

1    **Development of a multi-locus typing scheme for an *Enterobacteriaceae* linear**  
2    **plasmid that mediates inter-species transfer of flagella**

3

4    James Robertson<sup>1</sup>, Janet Lin<sup>1,†</sup>, Amie Wren-Hedegus<sup>1</sup>, Gitanjali Arya<sup>1</sup>, Catherine  
5    Carrillo<sup>2</sup>, John H.E. Nash<sup>3,\*</sup>

6

7    <sup>1</sup>National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario,  
8    Canada

9    <sup>2</sup>Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, Ontario,  
10   Canada

11   <sup>3</sup>National Microbiology Laboratory, Public Health Agency of Canada, Toronto, Ontario,  
12   Canada

13

14   \*Corresponding author: James Robertson james.robertson@canada.ca

15   <sup>†</sup>Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph,  
16   Ontario, Canada

17

18   Keywords: plasmids, linear plasmids, serotyping, mobile genetic elements

19 Abbreviations: cgMLST, core gene multi-locus sequence typing; MLST, multi-locus  
20 sequence typing; ST, sequence type; WGS, whole genome sequencing; WKL, White-  
21 Kauffman Le Minor serotyping scheme;

22

23 **Abstract**

24 Due to the public health importance of flagellar genes for typing, it is important to  
25 understand mechanisms that could alter their expression or presence. Phenotypic novelty  
26 in flagellar genes arise predominately through accumulation of mutations but horizontal  
27 transfer is known to occur. A linear plasmid termed pBSSB1 previously identified in  
28 *Salmonella* Typhi, was found to encode a flagellar operon that can mediate phase  
29 variation, which results in the rare z66 flagella phenotype. The identification and tracking  
30 of homologs of pBSSB1 is limited because it falls outside the normal replicon typing  
31 schemes for plasmids. Here we report the generation of nine new pBSSB1-family  
32 sequences using Illumina and Nanopore sequence data. Homologs of pBSSB1 were  
33 identified in 154 genomes representing 25 distinct serotypes from 67,758 *Salmonella*  
34 public genomes. Pangenome analysis of pBSSB1-family contigs was performed using  
35 Roary and we identified three core genes amenable to a minimal MLST scheme.  
36 Population structure analysis based on the newly developed MLST scheme identified  
37 three major lineages representing 35 sequence types, and the distribution of these  
38 sequence types was found to span multiple serovars across the globe. This MLST scheme  
39 has shown utility in tracking and subtyping pBSSB1-family plasmids and it has been  
40 incorporated into the plasmid MLST database under the name “pBSSB1-family”.

## 42      **Introduction**

43              Serotyping is the current standard for classification of *Salmonella* isolates  
44              according to the reaction of antisera against the surface lipopolysaccharide layer (LPS)  
45              (O antigen) and flagellar (H antigens) (1–3). Based on the combination of antigens and  
46              biochemical characteristics an isolate is categorized into a serotype according to the  
47              White-Kauffman Le Minor (WKL) scheme (1–3). The *rfb* locus is important in  
48              determining the LPS layer phenotype but there is a complex genetic basis for O antigen  
49              phenotypes (4,5). The majority of *Salmonella* serovars possess two chromosomally  
50              encoded flagellar genes termed *fliC* and *fliJ* that encode the H antigens. These flagellar  
51              proteins are alternately expressed as cells undergoing phase changes switch between  
52              transcription of the two genes (6). Phenotypic novelty in these important cellular  
53              components arise predominately through accumulation of mutations but horizontal gene  
54              transfer (HGT) is known to occur (4,7–9). An example of HGT affecting serologically  
55              important phenotypes is the plasmid mediated O antigen changes in the rare *Salmonella*  
56              serotypes Crossness and Borreze (10,11). Flagellar antigens have also been documented  
57              as being affected by HGT such as the case of *Salmonella* Typhi which normally  
58              expresses either the d or j flagella antigen (12,13) but a rare plasmid-borne variant  
59              expressing the z66 antigen exists (14). Baker et al. 2007b, discovered that the novel z66  
60              flagellar gene was localized to a linear plasmid termed pBSSB1, which was able to  
61              mediate phase variation despite not being localized in the chromosome (15).

62              Whole genome sequencing (WGS) is revolutionizing the field of public health  
63              and it is replacing traditional serological testing as the primary diagnostic test for  
64              *Salmonella* and other pathogens (16). WGS provides an extraordinary level of

65 discrimination of isolates, allows multiple tests to be run on the same data and provides a  
66 rich resource for the research community to answer novel questions which are not within  
67 the scope of traditional surveillance (17–19). However, the existing surveillance systems  
68 and historical data are dependent on serotype information and in order to maintain a  
69 connection to this important data, multiple tools have been developed for the purposes of  
70 predicting serotype based on sequence data (1,20). The *Salmonella in silico* Typing  
71 Resource (SISTR) identifies the genetic determinants for the O and H antigens from draft  
72 genome assemblies and uses 330 core gene to predict serotype with a high degree of  
73 accuracy (1,16). Presence of plasmid-encoded alleles of flagellar or O-antigen genes can  
74 confound WGS-based prediction of serotypes as these schemes currently do not account  
75 for the presence of multiple alleles of these genes..

76 Linear plasmids are extremely rare in *Enterobacteraceae* (15) and pBSSB1 is the  
77 only one known to occur in *Salmonella*. Typing of plasmids is traditionally based on  
78 replicon incompatibility where plasmids are grouped based on the ability to be stably  
79 maintained in a cell (21). The identification and tracking of this linear plasmid in  
80 bacterial populations is limited since pBSSB1 replicates through a different mechanism  
81 from the circular plasmids normally occurring in *Enterobacteraceae* and so falls outside  
82 the normal replicon typing schemes for plasmids currently in use. Multilocus sequence  
83 typing (MLST) is a technique for categorizing genetic diversity through assigning unique  
84 numeric identifiers for alleles of a set of genes which define the scheme (22). Traditional  
85 MLST schemes are based on a small subset of genes but the approach can be extended to  
86 any number of genes (1,23–25). MLST schemes have been developed for IncA/C, IncH,

87 IncI and IncN replicon families, which facilitates the tracking of these plasmids through  
88 populations (26–29).

89 To date pBSSB1 had only been reported in *Salmonella* Typhi isolates from  
90 Indonesia presenting a z66 phenotype (14,15,30). Here we present a MLST typing  
91 scheme for the pBSSB1 plasmid backbone and information on the broad distribution of  
92 this plasmid in *Salmonella*. Based on phylogenetic analyses of the flagella and plasmid  
93 sequences, we have found evidence to support potential interspecies transfer of an intact  
94 flagellar operon from *Citrobacter* to *Salmonella*, which has implications for serology-  
95 based identification of *Salmonella*.

96

## 97 **Materials and Methods**

### 98 **DNA preparation and sequencing**

99 The OIE Reference Laboratory for Salmonellosis performed phenotypic  
100 serotyping according to accredited procedures. Genomic DNA was extracted using the  
101 Qiagen EZ1 robotic extraction system according to manufacturer's instructions. DNA  
102 concentration was measured using the Invitrogen Qubit™ system, and quality of the  
103 DNA template was evaluated using the Agilent TapeStation™. Illumina MiSeq  
104 sequencing libraries were prepared using the NexteraXT kit according to the  
105 manufacturer's protocol for 600-cycle sequencing. Nanopore sequencing was performed  
106 using the RAD002 or RBK004 rapid library preparation kit according to the  
107 manufacturer's instructions on a R9.4 flow cell. Raw sequence data generated from this

108 study was deposited into NCBI and the accession numbers are listed in Supplemental  
109 Table 1.

