
A machine learning algorithm predicts molecular subtypes in pancreatic 

ductal adenocarcinoma with differential response to gemcitabine-based 

versus FOLFIRINOX chemotherapy 

Georgios Kaissis1¶, Sebastian Ziegelmayer1¶, Fabian Lohöfer1¶, Katja Steiger2, Hana Algül3, 

Alexander Muckenhuber2, Hsi-Yu Yen2, Ernst Rummeny1, Helmut Friess4, Roland Schmid3, 

Wilko Weichert2, Jens T. Siveke5,6 and Rickmer Braren1*

1Department of diagnostic and interventional radiology, School of Medicine, Technical 

University of Munich, Munich, Germany; 
2Department of Pathology, School of Medicine, Technical University of Munich, Munich, 

Germany; 
3Department of Internal Medicine II, School of Medicine, Technical University of Munich, 

Munich, Germany;
4Department of Surgery, School of Medicine, Technical University of Munich, Munich, 

Germany;
5Division of Solid Tumor Translational Oncology, West German Cancer Center, University 

Hospital Essen, Essen, Germany.
6German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 

Heidelberg, Germany

¶ These authors contributed equally to this work 

* Corresponding author:

Rickmer F. Braren

Attending Physician

Institute of diagnostic and interventional radiology

School of Medicine 

Technical University of Munich

Ismaninger Str. 22

DE-81675 Munich

Germany

E-Mail: rbraren@tum.de (R.B.)

Phone: +49 89 4140 5627

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


Abstract

Purpose: Development of a supervised machine-learning model capable of predicting 

clinically relevant molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) from 

diffusion-weighted-imaging-derived radiomic features. 

Methods: The retrospective observational study assessed 55 surgical PDAC patients. 

Molecular subtypes were defined by immunohistochemical staining of KRT81. Tumors were 

manually segmented and 1606 radiomic features were extracted with PyRadiomics. A 

gradient-boosted-tree algorithm (XGBoost) was trained on 70% of the patients (N=28) and 

tested on 30% (N=17) to predict KRT81+ vs. KRT81- tumor subtypes. The average sensitivity, 

specificity and ROC-AUC value were calculated. Chemotherapy response was assessed 

stratified by subtype. Radiomic feature importance was ranked. 

Results: The mean±STDEV sensitivity, specificity and ROC-AUC were 0.90±0.07, 0.92±0.11, 

and 0.93±0.07, respectively. Patients with a KRT81+ subtype experienced significantly 

diminished median overall survival compared to KRT81- patients (7.0 vs. 22.6 months, HR 

1.44, log-rank-test P=<0.001) and a significantly improved response to gemcitabine-based 

chemotherapy over FOLFIRINOX (10.14 vs. 3.8 months median overall survival, HR 0.85, 

P=0.037) compared to KRT81- patients, who responded significantly better to FOLFIRINOX 

over gemcitabine-based treatment (30.8 vs. 13.4 months median overall survival, HR 0.88, 

P=0.027). 

Conclusions: The machine-learning based analysis of radiomic features enables the 

prediction of subtypes of PDAC, which are highly relevant for overall patient survival and 

response to chemotherapy.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) carries the worst prognosis of all tumor entities. 

Complete resection, often combined with an adjuvant chemotherapy regimen, remains the only 

curative therapy option in PDAC. In the metastatic setting, gemcitabine/nab-paclitaxel or 

FOLFIRINOX-based chemotherapy have been the mainstay in the treatment of PDAC (1–3). 

However, although both intensified treatment protocols increased response rates up to 

approximately 30%, a substantial number of patients does not respond or acquires resistance 

in a considerably short time. Pre-clinical and clinical evidence suggests differential response 

of specific PDAC subtypes to these treatments. Among these, a particularly aggressive 

subtype, termed quasi-mesenchymal, basal-like or cytokeratin 81 positive (KRT81+) (4,5) has 

been investigated and found to be more sensitive to gemcitabine treatment in vitro (6) and less 

sensitive to FOLFIRINOX in a prospective clinical trial (7). Thus, pre-therapeutic identification 

of specific subtypes in pancreatic cancer is urgently required to guide individual treatment 

decision.

So far, molecular profiling has relied on tissue biopsies, which are prone to undersampling, not 

least because of this entity’s morphological heterogeneity, which manifests as a heterogenic 

mix of tumor cell clusters, stroma and non-tumoral cell infiltrates. In addition, molecular 

subtyping requires high tissue quality and is both costly and time consuming, thus at current 

not introduced in routine patient care. 

