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Abstract

Purpose: Development of a supervised machine-learning model capable of predicting
clinically relevant molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) from
diffusion-weighted-imaging-derived radiomic features.

Methods: The retrospective observational study assessed 55 surgical PDAC patients.
Molecular subtypes were defined by immunohistochemical staining of KRT81. Tumors were
manually segmented and 1606 radiomic features were extracted with PyRadiomics. A
gradient-boosted-tree algorithm (XGBoost) was trained on 70% of the patients (N=28) and
tested on 30% (N=17) to predict KRT81+ vs. KRT81- tumor subtypes. The average sensitivity,
specificity and ROC-AUC value were calculated. Chemotherapy response was assessed
stratified by subtype. Radiomic feature importance was ranked.

Results: The meantSTDEYV sensitivity, specificity and ROC-AUC were 0.90+0.07, 0.92+0.11,
and 0.93+0.07, respectively. Patients with a KRT81+ subtype experienced significantly
diminished median overall survival compared to KRT81- patients (7.0 vs. 22.6 months, HR
1.44, log-rank-test P=<0.001) and a significantly improved response to gemcitabine-based
chemotherapy over FOLFIRINOX (10.14 vs. 3.8 months median overall survival, HR 0.85,
P=0.037) compared to KRT81- patients, who responded significantly better to FOLFIRINOX
over gemcitabine-based treatment (30.8 vs. 13.4 months median overall survival, HR 0.88,
P=0.027).

Conclusions: The machine-learning based analysis of radiomic features enables the
prediction of subtypes of PDAC, which are highly relevant for overall patient survival and

response to chemotherapy.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) carries the worst prognosis of all tumor entities.
Complete resection, often combined with an adjuvant chemotherapy regimen, remains the only
curative therapy option in PDAC. In the metastatic setting, gemcitabine/nab-paclitaxel or
FOLFIRINOX-based chemotherapy have been the mainstay in the treatment of PDAC (1-3).
However, although both intensified treatment protocols increased response rates up to
approximately 30%, a substantial number of patients does not respond or acquires resistance
in a considerably short time. Pre-clinical and clinical evidence suggests differential response
of specific PDAC subtypes to these treatments. Among these, a particularly aggressive
subtype, termed quasi-mesenchymal, basal-like or cytokeratin 81 positive (KRT81+) (4,5) has
been investigated and found to be more sensitive to gemcitabine treatment in vitro (6) and less
sensitive to FOLFIRINOX in a prospective clinical trial (7). Thus, pre-therapeutic identification
of specific subtypes in pancreatic cancer is urgently required to guide individual treatment
decision.

So far, molecular profiling has relied on tissue biopsies, which are prone to undersampling, not
least because of this entity’s morphological heterogeneity, which manifests as a heterogenic
mix of tumor cell clusters, stroma and non-tumoral cell infiltrates. In addition, molecular
subtyping requires high tissue quality and is both costly and time consuming, thus at current
not introduced in routine patient care.

Non-invasive diffusion weighted-magnetic resonance imaging (DW-MRI, DWI), is an imaging
technique which is part of the routine diagnostic work-up in many centers. It measures the
random motion of water molecules and can thus quantify tissue microstructure and
heterogeneity with high sensitivity (8). Radiomics, i.e. the computer-based analysis of non-
perceptual image features, provides a novel tool for the evaluation of DWI beyond traditional
descriptive radiology. Recent work has shown its potential in e.g. the differentiation of tumor
grading or the prediction of therapy response and survival in various tumor entities including

PDAC (9,10).
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In the current study we developed a machine learning algorithm capable of predicting clinically
relevant histopathological PDAC subtypes from pre-operative DW-MRI derived ADC maps and

evaluated tumor subtype-stratified overall survival for different chemotherapy regimens.
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Materials and Methods

Study design

The study was designed as a retrospective observational cohort study matched on
histopathological tumor subtype.

Data collection, processing and analysis were approved by the institutional ethics committee
(Ethics Commission of the Faculty of Medicine of the Technical University of Munich, protocol
number 180/17). The requirement for consent was waived. All procedures were carried out in
accordance to pertinent laws and regulations.

