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Abstract 

Current methods used to analyze real-time quantitative polymerase chain reaction (qPCR) data exhibit 
systematic deviations from the assumed model over the progression of the reaction. Slight variations in 
the amount of the initial target molecule or in early amplifications are likely responsible for these 
deviations. Commonly-used 4- and 5-parameter sigmoidal models appear to be particularly susceptible 
to this issue, often displaying patterns of autocorrelation in the residuals. The presence of this 
phenomenon, even for technical replicates, suggests that these parametric models may be misspecified. 
Specifically, they do not account for the sequential dependent nature of qPCR fluorescence 
measurements. We demonstrate that a Smooth Transition Autoregressive (STAR) model addresses this 
limitation by explicitly modeling the dependence between cycles and the gradual transition between 
amplification regimes. In summary, application of a STAR model to qPCR amplification data improves 
model fit and reduces autocorrelation in the residuals. 

Introduction 

1.1 Background 

Polymerase chain reaction (PCR) is a molecular biology technique used to amplify the copies of a specific 
DNA sequence. Real-time polymerase chain reaction, also known as quantitative polymerase chain 
reaction (qPCR), is a widely applied laboratory technique based on PCR to allow for gene quantification. 
Despite the advent of alternative technologies to measure gene expression, e.g. microarrays and high-
throughput sequencing, qPCR remains one of the most extensively used methods for targeted RNA 
quantification. This is in part due to its accuracy and sensitivity to small transcriptional changes, in 
addition to comparably lower cost.  

Quantitative PCR amplification curves typically have multiple stages: a baseline phase in which 
fluorescence remains approximately constant, an exponential phase in which the fluorescence 
approximately doubles for each cycle, and a plateau phase as the amplification tapers off (Figure 1). 
During the baseline phase, there is a slow increase in amplicon product but the corresponding increase 
in fluorescence is masked by a substantial amount of background noise. One way to reduce background 
noise is using baseline subtraction methods; the simplest of which is subtracting the minimum observed 
fluorescence from each fluorescence measurement. This eliminates some variability between reactions 
but does not address the fundamental lack of a detectable fluorescence signal. The next phase occurs 
when the signal gets strong enough to separate from the background noise. The reaction enters the 
exponential phase where the amplification reaches peak production. Then, as reagents are consumed 
and the reaction is limited by the number of available nucleotides, the amplification slows down and 
plateaus, concluding the PCR reaction.  
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Historically, the entire amplification curve is summarized by the cycle at which the fluorescence exceeds 
a threshold, known as the cycle threshold (CT) value. A smaller CT value means that it took fewer cycles 
for the fluorescence to cross the threshold, meaning the target molecule was more abundant in the 
initial sample. Earlier methods relied on manually selecting a threshold slightly above the amplification 
baseline; however, this required visual inspection of each amplification curve which is infeasible for 
larger experiments. This led to the development of automated threshold selection methods as well as 
alternative procedures to quantify expression from qPCR amplification data. These latter methods often 
produce cycle quantification (Cq) values on the same scale as the CT values but without the use of a 
threshold (Bustin et al. 2009).  

 

Figure 1. The amplification curve of hsa-miR-520e_001119 (replicate E1) in the miRcomp data set.  The 
dashed horizontal line is the threshold above the background fluorescence. The CT value is the black 
square. PCR efficiency is calculated by taking the fluorescence value in the later cycle divided by the 
former cycle’s value. There are three phases shown: (1) baseline, (2) exponential, and (3) plateau.   

Many of the most widely used methods to estimate expression from qPCR data rely on fitting a 4- or 5-
parameter sigmoidal curve (Spiess et al. 2008). The fitted sigmoidal curves are then used to estimate Cq 
values via the second derivative method (SDM), which finds the cycle at which the second derivative is 
maximized. This corresponds to the point in the PCR reaction with the sharpest increase in fluorescence 
which typically occurs at the start of the exponential phase (Spiess et al. 2008). SDM allow for high-
throughput quantification of qPCR amplification data.  

