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ABSTRACT 
 
Background:​ Tumor mutational burden (TMB, the quantity of aberrant nucleotide sequences a 
given tumor may harbor) has been associated with response to immune checkpoint inhibitor 
therapy and is gaining broad acceptance as a result. However, TMB harbors intrinsic variability 
across cancer types, and its assessment and interpretation are poorly standardized.  
Methods: ​ Using a standardized approach, we quantify the robustness of TMB as a metric and 
its potential as a predictor of immunotherapy response and survival among a diverse cohort of 
cancer patients. We also explore the additive predictive potential of RNA-derived variants and 
neoepitope burden, incorporating several novel metrics of immunogenic potential. 
Results:​ We find that TMB is a partial predictor of immunotherapy response in melanoma and 
non-small cell lung cancer, but not renal cell carcinoma. We find that TMB is predictive of overall 
survival in melanoma patients receiving immunotherapy, but not in an immunotherapy-naive 
population. We also find that it is an unstable metric with potentially problematic repercussions 
for clinical cohort classification. We finally note minimal additional predictive benefit to assessing 
neoepitope burden or its bulk derivatives, including RNA-derived sources of neoepitopes.  
Conclusions: ​ We find sufficient cause to suggest that the predictive clinical value of TMB 
should not be overstated or oversimplified. While it is readily quantified, TMB is at best a 
suggestive surrogate biomarker of immunotherapy response. The data do not support isolated 
use of TMB in renal cell carcinoma. 
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tumor mutational burden, TMB, neoepitopes, neoepitope burden, neoantigens, splice junctions, 
retained introns, tumor variant burden, immunotherapy response 
 
 
BACKGROUND 
The advent of immunotherapy as a promising form of cancer treatment has been accompanied 
by a parallel effort to explore potential mechanisms and drivers of therapeutic response. For 
instance, tumor mutational burden (TMB, the overall quantity of aberrant nucleotide sequences 
a given tumor may harbor) has been associated with response to immune checkpoint inhibitor 
therapy ​(1)​ and overall survival ​(2)​. Similarly, the quantity of non-synonymous single nucleotide 
variants was shown to be associated with immunotherapy response in several independent 
clinical cohorts ​(3–6)​. Other sources of sequence variation such as frameshifting 
insertions/deletions ​(7)​ and tumor-specific alternative splicing (e.g. intron retention ​(8)​) have 
also been found to correlate with immunotherapy response. These phenomena are widely 
accepted and appear to be particularly pronounced in patients harboring DNA repair 
deficiencies ​(9)​. Indeed, the checkpoint inhibitor, pembrolizumab, was granted accelerated 
disease-agnostic approval by the FDA on this basis for any cancer patient harboring 
deficiencies in their capacity to perform DNA mismatch repair ​(10)​. Moreover, an expanding 
cohort of clinical immunotherapy trials (e.g. ​NCT03668119, NCT03178552, NCT03519412) are 
actively utilizing TMB status as a key inclusion criterion. However, there is wide variability 
among techniques for measuring and interpreting TMB, raising questions of utility and 
reproducibility ​(11)​. 
 
Given the perceived critical importance of TMB in the research setting and its emerging role in 
the oncology clinic, we sought to quantify the robustness of TMB as a metric, and explore its 
deeper nuances using pooled whole exome sequencing data from a variety of previously 
published studies. While TMB is generally correlated with downstream metrics such as 
neoepitope burden, we also explore the predictive capacity of neoepitope burden and its 
derivatives including adjustment for MHC binding robustness and peptide sequence novelty, as 
well as RNA-derived sources of neoepitopes. 
 
 
METHODS 
Variant Identification and Neoepitope Prediction 
We assembled a cohort of 440 tumor samples from 414 different cancer patients from publicly 
available data, including 285 melanoma patients (309 tumor samples) ​(1,4–6,12–15)​, 34 
non-small cell lung cancer (NSCLC) patients (34 tumor samples) ​(3)​, 10 prostate cancer 
patients (10 tumor samples) ​(16)​, 57 renal cell carcinoma (RCC) patients (58 tumor samples) 
(17)​, and 28 colon, endometrial, and thyroid cancer patients (29 tumor samples) ​(9)​ (see 
Supplementary Table 1). Whole exome sequencing (WES) reads for each sample were aligned 
to GRCh37d5 using the Sanger cgpmap workflow ​(18)​, which uses bwa-mem (v0.7.15-1140) 
(19)​ and biobambam2 (v2.0.69) ​(20)​ to generate genome coordinate-sorted alignments with 
duplicates marked and Genome Analysis Toolkit (GATK, v3.6) to realign around indels and 
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perform base recalibration for paired tumor and normal sequence read data. The Mbp of 
genome covered was determined using bedtools genomecov (v2.26.0) ​(21)​, where any base 
covered by a depth of at least 6 reads was considered covered, as this is twice the minimum 
read depth required for variant detection by SomaticSniper ​(22)​ and VarScan 2 ​(23)​. Somatic 
variants were called and filtered using MuSE (v0.9.9.5) ​(24)​, MuTect (v1.1.5) ​(25)​, Pindel 
(v0.2.5b8) ​(26)​, RADIA (v1.1.5) ​(27)​, SomaticSniper (v1.0.5.0) ​(22)​, and VarScan 2 (v2.3.9) ​(23) 
according to the mc3 variant calling protocol ​(28)​. To compare each of these somatic variant 
reports for consensus calling, vt (v0.5772-60f436c3) ​(29)​ was used to normalize variants, 
decompose biallelic/block variants, sort variants, and produce a final, unique list of variants for 
each caller. Somatic variants that were reported by more than one tool, or that were reported by 
Pindel and overlapped at least one call from another tool (as Pindel reports large 
insertion/deletion variants often incompatible with other callers), were retained for further 
analysis. Germline variants were called using GATK’s HaplotypeCaller (v3.7-0-gcfedb67) ​(30)​, 
and we used VariantFiltration with cluster size 3 and cluster window size 15 to flag and 
subsequently eliminate variants with total coverage of less than 10.0 reads, quality by read 
depth of less than 2.0, and Phred quality of less than 100.0. We employed HapCUT2 for 
patient-specific haplotype phasing. To do this, germline and consensus somatic variants were 
combined into a single VCF using ​neoepiscope ​’s ​(31)​ merge functionality. HapCUT2’s 
extractHAIRS software was run with the merged VCF and the tumor alignment file, allowing for 
extraction of reads spanning indels, to produce the fragment file used with HapCUT2 to predict 
haplotypes. Neoepitopes of 8-24 amino acids in length were predicted for this cohort using 
neoepiscope ​, including background germline variation and variant phasing, and enumerating 
neoepitopes from protein coding, nonsense mediated decay, polymorphic pseudogene, T cell 
receptor variable, and immunoglobulin variable transcripts. Additionally, to better understand 
how the choice of variant caller impacts downstream neoepitope predictions, we ran 
neoepiscope ​ excluding background germline variation and variant phasing separately for our 
consensus somatic variants and variants produced by individual variant calling tools, only 
enumerating neoepitopes from protein coding transcripts. For patients with multiple tumor 
samples, the median mutation and neoepitope burdens across samples were retained. Variants 
that were pathogenic or likely pathogenic in cancer according to ClinVar ​(32)​ were identified 
using Open-CRAVAT ​(33)​, and neoepitopes deriving from these variants were flagged. 
 
