

1 **Predicting factors for long-term survival in patients with out-of-
2 hospital cardiac arrest – a propensity score-matched analysis**

3

4 Anna Lena Lahmann^{1*}, Dario Bongiovanni²; Anna Berkefeld²; Maximilian Kettern¹; Lucas Martinez¹;
5 Rainer Okrojek²; Petra Hoppmann²; Karl-Ludwig Laugwitz^{2,3}; Markus Kasel¹; Salvatore Cassese¹;
6 Robert Byrne¹; Sebastian Kufner¹; Erion Xhepa¹; Heribert Schunkert^{1,3}; Adnan Kastrati^{1,3}; Michael
7 Joner^{1,3}

8

9 ¹Department of cardiology, German Heart Center Munich, Technical University Munich, Munich,
10 Germany

11 ²Department of cardiology, Klinikum rechts der Isar, Technical University Munich, Munichh, Germany

12 ³DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich,
13 Germany

14

15 ***corresponding author**

16 E-mail: annalena@lahmann.at (AL)

17

1 **Abstract**

2 **Background**

3 Out-of-hospital cardiac arrest (OHCA) is one of the leading causes of
4 death worldwide, with acute coronary syndromes accounting for most of
5 the cases.

6 While the benefit of early revascularization has been clearly
7 demonstrated in patients with ST-segment-elevation myocardial
8 infarction (STEMI), diagnostic pathways remain unclear in the absence
9 of STEMI. We aimed to characterize OHCA patients presenting to 2
10 tertiary cardiology centers and identify predicting factors associated with
11 survival.

12 **Methods**

13 We retrospectively analyzed 519 patients after OHCA from February
14 2003 to December 2017 at 2 centers in Munich, Germany. Patients
15 undergoing immediate coronary angiography (CAG) were compared to
16 those without. Propensity score (PS) matching analysis and multivariate
17 regression analysis were performed to identify predictors for improved
18 outcome.

19

20 **Results**

21 Immediate CAG was performed in 385 (74.1%) patients after OHCA with
22 presumed cardiac cause of arrest.

23 As a result of multivariate analysis after propensity score matching, we
24 found that ROSC at admission and immediate CAG were associated
25 with better 30-days-survival [(OR, 6.54; 95% CI, 2.03-21.02), (OR, 2.41;
26 95% CI, 1.04-5.55)], and 1-year-survival [(OR, 4.49; 95% CI, 1.55-
27 12.98), (OR, 2.54; 95% CI, 1.06-6.09)].

28

29 **Conclusions**

30 In our study, ROSC at admission and immediate CAG were independent
31 predictors of survival in cardiac arrest survivors. Improvement in
32 prehospital management including bystander CPR and best practice
33 post-resuscitation care with optimized triage of patients to an early
34 invasive strategy may help ameliorate overall outcome of this critically-
35 ill patient population.

36

37

38 **Introduction**

39 Out-of-hospital cardiac arrest (OHCA) is a leading cause of death in
40 western countries and still associated with poor prognosis despite
41 improvement in emergency care and post-resuscitation management in
42 recent years [1-4].

43 Increased rates of bystander resuscitation (CPR), and widespread
44 availability of automated external defibrillators (AEDs) substantially
45 contributed to improved patient outcome; in addition, it has been shown
46 that targeted temperature management and early revascularization
47 improve survival of patients with cardiac arrest caused by myocardial
48 infarction [5-7].

49 Contemporary management of patients with ST-segment elevation
50 recommends immediate coronary angiography (CAG) after cardiac
51 arrest, including ad-hoc percutaneous intervention (PCI) if necessary.

52 Current guidelines also suggest to consider immediate CAG for those
53 patients with presumed cardiac cause of arrest in the absence of STEMI
54 owing to the high incidence of coronary artery disease in these patients
55 [8-9].

56 In this context, it remains challenging to select candidates for early CAG
57 given the extremely heterogeneous population of cardiac arrest
58 survivors and the difficulty to retrieve etiologic information in this specific
59 setting [8,10].

60 The aim of this study was to characterize patients presenting to 2 major
61 tertiary cardiology centers with intensive care capability after OHCA and
62 stratification into those undergoing immediate coronary angiography or

63 not. Furthermore, it was our goal to identify independent prognostic
64 factors associated with survival in patients with OHCA.