In addition to estimating Cq values, the amplification data can be used to estimate amplification 
efficiency, which provides information about the rate at which the concentration of the target molecule 
is increasing as the reaction progresses. A simple generative model describes the relationship between 
observed fluorescence, the initial number of target molecules, and the PCR efficiency. The number of 
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target molecules at cycle T is denoted as NT. This is equivalent to the initial number of molecules (at 
cycle 0), n0, multiplied by the product sequence of the efficiency of the PCR reaction at cycle t, rt. The 
fluorescence at cycle T (FT) is assumed to be a monotonically increasing function of the number of 
molecules plus measurement error.  

 

Theoretically, the efficiency should be equal to 2, representing a doubling of the target molecule at each 
PCR cycle (Livak and Schmittgen 2001). However, PCR efficiency differs from cycle to cycle, and any Cq 
estimate under the assumption of static efficiency is likely to be unreliable (Bar et. al 2011). In addition, 
inhibited reactions that delay when the cycle reaches the threshold also result in underestimation of the 
initial target abundance (Lievens et. al 2011). Because small errors in modeling qPCR amplification data 
can produce significant changes in subsequent estimates, it is crucial to minimize these errors in the 
initial modeling.  

1.2 Sigmoidal Models 

4 and 5-parameter sigmoidal models use a non-linear fit to provide better estimation of threshold 
fluorescence, cycle-to-cycle efficiency approximations, and target quantification. Both 4- and 5-
parameter sigmoidal models contain parameters corresponding to lower and upper asymptotes, slope, 
and inflection point (Spiess et al. 2008). The 5-parameter sigmoidal model introduces an additional 
asymmetry parameter that allows for differences in the curvature before and after the inflection point. 
By considering asymmetry, the estimation of the fluorescence and cycle threshold in the exponential 
phase is improved, thereby, yielding more accurate quantification of the target molecule.  

 

Although the 4-parameter and 5-parameter sigmoidal models approximate the typically structure of a 
qPCR amplification curve, these models do not capture the sequential dependence of the amplification 
process. Mechanistically, the amount of the target molecule, and thereby the observed fluorescence, at 
a given cycle depends on the amount at the previous cycle, but under the 4- and 5-parameter models, 
residual variation at each cycle is considered independent. Despite this limitation, the sigmoidal models 
still provide the ability to capture the general shape of the curve, and more importantly, efficiently 
analyze amplification curves while increasing reproducibility in qPCR analyses (Rutledge 2011). For these 
reasons, we will compare the performance of our proposed model to these sigmoidal models.  
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1.3 Smooth Transition Autoregressive (STAR) Model 

We propose using autoregressive time series models to model qPCR amplification data because the 
fluorescence value at a given cycles depends on the previous cycles. Note that a simple autoregressive 
model, in which the fluorescence in the nth cycle is linearly dependent on its own previous values cannot 
effectively model the amplification process, since the relationship between qPCR cycle and fluorescence 
changes between specific phases of the reaction (Supplementary Figure 1). Different phases in the 
amplification process are characterized with their own state-dependent behavior. A single 
autoregressive model would fail to capture this behavior. 

Threshold Autoregressive (TAR) models are constituted by discontinuities that allow for a switch in 
regime once the threshold is exceeded. When the regimes are governed by the lagged time series itself, 
the model is a Self-Exciting TAR (SETAR) model. The SETAR model is set up with autoregressive 
processes, AR(p), and an indicator function for event A, I[A], based on the threshold variable, qt, and the 
bordered threshold, c (Tong 1978, Lim and Tong 1980, Tong 1990). Here, we show a TAR model with 2 
regimes, with a lag of 1, threshold c, and threshold variable of the 1 time lag of itself. We specify an 
AR(1) model for both regimes, and produce the 2 regime SETAR model:  

 

This can be re-written with indicator variables as: 

