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Abstract: Elaeagnus angustifolia L. is a deciduous tree of the Elaeagnaceae family. It is widely 17 

used in the study of abiotic stress tolerance in plants and for the improvement of 18 

desertification-affected land due to its characteristics of drought resistance, salt tolerance, cold 19 

resistance, wind resistance, and other environmental adaptation. Here, we report the complete 20 

genome sequencing using the Pacific Biosciences (PacBio) platform and Hi-C assisted assembly 21 

of E. angustifolia. A total of 44.27 Gb raw PacBio sequel reads were obtained after filtering out 22 

low-quality data, with an average length of 8.64 Kb. And 39.56 Gb clean reads was obtained, with 23 

a sequencing coverage of 75×, and Q30 ratio > 95.46%. The 510.71 Mb genomic sequence was 24 

mapped to the chromosome, accounting for 96.94% of the total length of the sequence, and the 25 

corresponding number of sequences was 269, accounting for 45.83% of the total number of 26 

sequences. The genome sequence study of E. angustifolia can be a valuable source for the 27 

comparative genome analysis of the Elaeagnaceae family members, and can help to understand 28 

the evolutionary response mechanisms of the Elaeagnaceae to drought, salt, cold and wind 29 

resistance, and thereby provide effective theoretical support for the improvement of 30 

desertification-affected land. 31 

. 32 
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 35 

Introduction 36 

Elaeagnus angustifolia L., also known as silver willow and cinnamon, is a deciduous tree 37 

belonging to the Elaeagnaceae family (Fig. 1). It is native to central and western Africa and is 38 

distributed in the United States, Canada, the Mediterranean coast, southern Russia, Iran, and India. 39 

It shows a wide distribution area in China, where is is distributed in the Xinjiang, Gansu, Ningxia, 40 

Inner Mongolia, and other provinces(Wang et al., 2014). The fruit, branches, leaves, and flowers 41 

of E. angustifolia can be used as medicine owing to multiple beneficial properties. The fruit is rich 42 
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in sugars, flavonoids, and other substances that can regulate the blood circulation of the human 43 

body and improve the immunity of the body; the branches, leaves, and flowers are beneficial for 44 

anti-aging, and treatment of burns, bronchitis, dyspepsia, and neurasthenia(Min et al.,2006; Vitas 45 

et al., 2004; Wang et al.,2006). The flowers are also used for extracting aromatic oil, which is used 46 

as a flavoring raw material in soap(Liu et al., 2003). 47 

At present, land desertification is a serious global phenomenon. Due to economic 48 

development needs, the effects of various methods such as terraced fields and grazing control to 49 

recover from land desertification are not significant in Spain, Greece, Turkey and other 50 

countries(Salvati et al., 2016). E. angustifolia shows the characteristics of drought resistance, salt 51 

tolerance, cold resistance, wind resistance, easy reproduction, and strong adaptability(Huang et al., 52 

2005). The root rhizobium has important effects on nitrogen fixation and soil improvement, which 53 

can reform saline-alkali land and improve desertification-affected land(Liu, 2015). In recent years, 54 

E. angustifolia has been cultivated in Hebei, Heilongjiang, Henan, Shanxi, Shandong, and other 55 

provinces in China(Guo et al., 2008). 56 

Although the nrDNA ITS sequence data of Elaeagnaceae are abundant in the GenBank at 57 

present(He, 2012), studies on genome sequencing of Elaeagnaceae have not yet been reported, 58 

and the genome is an important basis for analyzing the evolution of Elaeagnaceae. At present, 59 

Pacific BioSciences(PacBio) technology, a third-generation sequencing technology, and Hi-C 60 

assisted assembly technology have become increasingly reliable and the genome sequencing has 61 

been completed for Saccharum spontaneum L.(Zhang et al., 2018) and Ammopiptanthus 62 

nanus(Gao et al., 2018). 63 

In this study, we applied PacBio technology and Hi-C assisted assembly technology to 64 

sequence the genome of E. angustifolia, which is a valuable source for comparative genomic 65 

analysis of the Elaeagnaceae family members. Genome sequencing can help understand the 66 

response mechanism of the Elaeagnaceae to drought, salt, cold and wind resistance, and provide 67 

an effective theoretical basis for planting E. angustifolia to recover from global land 68 