RNA Variant Identification 
Among the overall cohort, 106 patients (89 melanoma patients ​(1,4–6)​ and 17 RCC patients 
(17)​) had complementary tumor RNA-sequencing (RNA-seq) data. We aligned RNA-seq reads 
to both the GRCh37d5 and GRCh38 genomes using STAR (v2.6.1c) ​(34)​, using the ‘intronMotif’ 
--outSAMstrandField option and specifying NH, HI, AS, nM, and MD fields with the 
--outSAMattributes option. To identify putative tumor-specific splice junctions, we first 
downloaded called junction data including coverage and bed files for TCGA and GTEx using 
recount2 ​(35)​. GENCODE version 28 annotations ​(36)​ were downloaded and parsed to collect 
full coordinates and left and right splice sites of junctions from annotated transcripts. The TCGA 
phenotype file from Rail-RNA ​(37)​ was parsed to collect sample type (primary, recurrent, or 
metastatic tumor vs. matched normal). A new SQLite3 database was created to index all GTEx 
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and TCGA junctions, with linked tables containing 1) sample ids and associated junction ids; 2) 
sample ids and phenotype information for each sample; and 3) junction ids and junction 
information including GENCODE annotation status and location within protein coding gene 
boundaries. Junctions were extracted from the SJ.out output files generated by STAR. The 
known junction index was queried to collect all junctions found in normal tissue either in GTEx 
or in TCGA matched normal samples and these normal junctions were filtered out from the 
single sample set. We used the MetaSRA ​(38)​ web query interface to collect Sequence Read 
Archive (SRA) accession numbers for non-cancerous melanocyte cell line ​(39)​ and primary cell 
(40)​ RNA-seq experiments. The resulting accession numbers were queried against the 
Snaptron junction database ​(41,42)​ to download junctions from across the entire genome. All 
junctions found in these normal melanocyte samples as well as all fully GENCODE-annotated 
junctions were also eliminated from each single-sample junction set. Finally, we removed 
junctions where neither end was found in GENCODE-annotation, yielding a list of putative 
tumor-specific splice sites for each patient.  
 
We identified tumor-specific retained introns using Keep Me Around (kma) ​(43)​. We aligned 
RNA-seq reads to a modified version of the GRCh37d5 using Bowtie 2 (v2.3.4.3) ​(44)​, and 
quantified reads using eXpress (v1.5.1) ​(45)​, as per kma recommendations. After computing 
intron retention, we used kma’s filters to retain only transcripts that were expressed at greater 
than or equal to 1 transcripts per million (TPM) in at least 25% of samples, transcripts that had 
at least 5 unique counts in at least 25% of samples, and transcripts that had greater than 0 and 
less than 100 percent of introns retained. To prevent inclusion of artifacts from unprocessed 
transcripts, we identified outlier introns among the distribution of transcript read counts, only 
retaining introns with a read count greater than 3 median absolute deviations above the median 
intron read count for a transcript, and greater than or equal to the read count for the transcript 
itself. To filter out retained introns that may be expressed in normal tissues, we performed the 
same analysis using using publically available RNA-seq reads from melanocyte samples of 106 
newborns ​(46)​. Any retained introns identified from the melanocyte RNA-seq data were then 
removed from the retained introns identified from the tumor RNA-seq data. Neoepitopes 
deriving from retained introns were predicted using the reading frame from the 5’ end of the 
transcript of origin prior to the intron, enumerating peptides 8-24 amino acids in length. 
 
HLA Type Prediction and Related Analyses 
MHC Class I alleles for each patient were predicted from tumor WES reads using Optitype 
(v1.0) ​(47)​, and MHC Class II alleles for each patient were predicted from tumor WES reads 
using seq2hla (v2.2) ​(48)​. For each neoepitope sequence predicted (see above), a patient’s 
predicted MHC Class I and MHC Class II alleles were used for binding affinity predictions with 
MHCnuggets (v2.1) ​(49)​. Neoepitopes were counted toward a patient’s neoepitope burden if 
they bound at least one of a patient’s MHC alleles with high affinity (<= 500 nM). 
 
Modified Neoepitope Burden 
To better understand how different features of tumor neoepitopes might influence response to 
immunotherapy, we produced several normalized neoepitope burdens. We first calculated 
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neoepitope burden for each patient weighted by MHC allele presentation, where a predicted 
neoepitope sequence counted toward the patient’s neoepitope burden once for each of the 
patient’s MHC alleles that was predicted to bind that neoepitope with high affinity (<= 500 nM). 
Second, neoepitope burden was calculated for each patient weighted by amino acid mismatch 
as follows. The closest normal peptide in the human proteome to each neoepitope was 
identified using blastp (v2.6.0) ​(50)​, selecting for lowest E value or, in the case of a tie among 
multiple peptide sequences, the selected peptide was that with the highest weighted 
BLOSUM62 similarity (as described previously ​(51)​). A neoepitope sequence was counted 
toward the patient’s neoepitope burden once for each amino acid mismatch between the 
neoepitope and its closest normal peptide. Third, neoepitope burden was calculated for each 
patient weighted by TCGA transcript expression of the transcript(s) of origin for each 
neoepitope. We identified expressed transcripts in matched TCGA cancer types for each 
disease type in our cohort (SKCM for melanoma, LUAD/LUSC for NSCLC, COAD for colon 
cancer, UCEC for endometrial cancer, THCA for thyroid cancer, PRAD for prostate cancer, and 
KIRC for RCC) from TPM values generated by the National Cancer Institute ​(52)​. A transcript 
was considered “expressed” for a cancer type if the 75th quantile TPM value for that transcript 
in that disease was greater than 1 TPM. Because these TPM values were based on GRCh38 
transcripts, we used liftOver ​(53)​ to convert the coordinates of a neoepitope’s mutation of origin 
to GRCh38 coordinates and identify overlapping transcripts. A neoepitope sequence was 
counted toward the patient’s neoepitope burden once for each transcript of origin expressed in 
TCGA. Note that for patients with tumor RNA-seq data (see above), we also calculated 
neoepitope burden weighted by patient-specific expression of the transcript(s) of origin for each 
neoepitope. We used Rail-RNA (v0.2.4b) ​(37)​ on RNA-seq alignments to the GRCh37d5 
genome to identify covered exons, and a transcript was considered “expressed” if at least 1 
read covered any exon in the transcript. A neoepitope sequence was counted toward the 
patient’s neoepitope burden once for each expressed transcript of origin. Finally, we 
multiplicatively combined these weighted burdens by multiplying scores for each epitope and 
totaling all epitope scores: allele presentation score by amino acid mismatch score, allele 
presentation score by TCGA expression score, allele presentation score by patient-specific 
expression score (if relevant), amino acid mismatch score by TCGA expression score, amino 
acid mismatch score by patient-specific expression score (if relevant), allele presentation score 
by amino acid mismatch score by TCGA expression score, and allele presentation score by 
amino acid mismatch score by patient-specific expression score (if relevant).  
 