65

66 **Materials and Methods**

67 We collected retrospective data of patients after out-of-hospital cardiac
68 arrest from February 2003 to December 2017 at two centers in Munich,
69 Germany. OHCA data were collected according to the Utstein
70 recommendations and the ethics committee of the Technical University
71 Munich (approval number 343/17 S) waived informed consent due to the
72 observational nature of the study.¹¹

73

74 Endpoint definitions

75 The primary outcome was survival at 30 days and one year, which was
76 assessed by medical records or by telephone interview of the attending
77 physicians; secondary outcome was functional status at discharge
78 which was evaluated using the Cerebral Performance Category (CPC)
79 score.¹²

80

81 Patient flow

82 Triage of patients to undergo immediate CAG was left to the responsible
83 physician's discretion. When available, paramedical information, ECG
84 findings and echocardiographic abnormalities aided in decision-making.
85 An immediate coronary angiogram and subsequent PCI was performed
86 if necessary, using standard techniques. Patients were subsequently
87 admitted to the intensive care unit (ICU) for standard post-resuscitation
88 care including targeted temperature management if indicated.

89 Immediate CAG was defined as coronary angiography performed within
90 two hours after admission to hospital.

91 A coronary lesion resulting in >75% reduction of luminal diameter by
92 visual estimation was considered significant and PCI was deemed
93 successful when resulting in a residual stenosis of <30%.

94 Culprit lesion morphology was determined by angiography and defined
95 as acute coronary occlusion, presence of thrombus, severe narrowing
96 in the presence or absence of thrombus, and unstable-appearing lesions
97 with high likelihood to trigger ischemia responsible for cardiac arrest.
98 STEMI and NSTEMI, as well as the other causes of cardiac arrest, were
99 determined by review of ECGs after return to spontaneous circulation
100 (ROSC) and by review of patients' charts including CAG and serum
101 parameters.

102

103 Statistical analysis

104 Continuous variables are presented as mean \pm SD. Distribution of data
105 was checked for normality using the Shapiro-Wilk goodness-of-fit test
106 and differences analyzed with the Wilcoxon-signed rank sum test in case
107 of non-parametric data and student's t-test in the event of normal
108 distribution. Categorical variables are presented as number (%) and
109 were analyzed using the χ^2 -test. Univariate logistic regression analysis
110 was performed to derive crude 30-days and 1-year-survival rates among
111 patients undergoing immediate CAG or not.

112 To minimize selection bias of patients undergoing immediate CAG and
113 to control for potential confounding factors, we conducted propensity
114 score (PS) regression analysis and generated two matching cohorts of
115 patients undergoing immediate CAG or not. Matching variables were

116 hypercholesterolemia, daytime presentation, witnessed arrest, arrest at
117 home, active smoker, former smoker, ROSC at admission and female.
118 All available univariate factors were subsequently entered into a
119 multivariate generalized linear regression model. Selection of covariates
120 in the multivariate regression model was performed using the LASSO
121 (Least Absolute Shrinkage and Selection Operator) regression method
122 after entering all available candidates. These variables were asystole in
123 the initial ECG, ROSC at admission, bystander CPR, daytime
124 presentation, witnessed arrest, active smoker, former smoker, diabetes,
125 hypercholesterolemia, family history, female, history of prior myocardial
126 infarction, history of coronary artery disease, arterial hypertension and
127 immediate CAG.
128 Parameters achieving p-values <0.05 were considered statistically
129 significant and odds ratios derived with 95% confidence intervals.
130 Analysis was performed using JMP Pro (software version 13.0, Cary,
131 NC, USA) and SPSS (software version 22 with FUZZY extension
132 bundle, IBM, Armonk, NY, USA).
133

134 **Results**

135 We analyzed a total of 519 patients with out-of-hospital cardiac arrest
136 between February 2003 and December 2017 that were consecutively
137 admitted to one of two tertiary centers in Munich, Germany.
138 The baseline demographic characteristics are shown in (Table 1).