desertification. 69 

 70 

Figure 1. Elaeagnus angustifolia 71 

 72 

Materials and Methods 73 

Sample collection 74 

Samples from an Elaeagnus angustifolia L. tree (imported from Xinjiang province, NCBI 75 
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Taxonomic ID, 36777) were collected from the south campus of Shandong Agricultural University 76 

for genomic DNA sequencing, and Hi-C assisted assembly. 77 

 78 

Genomic DNA sequencing and Hi-C assisted assembly 79 

After collection, tissues were immediately immersed in liquid nitrogen and stored until DNA 80 

extraction. DNA was extracted using the Cetyltrimethyl Ammonium Bromide (CTAB) method. 81 

The quality of the extracted genomic DNA was checked using 1% agarose gel electrophoresis, and 82 

the concentration was quantified using a Qubit fluorimeter (Invitro-gen, Carlsbad, CA, USA). 83 

After checking the quantity and quality of the DNA sample, the library was constructed as shown 84 

in Supplementary Figure S1 in the order from left to right as shown in Supplementary Figure S2. 85 

 86 

Results and discussion 87 

Genomic results and statistics 88 

We constructed two 270-bp libraries using genomic DNA of E. angustifolia samples. A total of 89 

60.15 Gb of high-quality data was sequenced and filtered on Illumina Hiseq sequencing platform 90 

(San Diego, CA, USA), and the total sequencing depth was about 131×, which met the sequencing 91 

requirement of more than 50× (Supplementary Table S1). A total of 5,125,675 subreads were 92 

obtained by filtering low-quality data, and a total of 44.27 Gb raw PacBio sequel reads were 93 

obtained, with an average length of 8.64 kb (Supplementary Table S2). The subread N50 was 94 

12,635 bp, and the average length was 8,636 bp (Supplementary Table S3). Subreads were 95 

corrected and assembled by Canu(Koren et al., 2017), and the estimated genome size was found to 96 

be 781.09 Mb and Contig N50 was 486.92 Kb (Supplementary Table S4).  97 

 A kmer map of k = 19 was constructed using the two 270-bp library data (Supplementary 98 

Figure S3), which was used to evaluate genome size, repeat sequence ratio, and heterozygosity. 99 

The highest peak in the kmer distribution curve was found at the k-mer depth of 111. The 100 

sequences with kmer depth more than twice of the corresponding depth of the main peak, i.e. kmer 101 

sequences with a depth greater than 223, were repetitive sequences. The sequence with kmer depth 102 

appearing at half of the depth corresponding to the main peak, i.e. the kmer sequence with depth 103 

appearing around 55 was a heterozygous sequence. The total number of kmer obtained from 104 

sequencing data was 52,917,129,364. After removing those with depth abnormality, a total of 105 

51,064,317,165 kmer sequences were used for the estimation of genome length, whose calculated 106 

length was about 456.24 Mbp. Based on distribution of kmer, the genome of this species was 107 

found to be a complex genome with high heterozygosity, with the content of repeat sequences 108 

estimated to be about 39.24%, and the degree of heterozygosity estimated to be about 1.47%. 109 

 Due to the relatively low conservation of repeat sequences among species, it is necessary to 110 

construct a specific repeat sequence database for the prediction of repeat sequences for specific 111 

species. With the help of LTR FINDER v1.05(Xu et al., 2007), MITE Hunter(Han et al., 2010), 112 

RepeatScout v1.0.5(Price et al., 2005), and piler-df v2.4(Edgar et al., 2005), the repeat sequence 113 

database of E. angustifolia genome was constructed based on the structure prediction and the 114 

principle of de novo prediction. The database was classified by PASTEClassifier(Wicker et al., 115 

2007), and then merged with the database of Repbase(Jurka et al., 2005) as the final repetitive 116 

sequence database, and then repeated sequences were identified based on the constructed repeat 117 
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sequence database using RepeatMasker v4.0.6(Tarailo ‐Graovac et al., 2009) software. The 118 

prediction yielded a repeat of about 263.44 Mb, accounting for 50.01%. The detailed prediction 119 

results are shown in Table 1. 120 

Table 1 Repeating sequence statistics 121 

Type Number Length (bp) Percentage (%) 