Non-invasive diffusion weighted-magnetic resonance imaging (DW-MRI, DWI), is an imaging 

technique which is part of the routine diagnostic work-up in many centers. It measures the 

random motion of water molecules and can thus quantify tissue microstructure and 

heterogeneity with high sensitivity (8). Radiomics, i.e. the computer-based analysis of non-

perceptual image features, provides a novel tool for the evaluation of DWI beyond traditional 

descriptive radiology. Recent work has shown its potential in e.g. the differentiation of tumor 

grading or the prediction of therapy response and survival in various tumor entities including 

PDAC (9,10). 
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In the current study we developed a machine learning algorithm capable of predicting clinically 

relevant histopathological PDAC subtypes from pre-operative DW-MRI derived ADC maps and 

evaluated tumor subtype-stratified overall survival for different chemotherapy regimens.
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Materials and Methods

Study design

The study was designed as a retrospective observational cohort study matched on 

histopathological tumor subtype.

Data collection, processing and analysis were approved by the institutional ethics committee 

(Ethics Commission of the Faculty of Medicine of the Technical University of Munich, protocol 

number 180/17). The requirement for consent was waived. All procedures were carried out in 

accordance to pertinent laws and regulations. 

The STROBE checklist and inclusion flowchart can be found in the supplemental material. In 

brief, we considered 102 consecutive patients with final histopathological diagnosis of PDAC 

of the head or body for inclusion in the study. Patients without a final diagnosis of PDAC, with 

unclassifiable tumor subtype, who had undergone prior therapy (chemotherapy, resection prior 

to enrolment), died within the first 6 weeks of follow-up (to limit bias from postoperative 

complications), did not undergo the full imaging protocol or did not have technically sufficient 

imaging available (due to e.g. motion artifacts or stent placement), were excluded. A total of 

55 patients who underwent surgical resection in curative intention were included in the study 

using histopathological subtype as the matching criterion. 27 patients with a KRT81+ subtype 

and 28 patients with a KRT81- subtype (5) were included. The follow-up interval began on the 

1st of January, 2010 and ended on the 31st of December 2016. All patients died within the 

follow-up interval thus observed (uncensored) endpoint data is available for all patients. For 

21 patients, follow-up data and histopathological data was sourced from the “PR2” cohort 

described in (5). For all other patients, clinical follow-up was handled by the departments of 

surgery and internal medicine, clinical data was sourced from the hospital’s clinical system and 

histopathological data was generated during the study. Radiomic data for all patients was 

generated during data analysis. All analyses were performed on pseudonymized datasets by 

separate individuals (G.K. and S.Z.) from January to May 2019.

Clinical data
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The following clinical data was collected: age at diagnosis, sex, pTNM, R, G, tumor volume 

(from the final histopathological report), ECOG-status, adjuvant chemotherapy (gemcitabine-

based vs. no chemotherapy), palliative chemotherapy (gemcitabine-based vs. FOLFIRINOX) 

and lymph-node ratio (LNR). Overall survival was defined as the time from diagnosis to 

disease-related death.

Imaging data 

Patients underwent magnetic resonance imaging (MRI) at 1.5T (Siemens Magnetom Avanto, 

release VB17). The protocol included the following sequences: axial and coronal T2-weighted 

spin echo (SE) images at 5mm; axial T1w gradient echo (GE) images at 5mm before contrast 

media injection and during the arterial, pancreatic parenchymal, portal-venous, systemic 

venous and delayed phases (as determined by testing bolus injection); axial unidirectional 

diffusion-weighed imaging at b-values of 0, 50, 300 and 600 with echo-planar imaging (EPI) 

readout and ADC map calculation. ADC map reconstructions were 5.5x5.5x5 mm (xyz) to a 

192x192 voxel matrix. Furthermore, single-shot T2w magnetic resonance 

cholangiopancreatography (MRCP) was performed and reconstructed as a radial maximum 

intensity projection (MIP) series. The imaging protocol, and the technical software and 

hardware specifications of the MRI machine remained unaltered during the data acquisition 

period.

