the Invertebrate, Amphioxus.
805 *J Immunol*. 2014;170(9):4701–7.

806 23. Dahl MR, Thiel S, Matsushita M, Fujita T, Willis AC, Christensen T, et al.
807 MASP-3 and Its Association with Distinct Complexes of the Mannan-
808 Binding Lectin Complement Activation Pathway [Internet]. Vol. 15,
809 Immunity. 2001 [cited 2019 Mar 9]. Available from:
810 <https://www.cell.com/action/showPdf?pii=S1074-7613%2801%2900161-3>

812 24. Degn SE, Jensen L, Gál P, Dobó J, Holmvad SH, Jensenius JC, et al. Biological
813 variations of MASP-3 and MAp44, two splice products of the MASP1 gene
814 involved in regulation of the complement system. *J Immunol Methods*
815 [Internet]. Elsevier B.V.; 2010 Sep 30 [cited 2014 Mar 7];361(1–2):37–50.
816 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/20673767>

817 25. Skjoedt M-O, Hummelshøj T, Palarasah Y, Honore C, Koch C, Skjødt K, et al.
818 A novel mannose-binding lectin/ficolin-associated protein is highly
819 expressed in heart and skeletal muscle tissues and inhibits complement
820 activation. *J Biol Chem* [Internet]. 2010 Mar 12 [cited 2015 Feb
821 16];285(11):8234–43. Available from:
822 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832975/>&to
823 ol=pmcentrez&rendertype=abstract

824 26. Krarup A, Gulla KC, Gál P, Hajela K, Sim RB. The action of MBL-associated
825 serine protease 1 (MASP1) on factor XIII and fibrinogen. *Biochim Biophys
826 Acta - Proteins Proteomics* [Internet]. 2008 Sep [cited 2019 Mar

827 9];1784(9):1294–300. Available from:
828 <http://www.ncbi.nlm.nih.gov/pubmed/18456010>

829 27. Schroeder V, Hess K, Dobó J, Ajjan R, Phoenix F, Gál P. Effects of MASP-1 of
830 the Complement System on Activation of Coagulation Factors and Plasma
831 Clot Formation. *PLoS One*. 2012;7(4):e35690.

832 28. Jozsef Dobó J, zs Major B, Ké kesi KA, Szabó I, rton Megyeri M, Hajela K, et
833 al. Cleavage of Kininogen and Subsequent Bradykinin Release by the
834 Complement Component: Mannose-Binding Lectin-Associated Serine
835 Protease (MASP)-1. 2011 [cited 2019 Mar 9]; Available from:
836 www.plosone.org

837 29. Dobó J, Pál G, Cervenak L, Gál P. The emerging roles of mannose-binding
838 lectin-associated serine proteases (MASPs) in the lectin pathway of
839 complement and beyond. *Immunol Rev*. 2016;274(1):98–111.

840 30. Boldt ABW., Boschmann SE., Catarino SJ., Andrade FA. M-RI. Encyclopedia
841 of Signaling Molecules. In: Choi S, editor. *Encyclopedia of Signaling*
842 *Molecules*. Springer; 2016. p. 2972–89.

843 31. Závodszky P, Pál G, Gál P, Dobó Kocsis J, Dammeier S, Zeck A, et al. MASP-2
844 Inhibitors Analysis Involving Specific MASP-1 and MASP-3 Is a Potential
845 Activator: Kinetic Factor D in Resting Human Blood, whereas – MASP-1
846 and MASP-2 Do Not Activate Pro. 2015 [cited 2019 Mar 8]; Available from:
847 <http://www.jimmunol.org/content/196/2/857>

848 32. Kjaer TR, Thiel S, Andersen GR. Toward a structure-based comprehension
849 of the lectin pathway of complement. *Mol Immunol* [Internet]. Elsevier
850 Ltd; 2013 Dec [cited 2014 Mar 21];56(4):413–22. Available from:
851 <http://www.ncbi.nlm.nih.gov/pubmed/23911397>

852 33. Dobó J, Schroeder V, Jenny L, Cervenak L, Závodszky P, Gál P. Multiple roles
853 of complement MASP-1 at the interface of innate immune response and
854 coagulation. *Mol Immunol* [Internet]. Elsevier Ltd; 2014 Jun 13 [cited 2014
855 Jun 25];1–10. Available from:
856 <http://www.ncbi.nlm.nih.gov/pubmed/24935208>

857 34. Skjoedt M-O, Palarasah Y, Munthe-Fog L, Jie Ma Y, Weiss G, Skjodt K, et al.
858 MBL-associated serine protease-3 circulates in high serum concentrations
859 predominantly in complex with Ficolin-3 and regulates Ficolin-3 mediated

860 complement activation. *Immunobiology* [Internet]. Elsevier; 2010 Nov
861 [cited 2014 Mar 18];215(11):921–31. Available from:
862 <http://www.ncbi.nlm.nih.gov/pubmed/19939495>

863 35. Rooryck C, Diaz-font A, Osborn DPS, Chabchoub E, Shamseldin H, Kenny J,
864 et al. Europe PMC Funders Group Mutations in the lectin complement
865 pathway genes COLEC11 and MASP1 cause 3MC syndrome.
866 2011;43(3):197–203.