 

Unlike discontinuities in TAR models where each subsection follows different AR(p) models, PCR data is 
a continuous process that is better modeled by a gradual transition between regimes. Thus, we chose to 
apply a Smooth Transition Autoregressive (STAR) model that models the regime changes by a 
continuous function. The STAR model is similar to the SETAR model, with the exception that the 
indicator function, I[A], is replaced with the transition function G(-) that monotonically increases from 0 
to 1 (Terasvirta 1994). The addition of the smoothing parameter, gamma, will specify how abruptly the 
switch between the two regimes occurs at qt=c. For the purpose of this paper, we will focus on the 
logistic function as our transition function and refer to the model as a Logistic Smooth Transition 
Autoregressive (LSTAR) model. In this paper, we consider the following class of two regime LSTAR 
models:  

 

In contrast to the sigmoidal models explored above, the STAR model allows for a flexible transition 
between different stages in the baseline and upper phases of amplification curves through the use of a 
logistic smoothing transition function.  
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1.5 Aim of the Study 

We evaluate the performance of both sigmoidal and autoregressive models on two benchmark data 
sets. Our analysis starts with a visual examination of the residuals from each fitted model. Any 
underlying residual trends may result in biased gene quantification. This is followed by an examination 
of several measures of autocorrelation (e.g. Durbin-Watson, Ljung-Box, and Pearson), all of which assess 
aspects of the models’ residuals over time. An ideal model should exhibit no residual auto-correlation. 
Beyond assessing residual patterns, we calculate the residual sum of squares (RSS) as a translatable 
measurement of performance amongst fitted models. We propose a more informative measurement 
model fit by focusing on the RSS within 2 cycles of the Cq value, which we call the local RSS. We focus on 
this region because it has the most impact on estimation of the Cq value.  

Methods 

2.1 qPCR Datasets 

We used two previously published data sets. The first is a 96-well reaction replicate dataset of 
Glycerinaldehy-3-phosphat-Dehydrogenase (GAPDH) amplified with the Life Technologies StepOne Plus 
real-time PCR system for 40 cycles, which is described in more detail in Spiess (2008). This data set will 
be referred to as GAPDH.SO. The GAPDH.SO data are comprised of of 8 subsets each consisting of 12 
replicates. The fluorescence values in this data set were not baseline subtracted. 

The second data set used is a qPCR-based microRNA array that consists of 754 human microRNAs across 
two sets of primer pools, which is described in more detail in McCall et. al (2016). This data set will be 
referred to as miRcomp. The cycle length for the reactions are either 40 or 46 cycles, depending on the 
target and replicate. The miRcomp data consists of 10 mixture / dilution conditions with 4 replicates 
each. Unless otherwise specified, the fluorescence values used from this data set will be baseline 
subtracted. 

2.2 Implementation  

The sigmoidal models were fit using the qpcR R package, and the Cq value was estimated as the cycle at 
which the second derivative of the fitted curve was maximized, referred to as cpD2 in the qpcR package. 
The LSTAR model was fit using the tsDyn R package. The expression estimates are defined as the 
midpoint between the two regimes, i.e. the cycle at which the transition function equals 0.5. All 
statistical tests were carried out in the R open source programming environment using standard 
functions. 