Image segmentation

The datasets were exported in pseudonymized form to a segmentation workstation running 

ITK-SNAP v. 3.8.0 (beta). Segmentation was performed under radiological reporting room 

conditions by consensus reading of two experienced observers (G.K. and S.Z.). After a period 

of two weeks, datasets were shuffled by a third person (F.L.) and segmented again by the 

same observers. Segmentations were then quality-controlled by an abdominal radiologist with 

>10 years of experience in pancreatic MRI (R.B) and the best segmentations retained. 

Segmentation was performed manually in the b=600 images and transferred to the ADC maps. 

All other sequences were available to observers for anatomical correlation.
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Biostatistical and machine learning modeling

For assessing bias due to clinical confounders, overall survival time was evaluated by a 

multivariate Cox proportional hazards model. The distributions of covariates were compared 

between groups with different histopathological subtype using Fisher’s exact test.

Biostatistical modeling was performed using the Python (v.3.7.3) package Lifelines. Kaplan-

Meier-Plots were drawn in GraphPad Prism (v.8). For all inferential statistical procedures, a P-

value of <0.05 was considered statistically significant.

Image postprocessing, feature extraction, feature preprocessing, feature engineering and 

machine learning modeling are described in the supplemental material. In brief, radiomic 

features were derived using PyRadiomics (v. 2.1) (11) yielding a total of 1606 features, of 

which 40 were retained after exclusion of features with low-variance or repeated segmentation 

instability. A supervised Gradient Boosted Decision Tree model (XGBoost (12), instantiated as 

a binary classifier within the Python library scikit-learn) was fit with histopathological subtype 

as a binary label to the radiomic features and tested for predictive sensitivity, specificity and 

ROC-AUC. Training was performed by randomized 10-fold shuffle-splitting cross-validation on 

70% (N=38) of the cohort and the model was tested on the remaining -unseen- 30% (N=17) of 

the cohort. Significance testing for model evaluation metrics was carried out using permutation 

testing (13). The threshold probability for classification the default value of .50. Feature 

importance was assessed by the inbuilt feature importance classifier (using the “gain” 

parameter).

Histopathological workup

Histopathological staining and immunohistochemical workup were performed as described in 

(5) and tumors were categorized into either one of two classes: KRT81+ or KRT81- (Fig 1).

Fig 1. Histopathological samples of two patients showing comparable tissue morphology in 

H&E staining (A,C) but a KRT81+ subtype (B) in one patient and KRT81- subtype (D) in the 

other patient.
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Results

The molecular subtype of PDAC was significantly associated with overall survival. Patients 

with a KRT81+ subtype experienced significantly diminished overall survival (7.0 [1.93 to 29.0] 

vs. 22.6 [2.63 to 96.97] months median survival, HR 1.44 [0.76-2.12], log-rank-test P=<0.001, 

Fig 2, Table 1). No other covariate was significantly associated with overall survival in this 

cohort and the baseline distribution of clinical covariates did not differ significantly between the 

two patient subcohorts (Table 2).

Fig 2. Patients with a KRT81+ subtype experienced significantly diminished overall survival.

Table 1. Cox proportional hazards analysis results of clinical parameters.

Parameter coef exp(coef) p lower 0.95 upper 0.95
Subtype
(KRT 81+ vs. KRT 81-)

1.44 4.03 <0.001 0.76 2.12

pN (0 vs. 1) 1.20 3.32 0.20 -0.63 3.03
Age 0.02 1.02 0.30 -0.01 0.05
pM (0 vs. 1) 0.50 1.65 0.30 -0.45 1.44
Palliative CTX
(Gem mono vs. FOLFIRINOX)

-0.39 0.68 0.32 -1.16 0.38

pT 0.22 1.25 0.36 -0.25 0.70
Tumor Volume -0.01 0.99 0.38 -0.04 0.01
Grading (2 vs. 3) 0.21 1.24 0.49 -0.40 0.83
Adjuvant CTX
(Gem-based vs. None)

-0.45 0.64 0.53 -1.85 0.95

LNR -2.69 0.07 0.65 -14.23 8.85
R (0 vs. 1) -0.14 0.87 0.69 -0.84 0.56
Sex (F vs. M) 0.08 1.08 0.81 -0.57 0.73
ECOG (0 vs. 1) -0.06 0.94 0.88 -0.81 0,70