867 36. Thiel S, Jensen L, Degn SE, Nielsen HJ, Gál P, Dobó J, et al. Mannan-binding
868 lectin (MBL)-associated serine protease-1 (MASP-1), a serine protease
869 associated with humoral pattern-recognition molecules: normal and acute-
870 phase levels in serum and stoichiometry of lectin pathway components.
871 *Clin Exp Immunol* [Internet]. 2012 Jul [cited 2014 Mar 7];169(1):38–48.
872 Available from:
873 <http://www.ncbi.nlm.nih.gov/pubmed/2290472&tool=pmcentrez&rendertype=abstract>

875 37. Jacquet M, Lacroix M, Ancelet S, Gout E, Gaboriaud C, Thielens NM, et al.
876 Deciphering Complement Receptor Type 1 Interactions with Recognition
877 Proteins of the Lectin Complement Pathway. *J Immunol* [Internet]. 2013
878 Apr 1 [cited 2019 Mar 9];190(7):3721–31. Available from:
879 <http://www.ncbi.nlm.nih.gov/pubmed/23460739>

880 38. Duus K, Thielens NM, Lacroix M, Tacnet P, Frachet P, Holmskov U, et al.
881 CD91 interacts with mannan-binding lectin (MBL) through the MBL-
882 associated serine protease-binding site. *FEBS J*. 2010;277(23):4956–64.

883 39. Schlesinger LS, Horwitz M a. Phenolic glycolipid-1 of *Mycobacterium*
884 *leprae* binds complement component C3 in serum and mediates
885 phagocytosis by human monocytes. *J Exp Med* [Internet]. 1991 Nov
886 1;174(5):1031–8. Available from:
887 <http://www.ncbi.nlm.nih.gov/pubmed/1618995&tool=pmcentrez&rendertype=abstract>

889 40. Ridley DS, Jopling WH. Classification of leprosy according to immunity. A
890 five-group system. *Int J Lepr Other Mycobact Dis* [Internet]. [cited 2019
891 Mar 9];34(3):255–73. Available from:
892 <http://www.ncbi.nlm.nih.gov/pubmed/5950347>

893 41. Braun-Prado K, Vieira Mion AL, Farah Pereira N, Culpi L, Petzl-Erler ML.
894 HLA class I polymorphism, as characterised by PCR-SSOP, in a Brazilian
895 exogamic population. *Tissue Antigens* [Internet]. 2000 Nov [cited 2019
896 Mar 9];56(5):417–27. Available from:
897 <http://www.ncbi.nlm.nih.gov/pubmed/11144289>

898 42. Probst CM, Bompeixe EP, Pereira NF, de O Dalalio MM, Visentainer JE,
899 Tsuneto LT, et al. HLA polymorphism and evaluation of European, African,
900 and Amerindian contribution to the white and mulatto populations from
901 Paraná, Brazil. *Hum Biol* [Internet]. 2000 Aug [cited 2019 Mar
902 9];72(4):597–617. Available from:
903 <http://www.ncbi.nlm.nih.gov/pubmed/11048789>

904 43. Troldborg A, Hansen A, Hansen SWK, Jensenius JC, Stengaard-Pedersen K,
905 Thiel S. Lectin complement pathway proteins in healthy individuals. *Clin
906 Exp Immunol*. 2017;188(1):138–47.

907 44. Goeldner I, Skare T, Boldt ABW, Nass FR, Messias-reason IJ, Utiyama SR.
908 Association of MASP-2 Levels and MASP2 Gene Polymorphisms with
909 Rheumatoid Arthritis in Patients and Their Relatives. 2014;9(3):1–7.

910 45. Catarino SJDS, Boldt ABW, Beltrame MH, Nisihara RM, Schafranski MD, de
911 Messias-Reason IJ. Association of MASP2 polymorphisms and protein
912 levels with rheumatic fever and rheumatic heart disease. *Hum Immunol*
913 [Internet]. American Society for Histocompatibility and Immunogenetics;
914 2014 Dec [cited 2015 Feb 10];75(12):1197–202. Available from:
915 <http://www.ncbi.nlm.nih.gov/pubmed/25318078>

916 46. Ottenhoff THM. New pathways of protective and pathological host defense
917 to mycobacteria. *Trends Microbiol* [Internet]. 2012 Sep [cited 2019 Mar
918 9];20(9):419–28. Available from:
919 <http://www.ncbi.nlm.nih.gov/pubmed/22784857>

920 47. Ernst JD. The immunological life cycle of tuberculosis. *Nat Rev Immunol*
921 [Internet]. 2012 Aug 13 [cited 2019 Mar 9];12(8):581–91. Available from:
922 <http://www.ncbi.nlm.nih.gov/pubmed/22790178>

923 48. Cambri G, Mira MT. Genetic susceptibility to leprosy-from classic immune-
924 related candidate genes to hypothesis-free, whole genome approaches.
925 *Front Immunol*. 2018;9(JUL):1–9.