139

140 **Table 1 Baseline characteristics of patients with and without**
141 **immediate CAG before and after propensity score analysis**

	Entire population			Matched population		
	Immediate CAG n=385	No immediate CAG n=134	p-value	Immediate CAG n=87	No immediate CAG n=88	p-value
Female	89/385 (23.1)	45/134 (33.6)	0.02	21/87 (24.1)	23/88 (26.1)	0.76
Age	65.1±13	66.9±16	0.11	65 ± 13	67 ± 16	0.76
Former smoker	143/326 (43.9)	25/83 (30.1)	0.02	19/64 (29.7)	21/68 (30.9)	0.88
Diabetes	79/342 (23.1)	25/87 (28.7)	0.23	19/71 (26.8)	20/67 (29.9)	0.69
Hypercholesterolemia	208/327 (63.6)	32/82 (39.0)	<0.001	27/61 (44.3)	26/65 (40.0)	0.63
Hypertension	247/330 (74.9)	64/90 (71.1)	0.47	47/64 (73.4)	51/71 (71.8)	0.83
Family history	48/321 (15.0)	7/78 (9.0)	0.17	11/62 (17.7)	6/64 (9.4)	0.17
History of coronary artery disease	111/369 (30.0)	29/98 (29.6)	0.93	19/80 (23.8)	25/76 (32.9)	0.20
History of myocardial infarction	68/361 (18.8)	18/96 (18.8)	0.98	11/75 (14.7)	15/73 (20.6)	0.35

142 Data are presented as n (%) of the total cohort

143

144 ECG at first contact with emergency medical service (EMS) showed
145 ventricular fibrillation in 233/376 (62.0%) of the patients who underwent
146 immediate CAG, and in 26/125 (20.8%) in the no immediate CAG group
147 (Table 2) as most frequent initial rhythm.

148

149 **Table 2 Patients with and without immediate CAG according to**
150 **initial ECG before and after propensity score analysis**

	Entire population			Matched population		
	Immediate CAG n=385	No immediate CAG n=134	p-value	Immediate CAG n=87	No immediate CAG n=88	p-value
Asystole	89/376 (23.7)	66/125 (52.8)	<0.001	24/85 (28.2)	38/81 (46.9)	0.01
AV-Block	3/376 (0.8)	0/125 (0.0)	0.32	0/85 (0.0)	0/81 (0.0)	0.0
Bradycardia	9/376 (2.4)	1/125 (0.8)	0.27	1/85 (1.2)	0/81 (0.0)	0.33
VT	8/376 (2.1)	3/125 (2.4)	0.86	0/85 (0.0)	2/81 (2.5)	0.15
VFib	233/376 (62.0)	26/125 (20.8)	<0.001	51/85 (60.0)	21/81 (25.9)	<0.001
PEA	22/376 (5.9)	22/125 (17.6)	<0.001	5/85 (5.9)	15/81 (18.5)	0.01
Miscellaneous	12/376 (3.2)	7/125 (5.6)	0.22	4/85 (4.7)	5/81 (6.2)	0.68

151 Data are presented as % of the total cohort. Abbreviations: VT,
152 ventricular tachycardia; VFib, ventricular fibrillation; PEA, pulseless
153 electrical activity.

154

155 Major causes of cardiac arrest were STEMI and NSTEMI in 111/517
156 (21.5%) and 141/517 (27.3%) of all patients, respectively (Table 3).

157 **Table 3 Cause of cardiac arrest in patients with and without**
158 **immediate CAG before and after propensity score analysis**

	Entire population			Matched population		
	Immediate CAG n=385	No immediate CAG n=134	p-value	Immediate CAG n=87	No immediate CAG n=88	p-value
STEMI	106/383 (27.7)	5/134 (3.7)	<0.001	24/86 (27.9)	3/88 (3.4)	<0.001
NSTEMI	127/383 (33.2)	14/134 (10.5)	<0.001	29/86 (33.7)	9/88 (10.2)	0.01
Bradycardia	4/383 (1.0)	0/134 (0.0)	0.24	1/86 (1.2)	0 (0.0)	0.31
Cardiomyopathy	58/383 (15.1)	9/134 (6.7)	0.01	13/86 (15.1)	7/88 (8.0)	0.14
Hemorrhage	6/383 (1.6)	5/134 (3.7)	0.14	2/86 (2.3)	4/88 (4.6)	0.42
Metabolic disorderb	5/383 (1.3)	2/134 (1.5)	0.90	1/86 (1.2)	2/88 (2.3)	0.57
Pulmonary embolism	5/383 (1.3)	12/134 (9.0)	<0.001	2/86 (2.3)	7/88 (8.0)	0.09
Respiratory failure	16/383 (4.2)	32/134 (23.9)	<0.001	1/86 (1.2)	22/88 (25.0)	<0.001
Miscellaneous	56/383 (14.6)	55/134 (41.0)	<0.001	13/86 (15.1)	34/88 (38.6)	0.01

159 Data are presented as % of the total cohort.

160

161 In the 385 patients undergoing immediate CAG, a culprit lesion was
162 identified in 247/385 (64.2%) (Fig 1A and 1B).