Statistical Analysis 
Statistical analysis was performed in R (v3.5.1). The rlm function from the MASS package 
(v7.3-51.4) was used for robust linear model fitting, and the cor.test function was used for 
determining Pearson product-moment correlation values. To determine variability in TMB across 
variant calling tools, the median of pairwise differences in TMB between tools was divided by 
the median TMB across tools for each patient; the median of these values across patients was 
reported. The roc function from the pROC package (v1.14.0) was used to generate ROC curves 
for any predictors of immunotherapy response and to determine their AUC for all patients with 
reported immunotherapy response status (409/414, after excluding 3 colon cancer, 1 prostate 
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cancer, and 1 RCC patient that lacked documented response status). Logistic regression was 
performed using the glm function to model therapeutic response as a linear function of TMB (on 
log scale), and neoepitopes (log scale) on the 245 melanoma patients, 50 RCC patients, and 33 
NSCLC patients with reported immunotherapy response status to either aCTLA4 or aPD1 
treatment alone (excluding dual/combination checkpoint inhibitor therapy). For the subset of 
these patients with available RNA-seq data (see Supplementary Table 1), tumor variant burden 
(TVB; the sum of somatic variants, tumor-specific splice junctions, and tumor-specific retained 
introns; log scale) was also modeled. The fit models were subsequently used to estimate the 
odds of therapeutic response at the 25 ​th​ and 75 ​th​ TMB, TVB, and neoepitope percentiles. Each 
cancer type was modeled separately, with the melanoma model accounting for differences in 
aCTLA4 vs. aPD1 response rates. P-values were adjusted for multiple comparisons using the 
Benjamini-Hochberg method with the p.adjust function.  
 
Survival Analysis 
Due to the low number of observed events for some cancers, only melanoma and RCC patient 
cohorts were appropriate for survival analysis. Patients were included in survival analysis if they 
had information on both overall survival status, as well as either time to event or time to 
censorship data. In total, 218 melanoma patients and 56 RCC patients were selected for 
analysis in R (v3.5.1). The coxph function from the survival package (v2.44-1.1) was used to fit 
proportional hazards regression models, and the survfit function from the survival package was 
used to compute survival curves. For comparison with patients not treated with immunotherapy, 
we also performed survival analysis with SKCM and KIRC patients from TCGA. We obtained 
mutation annotation format (MAF) files and clinical data for these patients from the Broad 
Institute ​(54)​. Patients with both mutation information and survival information were used for 
analysis (320 SKCM patients and 415 KIRC patients). Mutational burden was determined by 
counting the number of somatic variants listed in each patient’s MAF file, and a patient was 
considered to have survival information if they had information on time to death or a non-zero 
and non-negative value on time to last follow up. 
 
 
RESULTS 
 
Distribution of tumor variant and neoepitope burdens 

We find that the median TMB (based on consensus DNA variant calls; see Methods) 
varies by an order of magnitude across disease types, ranging from 323 variants for RCC to 
3,343 variants for MMR-deficient cancers (Supplementary Figure 1). Adjusting by genome 
coverage for each patient, the median TMB was 4.83 mutations/Mbp (ranging from 0.68 for 
RCC to 6.81 for melanoma, see Figure 1A). Almost all contributory mutations to TMB were 
found to be single nucleotide variants (99.98% on average, per patient), with the remainder from 
in-frame and frameshift deletions (see Supplementary Figure 2). Note that RNA variants such as 
alternative exon-exon junctions and retained introns were also assessed in the subset of 
patients with corresponding RNA-sequencing data (see Methods). Overall, tumor-specific 
junction burden appeared to be less variable across cancer types (ranging from 1301 for RCC 
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to 2048.5 for melanoma). While retained introns (RI) have also been described as a source of 
neoepitopes ​(8)​, only 27 melanoma patients with RNA-seq data had any predicted RIs, with a 
median RI burden in those patients of 929 introns. Integrating these tumor DNA and RNA 
variants (given matched RNA-seq data) into a single combined tumor variant burden (TVB) 
yielded a median increase of 2345 variants per patient, with RNA sources of variation 
accounting for an average 54.9% of overall variants (see Figure 2). Moreover, consideration of 
DNA variant burden alone neglects substantial somatic variation for some patients, as RNA 
sources of variation can constitute up to 94.3% of TVB. 

As TMB and TVB are indirect assessments of cancer neoantigen load, we next 
calculated DNA-derived, RNA-derived and overall neoepitope burdens per patient from putative 
protein-level variation (see Methods). The median per-patient DNA-derived neoepitope burden 
(for peptides predicted to bind to at least one of a patient’s MHC Class I or II alleles) was 14,131 
peptides (ranging from 6,122 for RCC to 14,590 for MMR-deficient cancers, see Figure 1B) and 
was highly correlated with TMB itself (Pearson’s product-moment correlation of 0.96, p < 
2.2x10 ​-16​; see Supplementary Figure 3). While not all patients possessed RIs, the median 
per-patient RNA-derived neoepitope burden among the 27 melanoma patients with predicted 
RIs (366,843 peptides) was an order of magnitude higher than DNA-derived neoepitopes in the 
vast majority of cases (Supplementary Figure 4). 