926 49. Srivastava LM, Agarwal DP, Benkmann HG, Goedde HW. Biochemical,
927 immunological and genetic studies in leprosy. III. Genetic polymorphism of
928 C3 and immunoglobulin profile in leprosy patients, healthy family
929 members and controls. *Tropenmed Parasitol* [Internet]. 1975 Dec [cited
930 2019 Mar 9];26(4):426–30. Available from:
931 <http://www.ncbi.nlm.nih.gov/pubmed/1216330>

932 50. Amorim FM, Nobre ML, Nascimento LS, Miranda AM, Monteiro GRG,
933 Freire-Neto FP, et al. Differential immunoglobulin and complement levels
934 in leprosy prior to development of reversal reaction and erythema
935 nodosum leprosum. Lockwood DNJ, editor. *PLoS Negl Trop Dis* [Internet].
936 2019 Jan 28 [cited 2019 Mar 9];13(1):e0007089. Available from:
937 <http://www.ncbi.nlm.nih.gov/pubmed/30689631>

938 51. Sahu A, Saha K, Kashyap A, Chakrabarty AK. Interaction of anti-leprosy
939 drugs with the rat serum complement system. *Immunopharmacology*
940 [Internet]. [cited 2019 Mar 9];15(3):143–50. Available from:
941 <http://www.ncbi.nlm.nih.gov/pubmed/3134310>

942 52. Kashyap A, Sehgal VN, Sahu A, Saha K. Anti-leprosy drugs inhibit the
943 complement-mediated solubilization of pre-formed immune complexes in
944 vitro. *Int J Immunopharmacol* [Internet]. 1992 Feb [cited 2019 Mar
945 9];14(2):269–73. Available from:
946 <http://www.ncbi.nlm.nih.gov/pubmed/1624226>

947 53. Ammitzbøll C, Steffensen R, Nielsen H. Polymorphisms in the MASP1 gene
948 are associated with serum levels of MASP-1, MASP-3, and MAp44. *PLoS*
949 One [Internet]. 2013 Jan [cited 2014 Nov 29];8(9):e73317. Available from:
950 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4207000/>
951 ol=pmcentrez&rendertype=abstract

952 54. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'souza C, Fouse SD,
953 et al. Conserved Role of Intragenic DNA Methylation in Regulating
954 Alternative Promoters. [cited 2019 Mar 9]; Available from:
955 http://www.nature.com/authors/editorial_policies/license.html#terms†

956 55. Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in
957 splicing regulation. *Trends Genet* [Internet]. 2015 May [cited 2019 Mar
958 9];31(5):274–80. Available from:

959 https://linkinghub.elsevier.com/retrieve/pii/S0168952515000402

960 56. Ferguson DC, Blanco JG. Regulation of the Human Fc-Neonatal Receptor

961 alpha-Chain Gene FCGRT by MicroRNA-3181. [cited 2019 Mar 9]; Available

962 from: <http://mirmap.ezlab.org/>

963 57. Kirchmeyer M, Servais FA, Hamdorf M, Nazarov P V, Ginolhac A, Halder R,

964 et al. Cytokine-mediated modulation of the hepatic miRNome: miR-146b-

965 5p is an IL-6-inducible miRNA with multiple targets. *J Leukoc Biol*

966 [Internet]. 2018 Nov [cited 2019 Mar 9];104(5):987–1002. Available from:

967 <http://doi.wiley.com/10.1002/JLB.MA1217-499RR>

968 58. Sales-Marques C, Chester Cardoso C, Elena Alvarado-Arnez L, Illaramendi

969 X, Maria Sales A, de Andréa Hacker M, et al. Genetic polymorphisms of the

970 IL6 and NOD2 genes are risk factors for inflammatory reactions in leprosy.

971 2017 [cited 2019 Mar 9]; Available from:

972 <https://doi.org/10.1371/journal.pntd.0005754>

973 59. Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, et al. A

974 diverse array of gene products are effectors of the type I interferon

975 antiviral response HHS Public Access. *Nature* [Internet]. 2011 [cited 2019

976 Mar 9];472(7344):481–5. Available from:

977 http://www.nature.com/authors/editorial_policies/license.html#termsww

978 www.nature.com/nature.