2.3 An LSTAR Model for qPCR 

To model qPCR dynamics, we adopt a nonlinear time series model with each regime explained by a 
linear autoregressive model. This captures key attributes of PCR dynamics. First, PCR reactions tend to 
consist of distinct regimes. Second, fluorescence increases with the number of cycles. Third, there 
should be a gradual change from one regime to the next, despite an independent autoregressive model 
used in each state. To satisfy these criteria, we propose the following Smooth Transition Autoregressive 
Model with a logistic transition function: 
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To fit an LSTAR model, we have to decide on the threshold variable, threshold value, smoothness 
parameter, lag-term, and embedding dimension. The threshold variable, qt, is responsible for gradual 
change in the transition function, and the threshold value, c, is the point of equality between the lower 
and upper regimes. Meanwhile, the smoothness parameter, g, specifies how abrupt the transition is at 
qt=c. The independent autoregressive models of each regime are specified by the number of lags and m-
dimensions included. The lag-term and embedding dimension encode the dependence on the previous 
cycle information and cyclical trends, respectively. Since there are no cyclical trends in qPCR data, we 
omit any cyclical multiplier. To do so, we restrict the lag-term to 1, and alter the m-dimension to capture 
all lags that are multiples of 1 (see Supplementary Note). In addition, we require the lower and upper 
regimes to have the same number of lags. This will produce autoregressive models of the same form for 
each regime, with different coefficients. For qPCR data, we set the lag-term to either 1 or 2 because the 
AIC decreased substantially less with the addition of lag terms greater than 2 (Supplementary Figure 2). 
Additionally, because qPCR amplification processes are typically 40 cycles, inclusions of lags over 2 
would truncate the data set with little benefit. Finally, we specify the threshold variable to depend on 
the current cycle or previous cycle (lag 0 or lag 1). The threshold value and smoothness parameter are 
estimated by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm.   

2.4 Assessments of Model Performance 

2.4.1 Model Abbreviations 

The methods are abbreviated as follows: 

• 4-parameter log-logistic sigmoidal model (l4) 
• 5-parameter log-logistic sigmoidal model (l5) 
• 4-parameter logistic sigmoidal model (b4) 
• 5-parameter log-logistic sigmoidal model (b5) 
• logistic smooth transition autoregressive model (LSTAR) 

2.4.2 Residuals and Local Residuals 

For both the GAPDH.SO and miRcomp data sets, we evaluate model fit by the residuals sum of squares 
(RSS) and the residuals sum of squares around the Cq values (local RSS). The RSS is the sum of all the 
residuals squared, while the Local RSS is the sum of the residuals squared for residuals within 2 cycles of 
the Cq values. The model fit in that region has the most impact on estimation of the Cq value. 

2.4.3 Autocorrelation of Residuals 

Residuals are expected to be mean zero, constant variance, and uncorrelated. The presence of 
autocorrelation in the residuals may be indicative of a model that fails to accurately model PCR 
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dynamics. We use Durbin-Watson, Ljung-Box, and the lag-1 Pearson correlation to test for 
autocorrelation amongst the residuals.  

The null hypothesis of the Durbin-Watson test is that the residuals are not serially correlated, which is 
tested against the alternative that the residuals can be explained by a first order autoregressive model. 
Specifically, the Durbin-Watson statistic tests whether the residuals to follow a white noise process, 
which is a specific stationary process where the residuals have mean zero, constant variance σ2, and 
zero autocovariance except at lag zero. The test statistic can be approximated using residuals from any 
model (see Chen 2016) as follows: 

 

When the autocorrelation coefficient is equal to 0, the Durbin-Watson statistic is equal to 2; therefore, it 
is assumed that under this scenario the residuals are serially correlated. When the autocorrelation 
coefficient is close to 1, this suggests perfect positive correlation in the residuals as the Durbin-Watson 
test statistic approaches 0. Autocorrelation close to -1 would denote perfect negative correlation in 
residuals and the Durbin-Watson test statistic would approach 4. 

The Ljung-Box test (Ljung and Box 1978) considers the null hypothesis that the residuals are random 
with a correlation of zero. The test statistic is given below, where n is the sample size, k is the lag term, 
m is the number of lags tested, and rho_k is the autocorrelation at lag = k.  

 

The test statistic follows a chi-squared distribution with m degrees of freedom.  

Finally, the lag 1 Pearson correlation, defined as the correlation between the residuals and the one-term 
lagged residuals, provides an easily interpretable summary of the autocorrelation.  