In addition to reporting the bulk number of neoepitopes per patient, we also analyzed the 
distribution of peptide presentation by patient-specific HLA types. Overall, a median of 34% of 
possible peptides are presented by one or more patient-specific MHC Class I or II alleles. 
Among these, any given neoepitope is, on average, only presented by a single MHC allele 
(Figure 3A, Supplementary Figure 5A). There are many additional degrees of freedom to surveil 
the peptide-level consequences of an individual variant (e.g. individual single nucleotide variants 
may give rise to as many as 272 different peptides of 8-24aa lengths, any of which might be 
presented via one or more MHC Class I or II alleles). As such, we find that 98.2% of all DNA 
variants resulting in peptide-level change(s) have at least one neoepitope putatively presented 
by at least one HLA allele, with a median of 4 different HLA alleles able to present one or more 
neoepitopes from each individual variant (Figure 3B, Supplementary Figure 5B). Moreover, the 
percentage of variants presented increases with increasing MHC heterozygosity (Figure 3C, 
Supplementary Figure 6). Within the cohort, 251 patients had pathogenic cancer-related 
mutations (see Methods), with an average of 1.6 such variants per patient. Consistent with prior 
work demonstrating a relative paucity of peptide presentation from cancer driver mutations ​(55)​, 
we find that a smaller number (approximately 84%) of driver variants in this cohort yielded 
neoepitopes, with only 12.6% of neopeptides from these variants on average being predicted to 
bind to any of a patient’s HLA alleles (Figure 3). 
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Figure 1: ​Per-patient distribution of mutation and neoepitope burdens across 7 cancer types. A) 
The number of somatic DNA variants per patient (scaled for sequence coverage) are shown 
along the y-axis, with each dot representing an individual cancer patient (cancer types shown 
along the x-axis). Note that MMR-deficient cancers here represent a cohort of 3 different cancer 
types including colon, endometrial, and thyroid. Red colored dots correspond to patients with 
microsatellite instability (see Methods). B) The number of putative neoepitopes per patient are 
shown along the y-axis, with each dot representing an individual cancer patient (cancer types 
shown along the x-axis). Abbreviations as follows: MMR=mismatch repair. 
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Figure 2: ​Per-patient distribution of overall tumor variant burden and its components. The 
number of total tumor variants per patient is shown along the y-axis, with the numbers of 
retained introns (RI), tumor-specific exon-exon junctions (Jx), and somatic DNA variants (DNA) 
shown in green, red, and purple, respectively. The data for each individual patient is displayed 
as stacked bars along the x-axis, sorted from left to right by the number of somatic DNA variants 
(from highest to lowest). 
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Figure 3: ​Robustness of putative neoepitope presentation. A) The number of unique 
patient-matched HLA alleles that are predicted to present an individual neoepitope is shown 
along the x-axis, with the y-axis (log-scale) corresponding to the overall percent of neoepitopes 
sharing that same robustness of HLA presentation. Red and blue curves denote the best fit line 
based on linear regression for all neoepitopes and those resulting from cancer driver mutations, 
respectively. The surrounding red and light blue shading denotes the 95% confidence interval 
for all and driver-derived neoepitopes, respectively. Individual data points are shown as open 
circles, whose diameter corresponds to the number of neoepitopes as shown by the 
corresponding scale at right. B) The total number of unique patient-matched HLA alleles that are 
predicted to present one or more neoepitopes arising from a single DNA mutation is shown 
along the x-axis, with the y-axis corresponding to the overall percent of mutations sharing that 
same robustness of HLA presentation. Red and blue curves denote the best fit line based on 
local polynomial regression for all mutations and cancer driver mutations, respectively. The 
surrounding red and light blue shading denotes the 95% confidence interval for all and driver 
mutations, respectively. Individual data points are shown as open circles, whose diameter 
corresponds to the number of mutations as shown by the corresponding scale at right. C) The 
percentage of total variants that are predicted to be presented by one or more patient-matched 
HLA alleles is shown along the y-axis, with the x-axis corresponding to the number of unique 
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HLA alleles for that patient. Red and blue curves denote the best fit line based on linear 
regression for all mutations and cancer driver mutations, respectively. The surrounding red and 
light blue shading denotes the 95% confidence interval for all and driver mutations, respectively. 
Individual data points are shown as open circles, whose diameter corresponds to the number of 
mutations as shown by the corresponding scale at right. Note that a predicted HLA binding 
affinity threshold of ≤500nM was used in all cases (see Methods). 
 
Tumor variant and neoepitope burdens as predictors of response and survival 

We next sought to quantify immunotherapy response rate as a function of TMB, TVB, 
and neoepitope burden. Using disease-specific logistic regression models, we find that every 
log fold increase in TMB increases the odds of immunotherapy response in metastatic 
melanoma patients by 54%, independent of targeted immune checkpoint (p < 0.001). However, 
consistent with clinical observations, the response rates for αPD1 therapies are at least 10% 
greater than for comparable patients with metastatic melanoma receiving αCTLA4 (Table 1). 
Similarly, we find a 265% increase in the odds of response for non-small cell lung cancer 
patients per log fold change in TMB (p = 0.019), though we find no significant association 
between odds of response and TMB for patients with renal cell carcinoma (p = 0.642). 
 

 
Table 1: ​Immunotherapy (αPD1 and αCTLA4) response probability based on logistic models of 
tumor mutational burden (TMB), neoepitope burden (Neoepitopes), and combined tumor DNA- 
and RNA- variant burden (TVB) for melanoma, non-small cell lung cancer (NSCLC) and renal 
cell carcinoma (RCC). 
 
Neoepitope burden alone predicted response to immunotherapy comparatively well as TMB, 
calculated using both raw and coverage-adjusted counts (see Figure 4). Additionally, we 
weighted neoepitope burden by several criteria hypothesized to be related to increased 
immunogenicity, including: number of amino acid mismatches per peptide, number of MHC 
alleles predicted to bind each peptide, and number of TCGA-expressed transcripts of origin for 
the peptide (see Methods). In all cases, these weighted burdens yielded similar predictive 
capabilities to TMB or unadjusted neoepitope burden, though mismatch- and allele-weighted 
neoepitope burdens incrementally improved predictive capacity for RCC patients (see Figure 4). 
Interestingly, global assessment of HLA presentation (unique HLA allele count per patient) 
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added slight predictive capacity to TMB in all cases (see Figure 4). However, the capacity for 
any of these metrics to predict patient-level immunotherapy response varied substantially by 
cancer type, with the highest predictive power for the non-small cell lung cancer cohort, but a 
very limited predictive capability in RCC or when pooled across all cancer types (see Figure 4). 
Indeed, TMB as calculated by consensus variant calls predicts immunotherapy response more 
poorly than the experimental noise of the breadth of genomic coverage (Mbp) obtained via DNA 
sequencing (see Supplementary Figure 7). 
 