979

980

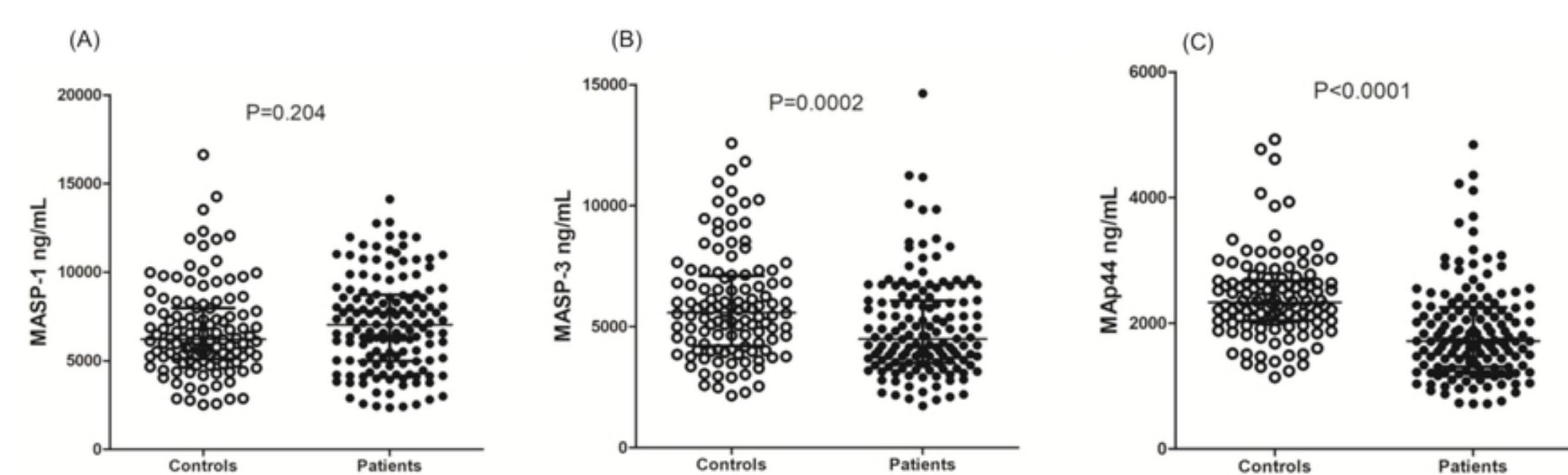


Figure 1

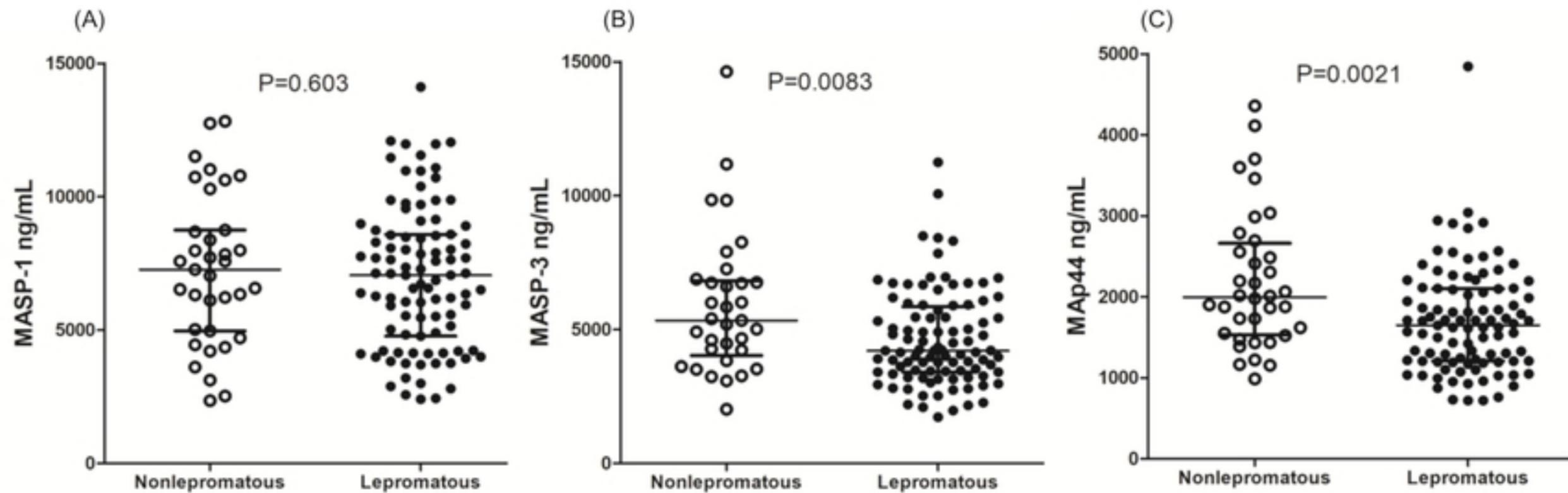