The STROBE checklist and inclusion flowchart can be found in the supplemental material. In
brief, we considered 102 consecutive patients with final histopathological diagnosis of PDAC
of the head or body for inclusion in the study. Patients without a final diagnosis of PDAC, with
unclassifiable tumor subtype, who had undergone prior therapy (chemotherapy, resection prior
to enrolment), died within the first 6 weeks of follow-up (to limit bias from postoperative
complications), did not undergo the full imaging protocol or did not have technically sufficient
imaging available (due to e.g. motion artifacts or stent placement), were excluded. A total of
55 patients who underwent surgical resection in curative intention were included in the study
using histopathological subtype as the matching criterion. 27 patients with a KRT81+ subtype
and 28 patients with a KRT81- subtype (5) were included. The follow-up interval began on the
1st of January, 2010 and ended on the 31st of December 2016. All patients died within the
follow-up interval thus observed (uncensored) endpoint data is available for all patients. For
21 patients, follow-up data and histopathological data was sourced from the “PR2” cohort
described in (5). For all other patients, clinical follow-up was handled by the departments of
surgery and internal medicine, clinical data was sourced from the hospital’s clinical system and
histopathological data was generated during the study. Radiomic data for all patients was
generated during data analysis. All analyses were performed on pseudonymized datasets by

separate individuals (G.K. and S.Z.) from January to May 2019.

Clinical data
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The following clinical data was collected: age at diagnosis, sex, pTNM, R, G, tumor volume
(from the final histopathological report), ECOG-status, adjuvant chemotherapy (gemcitabine-
based vs. no chemotherapy), palliative chemotherapy (gemcitabine-based vs. FOLFIRINOX)
and lymph-node ratio (LNR). Overall survival was defined as the time from diagnosis to

disease-related death.
Imaging data

Patients underwent magnetic resonance imaging (MRI) at 1.5T (Siemens Magnetom Avanto,
release VB17). The protocol included the following sequences: axial and coronal T2-weighted
spin echo (SE) images at 5mm; axial T1w gradient echo (GE) images at 5mm before contrast
media injection and during the arterial, pancreatic parenchymal, portal-venous, systemic
venous and delayed phases (as determined by testing bolus injection); axial unidirectional
diffusion-weighed imaging at b-values of 0, 50, 300 and 600 with echo-planar imaging (EPI)
readout and ADC map calculation. ADC map reconstructions were 5.5x5.5x5 mm (xyz) to a
192x192 voxel matrix. Furthermore, single-shot T2w  magnetic resonance
cholangiopancreatography (MRCP) was performed and reconstructed as a radial maximum
intensity projection (MIP) series. The imaging protocol, and the technical software and
hardware specifications of the MRI machine remained unaltered during the data acquisition

period.

Image segmentation

The datasets were exported in pseudonymized form to a segmentation workstation running
ITK-SNAP v. 3.8.0 (beta). Segmentation was performed under radiological reporting room
conditions by consensus reading of two experienced observers (G.K. and S.Z.). After a period
of two weeks, datasets were shuffled by a third person (F.L.) and segmented again by the
same observers. Segmentations were then quality-controlled by an abdominal radiologist with
>10 years of experience in pancreatic MRI (R.B) and the best segmentations retained.
Segmentation was performed manually in the b=600 images and transferred to the ADC maps.

All other sequences were available to observers for anatomical correlation.
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Biostatistical and machine learning modeling

For assessing bias due to clinical confounders, overall survival time was evaluated by a
multivariate Cox proportional hazards model. The distributions of covariates were compared
between groups with different histopathological subtype using Fisher’s exact test.
Biostatistical modeling was performed using the Python (v.3.7.3) package Lifelines. Kaplan-
Meier-Plots were drawn in GraphPad Prism (v.8). For all inferential statistical procedures, a P-
value of <0.05 was considered statistically significant.

Image postprocessing, feature extraction, feature preprocessing, feature engineering and
machine learning modeling are described in the supplemental material. In brief, radiomic
features were derived using PyRadiomics (v. 2.1) (11) yielding a total of 1606 features, of
which 40 were retained after exclusion of features with low-variance or repeated segmentation
instability. A supervised Gradient Boosted Decision Tree model (XGBoost (12), instantiated as
a binary classifier within the Python library scikit-learn) was fit with histopathological subtype
as a binary label to the radiomic features and tested for predictive sensitivity, specificity and
ROC-AUC. Training was performed by randomized 10-fold shuffle-splitting cross-validation on
70% (N=38) of the cohort and the model was tested on the remaining -unseen- 30% (N=17) of
the cohort. Significance testing for model evaluation metrics was carried out using permutation
testing (13). The threshold probability for classification the default value of .50. Feature
importance was assessed by the inbuilt feature importance classifier (using the “gain”

parameter).

Histopathological workup

Histopathological staining and immunohistochemical workup were performed as described in

(5) and tumors were categorized into either one of two classes: KRT81+ or KRT81- (Fig 1).