 
Figure 4: ​Receiver operating characteristic curves of predictive capacity of 11 different 
mutation/neoepitope burden metrics. The upper panels depict the true positive rate (sensitivity, 
y-axis) and false positive rate (1-specificity, x-axis) for each metric across all probability 
thresholds. The table in the lower panel reports the area-under-the-curve (AUC) for each metric 
(columns) applied to a different cancer cohort (rows), with colors above the methods indicating 
the color of the corresponding curve in the upper panels. TMB is used as a predictor in both raw 
and coverage-adjusted forms, as well as in a multiplicative combination with patient HLA allele 
count. Neoepitope burden is used as predictor in both raw and extended formats (see Methods). 
Extended neoepitope burden metrics include number of amino acid mismatches (M), number of 
HLA alleles predicted to bind each epitope (A), and number of transcripts expressing each 
epitope in TCGA (T), along with their multiplicative combinations. Bold-faced values indicate the 
best value for each cancer cohort. 
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For patients with tumor RNA-seq data, we also investigated how TVB and RNA-derived 
neoepitopes predicted response to immunotherapy (see Figure 5). We specifically considered 
tumor-specific junction burden, retained intron burden, retained intron neoepitope burden, and 
patient-specific expression-weighted neoepitope burdens (see Methods). As before, the vast 
majority of metrics (e.g. TMB, TVB) were all comparable in terms of predictive performance; 
however, the incorporation of amino acid mismatches and gene expression information 
substantially improved predictive capability for RCC patients, acknowledging the small cohort 
size (n=17, see Figure 5). 
 

 
Figure 5: ​Receiver operating characteristic curves of predictive capacity of 9 different 
variant/neoepitope burden metrics. The upper panels depict the true positive rate (sensitivity, 
y-axis) and false positive rate (1-specificity, x-axis) for each metric across all probability 
thresholds. The table in the lower panel reports the area-under-the-curve (AUC) for each metric 
(columns) applied to a different cancer cohort (rows), with colors above the methods indicating 
the color of the corresponding curve in the upper panels. TMB and TVB are used as predictors 
in the raw formats. Jx represents the number of tumor-specific junctions per patient, and RI 
represents the number of retained introns per patient, with RI epitopes representing 
neoepitopes derived from those retained introns. Neoepitope burden is used as predictor in its 
RNA-feature-extended formats (see Methods). Extended neoepitope burden metrics include 
number of expressed transcripts for each epitope (E), number of amino acid mismatches (M), 
number of HLA alleles predicted to bind each epitope (A), and number of transcripts expressing 
each epitope in TCGA (T), along with their multiplicative combinations.  
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Using an established threshold for identifying tumors with “high” TMB, namely TMB that 

exceeds the disease-matched 80th percentile ​(2)​, we investigated the metric’s capacity to 
predict overall survival in the context of immune checkpoint blockade therapy. While not 
statistically significant (p > 0.05, based on Cox PH model), we saw a clear trend towards 
improved overall survival among individuals with metastatic melanoma and a high TMB (Figure 
6A). Additionally, model comparisons using different TMB percentile cutoffs suggest that 
differences in overall survival for high and low TMB groups may be threshold dependent and 
alter model significance (see Supplementary Figure 8). In contrast, the same trend is not seen 
between TMB and overall survival among a separate cohort of patients (TCGA) in the absence 
of immunotherapy (Figure 6A). We also observed no differences in survival among individuals 
with renal cell carcinoma (Figure 6B). In both cases, TVB and neoepitope burden demonstrate 
comparable capacities to stratify overall survival as TMB (Supplementary Figures 9 and 10). 
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Figure 6: ​Overall survival among cancer patients with high and low TMB. A) Kaplan-meier 
curves for immunotherapy-treated (+ICI) and immunotherapy-naive (-ICI) Stage III-IV melanoma 
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patients with high TMB (>80th percentile) are shown in red, and dark gray, respectively, while 
immunotherapy-treated (+ICI) and immunotherapy-naive (-ICI) patients with low TMB (≤80th 
percentile) are shown in blue and light gray, respectively. The underlying table corresponds to 
the number of patients at risk of death at each timepoint. Note: TCGA SKCM patient data (-ICI) 
is censored at 2,885 days (maximal follow-up in immunotherapy-treated cohort) to emphasize 
comparable time-scales. B) Kaplan-meier curves for the immunotherapy-treated (+ICI) and 
immunotherapy-naive (-ICI) metastatic (Stage IV) renal cell carcinoma patients with high TMB 
(>80th percentile) are shown in red, and dark gray, respectively, while immunotherapy-treated 
(+ICI) and immunotherapy-naive (-ICI) patients with low TMB (≤80th percentile) are shown in 
blue and light gray, respectively. The underlying table corresponds to the number of patients at 
risk of death at each timepoint. Note: TCGA KIRC patient data is censored at 1,724 days 
(maximal follow-up in immunotherapy-treated cohort) to emphasize comparable time-scales.  
 
Metric instability of tumor variant and neoepitope burdens 

We find, however, that TMB is not robust across variant calling methods. TMB as 
reported by individual variant calling tools was moderately similar to that reported by consensus 
calls (see Supplementary Figure 11), but variability in per-caller TMB increased with increasing 
number of variants (see Supplementary Figure 12). Additionally, the difference in TMB between 
the highest and lowest counts from individual callers per patient (median difference of 1,817 
variants per patient) reflects a substantial fraction of the overall TMB, accounting for a median 
59.3% of the value in the metric overall (see Methods). 
 