Figure 2

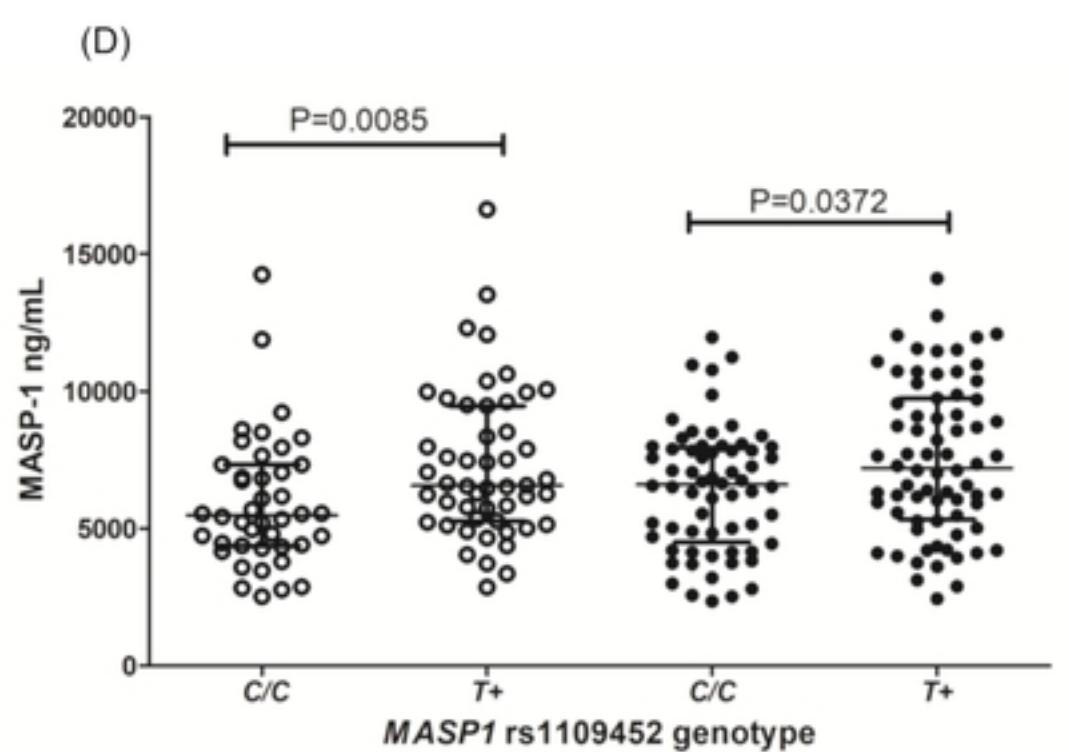
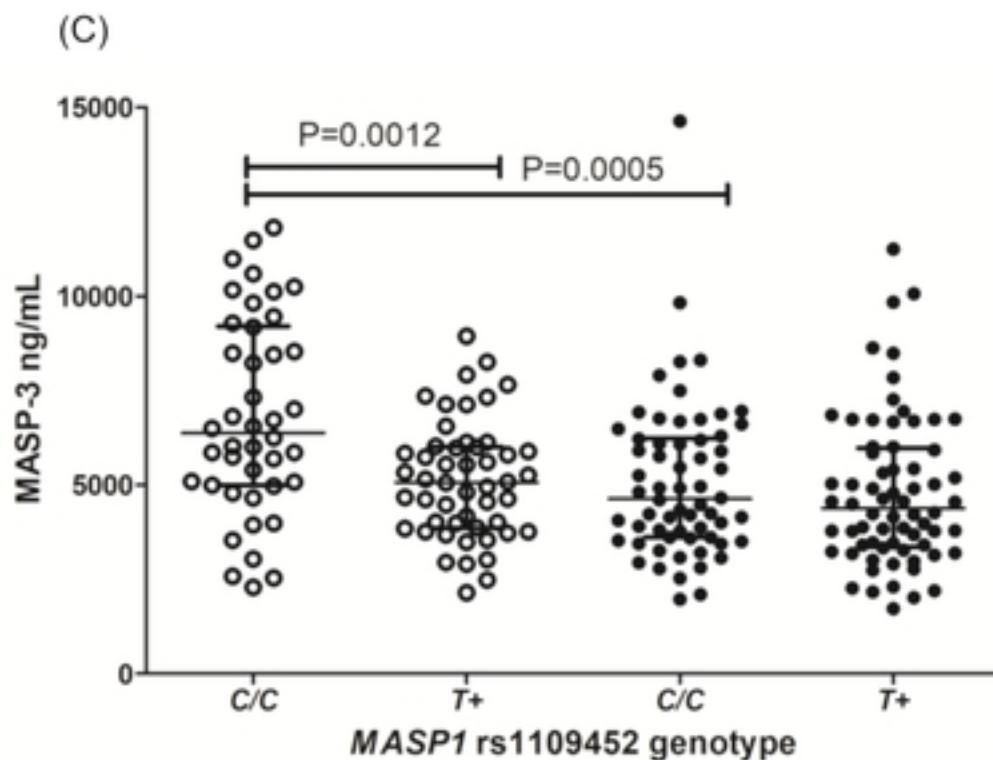