Fig 1. Histopathological samples of two patients showing comparable tissue morphology in
H&E staining (A,C) but a KRT81+ subtype (B) in one patient and KRT81- subtype (D) in the

other patient.
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Results

The molecular subtype of PDAC was significantly associated with overall survival. Patients
with a KRT81+ subtype experienced significantly diminished overall survival (7.0 [1.93 to 29.0]
vs. 22.6 [2.63 to 96.97] months median survival, HR 1.44 [0.76-2.12], log-rank-test P=<0.001,
Fig 2, Table 1). No other covariate was significantly associated with overall survival in this
cohort and the baseline distribution of clinical covariates did not differ significantly between the

two patient subcohorts (Table 2).

Fig 2. Patients with a KRT81+ subtype experienced significantly diminished overall survival.

Table 1. Cox proportional hazards analysis results of clinical parameters.

Parameter coef  exp(coef) p lower 0.95 upper 0.95
Subtype 144 | 4.03 <0.001 | 0.76 212
(KRT 81+ vs. KRT 81-)

PN (0vs. 1) 1.20 | 3.32 0.20 -0.63 3.03
Age 0.02 1.02 0.30 -0.01 0.05
pM (0vs. 1) 0.50 1.65 0.30 -0.45 1.44
Palliative CTX -0.39 | 0.68 0.32 -1.16 0.38
(Gem mono vs. FOLFIRINOX)

pT 0.22 1.25 0.36 -0.25 0.70
Tumor Volume -0.01 | 0.99 0.38 -0.04 0.01
Grading (2 vs. 3) 0.21 1.24 0.49 -0.40 0.83
Adjuvant CTX -0.45 | 0.64 0.53 -1.85 0.95
(Gem-based vs. None)

LNR -2.69 | 0.07 0.65 -14.23 8.85
R(Ovs. 1) -0.14 | 0.87 0.69 -0.84 0.56
Sex (F vs. M) 0.08 1.08 0.81 -0.57 0.73
ECOG (0 vs. 1) -0.06 | 0.94 0.88 -0.81 0,70

Table 2. Distribution of clinical parameters between the cohorts with KRT81+ and KRT81-

tumor subtypes alongside crosstabulation results

KRT 81+ KRT 81-
Parameter Subcohort (27) STDEV Subcohort (28) STDEV P
~Age 67 11.7 65 10.5 .52
. Gem-based: 25 Gem-based: 26
Adjuvant CTX Did not receive: 2 Did not receive: 2 )
Palliative CTX Gem-based: 14 Gem-based: 16 .78
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FOLFIRINOX: 13 FOLFIRINOX: 12

Experienced Event Yes: 27 Yes: 28 -
2: 16 2:15

e 3: 11 313 o0
0: 22 0: 23

pM 1:5 1:5 1.0
0:6 0:8

PN 1: 21 1: 20 A9
1:3 1:3

pT 2:2 2:3 -
3:22 3:22
0: 20 0: 21

= 1:7 1: 7 1.0

Sex Female: 12 Female: 13 10
Male: 15 Male: 15 )
0:11 0:13

S0l 1:16 1:15 0

Tumor Volume (ml) 16.4 15.6 15.0 14.0 .72

Lymph Node Ratio 0.12 0.07 0.10 0.07 .29

P: Fisher’s exact test P

The machine learning algorithm achieved a mean+STDEV sensitivity, specificity and ROC-

AUC of 0.90+0.07, 0.92+0.11, and 0.9310.07, respectively; all P=0.01 (Fig 3).

Fig 3: ROC curves (colored) and average ROC-curve (black dotted) over 10 random stratified

shuffle-splits of the dataset.

The feature importance evaluation of the algorithm yielded 13 radiomic parameters with an
importance greater than zero for the classification process. Among these, entropy derived from
the original image was classified as the most important feature by a large margin. All features

alongside their importance metrics can be found in Table 3.

Table 3: Radiomic features alongside their importance as ranked by the algorithm

Feature Importance
original_firstorder_Entropy 0.73
gradient_firstorder_Kurtosis 0.10
log-sigma-1-0-mm-3D_glcm_Imc2 0.09
log-sigma-3-0-mm-3D_firstorder_Kurtosis 0.05
original_glszm_SizeZoneNonUniformityNormalized 0.005
wavelet-HHL_glcm_Imc2 0.005
wavelet-HHL_glszm_SmallAreaEmphasis 0.004
wavelet-HHL_glszm_ZonePercentage 0.003
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original_shape_Maximum2DDiameterRow 0.003
log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis 0.002
original_glszm_LargeAreaLowGraylLevelEmphasis 0.001
wavelet-HLL_glszm_ZonePercentage 0.001
wavelet-LHL _firstorder_Kurtosis 0.0005