Table 2. Distribution of clinical parameters between the cohorts with KRT81+ and KRT81- 

tumor subtypes alongside crosstabulation results 

Parameter KRT 81+
Subcohort (27) STDEV KRT 81-

Subcohort (28) STDEV P

Age 67 11.7 65 10.5 .52

Adjuvant CTX Gem-based: 25
Did not receive: 2

Gem-based: 26
Did not receive: 2 -

Palliative CTX Gem-based: 14 Gem-based: 16 .78
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FOLFIRINOX: 13 FOLFIRINOX: 12
Experienced Event Yes: 27 Yes: 28 -

G 2: 16
3: 11

2: 15
3: 13 .79

pM 0: 22
1: 5

0: 23
1: 5 1.0

pN 0: 6
1: 21

0: 8
1: 20 .76

pT
1: 3
2: 2
3: 22

1: 3
2: 3
3: 22

-

R 0: 20
1: 7

0: 21
1: 7 1.0

Sex Female: 12
Male: 15

Female: 13
Male: 15 1.0

ECOG 0:11
1:16

0 :13
1: 15 .79

Tumor Volume (ml) 16.4 15.6 15.0 14.0 .72
Lymph Node Ratio 0.12 0.07 0.10 0.07 .29

P: Fisher’s exact test P

The machine learning algorithm achieved a mean±STDEV sensitivity, specificity and ROC-

AUC of 0.90±0.07, 0.92±0.11, and 0.93±0.07, respectively; all P=0.01 (Fig 3).

Fig 3: ROC curves (colored) and average ROC-curve (black dotted) over 10 random stratified 

shuffle-splits of the dataset. 

The feature importance evaluation of the algorithm yielded 13 radiomic parameters with an 

importance greater than zero for the classification process. Among these, entropy derived from 

the original image was classified as the most important feature by a large margin. All features 

alongside their importance metrics can be found in Table 3.

Table 3: Radiomic features alongside their importance as ranked by the algorithm

Feature Importance
original_firstorder_Entropy 0.73
gradient_firstorder_Kurtosis 0.10
log-sigma-1-0-mm-3D_glcm_Imc2 0.09
log-sigma-3-0-mm-3D_firstorder_Kurtosis 0.05
original_glszm_SizeZoneNonUniformityNormalized 0.005
wavelet-HHL_glcm_Imc2 0.005
wavelet-HHL_glszm_SmallAreaEmphasis 0.004
wavelet-HHL_glszm_ZonePercentage 0.003
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original_shape_Maximum2DDiameterRow 0.003
log-sigma-2-0-mm-3D_glszm_SmallAreaHighGrayLevelEmphasis 0.002
original_glszm_LargeAreaLowGrayLevelEmphasis 0.001
wavelet-HLL_glszm_ZonePercentage 0.001
wavelet-LHL_firstorder_Kurtosis 0.0005

Overall survival was evaluated separately for histopathological subtypes stratified by 

chemotherapy regimen. Patients with a KRT81+ histopathological subtype who received 

gemcitabine-based palliative chemotherapy experienced significantly improved survival 

compared to patients with KRT81+ tumors who received FOLFIRINOX (10.14 vs. 3.8 months 

median survival, HR 0.85 [0.02-1.67], P=0.037, Fig 4). Conversely, KRT81- subtype patients 

experienced significantly improved survival under FOLFIRINOX chemotherapy compared to 

gemcitabine-based regimens (30.8 vs. 13.4 months median survival, HR 0.88 0.08-1.67], 

P=0.027, Fig 5).

Fig 4. Patients with KRT81+ subtype experience longer overall survival under palliative 

gemcitabine chemotherapy

Fig 5. Patients with KRT81- subtype experience improved survival under palliative 

FOLFIRINOX chemotherapy
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Discussion

In this exploratory study, we demonstrate that radiomic analysis of ADC maps paired with 

machine-learning modeling can discriminate with high sensitivity and specificity between two 

groups of histomorphologically defined molecular subtypes of pancreatic ductal 

adenocarcinoma (PDAC), associated with significantly different responses to commonly 

employed chemotherapeutic regimens in the palliative setting. We thus provide evidence for 

the utility of radiomics and machine learning for the non-invasive stratification of pancreatic 

cancer patients. 

The potential of non-invasive imaging-derived biomarkers (from non-perceptual image 

features or source data) has been demonstrated in several studies with the prediction of tumor 

genetics and patient outcome (14–16). However, their widespread application beyond proof-

of-principle studies requires the identification of stable and reproducible parameters, 

embedded within a standardized and quality-controlled workflow (17–20). 