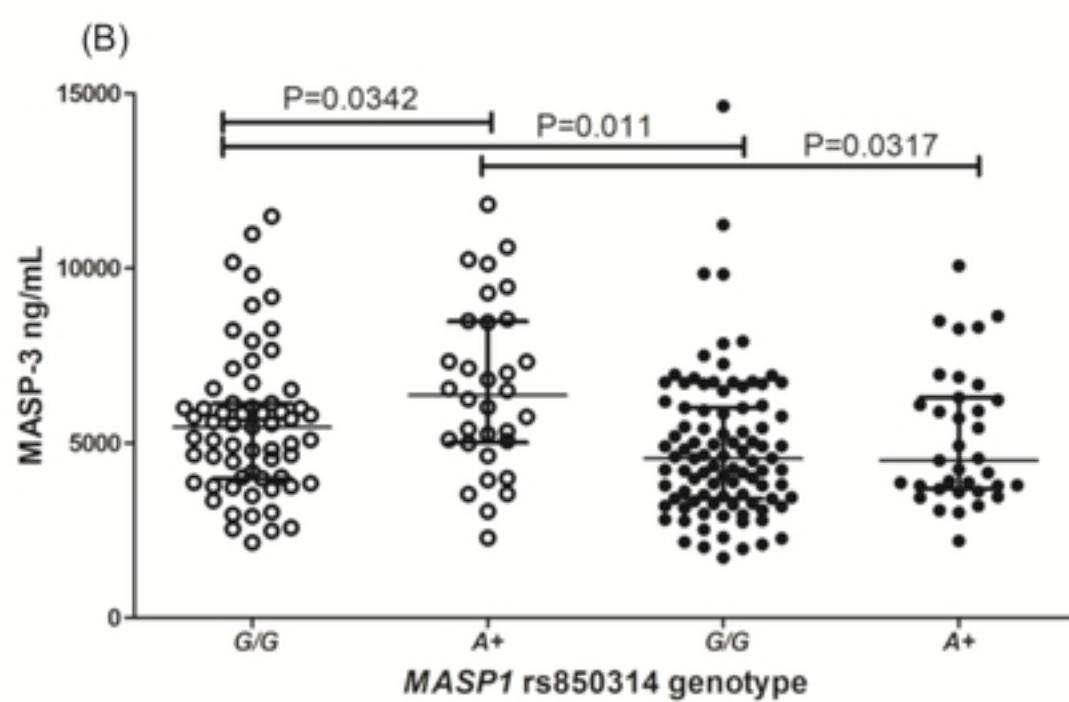
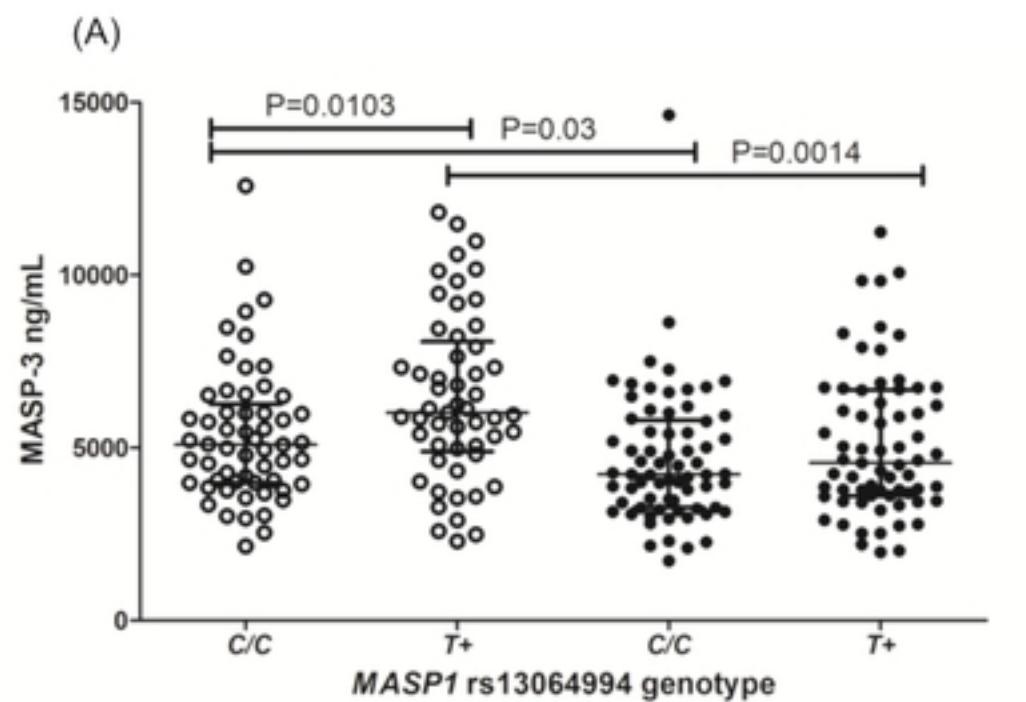