Results 

3.1 Residual Patterns 

We applied the four sigmoidal models to the GAPDH.SO data set in two ways: (1) to estimate an average 
curve for all eight technical replicates and (2) to estimate a separate curve for each technical replicate. 
First, a subset of GAPDH.SO data with replicates was analyzed using a weighted nonlinear least-squares 
fitting algorithm, also known as the Levenberg-Marquardt algorithm, which estimates a single model 
based on the replicate values. When this one fitted curve is used to represent a group of replicates and 
the residuals are computed between the average curve and the observed values, there is a consistent 
replicate-specific bias (Figure 2 top row). Additionally, the magnitude of this bias appears to increase 
starting at the beginning of the exponential phase of the reaction, slightly before the Cq value estimate 
(vertical line in Figure 2). Even after base-line subtraction, we see similar patterns in the model residuals 
(Figure 2 bottom row). In the first few cycles, the residuals are now close to 0; however, the same biases 
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appear at the start of the exponential phase. Thus, the baseline subtraction method does not appear to 
alleviate this effect. Similar patterns can be seen in the miRcomp data set (Supplementary Figure 3).  

 

 

Figure 2. (Left to right: 5-parameter log-logistic model (l5), 5-parameter logistic model (b5), 4-parameter 
log-logistic model (l4), 4-parameter logistic model (b4). Top row: raw fluorescence, bottom row: 
baseline subtracted fluorescence) The Levenberg-Marquardt algorithm was used to estimate one 
representative curve for all 8 technical replicates. The residuals for the representative curve vs. 
replicates within the subset are plotted by cycle progression using the specified sigmoidal model for one 
set of replicates in the GAPDH.SO data set. The dashed vertical lines are the Cq values of the 
representative curve for each subset using the second derivative method (SDM).  

Next, instead of estimating one representative curve for each set of replicates, we estimate an 
amplification curve for each replicate. The residuals from these fitted curves show a different type of 
pattern than those from the average fitted curve. In Figure 3, the cycle-to-cycle residuals show little 
variation amongst each of the replications within a subset. The observed patterns of residual bias 
suggest a systematic lack of model fit. The consistency in this bias between replicates demonstrates the 
reproducibility of the observed systematic deviation from the sigmoidal models. Similar to the between 
replicate residuals, transitions into and out of the exponential phase, primarily in cycles 10 to 20, and 20 
to 30, respectively, appear to result in the largest bias. In addition, we the ranges of the residuals is 
smaller for 5-parameter models compared to the 4-parameter models. This supports the use of 5-
parameter models as they seem to provide a better fit, but similar patterns of bias persist. As before, 
similar patterns can be seen in the miRcomp data set (Supplementary Figure 4). 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2019. ; https://doi.org/10.1101/665596doi: bioRxiv preprint 

https://doi.org/10.1101/665596
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 3. (Top left: 5-parameter log-logistic model (l5), Top middle: 5-parameter logistic model (b5), 
Bottom left: 4-parameter log-logistic model (l4), Bottom middle: 4-parameter logistic model (b4), Top 
right: LSTAR model with lag=1, Bottom right: LSTAR model with lag=2) All sigmoidal models and LSTAR 
model residuals are on the same y-axis scale. The residuals for each replicate curve vs. actual values for 
one set of replicates in GAPDH.SO are plotted by cycle progression. All subsets illustrate a between 
replicate non-random residuals problem for sigmoidal models. The LSTAR model with lag term of 1 also 
faces the same residuals problem, but LSTAR models with the lag term greater than 2, do not exhibit the 
problem and have random residuals.  

When we apply the LSTAR model to see if it exhibits similar behavior, we also see that a lag term of 1, is 
unable to alleviate this problem (Figure 3 top right). An identical non-random residuals problem is 
present, similar to that of the sigmoidal models. However, when we expand our lag term to 2, the non-
random residuals problem no longer exists, and the residuals appear to be random with mean zero and 
constant variance (Figure 3 bottom right). Additionally, the range for the residuals in the LSTAR model 
with a lag term of 2 is smaller than that of any of the other models.  