Among the parameters tested for classification in our study, entropy was ranked the most 

important by the algorithm. This finding is encouraging, since entropy and entropy-related 

features, which express disorder and heterogeneity of the image, have been demonstrated in 

(meta-)analyses of different tumor entities, across modalities as promising candidate 

parameters (21–23). We found whole-tumor entropy values highly predictive of the basal-like 

PDAC subtype. However, considering immanent sampling errors in this histopathologically 

heterogeneous tumor entity, the complexity of mutational events (e.g. variable amounts of 

mutational Kras (24) and the likelihood of ongoing transitional processes, entropy as a 

continuous variable can be imagined as a non-invasive “sensor” of such events that correlates 

with the extent of basal-like regions within a particular tumor. The testing of such hypotheses 

is challenging, requiring an integrated whole-tumor analysis, including high data-rich imaging, 

histopathology and molecular profiling (25).

The rapid evolution of new therapeutic options in the treatment of PDAC requires the 

development of markers for a reliable pre-therapeutic patient stratification and -in light of the 

above-mentioned plasticity, therapy monitoring. Conroy et al. demonstrated significantly 
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improved survival rates of FOLFIRINOX over Gemcitabine monotherapy in the palliative 

setting (3). However, the COMPASS trial (7) demonstrated differential response of the basal-

like versus non-basal-like PDAC subtypes to FOLFIRINOX treatment, which is well in 

accordance with our study results. If further validated in prospective trials, these findings could 

have tremendous implications in patient stratification and subtype-guided therapy selection. In 

addition, targeted therapies such as Olaparib, are highly effective yet even more specific for a 

certain molecular profile (26) and many new targeted, stroma- and immune-based treatment 

strategies are being explored. This increasing complexity requires robust and cost-efficient 

tools for clinically relevant patient stratification to best leverage current knowledge and 

advance the field. Informed decision based on molecular profiling (microdissection and 

genome sequencing) as applied in the COMPASS trial faces serious limitations (i.e. sampling 

error, high cost) and is therefore currently not feasible in routine patient care. Quantitative 

noninvasive imaging, and especially radiation and contrast-free quantitative modalities such 

as DWI may serve this purpose and are thus excellent candidates for exploration in a 

prospective trial design. 

Limitations of this study are the small cohort size and lack of an external testing cohort as well 

as the retrospective, single-center nature of the investigation. Such issues are still common in 

the imaging field and compounded by the lack of standardization in sequence acquisition 

between institutions and of overarching registers or study centers permitting patient pooling. 

Recently, initiatives have arisen to combat some of these issues by harmonization of MRI 

protocols (27) and the standardization of imaging markers (28).

In conclusion, our study is an exploratory venture into the field of quantitative imaging analysis 

and radiology/pathology-correlation in PDAC. We encourage the validation of our findings in a 

larger cohort and in a prospective trial design. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


Acknowledgments

Authors wish to thank Irina Heid for the ongoing support.

References

1. Von Hoff DD, Ervin TJ, Arena FP, Chiorean EG, Infante JR, Moore MJ, et al. Results 

of a randomized phase III trial (MPACT) of weekly nab-paclitaxel plus gemcitabine 

versus gemcitabine alone for patients with metastatic adenocarcinoma of the pancreas 

with PET and CA19-9 correlates. J Clin Oncol. 2013;31(15_suppl):4005. 

2. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased 

Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N Engl J Med. 

2013 Oct 31;369(18):1691–703. 

3. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. 

FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N Engl J Med. 

2011 May 12;364(19):1817–25. 

4. Collisson EA, Bailey P, Chang DK, Biankin A V. Molecular subtypes of pancreatic 

cancer. Nat Rev Gastroenterol Hepatol. 2019 Apr 4;16(4):207–20. 

5. Muckenhuber A, Berger AK, Schlitter AM, Steiger K, Konukiewitz B, Trumpp A, et al. 

Pancreatic Ductal Adenocarcinoma Subtyping Using the Biomarkers Hepatocyte 

Nuclear Factor-1A and Cytokeratin-81 Correlates with Outcome and Treatment 

Response. Clin Cancer Res. 2018;24(2):351–9. 

6. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of 

pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 

2011;17(4):500–3. 

7. Aung KL, Fischer SE, Denroche RE, Jang G-H, Dodd A, Creighton S, et al. Genomics-

Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the 

COMPASS Trial. Clin Cancer Res. 2018 Mar 15;24(6):1344–54. 