110 **Genome Assembly**

111 Hybrid assembly using MiSeq and Nanopore reads was performed using  
112 Unicycler v. 0.4.5 with the default parameters (31). Each assembly was examined to  
113 confirm that every component was closed and circularized with the exception of the  
114 pBSSB1 plasmid. The terminal inverted repeats flanking pBSSB1-family plasmids were  
115 found to be difficult to assemble due to low sequencing coverage of the ends and the  
116 collapsing of repeats and assignment to either the 5' or 3' end of the plasmid (data not  
117 shown). This issue was not resolved by using Canu v. 1.8 (32), so the ends of the  
118 plasmids are likely incomplete. Each assembly was iteratively polished with Racon v  
119 1.3.2 (<https://github.com/isovic/racon>) and Pilon v. 1.23  
120 (<https://github.com/broadinstitute/pilon>) until no changes were made to the assembly.  
121 Unicycler with the default parameters was used to assemble publicly available MiSeq  
122 data for other isolates where long reads were unavailable in order to minimize variability  
123 due to differences in assembly procedure.

124

125 ***In silico* analysis of pBSSB1**

126 Previously, we assembled 67,758 *Salmonella* genomes from the SRA (33)  
127 and each of these assemblies was checked for the presence of plasmids homologous to  
128 pBSSB1 (referred to hereafter as “pBSSB1-family plasmids”) using MOB-recon (34).  
129 The *Salmonella* *in silico* typing resource SISTR (1) was used to predict the serotype of

130 each *Salmonella* assembly found to contain a pBSSB1 homolog. Serotypes for *E. coli*  
131 genomes were predicted using ECTyper v. 0.81 ([https://github.com/phac-](https://github.com/phac-nml/ecoli_serotyping)  
132 [nml/ecoli\\_serotyping](https://github.com/phac-nml/ecoli_serotyping)). MOB-recon reconstructed plasmids were annotated using Prokka  
133 v. 1.19 (35) and pangenome analyses were performed using Roary v. 3.12.0 with the  
134 identity threshold relaxed to 90% for core genes (36). A multiple sequence alignment for  
135 each gene was constructed using MAFFT v. 7.221 with the auto flag enabled (37).  
136 Tajima's D statistic was calculated for each multiple sequence alignment using MEGA 7  
137 with all three codon positions used (38). A maximum likelihood tree was generated for  
138 the concatenated multiple sequence alignments for each ST using MEGA 7 with the  
139 following parameters (100 bootstraps, Kimura 2-parameter model, gamma distributed  
140 rate, all coding positions). Population structure of the *Salmonella* isolates was visualized  
141 using GrapeTree with the Enterobase cgMLST scheme (25,39). MLST allele calls were  
142 extracted using the MLST tool (<https://github.com/tseemann/mlst>) using the *S. enterica*  
143 or pBSSB1 schema based on the three genes *soj*, *higB* and *mqsA*.

144 ***In silico* flagellar gene analyses**

145 Prokka 1.19 (35) was run on the sequences of pBSSB1-family plasmids which had been  
146 reconstructed using MOB-recon v. 1.4.8 (34) and genes annotated as "Flagellin" were  
147 selected for further analyses. Identical and truncated subsequences were identified using  
148 cd-hit-est (40) using an identity threshold of 1. The resulting unique set of sequences was  
149 subject to clustering in a second round with cd-hit-est using a threshold of 0.9 to identify  
150 any similar flagella alleles.

151 **Results**

152 **Closed pBSSB1-family plasmid analysis**

153 Long read sequencing using Nanopore was performed on nine *Salmonella* isolates  
154 found to contain a pBSSB1-family plasmid based on their Illumina sequence data. These  
155 newly closed plasmid genomes were analyzed along with three sequences from NCBI  
156 (NC\_011422: *Salmonella* Typhi, CP026380: *Salmonella* Senftenberg, CP023444:  
157 *Klebsiella pneumoniae*). The accessions for all newly generated sequences are available  
158 in Supplemental Table 1. The closed pBSSB1-family plasmids ranged in size from 26kb  
159 to 33Kb with an average GC% of 36%. Pangenome analysis using Roary estimated a core  
160 genome of 14 genes (Table 1). Gene synteny was visualized for the closed plasmids using  
161 EasyFig with the following blast parameters (evalue  $\geq 1e^{-8}$ , length $\geq 1500$ bp, identity  
162  $\geq 75\%$ ) (41) (Fig. 1). Overall, there is a conserved central core region of the plasmid but  
163 the ends of the plasmids carry significantly different sequence content. Only six out of  
164 the 12 plasmids contained a flagella gene (Fig. 1). The plasmids from isolates  
165 SA20061017 and SA20130280 are nearly identical across their length. The sequence  
166 CP026380 clusters tightly with our newly generated sequences 11-5006 and GTA-FD-  
167 2016-MI-02533-1 to GTA-FD-2016-MI-02533-3.

168

169 **Development of a pBSSB1-family plasmid MLST scheme**

170 In order to facilitate tracking of different lineages of the pBSSB1-family plasmid  
171 backbone, we developed a minimal MLST scheme based on its plasmid sequences. The  
172 distinct number of alleles for each of the core genes was determined and is listed in Table  
173 1. Nine of the genes had 8 alleles with the remaining genes having either 6 or 7 alleles.

174 Each of 14 core genes was tested for neutral evolution using Tajima's D test in MEGA v.  
175 7 (Table 1). None of the genes showed strong evidence for selection with *soj* showing the  
176 highest deviation from neutral with a Tajima's D of 1.2 (Table 1). Since no significant  
177 selective pressure was observed for the core genes, all of them were considered viable  
178 MLST candidates. We identified three genes, which were good candidates for use as  
179 typing markers. We selected the sporulation inhibition homolog *soj*, along with the  
180 bacterial toxin/antitoxin (TA) genes *higB* and *mqsA*. The gene set resulted in 8 MLST  
181 profiles for the 12 closed plasmid sequences. Genes that contained multiple indels were  
182 excluded as candidates for MLST marker genes. The developed scheme has been  
183 deposited into pubMLST (<https://pubmlst.org/plasmid/>) under the name “pBSSB1-  
184 family” using the BIGSdb platform (42,43).

185

## 186 **Distribution of pBSSB1-family plasmids**

187 A total of 154 *Salmonella* genomes out of the 67,758 SRA genomes were found  
188 to contain pBSSB1-family plasmids based on the results of MOB-recon. Each of these  
189 positive isolates was typed according to the *S. enterica* MLST scheme and then with the  
190 newly developed scheme for pBSSB1-family plasmids (Supplemental Table 2). A total  
191 of 35 pBSSB1-family sequence types were identified in the dataset with five sequence  
192 types accounting for 75% of the pBSSB1-family plasmids (Fig. 2). A minimum spanning  
193 tree based on the Enterobase cgMLST scheme was constructed using GrapeTree and  
194 overlaid with the pBSSB1-family sequence type to determine if the predominant  
195 sequence types were due to repeated samples from genetically similar members of a  
196 serovar (Fig. 3).