Figure3



Figure4

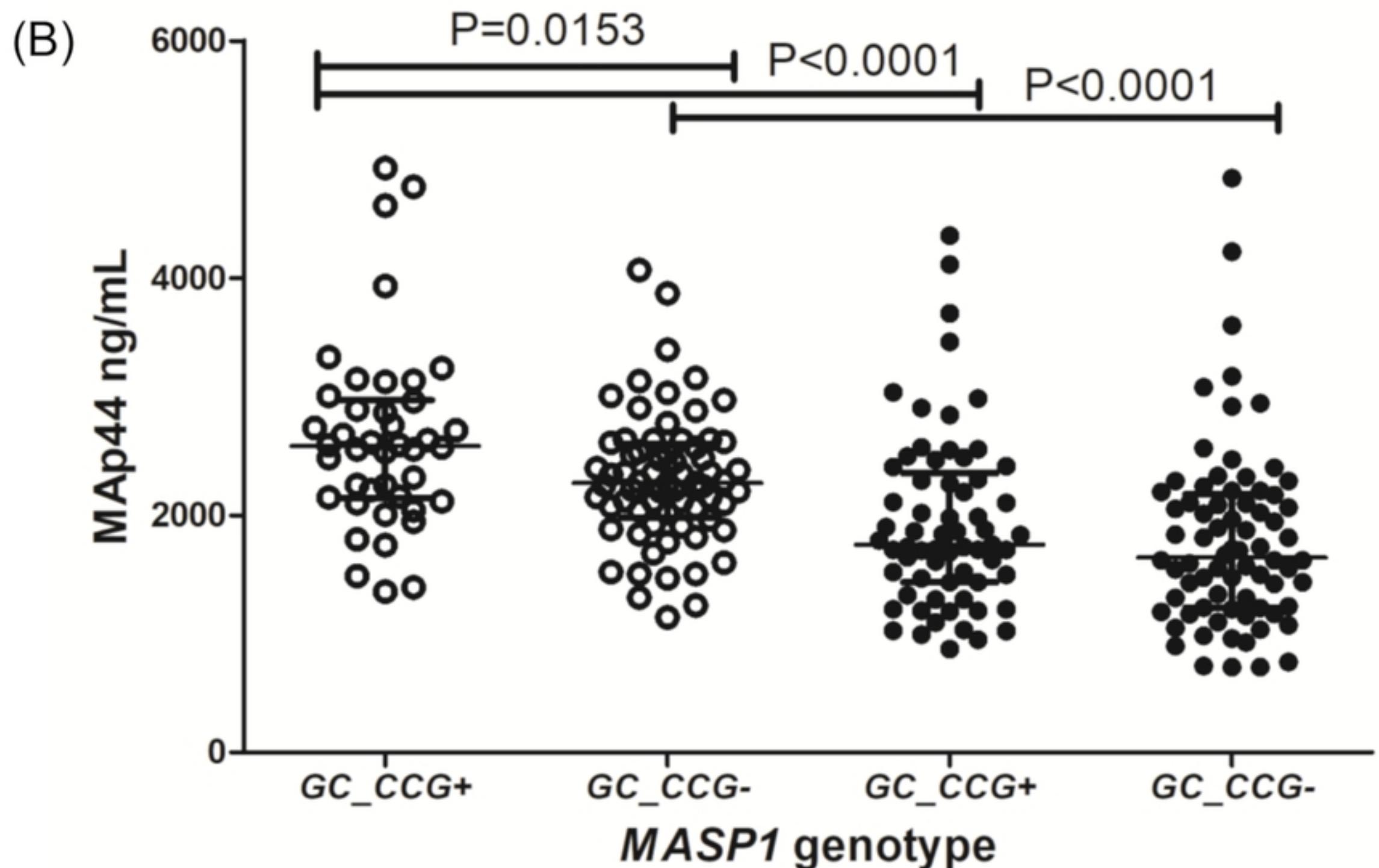
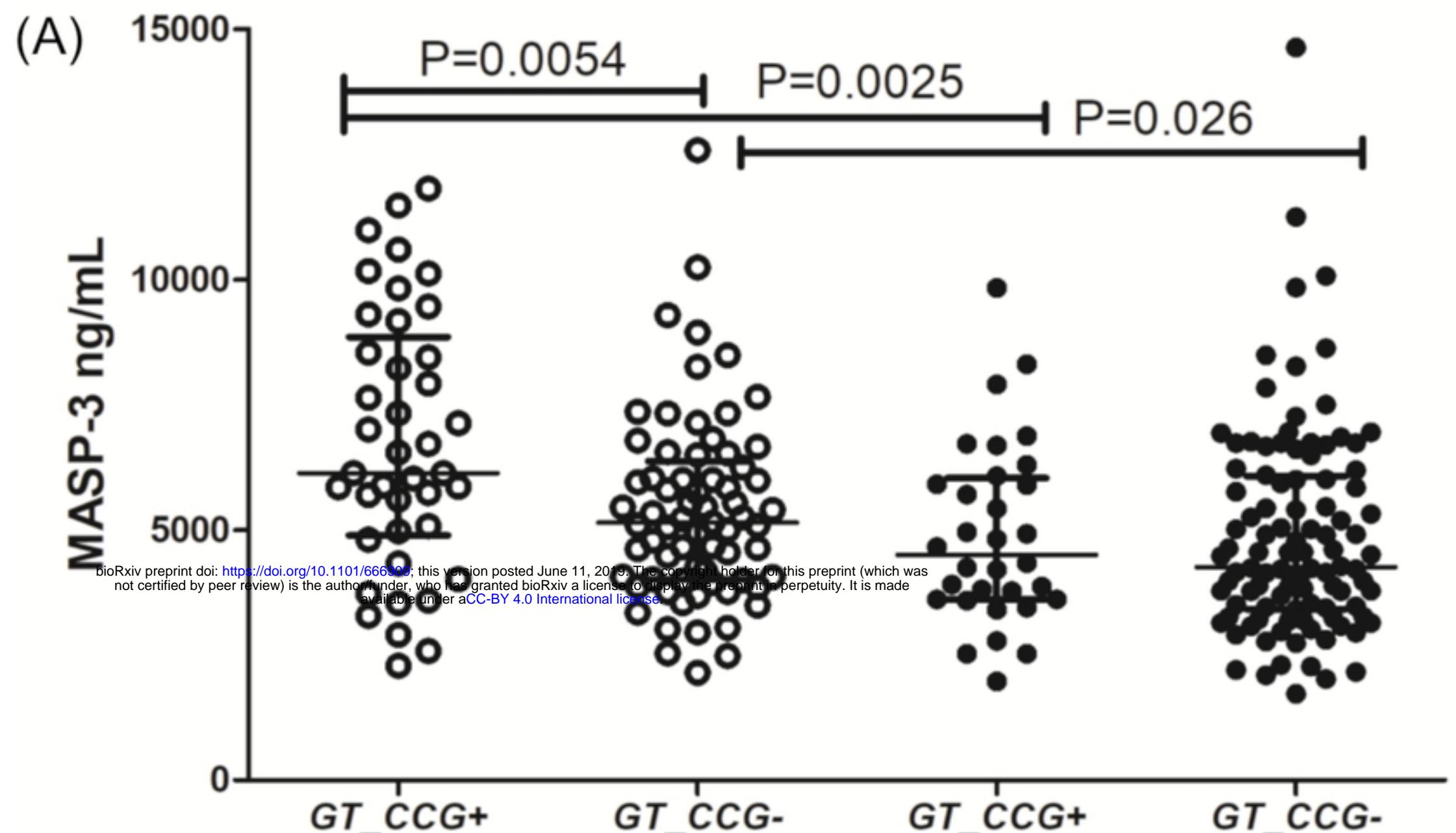