3.2  RSS and Local RSS 

To assess overall model fit, we compared the RSS and local RSS for the 5-parameter log-logistic model 
(l5) to the lag-2 LSTAR model using the full miRcomp data set. The l5 model was found to have higher 
RSS compared to the LSTAR model (Table 1). This suggests that from the perspective of the entire qPCR 
reaction, the LSTAR model is able to better capture the amplification curve than the l5 model. However, 
the mean local RSS for l5 is lower than for the LSTAR model, which suggests in the region around the Cq 
value, there may be a bias / variance trade-off between the l5 and LSTAR models. The local RSS for the 
LSTAR model on average, accounts for 855.02/6631 = 12.89% of the total RSS. In comparison, the local 
RSS for the l5 model accounts for 657.1/8603=7.64%. Of note, the local RSS calculation has significantly 
more NAs than the total RSS due to 1) NAs in the SDM method for Cq value calculation, and/or 2) Cq 
values estimates at the boundaries of the reaction for which a 4 cycle region is unavailable.  
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 Min Median Mean Max NAs 
RSS L5 512 4744 8603 30019173 989 
Local RSS L5 0.1 294.5 657.1 1033850.6 2651 
RSS LSTAR 322 5018 6631 5136253 1283 
Local RSS LSTAR 0.03 563.92 855.02 100696.76 2669 

Table 1. Residual sum-of-squares and local residual sum-of-squares for the l5 and LSTAR model for all 
samples in miRcomp data set.  

3.3 Autocorrelation: Durbin-Watson and Ljung-Box Statistic 

 

  

Figure 5. (Durbin-Watson Test Statistic for Residuals) Heat map with overlay of contour plot for the 
density distribution of Durbin-Watson test statistic and Cq value using the SDM. The 5-parameter log-
logistic sigmoidal model was used. Here the values are from for all targets in miRcomp except the 
control targets, consisting of amplifications of 40 and 46 cycles. The range of the Durbin-Watson test 
statistic is from 0.05 to 3.00, with the majority less than 1. Cq values are consistently between cycles 15 
to 30.  

The Durbin-Watson test statistic allows for the detection of serial correlation amongst the residuals 
from the time-based progression in the amplification process. Under the null hypothesis, the residuals 
are serially uncorrelated, while the alternative hypothesis states that the residuals follow an 
autoregressive process with a time lag of one. When the 5-parameter sigmoidal model (l5) is applied to 
the miRcomp data set, we observe Durbin-Watson test statistics in the range of 0.05 to 3.00 (Figure 5), 
with the vast majority less than 2 indicating positive autocorrelation. The Ljung-Box test and lag 1 
Pearson correlation show similar results (Supplementary Figure 5).  

3.5 Categorization of qPCR Amplification 

When estimating amplification curves from single qPCR reactions, we propose a collection of 
assessments based on both the observed data and the fitted values from a model. Specifically, we 
propose four general categories: good, poor, no signal, and failed reaction. We define a good fit as one 
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in which the model has low RSS and minimal autocorrelation in the residuals. A poor fit may have a low 
RSS but substantial residual autocorrelation. In contrast the “no signal” and “failed reaction” categories 
are based primarily on the observed fluorescence data. “No signal” denotes a reaction for which the 
fluorescence values resemble random noise. A failed reaction occurs when the fluorescence peaks early 
and quickly decreases, suggesting an underlying issue with the amplification. Example of each of these 
categories are shown in Figure 5.  