197 The pBSSB1-family MLST Sequence Type 10 (ST 10) primarily consists of  
198 serovar Kiambu isolates belonging to a single cluster (Fig 3), which is indicative of  
199 repeated sampling of closely related isolates. This pattern is consistent for the remaining  
200 isolates of ST 10 within different serotypes Mbandaka and Senftenberg (Fig. 3). A single  
201 cluster of Typhi isolates account for the majority of ST 3 isolates with a small cluster of  
202 Hvittingfoss accounting for the remaining three isolates (Fig. 3). A separate cluster of  
203 Typhi contains z66-positive ST 2, which indicates that not all pBSSB1 homologues in  
204 Typhi carry the z66 flagella (Fig. 3). A cluster of Ouakam contains the majority of ST 5,  
205 with isolates of Jodhpur and Senftenberg containing the others (Fig. 3). Infantis, Reading  
206 and Senftenberg are interesting cases because single clusters contain multiple pBSSB1-  
207 family sequence types (Fig. 3).

208

## 209 **Population structure of pBSSB1-family plasmids**

210 A maximum likelihood tree based on the concatenated MLST gene sequences for  
211 each of the pBSSB1-family sequence types identified three major clades (Fig. 4). Both  
212 clades 1 and 2 contain significant sequence diversity, which is in contrast to clade 3  
213 where the sequences form a tighter association. When the lineage information of  
214 pBSSB1-family plasmids is overlaid on the *Salmonella* population structure, there is  
215 evidence for both clonal expansion and horizontal transfer of lineages (Fig. 5). Each of  
216 the three different lineages are distributed across diverse serotypes (Fig. 5). The two  
217 clusters of Typhi contain either lineage 1 or 2 exclusively (Fig. 5). This is in contrast to  
218 Mbandaka, Senftenberg, Infantis and Reading where there are multi-lineage clusters

219 occurring (Fig. 5). These results are consistent with repeated introductions of divergent  
220 plasmids into these serovars rather than spread and diversification of a single plasmid.

221

222 **Plasmid mediated flagellar genes**

223 Due to the presence of an intact *fliC* operon in some members of the pBSSB1-  
224 family, we examined the flagella sequences in detail to ascertain their similarity to other  
225 known *Enterobacteraceae* flagella sequences. Flagellar genes were found in 104 of the  
226 154 pBSSB1-family plasmids, which are distributed in 15 pBSSB1 STs and in all three  
227 lineages (Supplemental Table 2). There are total of 13 distinct flagella alleles including  
228 z66 from Typhi, which forms four clusters using cd-hit-est with a 0.9 threshold for  
229 identity. Web-based Blastn searches were performed using each of the allele sequences  
230 against the NCBI nucleotide database to identify possible sources of the flagellar genes  
231 (Table 2). Flagella cluster 1 and 2 both had their top hit as *C. portucalensis* (CP012554)  
232 but cluster 1 had much higher identity with 99.37% compared to 78.76% for cluster 2  
233 (Table 2). Our samples 11-5006 and GTA-FD-2016-MI-02533-1 to GTA-FD-2016-MI-  
234 02533-3 belong to the flagella cluster 1 and our phenotypic serotyping results identified  
235 the z35 antigen but were unable to detect the normal g,[s],t flagella expression. This  
236 indicates that the genes encoding flagella on the identified pBSSB1-family plasmids are  
237 functional and these plasmid-encoded alleles are dominant relative to  
238 chromosomally-encoded flagellar genes and their presence masks the detection of the  
239 endogenous flagella. Sequences from cluster 1 share very little similarity with other z35  
240 flagella in *Salmonella*, which is suggestive that there is cross-reactivity within the z35  
241 antisera. Cluster 3 matched to the pBSSB1 plasmid NC\_011422 from *Salmonella* Typhi

242 and so represents the z66 flagella (Table 2). The fourth cluster matches with a  
243 chromosomal *C. freundii* flagella but overall had only 61% coverage and 84% identity  
244 (Table 2).

245

## 246 Discussion

247 Given the importance of classification of *Salmonella* into serotypes, it is critical to  
248 characterize and understand the mechanisms, which generate novel antigenic  
249 combinations. The presence of variants of *Salmonella* Typhi containing a novel flagellar  
250 gene has been known since the 1980s (44), and in 2007 the linear plasmid pBSSB1  
251 containing the z66 *fliC* was described (15). The plasmid pBSSB1 represents the only  
252 known vector for transferring an intact flagella operon in *Salmonella* and, based on the  
253 available data, it was only known to occur in Typhi isolates originating from some parts  
254 of Indonesia (15). This work represents the first description of pBSSB1 in diverse  
255 serovars and geographic locations. Analysis of 67,758 publicly available genomes from a  
256 previous study (33) shows that the plasmid is in fact globally distributed and present in a  
257 variety of serotypes (Fig. 2). The wide distribution of pBSSB1-family in a variety of  
258 serotypes and species indicates that this plasmid backbone could contribute to the  
259 generation of novel flagellar phenotypes through inter-species transfer. The transfer of  
260 this plasmid is known to be dominantly expressed over the endogenous *fliC*, which can  
261 result in incomplete typing of isolates by phenotypic methods (15). This is of concern to  
262 public health since serotype information is a critical piece of outbreak detection and  
263 response.

264 The circulating pBSSB1-family plasmids identified in this study represent diverse  
265 lineages rather than clonal spread of a single plasmid backbone (Fig. 2). The analysis  
266 using GrapeTree based on the Enterobase (25) cgMLST scheme overlaid with pBSSB1-  
267 family ST information, highlights that there has been repeated sampling of closely related  
268 isolates within serotypes (Fig. 3). Senftenberg is notable since within cgMLST clusters  
269 there exist multiple pBSSB1-family sequence types (Fig. 3). These results support the  
270 hypotheses that there were multiple independent acquisitions of the plasmid within this  
271 serotype. Estimates of the frequency of pBSSB1 homologues in *Salmonella* as a whole  
272 based on the SRA data should be undertaken with caution since the dataset is heavily  
273 biased towards repeated sampling of outbreaks and human clinical cases. However,  
274 given that pBSSB1 homologues were found in less than 0.3% of samples it is suggestive  
275 that it is not common within *Salmonella* of clinical relevance.

276

## 277 Conclusion

278 This is the first documentation of plasmids similar to pBSSB1 outside of Indonesian  
279 *Salmonella* Typhi and provides evidence for global distribution. These results are of  
280 consequence to public health since serological classification of *Salmonella* is still the  
281 global standard and plasmids belonging to the pBSSB1-family can be vectors that can  
282 alter the flagellar phenotype of an isolate. These classification issues will still be present  
283 even after the public health reference laboratory community switches to WGS since  
284 serotype information remains critically important for investigations and reporting. The  
285 development of a pBSSB1-family MLST will aid in the tracking of these plasmids  
286 through different bacterial populations.