163

164 **Figure 1A+1B Patient flow diagrams**

165

166 With regards to pre-hospital management, 336/479 (70.1) of the patients
167 received bystander CPR and the arrest was witnessed in 381/487 (78.2).
168 Arrest at home was found in 298/507 (58.8) of the patients. Mean time
169 to ROSC was 14.4 ± 11.3 minutes in the immediate CAG group and 12.9

170 ± 11.6 in patients without with no significant difference between patients
171 undergoing immediate CAG or not (Table 4).
172

173 **Table 4 Preclinical and hospital data of patients with and without**
 174 **immediate CAG after propensity score analysis**

Entire population					Matched population	
	Immediate CAG n=385	No immediate CAG n=134	p-value	Immediate CAG n=87	No immediate CAG n=88	p-value
Arrest data						
Bystander CPR	259/355 (73.0)	77/124 (62.1)	0.02	55/80 (68.8)	53/82 (64.6)	0.58
ROSC at admission	327/384 (85.2)	86/133 (64.7)	<0.001	66/87 (75.9)	63/88 (71.6)	0.52
Time to ROSC (min)	14.4 ± 11.3	12.9 ± 11.6	0.23	18.7 ± 14.9	14.1 ± 12.4	0.07
Daytime presentation	330/384 (85.9)	106/131 (80.9)	0.17	73/87 (83.9)	78/88 (88.6)	0.36
Witnessed arrest	295/364 (81.0)	86/123 (69.9)	0.01	68/82 (82.9)	68/85 (80.0)	0.63
Arrest at home	207/380 (54.5)	91/127 (71.7)	0.01	61/85 (71.8)	60/87 (69.0)	0.69
Hospital data						
pH-value in first BGA	7.1 ± 0.2	7.0 ± 0.2	<0.001	7.09 ± 0.24	7.02 ± 0.21	0.03
pO ₂ in first BGA (mmHg)	191.8 ± 145.2	168.0 ± 137.3	0.08	224.4 ± 172.9	170.6 ± 142.8	0.14
Lactate in first BGA (mmol/l)	8.8 ± 4.8	12.4 ± 8.2	<0.001	9.6 ± 5.2	11.5 ± 6.6	0.17
NSE after 48 hours (ng/ml)	74.4 ± 104.3	127.9 ± 145.0	0.06	92.5 ± 127.6	98.4 ± 112.8	0.68

175 Data are presented as n (%) or as mean ± SD unless indicated

176 otherwise. Abbreviations: CAG, coronary angiography; ROSC, return of

177 spontaneous circulation; CPR, cardiopulmonary resuscitation; EMS,
178 emergency medical service; BGA, blood gas analysis; NSE, neuron-
179 specific enolase; CPC, cerebral performance category; TTM, targeted
180 temperature management.

181

182 Coronary angiographic and intervention findings are shown in Table 5.

183

184 **Table 5 Coronary angiographic and intervention findings in**
185 **patients with immediate CAG before and after propensity score**
186 **analysis**

Entire population		Matched population
n=385		n=88
Single-vessel disease	64/385 (16.6)	21/87 (24.1)
Double-vessel disease	81/385 (21.0)	17/87 (20.0)
Triple-vessel disease	148/385 (38.4)	27/87 (31.0)
Overall culprit lesions	247/385 (64.2)	58/87 (66.7)
Culprit lesion LAD	115/247 (46.6)	32/87 (36.8)
Culprit lesion LCx	45/247 (18.2)	9/87 (10.3)
Culprit lesion RCA	87/247 (35.2)	17/87 (19.5)
Immediate PCI of culprit lesion	244/385 (63.4)	57/87 (65.5)
PCI of more than culprit lesion	32/385 (8.3)	6/87 (6.9)
Other significant lesions not treated in the emergency setting	62/384 (16.2)	11/87 (12.6)

187 Data are presented as n (%) or as mean \pm SD. Abbreviations: EF,
188 ejection fraction; LAD, left anterior descending artery; LCx, left

189 circumflex artery; RCA, right coronary artery; PCI, percutaneous
190 coronary intervention; CAD, coronary artery disease.

191

192 With regards to pre-hospital management, 336/479 (70.1) of the patients
193 received bystander CPR and the arrest was witnessed in 381/487 (78.2).
194 Arrest at home was found in 298/507 (58.8) of the patients. Mean time
195 to ROSC was 14.4 ± 11.3 minutes in the immediate CAG group and 12.9
196 ± 11.6 in patients without with no significant difference between patients
197 undergoing immediate CAG or not (Table 4).