We also compared tumor mutational burden as reported by the authors of the original 
manuscripts from which our cohort originated with our standardized consensus approach. While 
author-reported and consensus values for TMB were significantly correlated (Pearson’s 
product-moment correlation of 0.61, p < 2.2x10 ​-16​; see Supplementary Figure 13), we note that 
author-reported values have a universally higher predictive capacity than we observe using 
consensus data (Supplementary Figure 14). We also find important discrepancies in per-patient 
classification. Approximately 4.8% of patients are incongruously determined to be TMB “high” or 
“low” (using a TMB threshold >80th percentile as per ​(2)​), however as many as 13.6% of 
patients may be dubiously classified using alternative thresholds (e.g. 22nd-36th percentiles; 
see Supplementary Figure 15). Consensus and author-reported nonsynonymous mutation 
burdens exhibited a similar extent of correlation as well as per-patient instability of classification 
(Pearson’s product-moment correlation of 0.65, p < 2.2x10 ​-16​; see Supplementary Figures 14 
and 16). The correlation between consensus-derived neoepitope burden and that reported by 
the original manuscripts was significant, but not strong (Pearson’s product-moment correlation 
of 0.23, p = 0.00073; see Supplementary Figure 17). Moreover, we find that response hazard 
ratios are not stable based on TMB thresholds, a phenomenon especially dramatic in the RCC 
cohort (see Supplementary Figure 8), and consistent with prior findings that a single TMB 
threshold is inappropriate to apply across different cancer types ​(2)​. 
 
Finally, we find that the predictive performance of TMB is sensitive to the method(s) used to 
perform variant calling (see Figure 7). Note that the same phenomenon holds true for raw TMB 
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counts (see Supplementary Figure 18). While outside the scope of the current manuscript, note 
also that the identity of resulting neoepitopes is also highly sensitive to variant calling method 
(see Supplementary Figure 19). 
 

 
Figure 7: ​Receiver operating characteristic curves of predictive capacity of coverage-adjusted 
TMB from 7 different variant calling methods. The upper panels depict the true positive rate 
(sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each method across all 
probability thresholds. The table in the lower panel reports the area-under-the-curve (AUC) for 
each method (columns) applied to a different cancer cohort (rows), with colors above the 
methods indicating the color of the corresponding curve in the upper panels. TMB as 
determined by consensus calling (see Methods) is compared to the individual variant calling 
tools used in consensus calling. RCC=renal cell carcinoma, NSCLC=non-small cell lung cancer. 
 
 
DISCUSSION 

To the best of our knowledge, this is the first study to evaluate TMB and correlated 
downstream metrics such as neoepitope burden from whole exome sequencing data using a 
gold standard ensemble approach ​(28,56)​ applied to a meta-cohort of immunotherapy-treated 
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cancer patients across multiple studies and disease types. This study also introduces the 
concept of tumor variant burden, incorporating potential RNA-derived sources of variants where 
available, and is the first study to estimate immunotherapy response rate as a function of TMB, 
TVB, and neoepitope burden. Moreover, this study is the first to quantitatively evaluate the 
stability of TMB as a metric, and the first to directly compare the predictive capacities of multiple 
TMB and related metrics. 

Ultimately, we show that TMB is a cautionary predictor of immunotherapy response, with 
substantial caveats regarding: 1) predictive capacity differences among different cancer types, 
with RCC being no better than random chance, 2) sensitivity of TMB and downstream metrics to 
variant calling methodology, and 3) stability of TMB thresholds and their ability to classify 
patients in a population. This suggests that the prospective clinical utilization of TMB is likely 
subject to many of these same issues, and may result in unintended harms, whether due to 
omission of therapy for individuals with “low” TMB who might nonetheless benefit, or due to 
increased risk of toxicity in a “high” TMB population subject to overuse of immunotherapy. 

With rare exception, we find no added predictive benefit to evaluating more complex bulk 
metrics downstream of TMB. Akin to prior observations, incorporation of HLA genotype diversity 
adds slightly to the predictive capacity of TMB ​(57)​. Given the added technical effort and costs 
required to perform these analyses, we conclude that TMB is likely the optimal bulk assessment 
of tumor variation among those tested, though inclusion of HLA diversity data may marginally 
improve estimates. However, such bulk measurements neglect the potential importance of 
individual cancer neoantigens. 

This study has several limitations. First, numerous sampling based assays have also 
been used to assess TMB (e.g. ​(2,58,59)​), ​however, we did not evaluate these data in this 
study, instead focusing on whole exome sequencing data as the prevailing gold standard for 
accurate mutational assessment. Note that these targeted assays would not enable 
incorporation of HLA allelic diversity data into a predictive model. Note also that there is wide 
variability among TMB assay design, analysis, and performance, with the potential for 
overestimation of TMB when using gene-targeted assays ​(60)​. Ultimately, along with the 
substantial variability among widely-used targeted assays ​(11)​, and the futility of expecting 
universal adoption of a single technique, this study highlights the need for increased 
standardization of TMB interpretation, a subject of active pursuit by the TMB Harmonization 
Project ​(61)​. Second, we did not compare TMB in this dataset with other potential predictors of 
immunotherapy response (e.g. based on gene expression ​(62)​ or copy number instability ​(63)​), 
however it is possible that TMB could be synergistic with such orthogonal metrics. Third, by 
virtue of the retrospective nature of these data and limited availability of whole exome 
sequencing cohorts, this study cannot be assumed to translate to emerging immunotherapies 
and instead is interpretable exclusively for αPD1 and αCTLA4 therapy. 

While this study is consistent with multiple prior reports demonstrating the importance of 
TMB in predicting immunotherapy response (e.g. ​(2,64)​), the caveats raised herein are of high 
concern for the field overall. Our collective emphasis on TMB is understandable given its 
relative ease of quantification using various techniques, however it is indeed a cautionary and 
indirect predictor. Tumors with higher TMB have been hypothesized to have more neoantigens 
that can be recognized by the immune system in response to checkpoint inhibition, yet the data 
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presented here and data previously published ​(2)​ support the use of substantially different 
“absolute” TMB thresholds for immunotherapy response prediction across different diseases. 
This suggests an added layer of as-of-yet undefined complexity not captured in the current bulk 
metrics, and likely related to disease-specific biology. 
 