287

288 **Acknowledgments**

289 We thank our colleagues within the National Microbiology Laboratory's Reference  
290 Services Laboratory and the OIE Salmonella Reference Laboratory within the Division of  
291 Enteric Diseases for their assistance with phenotypic testing of the isolates. In addition,  
292 we would like to thank Paul Manninger for performing WGS of some of the samples,  
293 Andrew Low for bioinformatics support, as well as Adam Koziol and Moe Elmufli for  
294 their comments and critiques during the review process. We also would like to thank the  
295 Food and Drug Administration, Center For Food Safety And Applied Nutrition (CFSAN)  
296 for providing the isolate of CFSAN004025. Finally, we would like to thank Marc  
297 Stevens and Dr. Roger Stephan from Institute of Food Safety, University of Zurich who  
298 provided the raw PacBio data for CP026380.

299

301

| Gene          | Annotation                         | Average Length (bp) | Number of Alleles | m  | S   | ps   | $\Theta$ | $\pi$ | D     |
|---------------|------------------------------------|---------------------|-------------------|----|-----|------|----------|-------|-------|
| group_13      | hypothetical protein               | 410                 | 6                 | 12 | 47  | 0.11 | 0.04     | 0.05  | 0.91  |
| group_7       | hypothetical protein               | 742                 | 6                 | 12 | 68  | 0.09 | 0.03     | 0.03  | 0.57  |
| <i>soj</i>    | Chromosome-partitioning ATPase Soj | 626                 | 6                 | 12 | 126 | 0.2  | 0.07     | 0.08  | 1.29  |
| group_14      | hypothetical protein               | 332                 | 7                 | 12 | 33  | 0.11 | 0.04     | 0.04  | 0.09  |
| <i>mqsA</i>   | Antitoxin MqsA                     | 290                 | 7                 | 12 | 15  | 0.05 | 0.02     | 0.02  | -0.36 |
| group_1       | hypothetical protein               | 695                 | 8                 | 12 | 85  | 0.13 | 0.04     | 0.04  | 0.17  |
| group_10      | hypothetical protein               | 2333                | 8                 | 12 | 362 | 0.16 | 0.05     | 0.06  | 0.7   |
| group_2       | hypothetical protein               | 1121                | 8                 | 12 | 143 | 0.13 | 0.04     | 0.05  | 0.5   |
| group_32      | hypothetical protein               | 305                 | 8                 | 12 | 29  | 0.09 | 0.03     | 0.03  | 0.27  |
| group_33      | hypothetical protein               | 344                 | 8                 | 12 | 29  | 0.09 | 0.03     | 0.03  | 0.27  |
| group_44      | hypothetical protein               | 374                 | 8                 | 12 | 18  | 0.05 | 0.02     | 0.02  | 0.06  |
| group_8       | hypothetical protein               | 254                 | 8                 | 12 | 32  | 0.13 | 0.04     | 0.04  | 0     |
| <i>higB-2</i> | Toxin HigB-2                       | 353                 | 8                 | 12 | 14  | 0.04 | 0.01     | 0.01  | 0.06  |
| <i>traC</i>   | DNA primase TraC                   | 1099                | 8                 | 12 | 57  | 0.08 | 0.03     | 0.03  | 0.82  |

302

303 **Table 1** – Core genes from closed pBSSB1-family plasmid sequences were tested for  
 304 selection using Tajima's D statistic using MEGA 7 (m = number of sequences, n = total

305 number of sites,  $S$  = Number of segregating sites,  $ps = S/n$ ,  $\Theta = ps/a1$ ,  $\pi$  = nucleotide  
306 diversity, and  $D$  is the Tajima test statistic).

308

| Allele | Representative | Length | Closest NCBI Hit | Hit Species             | Total Score | Query Coverage (%) | E-value     | Percent Identity (%) |
|--------|----------------|--------|------------------|-------------------------|-------------|--------------------|-------------|----------------------|
| 1      | SRR3606556     | 1578   | CP012554         | <i>C. portucalensis</i> | 3337        | 100                | 0           | 99.37                |
| 2      | SRR3372244     | 1572   | CP012554         | <i>C. portucalensis</i> | 1803        | 100                | 0           | 78.76                |
| 3      | ERR1764822     | 1527   | NC_011422        | <i>S. Typhi</i>         | 2809        | 100                | 0           | 100                  |
| 4      | SRR3210535     | 1341   | CP037734         | <i>C. freundii</i>      | 873         | 61                 | $1e^{-150}$ | 84.57                |

309

310 **Table 2** – Blast result summary from NCBI web-blast using a single representative per  
311 flagella sequence cluster.

312

313

314 **Figure 1** – The sequence conservation for closed pBSSB1-family plasmids was  
315 visualized using EasyFig. Boxed arrows represent the position and transcriptional  
316 direction of ORFs. Shaded grey areas indicate conserved blocks with an evalue  $\geq 1e-$   
317 8. The locations of flagella genes are highlighted in purple. Genes associated selected  
318 for the three MLST scheme are highlighted in yellow (*soj*), green (*higB*), red (*mqsA*).  
319 Sequences with an asterisk indicate multiple samples with nearly identical sequences  
320 with a representative for that group: (SA20061017, SA20130280) and (GTA-FD-2016-  
321 MI-02533-1 to GTA-FD-2016-MI-02533-3).

322

323

324 **Figure 2** – Pie chart indicating the MLST sequence type composition of identified  
325 pBSSB1-family STs in *Salmonella*. Counts of each sequence type are listed in each slice.

326

327

328

329 **Figure 3** – GrapeTree minimum-spanning tree based on the Enterobase cgMLST and  
330 colored based on the pBSSB1 sequence type present in the genome. Nodes differing by  
331 fewer than 50 alleles were collapsed together and branches longer than 500 alleles

332 different were shortened and are indicated with a hashed line. Size of the nodes indicates  
333 the number of samples contained in them.

334

335

336 **Figure 4** – Maximum likelihood phylogenetic analysis of pBSSB1-family plasmids using  
337 concatenated sequences of the MLST genes *soj*, *mqsA*, *higB*. The sequence types have  
338 been divided into three major clades coloured in red (1), green (2) and yellow (3).

339

340

341

342

343 **Figure 5** - GrapeTree minimum-spanning tree based on the Enterobase cgMLST and  
344 coloured based on the pBSSB1-family lineages present in the genome. Nodes differing  
345 by fewer than 50 alleles were collapsed together and branches longer than 500 alleles  
346 different were shortened and are indicated with a hashed line. Size of the nodes indicates  
347 the number of samples contained in them.

348

349

351 **References**

352 1. Yoshida CE, Kruczakiewicz P, Laing CR, Lingohr EJ, Gannon VPJ, Nash JHE, et al.  
353 The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool  
354 for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies. PLOS  
355 ONE. 2016 Jan 22;11(1):e0147101.

356 2. Franklin K, Lingohr EJ, Yoshida C, Anjum M, Bodrossy L, Clark CG, et al. Rapid  
357 Genoserotyping Tool for Classification of Salmonella Serovars. J Clin Microbiol.  
358 2011 Aug;49(8):2954–65.

359 3. Yoshida C, Gurnik S, Ahmad A, Blimkie T, Murphy SA, Kropinski AM, et al.  
360 Evaluation of molecular methods for the identification of Salmonella serovars. J  
361 Clin Microbiol. 2016 May 18;JCM.00262-16.

362 4. Broadbent SE, Davies MR, van der Woude MW. Phase variation controls  
363 expression of Salmonella lipopolysaccharide modification genes by a DNA  
364 methylation-dependent mechanism. Mol Microbiol. 2010 Jul;77(2):337–53.