Figure 5

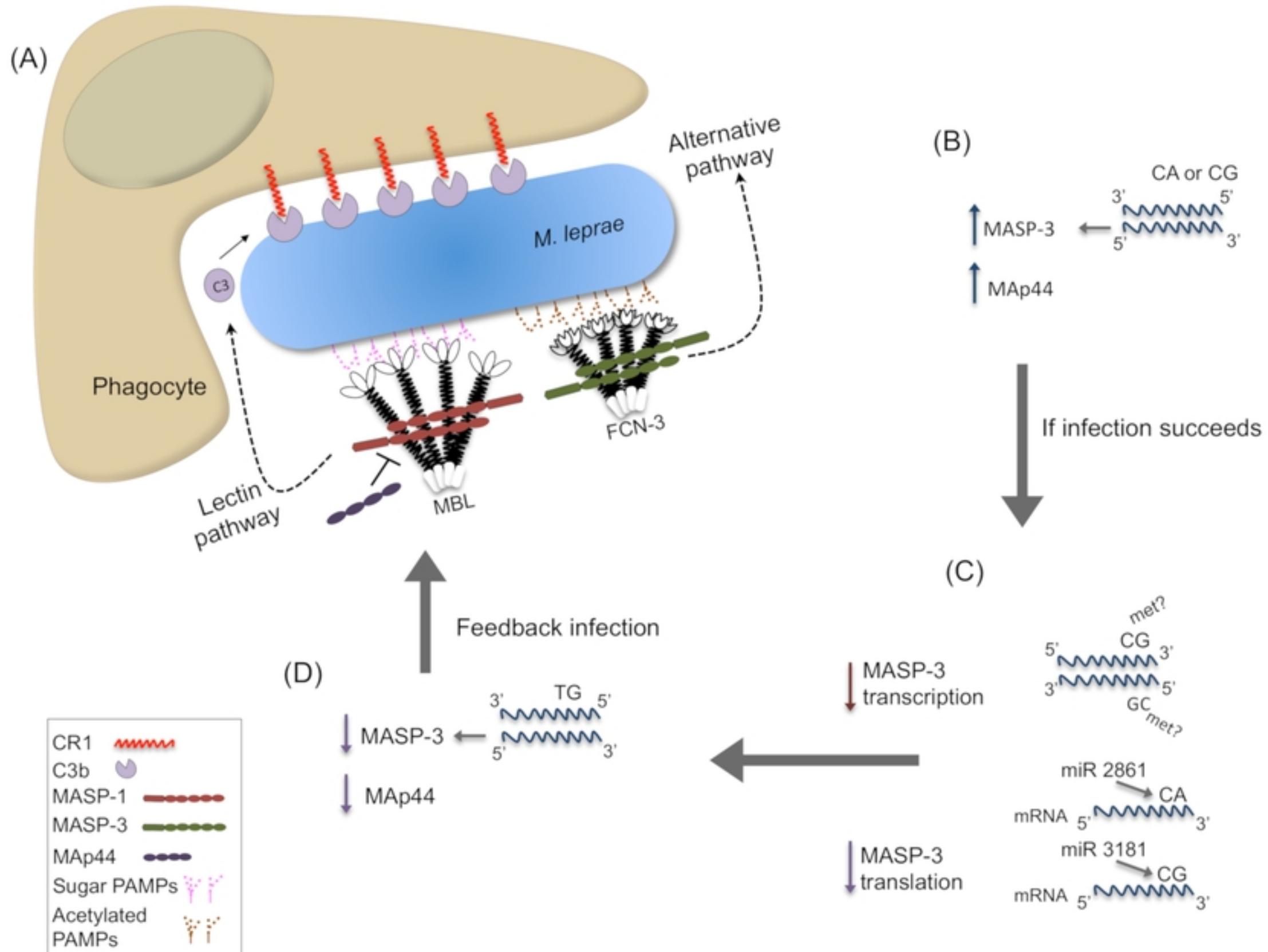


Figure 6