CONCLUSIONS 

In conclusion, we find sufficient cause to suggest that the predictive clinical value of TMB 
should not be overstated or oversimplified. While it is readily quantified, TMB is at best a 
suggestive surrogate biomarker of immunotherapy response. The data confirms TMB as a 
reasonable predictor in non-small cell lung cancer, and a weak predictor in melanoma. The data 
does not support TMB in isolation as a predictive biomarker for RCC, though it may be feasibly 
combined with HLA allelic diversity to achieve marginal performance. 
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Complex, MMR: Mismatch Repair, NSCLC: Non Small Cell Lung Cancer, PRAD: Prostate 
Adenocarcinoma, RCC: Renal Cell Carcinoma, RI: Retained intron, RNA-seq: RNA sequencing, 
ROC: Receiver Operating Characteristic, SKCM: Skin Cutaneous Melanoma, SRA: Sequence 
Read Archive, TCGA: The Cancer Genome Atlas, THCA: Thyroid carcinoma, TMB: Tumor 
Mutational Burden, TPM: Transcripts Per Million, TVB: Tumor Variant Burden, UCEC: Uterine 
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SUPPLEMENTARY DATA 
 

Cancer type Number of patients Number of tumor 
samples 

Reference 

Melanoma 15 15 Amaria et al. 

Melanoma 3 6 Carreno et al.* 

Melanoma 16 16 Gao et al. 

Prostate 10 10 Graff et al. 

Melanoma 38 (27) 39 (28) Hugo et al.* 

Colon, endometrial, 
thyroid 

28 29 Le et al. 

RCC 57 (17) 58 (17) Miao et al. 

NSCLC 34 34 Rizvi et al. 

Melanoma 35 53 Roh et al. 

Melanoma 64 (20) 64 (20) Snyder et al.* 

Melanoma 110 (40) 110 (40) Van Allen et al.* 

Melanoma 4 6 Zaretsky et al. 

 
Supplementary Table 1: ​Summary of patients samples used for analysis. Publicly available 
WES data from 12 studies was used to determine TMB (see Materials and Methods). We 
summarize the study which produced each data set, the cancer types represented, and the 
number of patients/tumor samples sequenced. Studies that had complementary RNA 
sequencing reads available for at least a subset of patients are indicated by an asterisk in the 
“Reference” column, and the number of samples with complementary RNA sequencing data are 
indicated in parentheses in the “Number of patients” and “Number of tumor samples” columns if 
different than the number of samples with WES. 
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Supplementary Figure 1: ​Per-patient distribution of raw mutation burdens across 7 cancer types. 
The raw number of somatic DNA variants per patient are shown along the y-axis, with each dot 
representing an individual cancer patient (cancer types shown along the x-axis). Note that 
MMR-deficient cancers here represent a cohort of 3 different cancer types including colon, 
endometrial, and thyroid. Red colored dots correspond to patients with microsatellite instability 
(see Methods). Abbreviations as follows: RCC=renal cell carcinoma, NSCLC=non-small cell 
lung cancer, MMR=mismatch repair. 
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Supplementary Figure 2: ​Per-patient distribution of deletion burdens across 7 cancer types. A) 
The number of somatic frameshift (FS) deletions per patient are shown along the y-axis, with 
each dot representing an individual cancer patient (cancer types shown along the x-axis). Note 
that MMR-deficient cancers here represent a cohort of 3 different cancer types including colon, 
endometrial, and thyroid. Red colored dots correspond to patients with microsatellite instability 
(see Methods). B) The number of somatic in-frame deletions per patient are shown along the 
y-axis, with each dot representing an individual cancer patient (cancer types shown along the 
x-axis). Abbreviations as follows: RCC=renal cell carcinoma, NSCLC=non-small cell lung 
cancer, MMR=mismatch repair. 
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Supplementary Figure 3: ​TMB correlates with neoepitope burden. Tumor mutational burden 
(x-axis) and neoepitope burden (y-axis) are strongly correlated (Pearson product-moment 
correlation of 0.96, p < 2.2x10​-16​). The best fit line as determined by linear regression is shown 
in red, with its equation in the bottom right corner. 
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Supplementary Figure 4: ​Per-patient distribution of overall tumor neoepitope burden and its 
components. The number of total tumor neoepitopes per patient is shown along the y-axis, with 
the numbers of neoepitopes derived from retained introns (RI) and somatic DNA variants (DNA) 
shown in green and purple, respectively. The data for each individual patient is displayed as 
stacked bars along the x-axis, sorted from left to right by the number of neoepitopes derived 
from somatic DNA variants (from highest to lowest). 
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Supplementary Figure 5: ​Robustness of putative neoepitope presentation among 5 different 
cancer groups. A) The number of unique patient-matched HLA alleles that are predicted to 
present an individual neoepitope is shown along the y-axis, with each violin plot distribution 
corresponding to a different cancer group along the x-axis, as labeled. B) The total number of 
unique patient-matched HLA alleles that are predicted to present one or more neoepitopes 
arising from a single DNA mutation is shown along the y-axis, with each violin plot distribution 
corresponding to a different cancer group along the x-axis, as labeled. Note that the width of 
each violin plot at each point along the y-axis corresponds to the relative quantity of data points 
in that group for that value of the y-axis. Furthermore, the lower and upper borders of the box 
within each violin plot corresponds to the 25th and 75th percent quantiles of the dataset for that 
group, respectively, with the median value shown as a horizontal black line within the box. Note 
that a predicted HLA binding affinity threshold of ≤500nM was used in all cases (see Methods). 
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Supplementary Figure 6:  ​Robustness of putative neoepitope presentation. The median number 
of unique patient-matched HLA alleles that are predicted to present one or more neoepitopes 
arising from a single DNA mutation is shown along the y-axis, with the x-axis corresponding to 
patient-specific HLA heterozygosity (as the number of unique MHC I and II alleles per patient). 
Red curve denotes the best fit line based on linear regression, with surrounding gray shading 
denoting the 95% confidence interval. Note that a predicted HLA binding affinity threshold of 
≤500nM was used in all cases (see Methods). 
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Supplementary Figure 7:  ​Receiver operating characteristic curves of predictive capacity of Mbp 
og genomic coverage. The upper panels depict the true positive rate (sensitivity, y-axis) and 
false positive rate (1-specificity, x-axis) for genomic coverage across all probability thresholds. 
The table in the lower panel reports the area-under-the-curve (AUC) for coverage (right column) 
applied to a different cancer cohort (rows). RCC=renal cell carcinoma, NSCLC=non-small cell 
lung cancer. 
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Supplementary Figure 8: ​Variation in estimated hazard ratio based on TMB threshold selection. 
For melanoma and RCC separately, cox proportional hazard models were fit comparing patients 
above and below each TMB percentile cutoff at 2% intervals. The relative hazard ratio for those 
above the threshold compared to those below the threshold was plotted, with red representing 
models with corresponding unadjusted p-values < 0.05. 
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Supplementary Figure 9:​ Overall survival among melanoma patients with high and low tumor 
variant burden (TVB). Kaplan-meier curves for the immunotherapy-treated patients with high 
TVB (≥80th percentile) and TVB burden (<80th percentile) are shown in red and blue, 
respectively. The underlying table corresponds to the number of patients at risk of death at each 
timepoint. 
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Supplementary Figure 10: ​Overall survival among melanoma and renal cell carcinoma patients 
with high and low neoepitope burden. A) Overall survival among melanoma patients with high 
and low neoepitope burden. Kaplan-meier curves for the immunotherapy-treated patients with 
high neoepitope burden (≥80th percentile) and low neoepitope burden (<80th percentile) are 
shown in red and blue, respectively. The underlying table corresponds to the number of patients 
at risk of death at each timepoint. B) Overall survival among metastatic renal cell carcinoma 
patients with high and low neoepitope burdens. Kaplan-meier curves for the 
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immunotherapy-treated patients with high neoepitope burden (≥80th percentile) and low 
neoepitope burden (<80th percentile) are shown in red and blue, respectively. The underlying 
table corresponds to the number of patients at risk of death at each timepoint.  
 