365 5. Schnaitman CA, Klena JD. Genetics of lipopolysaccharide biosynthesis in enteric  
366 bacteria. Microbiol Rev. 1993 Sep;57(3):655–82.

367 6. Silverman M, Zieg J, Hilmen M, Simon M. Phase variation in Salmonella: genetic  
368 analysis of a recombinational switch. Proc Natl Acad Sci U S A. 1979  
369 Jan;76(1):391–5.

370 7. Beltran P, Musser JM, Helmuth R, Farmer JJ, Frerichs WM, Wachsmuth IK, et al.  
371 Toward a population genetic analysis of *Salmonella*: genetic diversity and  
372 relationships among strains of serotypes *S. choleraesuis*, *S. derby*, *S. dublin*, *S.*  
373 *enteritidis*, *S. heidelberg*, *S. infantis*, *S. newport*, and *S. typhimurium*. *Proc Natl*  
374 *Acad Sci*. 1988 Oct 1;85(20):7753–7.

375 8. Kropinski AM, Kovalyova IV, Billington SJ, Patrick AN, Butts BD, Guichard JA, et  
376 al. The Genome of ε15, a Serotype-Converting, Group E1 *Salmonella enterica*-  
377 Specific Bacteriophage. *Virology*. 2007 Dec 20;369(2):234–44.

378 9. Wright A. Mechanism of Conversion of the *Salmonella* O Antigen by  
379 Bacteriophage ε34. *J Bacteriol*. 1971 Mar;105(3):927–36.

380 10. Keenleyside WJ, Whitfield C. A Novel Pathway for O-Polysaccharide Biosynthesis  
381 in *Salmonella enterica* Serovar Borreze. *J Biol Chem*. 1996 Nov 8;271(45):28581–  
382 92.

383 11. Rowe B, Hall ML, McCoy JH. *Salmonella* crossness--a new serotype containing a  
384 new comatic (O) antigen, 67. *J Hyg (Lond)*. 1976 Dec;77(3):355–7.

385 12. Everest P, Wain J, Roberts M, Rook G, Dougan G. The molecular mechanisms of  
386 severe typhoid fever. *Trends Microbiol*. 2001 Jul;9(7):316–20.

387 13. Kidgell C, Reichard U, Wain J, Linz B, Torpdahl M, Dougan G, et al. *Salmonella*  
388 *typhi*, the causative agent of typhoid fever, is approximately 50,000 years old. *Infect*  
389 *Genet Evol*. 2002 Oct;2(1):39–45.

390 14. Pa G, Wh J, Hm M, L LM, R B. An unusual H antigen (Z66) in strains of  
391 *Salmonella typhi*. Ann Microbiol (Paris). 1980 1981;132(3):331–4.

392 15. Baker S, Hardy J, Sanderson KE, Quail M, Goodhead I, Kingsley RA, et al. A  
393 Novel Linear Plasmid Mediates Flagellar Variation in *Salmonella Typhi*. PLOS  
394 Pathog. 2007 May 11;3(5):e59.

395 16. Yachison CA, Yoshida C, Robertson J, Nash JHE, Kruczakiewicz P, Taboada EN, et  
396 al. The Validation and Implications of Using Whole Genome Sequencing as a  
397 Replacement for Traditional Serotyping for a National *Salmonella* Reference  
398 Laboratory. Front Microbiol [Internet]. 2017 [cited 2017 Jul 17];8. Available from:  
399 <http://journal.frontiersin.org/article/10.3389/fmicb.2017.01044/full>

400 17. Nair S, Ashton P, Doumith M, Connell S, Painset A, Mwaigwisa S, et al. WGS for  
401 surveillance of antimicrobial resistance: a pilot study to detect the prevalence and  
402 mechanism of resistance to azithromycin in a UK population of non-typhoidal  
403 *Salmonella*. J Antimicrob Chemother. 2016 Sep 1;dkw318.

404 18. Nutrition C for FS and A. Whole Genome Sequencing (WGS) Program -  
405 GenomeTrakr Fast Facts [Internet]. [cited 2016 Nov 25]. Available from:  
406 <http://www.fda.gov/Food/FoodScienceResearch/WholeGenomeSequencingProgram>  
407 WGS/ucm403550.htm

408 19. Wyres KL, Conway TC, Garg S, Queiroz C, Reumann M, Holt K, et al. WGS  
409 Analysis and Interpretation in Clinical and Public Health Microbiology

410        Laboratories: What Are the Requirements and How Do Existing Tools Compare?

411        *Pathogens*. 2014 Jun 11;3(2):437–58.

412        20. Zhang S, Yin Y, Jones MB, Zhang Z, Kaiser BLD, Dinsmore BA, et al. *Salmonella*  
413        Serotype Determination Utilizing High-Throughput Genome Sequencing Data. *J*  
414        *Clin Microbiol*. 2015 May 1;53(5):1685–92.

415        21. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, et  
416        al. In silico detection and typing of plasmids using PlasmidFinder and plasmid  
417        multilocus sequence typing. *Antimicrob Agents Chemother*. 2014 Jul;58(7):3895–  
418        903.

419        22. Maiden MCJ, van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA, et al.  
420        MLST revisited: the gene-by-gene approach to bacterial genomics. *Nat Rev*  
421        *Microbiol*. 2013 Oct;11(10):728–36.

422        23. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z, Sangal V, et al. Multilocus  
423        Sequence Typing as a Replacement for Serotyping in *Salmonella enterica*. *PLOS*  
424        *Pathog*. 2012 Jun 21;8(6):e1002776.

425        24. Been M de, Pinholt M, Top J, Bletz S, Mellmann A, Schaik W van, et al. Core  
426        Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of  
427        *Enterococcus faecium*. *J Clin Microbiol*. 2015 Dec 1;53(12):3788–97.

428        25. Alikhan N-F, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the  
429        population structure of *Salmonella*. *PLOS Genet*. 2018 Apr 5;14(4):e1007261.

430 26. Hancock SJ, Phan M-D, Peters KM, Forde BM, Chong TM, Yin W-F, et al.  
431 Identification of IncA/C plasmid replication and maintenance genes and  
432 development of a plasmid multilocus sequence typing scheme. *Antimicrob Agents  
433 Chemother.* 2017;61(2):e01740–16.

434 27. García-Fernández A, Carattoli A. Plasmid double locus sequence typing for IncHI2  
435 plasmids, a subtyping scheme for the characterization of IncHI2 plasmids carrying  
436 extended-spectrum beta-lactamase and quinolone resistance genes. *J Antimicrob  
437 Chemother.* 2010 Jun;65(6):1155–61.

438 28. García-Fernández A, Chiaretto G, Bertini A, Villa L, Fortini D, Ricci A, et al.  
439 Multilocus sequence typing of IncI1 plasmids carrying extended-spectrum beta-  
440 lactamases in *Escherichia coli* and *Salmonella* of human and animal origin. *J  
441 Antimicrob Chemother.* 2008 Jun;61(6):1229–33.

442 29. García-Fernández A, Villa L, Moodley A, Hasman H, Miriagou V, Guardabassi L,  
443 et al. Multilocus sequence typing of IncN plasmids. *J Antimicrob Chemother.* 2011  
444 Sep;66(9):1987–91.