198 Patients in the immediate CAG group had significant higher pH-values
199 and lower lactate levels in the first blood gas analysis (7.11 ± 0.20 vs.
200 7.00 ± 0.21 , $p < 0.001$ and 8.8 ± 4.8 mmol/l vs. 12.4 ± 8.2 mmol/l,
201 $p < 0.001$).

202 Overall 30-days-survival of the 519 patients that were included in the
203 study was 50.1% compared to a 1-year-survival of 37.6%. 30-days-
204 survival as well as survival after one year was significantly better in the
205 immediate CAG group

206 [221/370 (59.7) vs. 30/131 (22.9), $p < 0.001$] and [161/341 (47.2) vs.
207 14/124 (11.3), $p > 0.001$] than in patients without.

208 Neurological function was evaluated at hospital discharge. In our cohort,
209 good neurological function (CPC 1&2) was found in 164/299 patients
210 (54.8%) at discharge (Table 6).

211

212 **Table 6 Cerebral Performance Category Score 1&2 at discharge in**
213 **patients with immediate and no immediate CAG before and after**
214 **propensity score analysis**

Entire population			Matched population		
Immediate CAG n=385	No immediate CAG n=134	p-value	Immediate CAG n=87	No immediate CAG n=88	p-value
151/261 (57.9)	13/38 (34.2)	0.01	23/50 (46.0)	10/28 (35.7)	0.38

215 Data are presented as n (%). Abbreviations: CPC, cerebral performance
216 category.

217

218 Matched population

219 After applying PS matching to reduce confounding factors arising from
220 differential selection of patients undergoing immediate CAG or not, two
221 comparable cohorts were generated to identify predicting factors
222 associated with survival after OHCA.

223 By multivariate analysis, we found ROSC at admission (OR, 6.54;
224 95%CI, 2.03-21.02) and immediate CAG (OR, 2.41; 95%CI, 1.04-5.55)
225 were predictors for better 30-days-survival (Fig 2) and 1-year-survival
226 [(OR, 4.49; 95%CI, 1.55-12.98) (OR, 2.54; 95%CI, 1.06-6.09)] (Fig 3).

227

228 **Figure 2 Forest plot with Odds ratios and 95% confidence**
229 **intervals of factors associated with 30-days-survival after**
230 **propensity score-matched analysis**

231 **Figure 3 Forest plot with Odds ratios and 95% confidence**

232 **intervals of factors associated with 1-year-survival after**

233 **propensity score-matched analysis**

234

235 Discussion

236 Out-of-hospital cardiac arrest (OHCA) is a leading cause of death in
237 developed countries. Both, resuscitation and intensive care
238 management of patients after OHCA have notably improved over the
239 recent years [6,8,13,14].

240 Although OHCA is mostly caused by acute myocardial infarction, it is
241 unknown whether early coronary angiography is associated with
242 improved survival in all patients after OHCA.

243 Our study represents one of the largest cohorts analyzing patients after
244 out-of-hospital arrest with long-term survival and coronary angiographic
245 data, collected at 2 centers specialized in coronary intervention and
246 post-resuscitation care. It was our aim to characterize this extremely
247 heterogeneous and critically ill population especially with regards to the
248 impact of immediate coronary angiography. In this regard, the most
249 salient findings can be described as follows:

250 → Of the 519 patients admitted to the 2 participating centers, 74.1% of
251 the study population underwent emergency coronary angiography.

252 → 233/383 patients (60.8%) in the immediate CAG group were
253 diagnosed with STEMI (n=106) or NSTEMI (n=127) after having
254 completed diagnostic work-up including coronary angiography versus
255 19/134 patients (14.2%) in the no immediate CAG group.