 
Supplementary Figure 11: ​Pairwise differences in normalized total mutation burden as 
determined by 7 different computational approaches (see Methods). Each computational 
approach is identified along the diagonal panels, while the values in the upper panels denote 
the Pearson correlation coefficients between every pairwise combination of computational 
approaches (identified by corresponding row and column). The three red asterisks denote 
significant correlation at the p < 0.001 level. The scatterplots in the lower panels denote the 
TMB as calculated by each pairwise combination of computational approaches, with the x- and 
y-axes corresponding to the TMB calculated by the approach identified by the corresponding 
column and row, respectively; each open circle represents a single patient datapoint. Note that 
the red lines correspond to the best fit linear model. 
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Supplementary Figure 12: ​Variation in somatic mutation count increases with increased TMB 
from consensus variant calls. The median absolute deviation (MAD) in variant count across 6 
variant calling tools used to determine consensus variant calls (y-axis, see Methods) increases 
with increasing TMB as determined by consensus calling (x-axis). The best fit line as 
determined by linear regression is shown in red, with its equation in the bottom right corner. 
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Supplementary Figure 13:  ​Author-reported total mutation burden correlates with consensus 
TMB. The total mutational burden as described by the authors of the original manuscripts from 
which the cohort derives (y-axis) correlates with our TMB derived from consensus variant calling 
(x-axis, Pearson product-moment correlation of 0.61, p < 2.2x10​-16​). The best fit line as 
determined by linear regression is shown in red, with its equation in the bottom right corner. 
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Supplementary Figure 14: ​Receiver operating characteristic curves of predictive capacity of 
author-reported mutation and neoepitope burdens. The upper panels depict the true positive 
rate (sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each method across all 
probability thresholds. The table in the lower panel reports the area-under-the-curve (AUC) for 
each method (columns) applied to a different cancer cohort (rows), with colors above the 
methods indicating the color of the corresponding curve in the upper panels. Bold-faced values 
indicate the best value for each cancer cohort. RCC=renal cell carcinoma, NSCLC=non-small 
cell lung cancer. 
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Supplementary Figure 15: ​Cohort-level disagreement in classification of individual patients as 
TMB or neoepitope burden “high” v. “low”. TMB and neoepitope burdens were calculated using 
a standardized consensus approach (see Methods) and were compared with author-reported 
values from the original cohort source studies. The overall disagreement between classifications 
of consensus and author-reported data (y-axis) was calculated using different percentile 
thresholds (x-axis) to classify each individual as e.g. TMB “high” or “low”. This process was 
repeated for all mutations (black line), nonsynonymous mutations (gray line), and putative 
neoantigens (blue line). 
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Supplementary Figure 16: ​Author-reported nonsynonymous mutation burden correlates with 
nonsynoymous variants from consensus calling. The nonsynonymous mutational burden as 
described by the authors of the original manuscripts from which the cohort derives (y-axis) 
correlates with our consensus variant calling-derived nonsynonymous mutation burden (x-axis, 
Pearson product-moment correlation of 0.65, p < 2.2x10​-16​). The best fit line as determined by 
linear regression is shown in red, with its equation in the bottom right corner. 
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Supplementary Figure 17: ​Author-reported neoepitope burden correlates with neoepitopes 
derived from variants from consensus calling. The neoepitope burden as described by the 
authors of the original manuscripts from which the cohort derives (y-axis) correlates with our 
consensus variant calling-derived neoepitope burden (x-axis, Pearson product-moment 
correlation of 0.65, p < 2.2x10​-16​). The best fit line as determined by linear regression is shown 
in red, with its equation in the bottom right corner. 
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Supplementary Figure 18: ​Receiver operating characteristic curves of predictive capacity of 
TMB from 7 different variant calling methods. The upper panels depict the true positive rate 
(sensitivity, y-axis) and false positive rate (1-specificity, x-axis) for each method across all 
probability thresholds. The table in the lower panel reports the area-under-the-curve (AUC) for 
each method (columns) applied to a different cancer cohort (rows), with colors above the 
methods indicating the color of the corresponding curve in the upper panels. TMB as 
determined by consensus calling (see Methods) is compared to the individual variant calling 
tools used in consensus calling. Bold-faced values indicate the best value for each cancer 
cohort. RCC=renal cell carcinoma, NSCLC=non-small cell lung cancer. 
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Supplementary Figure 19: ​Detailed comparison of the complete set of neopeptide 
sequences predictions from MuSE, Mutect, Pindel, RADIA, SomaticSniper, VarScan, 
and consensus variant calling. Patterns of agreement or disagreement among groups of 
neopeptide sequences predicted from variants derived from different combinations of 
tools across all patients are shown along each column, and each row indicates the 
neopeptide predictions associated with variants from the indicated tool (e.g. the first 
column corresponds to neopeptides predicted only from Pindel variants). The number of 
neopeptides in each column (bar in upper pane) corresponds to the size of the subset 
predicted for variants from the indicated combination of tools (black circles in the bottom 
panel). Columns with gray bars represent neopeptides predicted from variants derived 
from only a single tool while columns with teal, orange, blue, pink, or green bars 
represent neopeptides predicted from variants derived from the most common two 
combinations of 2, 3, 4, 5, or 6 variant calling tools. The column with the yellow bar 
represents neopeptides predicted from variants deriving from all tools. The column with 
the brown bar (indicated by an asterisk) represents variants derived from less common 
combinations of 2-6 variant calling tools. 
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