445 30. Zhang H, Zhu Y, Xie X, Wang M, Du H, Xu S, et al. Identification and  
446 Characterization of a Gene stp17 Located on the Linear Plasmid pBSSB1 as an  
447 Enhanced Gene of Growth and Motility in *Salmonella enterica* Serovar Typhi. *Front  
448 Cell Infect Microbiol* [Internet]. 2016 Oct 5;6. Available from:  
449 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050219/>

450 31. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome  
451 assemblies from short and long sequencing reads. PLOS Comput Biol. 2017 Jun  
452 8;13(6):e1005595.

453 32. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:   
454 scalable and accurate long-read assembly via adaptive k-mer weighting and repeat  
455 separation. Genome Res. 2017 Mar 15;gr.215087.116.

456 33. Robertson J, Yoshida C, Kruczakiewicz P, Nadon C, Nichani A, Taboada EN, et al.  
457 Comprehensive assessment of the quality of *Salmonella* whole genome sequence  
458 data available in public sequence databases using the *Salmonella* in silico Typing  
459 Resource (SISTR). Microb Genomics [Internet]. 2018 [cited 2018 Apr 3];4(2).  
460 Available from:  
461 <http://mgen.microbiologyresearch.org/content/journal/mgen/10.1099/mgen.0.00015>  
462 1

463 34. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction  
464 and typing of plasmids from draft assemblies. Microb Genomics. 2018;4(8).

465 35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Jul  
466 15;30(14):2068–9.

467 36. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary:  
468 rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015 Nov  
469 15;31(22):3691–3.

470 37. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid  
471 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.*  
472 2002 Jul 15;30(14):3059–66.

473 38. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics  
474 Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol.* 2016;33(7):1870–4.

475 39. Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, et al.  
476 GrapeTree: Visualization of core genomic relationships among 100,000 bacterial  
477 pathogens. *Genome Res.* 2018 Jul 26;gr.232397.117.

478 40. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of  
479 protein or nucleotide sequences. *Bioinformatics.* 2006 Jul 1;22(13):1658–9.

480 41. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer.  
481 *Bioinformatics.* 2011 Apr 1;27(7):1009–10.

482 42. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at  
483 the population level. *BMC Bioinformatics.* 2010 Dec 10;11(1):595.

484 43. Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics:  
485 BIGSdb software, the PubMLST.org website and their applications. *Wellcome*  
486 *Open Res [Internet].* 2018 Sep 24 [cited 2019 Apr 9];3. Available from:  
487 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192448/>

488 44. Guinée PA, Jansen WH, Maas HM, Le Minor L, Beaud R. An unusual H antigen  
489 (Z66) in strains of *Salmonella typhi*. *Ann Microbiol (Paris).* 1981 Jun;132(3):331–4.



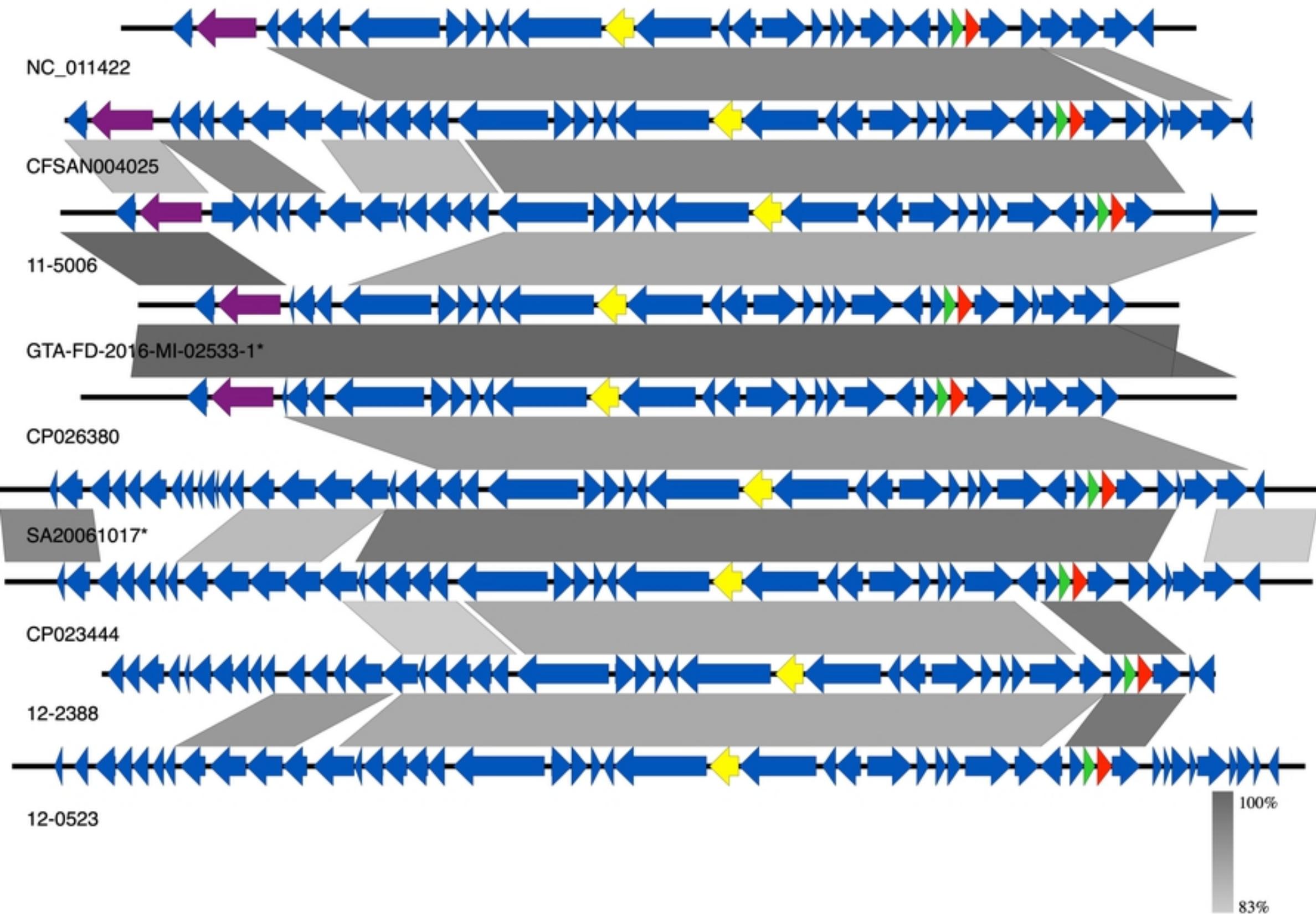



Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/664508>; this version posted June 7, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