Overall survival was evaluated separately for histopathological subtypes stratified by
chemotherapy regimen. Patients with a KRT81+ histopathological subtype who received
gemcitabine-based palliative chemotherapy experienced significantly improved survival
compared to patients with KRT81+ tumors who received FOLFIRINOX (10.14 vs. 3.8 months
median survival, HR 0.85 [0.02-1.67], P=0.037, Fig 4). Conversely, KRT81- subtype patients
experienced significantly improved survival under FOLFIRINOX chemotherapy compared to
gemcitabine-based regimens (30.8 vs. 13.4 months median survival, HR 0.88 0.08-1.67],

P=0.027, Fig 5).

Fig 4. Patients with KRT81+ subtype experience longer overall survival under palliative

gemcitabine chemotherapy

Fig 5. Patients with KRT81- subtype experience improved survival under palliative

FOLFIRINOX chemotherapy
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Discussion

In this exploratory study, we demonstrate that radiomic analysis of ADC maps paired with
machine-learning modeling can discriminate with high sensitivity and specificity between two
groups of histomorphologically defined molecular subtypes of pancreatic ductal
adenocarcinoma (PDAC), associated with significantly different responses to commonly
employed chemotherapeutic regimens in the palliative setting. We thus provide evidence for
the utility of radiomics and machine learning for the non-invasive stratification of pancreatic
cancer patients.

The potential of non-invasive imaging-derived biomarkers (from non-perceptual image
features or source data) has been demonstrated in several studies with the prediction of tumor
genetics and patient outcome (14—16). However, their widespread application beyond proof-
of-principle studies requires the identification of stable and reproducible parameters,
embedded within a standardized and quality-controlled workflow (17-20).

Among the parameters tested for classification in our study, entropy was ranked the most
important by the algorithm. This finding is encouraging, since entropy and entropy-related
features, which express disorder and heterogeneity of the image, have been demonstrated in
(meta-)analyses of different tumor entities, across modalities as promising candidate
parameters (21-23). We found whole-tumor entropy values highly predictive of the basal-like
PDAC subtype. However, considering immanent sampling errors in this histopathologically
heterogeneous tumor entity, the complexity of mutational events (e.g. variable amounts of
mutational Kras (24) and the likelihood of ongoing transitional processes, entropy as a
continuous variable can be imagined as a non-invasive “sensor” of such events that correlates
with the extent of basal-like regions within a particular tumor. The testing of such hypotheses
is challenging, requiring an integrated whole-tumor analysis, including high data-rich imaging,
histopathology and molecular profiling (25).

The rapid evolution of new therapeutic options in the treatment of PDAC requires the
development of markers for a reliable pre-therapeutic patient stratification and -in light of the

above-mentioned plasticity, therapy monitoring. Conroy et al. demonstrated significantly
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improved survival rates of FOLFIRINOX over Gemcitabine monotherapy in the palliative
setting (3). However, the COMPASS trial (7) demonstrated differential response of the basal-
like versus non-basal-like PDAC subtypes to FOLFIRINOX treatment, which is well in
accordance with our study results. If further validated in prospective trials, these findings could
have tremendous implications in patient stratification and subtype-guided therapy selection. In
addition, targeted therapies such as Olaparib, are highly effective yet even more specific for a
certain molecular profile (26) and many new targeted, stroma- and immune-based treatment
strategies are being explored. This increasing complexity requires robust and cost-efficient
tools for clinically relevant patient stratification to best leverage current knowledge and
advance the field. Informed decision based on molecular profiling (microdissection and
genome sequencing) as applied in the COMPASS trial faces serious limitations (i.e. sampling
error, high cost) and is therefore currently not feasible in routine patient care. Quantitative
noninvasive imaging, and especially radiation and contrast-free quantitative modalities such
as DWI may serve this purpose and are thus excellent candidates for exploration in a
prospective trial design.

Limitations of this study are the small cohort size and lack of an external testing cohort as well
as the retrospective, single-center nature of the investigation. Such issues are still common in
the imaging field and compounded by the lack of standardization in sequence acquisition
between institutions and of overarching registers or study centers permitting patient pooling.
Recently, initiatives have arisen to combat some of these issues by harmonization of MRI
protocols (27) and the standardization of imaging markers (28).

In conclusion, our study is an exploratory venture into the field of quantitative imaging analysis
and radiology/pathology-correlation in PDAC. We encourage the validation of our findings in a

larger cohort and in a prospective trial design.
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