256 → In our cohort, good neurological function at discharge, defined as
257 CPC 1 or 2, was achieved in 164/299 (54.8%)

258 → 30-days-survival and survival after one year was significantly higher
259 among patients undergoing immediate CAG compared to patients
260 without immediate CAG [221/370 (59.7) vs. 30/131 (22.9), p<0.001] and
261 [161/341 (47.2) vs. 14/124 (11.3), p> 0.001]
262 → In our cohort, good neurological function at discharge, defined as
263 CPC 1 or 2, was achieved in 164/299 (54.8%)
264 → By multivariate analysis after PS matching, we identified ROSC at
265 admission and immediate CAG as independent predictive factors for 30-
266 days-survival and 1-year-survival in patients with OHCA
267 *Influence of study population and immediate coronary angiography on*
268 *survival*
269 Our study is composed of patients presenting to 2 tertiary centers
270 specialized in cardiac care with capability for primary PCI and post-
271 resuscitation care after OHCA. Consequently, pre-selection of patients
272 by on-site emergency physicians and paramedical staff is very likely to
273 impact significantly on overall findings and survival [15]. Additional
274 selection bias arises from early triage after patient admission, where
275 those with ST-segment elevation and other ECG abnormalities
276 suggestive of ischemia are likely to undergo immediate CAG. To reduce
277 these confounding factors, we performed propensity score regression
278 analysis, which confirmed the survival benefit of patients undergoing
279 immediate CAG. Along these lines, the overall survival rate of 50.1% in
280 our study further supports the previously encountered phenomenon that
281 triage into early angiographic evaluation in dedicated cardiac care
282 centers may help improve outcome of these critically ill patients.

283 Previous studies suggested a high incidence of coronary artery disease
284 in patients without obvious extracardiac cause of arrest, proposing early
285 coronary angiography to be performed in most patients [8,16,17].

286 Corroborated by our findings, these results emphasize the relevance of
287 appropriate patient selection for an invasive diagnostic strategy [8,18].

288 *Factors impacting on neurological outcome and survival*

289 Good neurological function (defined as CPC 1&2) at discharge was
290 achieved in 164/299 (54.8) of the patients, comparable to previous
291 studies [19-21], with improved neurological outcome for patients
292 undergoing immediate CAG. While previous studies addressing this
293 association have already suggested a favorable effect of early
294 angiographic assessment in post-resuscitation care, most, if not all
295 studies including ours are hampered by non-randomized and
296 retrospective design, increasing the chance to receive immediate CAG
297 in patients with obvious ECG abnormalities and favorable OHCA
298 resuscitation response including those with early ROSC, bystander CPR
299 and witnessed arrest. Subsequently, patients undergoing immediate
300 CAG are at higher likelihood for a favorable neurological outcome
301 compared to those patients where early triage during patient
302 presentation is influenced by unfavorable OHCA resuscitation response.

303 Nevertheless, we and other authors have shown that culprit coronary
304 lesions are detected in a large proportion of patients undergoing
305 immediate CAG providing an opportunity to improve neurological
306 outcome by primary PCI and by using propensity matching, we aimed to
307 reduce the inherent selection bias of observational studies.

308 Patients with immediate CAG had significantly more often bystander
309 CPR and a witnessed arrest, which is consistent with more shockable
310 rhythms in this group leading to ROSC at admission, which we have
311 shown to be predictive of favorable outcome [22,23]. In line with this, our
312 findings are congruent with those of Stiell et al. in such that bystander
313 resuscitation is a major factor of survival and neurological outcome after
314 cardiac arrest. In addition, the wide-spread availability of automated
315 external defibrillators (AEDs) has recently been shown to be associated
316 with favorable outcome, which highlights the importance of prehospital
317 resuscitation quality [14,24].

318 In our study, we observed an overall survival rate of 50.1%, which is in
319 agreement with a priori selection of best candidates for early CAG.
320 Furthermore, it was performed at 2 centers, where prehospital
321 management of OHCA is performed according to standardized protocols
322 with great experience in the treatment of acute coronary syndrome and
323 cardiac arrest, which might have contributed to better survival rates than
324 elsewhere and was recently pointed out by Soholm et al [15].

325 In our cohort, 30-days-survival was greater among patients with
326 immediate coronary angiography compared to those without. These
327 results are similar to those shown in the meta-analysis by Camuglia et
328 al. with the limitation that they only considered survival to hospital
329 discharge [21]. Furthermore, whether immediate CAG with subsequent
330 PCI is associated with improved outcome or whether comorbidity and
331 yet unidentified factors prevail to determine outcome in this critically-ill

332 patient population remains to be investigated in dedicated prospective
333 trials.

334 *Limitations*

335 Our observations are obviously limited by the non-randomized,
336 retrospective design of the study. Outcomes in the heterogenous
337 population of patients after OHCA are likely impacted by selection and
338 best practice of treating physicians.