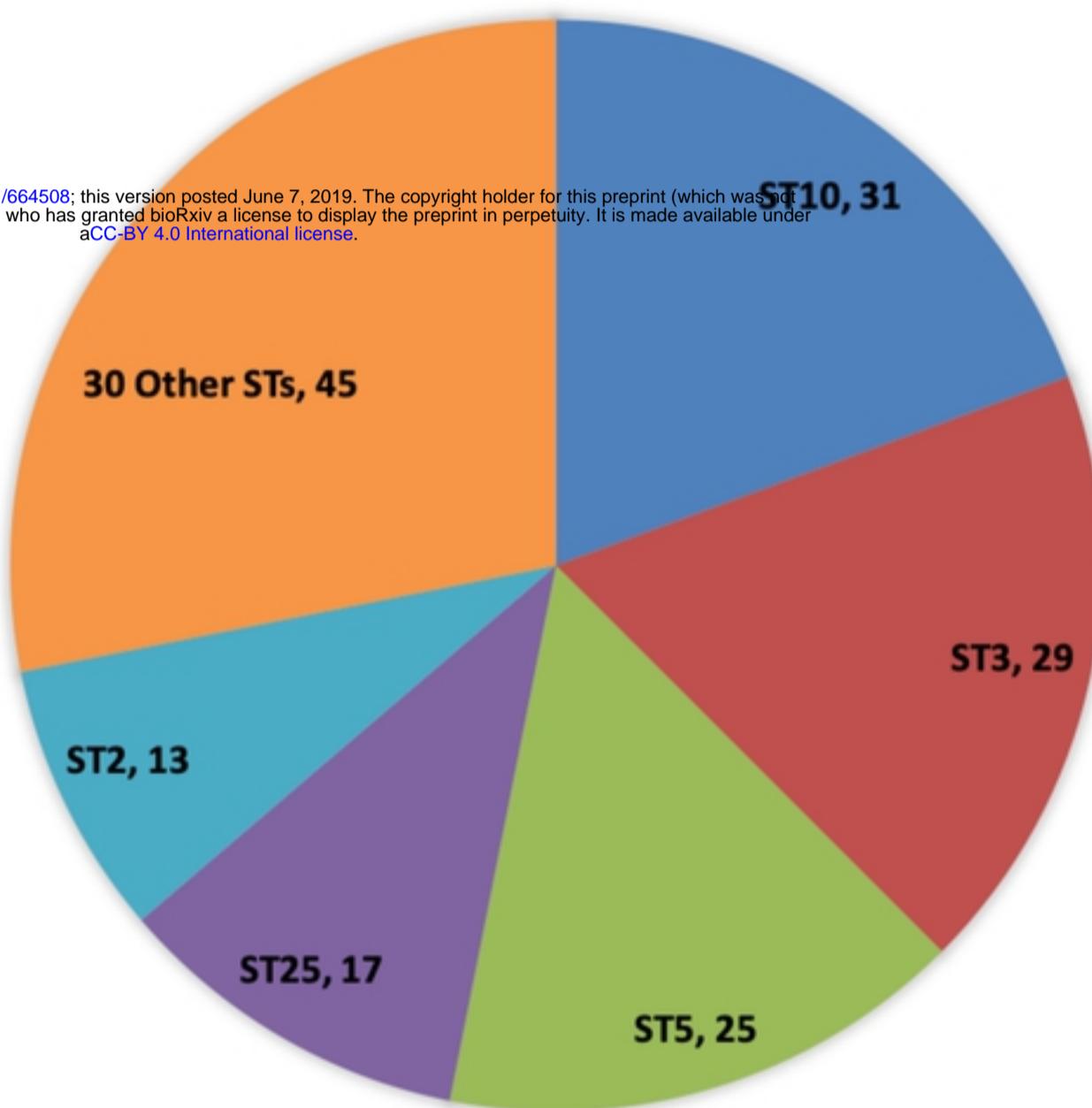



Figure 2

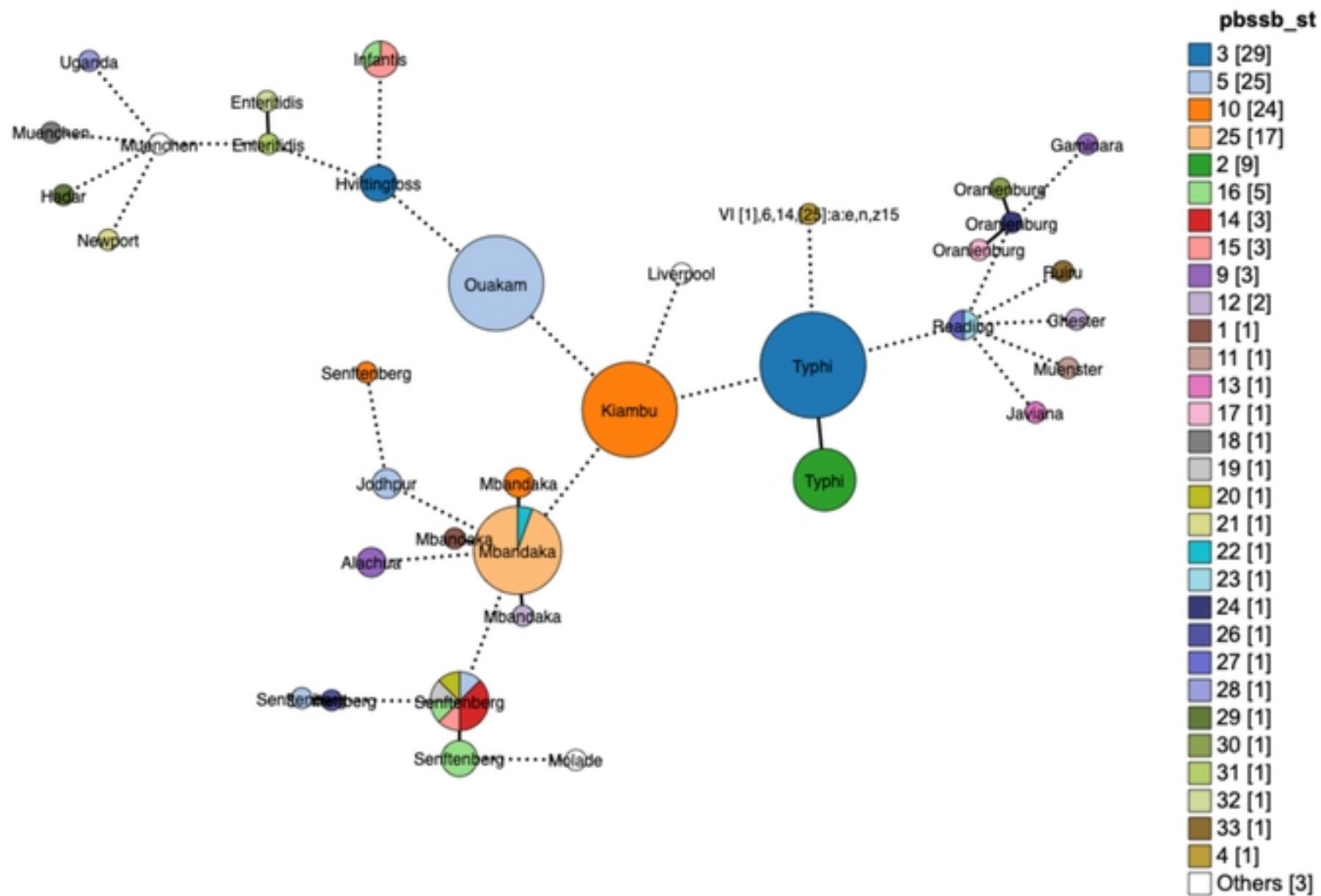



Figure 3