 

Figure 5. From top to bottom: (1-3) used target hsa-miR-23a_000399, while, (4-5) used target hsa-let-
7c#_002405. All plots used a 5-parameter log-logistic model (l5), except (2) using a 4-parameter log-
logistic model (l4). Here, (1) good signal fit for sample 8, replicate 4, (2) poor signal fit with symmetrical 
residual peaks for sample 9, replicate 4, (3) poor signal fit after asymmetrical factor included for sample 
9, replicate 4, (4) non-signal fit for sample 3, replicate 4, and (5) failed-reaction signal fit for sample 9, 
replicate 2. Black circles (left column) or triangles (right column) represent the Cq values estimated by 
SDM. The shaded grey region denotes the region used to calculate the local RSS. There is no local RSS for 
the non-signal fit because the Cq value is nonsensical and appears at the boundary.   

Discussion 

We have demonstrated that the sigmoidal curve fitting methods commonly used to analyze qPCR data 
deviate from the assumed model over the progression of the reaction. When estimating an average 
curve for several technical replicates, variation in the amount of the initial target molecule or in early 
amplifications appear to cause consistent differences in fluorescence across the PCR cycles. 
Furthermore, these differences are amplified during the exponential phase of the reaction. When fitting 
these sigmoidal models to individual qPCR reactions, we observed substantial autocorrelation in the 
residuals. This is perhaps not surprising given that these methods do not account for the dependence 
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between consecutive cycles. As an alternative to sigmoidal models, we proposed a lag-2 Logistic Smooth 
Transition Autoregressive (LSTAR) model and showed that such a model addresses the limitations of the 
sigmoidal models by explicitly modeling the dependence between cycles and a gradual transition 
between amplification regimes.   

While not explicitly addressed in this manuscript, the misspecification of the sigmoidal models likely 
effects the Cq estimates derived from the fitted models and thereby subsequent estimates of 
differential expression. While it is possible that Cq estimation via the second derivative maximum is 
relatively robust to the observed type of model misspecification, it should be noted that the 
introduction of an asymmetry parameter in the sigmoidal models (moving from 4-parameter to 5-
parameter models) improved Cq estimation. This suggests similar improvements could be achieved by 
further improving the model fit via an LSTAR model or some alternative autoregressive modeling 
approach. 

The presence of distinct phases in a PCR reaction has long been recognized; however, most current 
methods do not explicitly model these regimes. The standard view of a PCR reaction includes three 
phases: baseline, exponential, and plateau (Figure 1). However, the proposed LSTAR model captures the 
PCR dynamics using only two regimes: (1) a first phase in which the rate of the reaction is steadily 
increasing from an initial near negligible increase into the exponential phase up to the inflection point 
and (2) a second phase in which the rate of the reaction is steadily decreasing from the inflection point 
to the final plateau phase. By encoding a flexible transition between different stages of the amplification 
reaction, the LSTAR model better mimics the dynamics of the PCR reaction. Finally, the parameters of 
the LSTAR model are easily interpretable and can be linked back to specific aspects of the reaction.  

While we have shown the potential of autoregressive models, especially the LSTAR model, to improve 
the analysis of qPCR data, additional performance assessments are warranted. Furthermore, we noted 
several technical challenges that may necessitate modifications of the LSTAR model. First, for curves 
with little noise, the grid search for the smoothing parameter often resulted in selection of the 
maximum value. One possible explanation for this could be these qPCR data already smoothly transition 
between the two regimes, making the smoothing parameter redundant. Second, our choice of 
estimating a Cq value from the LSTAR model by the change point between regimes is potentially 
suboptimal. Other parameters (or functions of several parameters) may provide better Cq estimates. 
Finally, while the LSTAR model achieved lower RSS than the 5-parameter sigmoidal model, the local RSS 
was higher for the LSTAR model. This is potential a result of differences in Cq estimation between the 
two methods rather than the models themselves, regardless further investigation is needed. 