8. Heid I, Steiger K, Trajkovic-Arsic M, Settles M, Esswein MR, Erkan M, et al. Co-clinical 

Assessment of Tumor Cellularity in Pancreatic Cancer. Clin Cancer Res. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


2017;23(6):1461–70. 

9. Trajkovic-Arsic M, Heid I, Steiger K, Gupta A, Fingerle A, Wörner C, et al. Apparent 

Diffusion Coefficient (ADC) predicts therapy response in pancreatic ductal 

adenocarcinoma. Sci Rep. 2017 Dec 6;7(1):17038. 

10. Kaissis G, Ziegelmayer S, Lohöfer F, Algül H, Eiber M, Weichert W, et al. A 

prospectively validated machine learning model for the prediction of survival and tumor 

subtype in pancreatic ductal adenocarcinoma. bioRxiv. 2019 Jan 1;643809. 

11. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. 

Computational Radiomics System to Decode the Radiographic Phenotype. Cancer 

Res. 2017 Nov 1;77(21):e104–7. 

12. Chen T, Guestrin C. XGBoost. In: Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining - KDD ’16. New 

York, New York, USA: ACM Press; 2016. p. 785–94. 

13. Ojala M, Garriga GC. Permutation Tests for Studying Classifier Performance. In: 2009 

Ninth IEEE International Conference on Data Mining. IEEE; 2009. p. 908–13. 

14. Hanania AN, Bantis LE, Feng Z, Wang H, Tamm EP, Katz MH, et al. Quantitative 

imaging to evaluate malignant potential of IPMNs. Oncotarget. 2016 Dec 

27;7(52):85776–84. 

15. Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RTH, Hermann G, et 

al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. 

Radiother Oncol. 2015;114(3):345–50. 

16. Lao J, Chen Y, Li ZC, Li Q, Zhang J, Liu J, et al. A Deep Learning-Based Radiomics 

Model for Prediction of Survival in Glioblastoma Multiforme. Sci Rep. 2017;7(1):1–8. 

17. Caramella C, Allorant A, Orlhac F, Bidault F, Asselain B, Ammari S, et al. Can we trust 

the calculation of texture indices of CT images? A phantom study. Med Phys. 2018 

Feb 14; 

18. Verma V, Simone CB, Krishnan S, Lin SH, Yang J, Hahn SM. The Rise of Radiomics 

and Implications for Oncologic Management. J Natl Cancer Inst. 2017; 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


19. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: 

The process and the challenges. Magn Reson Imaging. 2012;30(9):1234–48. 

20. Zhao B, Tan Y, Tsai WY, Qi J, Xie C, Lu L, et al. Reproducibility of radiomics for 

deciphering tumor phenotype with imaging. Sci Rep. 2016;6:1–7. 

21. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and Reproducibility of Radiomic 

Features: A Systematic Review. Int J Radiat Oncol. 2018 Jun; 

22. Khalvati F, Zhang Y, Baig S, Lobo-Mueller EM, Karanicolas P, Gallinger S, et al. 

Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal 

Adenocarcinoma. Sci Rep. 2019 Dec 1;9(1):5449. 

23. Eilaghi A, Baig S, Zhang Y, Zhang J, Karanicolas P, Gallinger S, et al. CT texture 

features are associated with overall survival in pancreatic ductal adenocarcinoma - a 

quantitative analysis. BMC Med Imaging. 2017;17(1):1–7. 

24. Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al. 

Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 

2018 Feb 24;554(7690):62–8. 

25. Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, et al. Combined 

PET/MRI: Global Warming—Summary Report of the 6th International Workshop on 

PET/MRI, March 27–29, 2017, Tübingen, Germany. Mol Imaging Biol. 2018 Feb 

2;20(1):4–20. 

26. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña 

J, et al. Olaparib monotherapy in patients with advanced cancer and a germline 

BRCA1/2 mutation. J Clin Oncol. 2015 Jan 20;33(3):244–50. 

27. Bach M, Röthke M, Henzler T, Kreft M, Amler B SH. Standardized and quality assured 

prostate diffusion MRI. In: European Congress of Radiology. 2019. 

28. Zwanenburg A, Leger S, Vallières M, Löck S, Initiative  for the IBS. Image biomarker 

standardisation initiative. CoRR. 2016;abs/1612.0. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 7, 2019. ; https://doi.org/10.1101/664540doi: bioRxiv preprint 

https://doi.org/10.1101/664540
http://creativecommons.org/licenses/by/4.0/