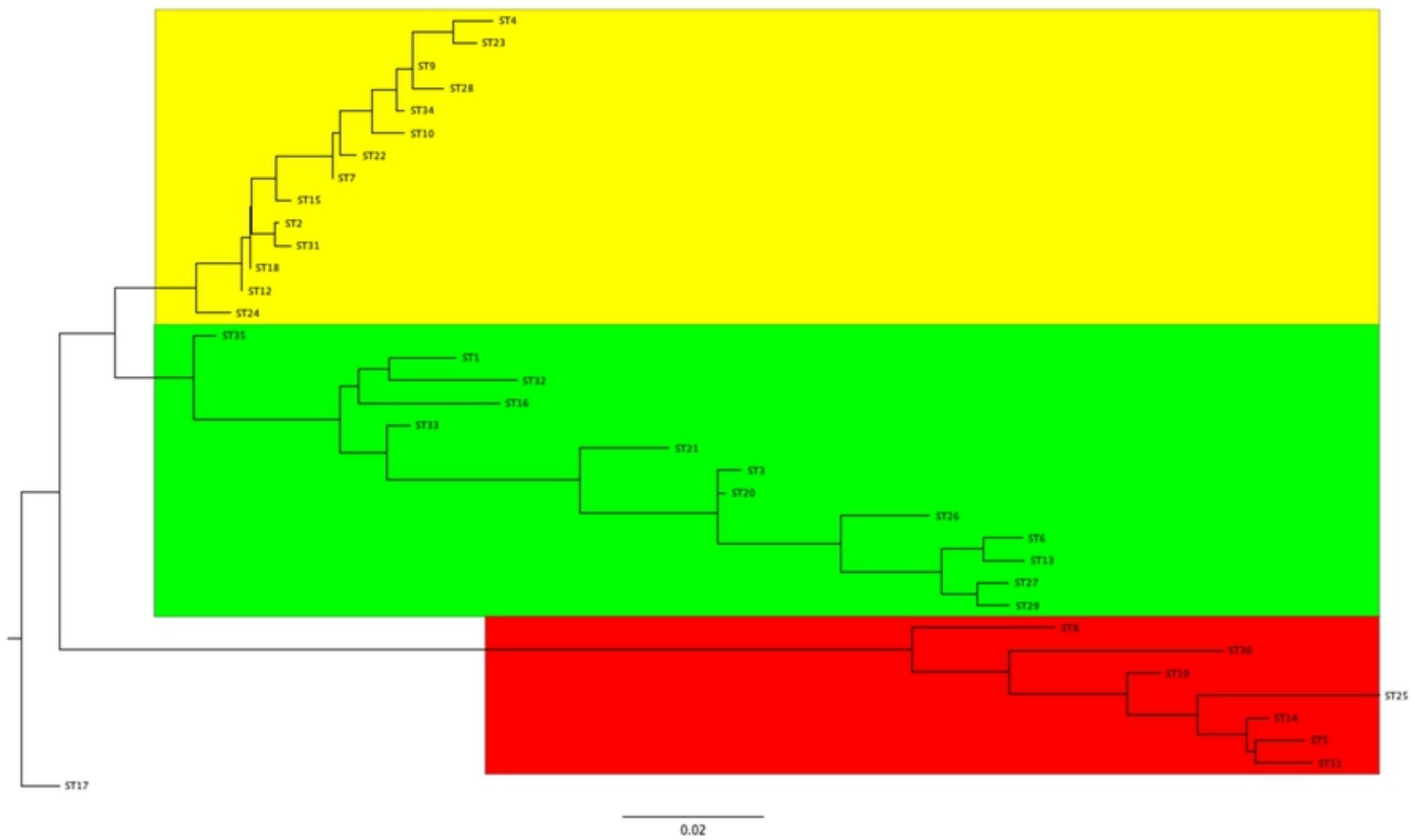



Figure 4

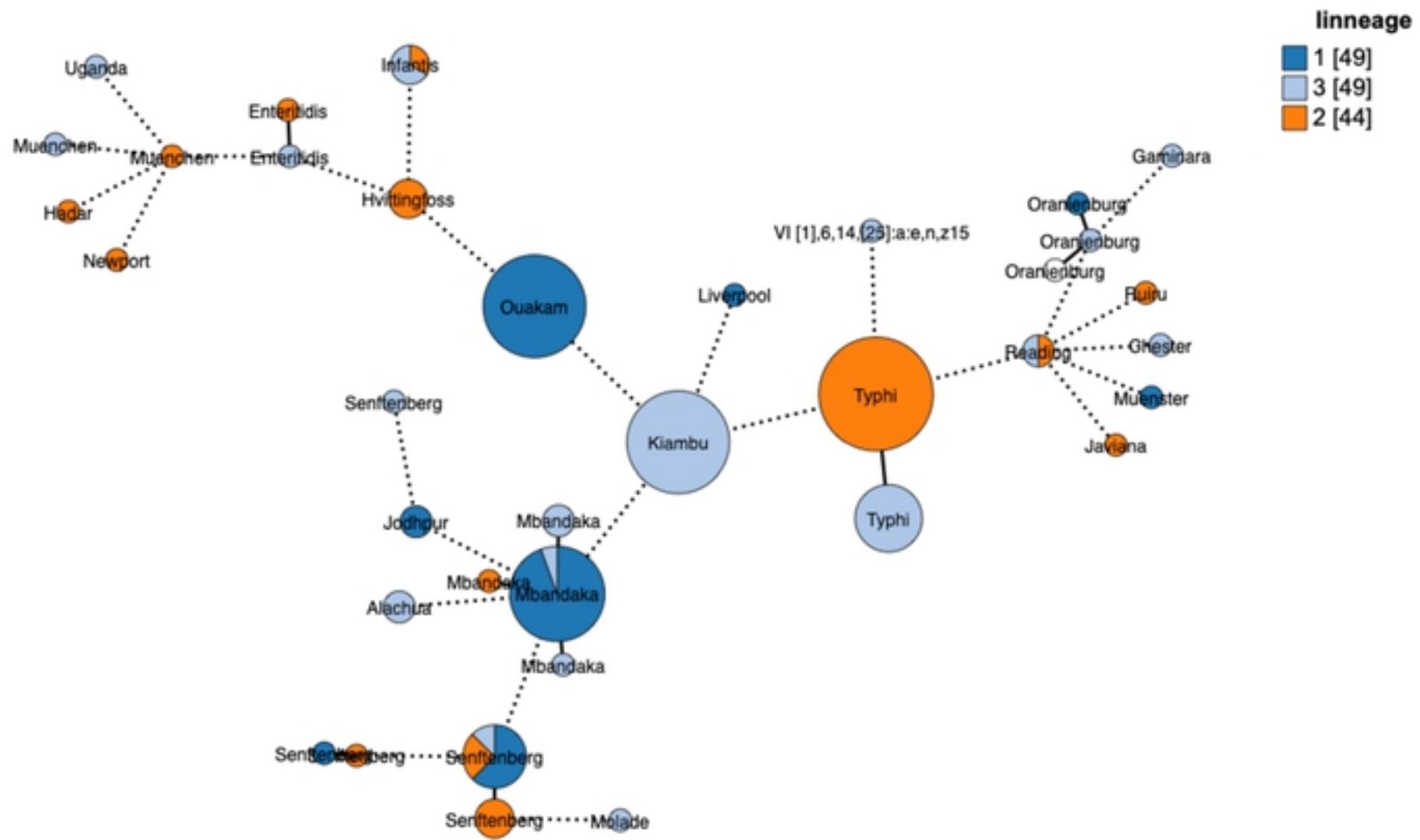



Figure 5