ClassI/DIRS 57,476 39,462,537 7.49 

ClassI/LINE 17,420 6,130,877 1.16 

ClassI/LTR 1,192 1,341,892 0.25 

ClassI/LTR/Copia 170,211 112,045,341 21.27 

ClassI/LTR/Gypsy 89,775 74,832,142 14.2 

ClassI/PLE|LARD 87,646 29,294,594 5.56 

ClassI/SINE 3,134 580,471 0.11 

ClassI/TRIM 4,191 2,037,167 0.39 

ClassI/Unknown 277 111,257 0.02 

ClassII/Crypton 10 712 0 

ClassII/Helitron 9,255 2,368,390 0.45 

ClassII/MITE 8,168 1,544,498 0.29 

ClassII/Maverick 1,511 278,308 0.05 

ClassII/TIR 26,737 12,037,464 2.29 

ClassII/Unknown 7,008 1,957,120 0.37 

PotentialHostGene 4,766 1,419,371 0.27 

SSR 41,290 8,338,047 1.58 

Unknown 96,908 27,036,916 5.13 

Total without overlap 626,975 263,437,176 50.01 

 122 

TopHat(Trapnell et al., 2009) was used to compare the raw transcriptome data with the 123 

genome of E. angustifolia, and the number of bases in the Exon, Intron, and Intergenic regions 124 

were separately counted to evaluate the results of the gene prediction (Supplementary Table S5). 125 

The prediction of the genetic structure of E. angustifolia mainly used de novo prediction, 126 

homologous species prediction, and Unigene prediction, and then integrated the prediction results 127 

using EVM v1.1.1(Haas et al., 2008) software. Genscan(Burge et al., 1997), Augustus v2.4(Stanke 128 

et al., 2003), GlimmerHMM v3.0.4(Majoros et al., 2004), GeneID v1.4(Blanco et al., 2007), 129 

SNAP (version 2006-07-28) (Korf, 2004) were used for head-to-head prediction. GeMoMa 130 

v1.3.1(Keilwagen et al., 2016) was used for de novo prediction. His v2.0.4(Pertea et al., 2016) and 131 

Stringtie v1.2.3(Pertea et al., 2016) were used for assembly based on reference transcript, and 132 

TransDecoder v2.0(Haas et al., 2016)and gene marks-t v5.1(Tang et al., 2015) was used for gene 133 

prediction. PASA v2.0.2(Campbell et al., 2006) was used to predict the Unigene sequences 134 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/665927doi: bioRxiv preprint 

https://doi.org/10.1101/665927
http://creativecommons.org/licenses/by-nc-nd/4.0/


without reference assembly based on transcriptome data. Finally, EVM v1.1.1(Haas et al., 2008) 135 

was used to integrate the prediction results obtained by the above three methods, and 31,730 genes 136 

were obtained after modification with PASA v2.0.2. The specific predicted information is shown 137 

in Table 2 and Supplementary Table S6. The number of genes supported by the three prediction 138 

methods was integrated, as shown in Supplementary Figure S4. As shown, the number of genes 139 

supported by homologous prediction and transcriptome prediction resulted in 30,771 genes, 140 

accounting for 96.98%, indicating the high prediction quality. At the same time, according to the 141 

gene function annotation, 96.89% of the genes could be annotated into NR and other databases, 142 

which further indicated that the gene prediction was reliable. 143 

BLAST v2.2.31(Birney et al., 2004) with an E-value cutoff of 1E-5 was used to align the 144 

predicted gene sequences with functional databases such as NR(Griffiths-Jones et al., 2005), 145 

KOG(Griffiths-Jones et al., 2006), GO(Nawrocki et al., 2013), KEGG(Lowe et al., 1997), and 146 

TrEMBL(She et al., 2009). Functional annotation analyses, namely the KEGG pathway annotation 147 

analysis, KOG functional annotation analysis, and GO functional annotation analysis were 148 

performed. A total of 30,743 of the predicted genes were annotated into databases such as the NR 149 

(Supplementary Table S7). By comparison with GenBlastA v1.0.4(She et al., 2009), homologous 150 

gene sequences were found in the genome with the true locus screened. GeneWise v2.4.1(Birney 151 

et al., 2004) was used to find immature termination codons and frame-shift mutations in the gene 152 

sequences, and pseudogenes were identified. A total of 2,173 pseudogenes were predicted 153 