A conceptually appealing alternative to the sigmoidal and LSTAR models is a branching process model 
developed by Hanlon and Vidyashankar (2011). By targeting the stochastic process that governs the PCR 
reaction, they identify the variability between replicates as one of the primary causes of differences in 
efficiency estimates. To address this issue, they focused on isolating the exponential phase and treat the 
efficiency of the reaction as a random effect. This allows one to estimate the between reaction 
variability in efficiency. Incorporating random effects into a branching process model yields a 
probabilistic data generating model that reflects the probabilistic nature of PCR amplifications. In 
contrast to sigmoidal and LSTAR models, which model the entire PCR reaction, the branching process 
model uses only the exponential phase of the reaction. However, currently this method lacks publicly 
available software and requires identification of the exponential phase, for which we are unaware of any 
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available methods. While these issues prevented us from evaluating this branching process model in this 
manuscript, we are intrigued by the potential of such methods to model qPCR data. 
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Supplementary Materials 

 

Supplemental Note 

The general formula for the STAR model with the additional parameter for embedding dimension, m, is:  

 

 Since qPCR does not contain cyclical trends, we omit the dimension parameter. We consider a model in 
which the delay parameter and embedding dimension both equal to one. This yields the following 
equations: 

 

Next, we consider a model in which the delay parameter equals one and the embedding dimension 
equals two. This yields the following model equations: 

 

Note that by altering the embedding dimension, we are able to obtain STAR models with lag terms that 
are multipliers of one.  
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Supplementary Figure 1: Autoregressive models on miRcomp target hsa-miR-520e_001119, replicate 
E1. (Left: AR(1) with coefficient of 0.996, (2) AR(2) with coefficients of 1.978, and -0.981. Both illustrate 
the problems with using a direct autoregressive model that is linearly dependent on its own lagged 
series. The values will of the current cycle will not be able to adjust accordingly to any shifts in phase, 
because there are no regime-switching properties included.  

 

 

Supplementary Figure 2: AIC for a dynamic linear model with different lag terms in GAPDH data set, 
fitted with smoothing curve. There are improvements in AIC with the inclusion of additional lag term, 
however, none as significant as the inclusion of lag term 2. Colored points denote all replicates of 
subsets in GAPDH. The AIC values here provide compelling evidence for the use of a lag of 2 in the STAR 
model. 
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Supplementary Figure 3: (Left to right: 5-parameter log-logistic model (l5), 5-parameter logistic model 
(b5), 4-parameter log-logistic model (l4), 4-parameter logistic model (b4). Top row: raw fluorescence, 
bottom row: baseline subtracted fluorescence) Between replicate residuals for subset F of miRcomp 
target hsa-miR-23a_000399. This data consists considerably more noise in its amplification process, but 
panels provide similar patterns to that of GAPDH for both non-baseline subtracted and baseline 
subtracted fluorescence. Specifically, an amplified affect as the cycle progress after the dashed line (Cq 
value). The baseline has residuals around 0, after subtracting the fluorescence values by the minimum 
values of each replicates, but the problem is not fixed. 
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Supplementary Figure 4: (Top left: 5-parameter log-logistic model (l5), Top middle: 5-parameter logistic 
model (b5), Bottom left: 4-parameter log-logistic model (l4), Bottom middle: 4-parameter logistic model 
(b4), Top right: LSTAR model with lag=1, Bottom right: LSTAR model with lag=2) The residuals for each 
replicate curve vs. actual baseline-subtracted values within subset H for miRcomp target hsa-miR-
500_002428 are plotted by cycle progression. All subsets illustrate a between replicate non-random 
residuals problem for sigmoidal models. The non-random residual problems does not seem to be 
present in the LSTAR models for both lag 1 and 2.  
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Supplementary Figure 5:  Though the Durbin-Watson, Ljung-Box, and Pearson correlation all provide 
estimates to test if the residuals exhibit autocorrelation, each has different estimates. The test-statistic 
for the Durbin-Watson, Ljung-Box p-value, and Pearson correlation are related in different ways. We 
show that after fitting the miRcomp data with a 5-parameter log-logistic sigmoidal model, the results of 
a statistically significant Ljung-Box p-value corresponds to a Durbin-Watson test-statistic of 
approximately 1.4 and below, and a Pearson correlation of at least 0.3 (absolute value). 
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