(Supplementary Table S8). 154 

Table 2 Gene prediction result statistics 155 

Method Software Species Gene number 

 Genscan - 26,696 

 Augustus - 38,539 

Ab initio GlimmerHMM - 48,103 

 GeneID - 39,104 

 SNAP - 44,716 

 Oryza sativa 26,741 

 Ziziphus jujuba 27,261 

Homology-based GeMoMa Arabidopsis thaliana 28,297 

 Prunus persica 30,248 

 Pyrus bretschneideri 29,355 

 PASA - 63,071 

RNAseq GeneMarkS-T - 54,579 

 TransDecoder - 86,897 

Integration EVM - 31,730 

 156 

Hi-C assisted assembly 157 

Based on Sequencing By Synthesis (SBS) technology, the Illumina high-throughput sequencing 158 
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platform was used to sequence the Hi-C library to produce a large number of high-quality reads. 159 

Raw data for sequencing samples included two FASTQ files, including reads measured at both 160 

ends of all Hi-C constructed library fragments (Supplementary Figure S5). We obtained 39.56 Gb 161 

clean reads, with sequencing coverage of 75×, and Q30 ratio of > 95.46% (Supplementary Table 162 

S9). 163 

BWA(Li et al., 2009) and SAMtools (version: 0.7.10-r789) were used to map the pair-end 164 

data with the assembled genome sequence. The ratio of reads mapped to the assembled genome 165 

was 90.68%, and the ratio of Unique Mapped Read Pairs was 61.13%, indicating that the Hi-C 166 

data were good enough for subsequent analysis (Supplementary Table S10). We used 167 

HiC-Pro(Servant et al., 2015) to filter and evaluate the Hi-C data. The Invalid Interaction Pairs 168 

ratio cannot exceed 80% if it is a usable Hi-C library(Belton et al., 2012). Invalid Interaction Pairs 169 

mainly include Self-circle Ligation, Dangling Ends type, Re-ligation type, and other discarded 170 

types(Belton et al., 2012; Hu et al., 2013; Imakaev et al., 2012; Lajoie et al., 2015; Servant et al., 171 

2015). A total of 80.79 M pairs of reads on the genome were obtained in this experimental library. 172 

Among them, 72.97 M pairs were valid Hi-C data, accounting for 90.32% of the data on the 173 

genome, and the ratio of Invalid Interaction Pairs was 9.68% (Supplementary Table S11). 174 

After Hi-C assembly, a total of 51.71 Mb of genomic sequence was mapped to the 175 

chromosome, accounting for 96.94% of the total length of the sequence, and the corresponding 176 

number of sequences was 269, accounting for 45.83% of the total number of sequences. Among 177 

the sequences located on the chromosome, the sequence length that could determine the order and 178 

direction was 473.91 Mb, accounting for 92.8% of the total length of the sequence located on the 179 

chromosome, and the number of corresponding sequences was 104, accounting for 38.66% of the 180 

total number of sequences located on the chromosome (Supplementary Table S12). 181 

For Hi-C assembled into the genome of the chromosome, the length was cut into a bin of 100 182 

Kb, and then the number of Hi-C Read Pairs was covered between any two bins as the intensity 183 

signal of the interaction between the two Bins (Fig 2). A total of 14 chromosome groups could be 184 

clearly distinguished; within each group, it could be seen that the intensity of the interaction at the 185 

diagonal position was higher than that of the non-diagonal position, indicating that the interaction 186 

strength between adjacent sequences (diagonal position) in the result of Hi-C chromosome 187 

assembly was high, while that between non-adjacent sequences (non-diagonal position) was weak, 188 

which was consistent with the principle of Hi-C assisted genome assembly and proved that the 189 

genome assembly had a good effect. 190 
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 191 

Fig 2 Hi-C assembly chromosome interaction heat map 192 

 193 

Conclusion 194 

In this study, the genome of Elaeagnus angustifolia L. was obtained using PacBio technology, and 195 

Hi-C assisted assembly technology. Thus, our findings are a valuable source for comparative 196 

genomic analyses of the Elaeagnaceae and can help understand the response mechanism of the 197 

Elaeagnaceae to drought, salt, cold and wind resistance, thereby providing an effective theoretical 198 

basis for planting E. angustifolia to reverse global land desertification. 199 
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