339

340 **Conclusions**

341 Our findings support that triage for immediate coronary angiography as
342 part of post-resuscitation care facilitated by rapid interdisciplinary
343 decision-making is of major importance. Furthermore, we confirmed the
344 favorable impact of optimal prehospital management with improved
345 outcome after witnessed arrest probably resulting in ROSC at
346 admission.

347 Immediate coronary angiography in cardiac arrest survivors appears to
348 be associated with improved survival and may enable therapeutic
349 algorithms, particularly identifying those who may benefit from acute
350 revascularization therapy.

351

352 **Declaration of conflicting interests**

353 The Authors declare that there is no conflict of interest.

354

355 **Funding statement**

356 This research received no specific grant from any funding agency in
357 the public, commercial or not-for-profit sectors.

358

359 **References**

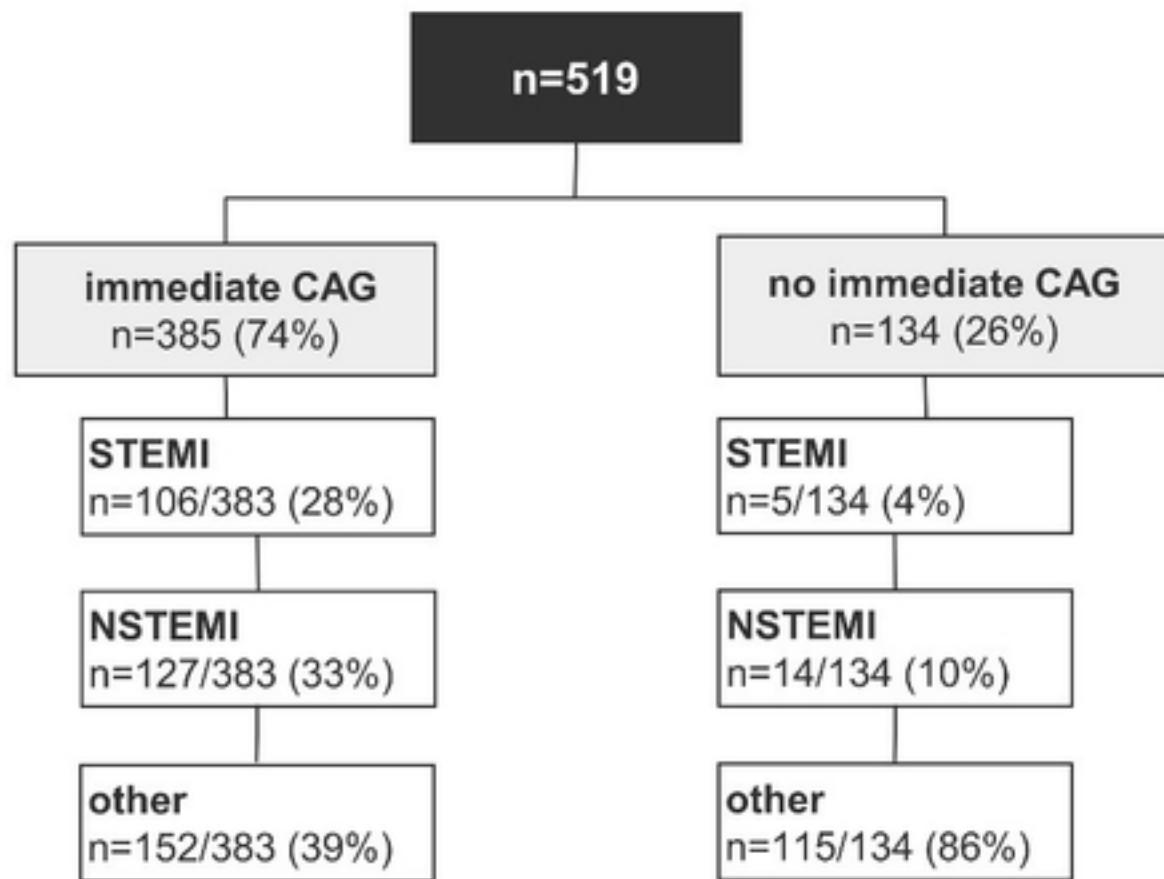
- 360 [1] Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-
361 treated out-of-hospital cardiac arrest in Europe. *Resuscitation*
362 2005;67:75-80.
- 363 [2] Eisenberg MS, Mengert TJ. Cardiac resuscitation. *N Engl J Med*
364 2001;344:1304-13.
- 365 [3] Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of
366 out-of-hospital cardiac arrest and survival rates: Systematic review of 67
367 prospective studies. *Resuscitation* 2010;81:1479-87.
- 368 [4] Bunch TJ, White RD, Gersh BJ, Meverden RA, Hodge DO, Ballman
369 KV, et al. Long-term outcomes of out-of-hospital cardiac arrest after
370 successful early defibrillation. *N Engl J Med* 2003;348:2626-33.
- 371 [5] Grubb NR, Fox KAA, Elton RA. In-hospital mortality after out-of-
372 hospital cardiac arrest. *The Lancet* 1995;346:417-21.
- 373 [6] Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge
374 G, et al. Treatment of comatose survivors of out-of-hospital cardiac
375 arrest with induced hypothermia. *N Engl J Med* 2002;346:557-63.
- 376 [7] Kern KB, Lotun K, Patel N, Mooney MR, Hollenbeck RD, McPherson
377 JA, et al. Outcomes of Comatose Cardiac Arrest Survivors With and
378 Without ST-Segment Elevation Myocardial Infarction: Importance of
379 Coronary Angiography. *JACC Cardiovasc Interv* 2015;8:1031-40.
- 380 [8] Dumas F, Cariou A, Manzo-Silberman S, Grimaldi D, Vivien B,
381 Rosencher J, et al. Immediate percutaneous coronary intervention is
382 associated with better survival after out-of-hospital cardiac arrest:

383 insights from the PROCAT (Parisian Region Out of hospital Cardiac
384 ArresT) registry. *Circ Cardiovasc Interv* 2010;3:200-7.

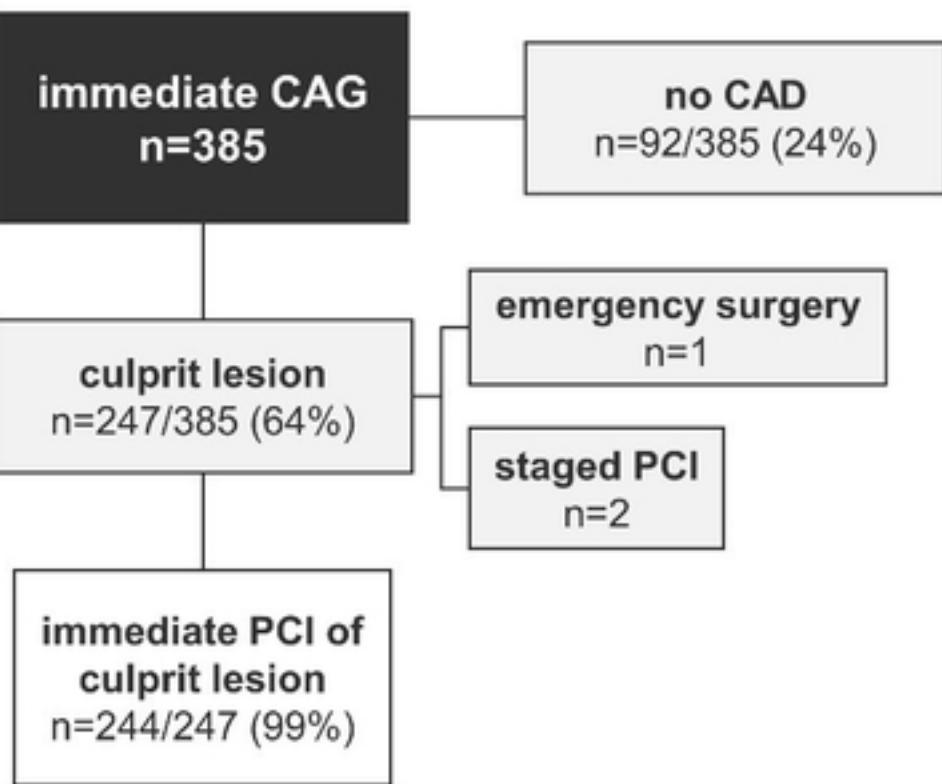
385 [9] Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, et
386 al. ESC Guidelines for the management of acute myocardial infarction
387 in patients presenting with ST-segment elevation. *Eur Heart J*
388 2012;33:2569-619.

389 [10] Anyfantakis ZA, Baron G, Aubry P, Himbert D, Feldman LJ, Juliard
390 JM, et al. Acute coronary angiographic findings in survivors of out-of-
391 hospital cardiac arrest. *Am Heart J* 2009;157:312-8.

392 [11] Jacobs I, Nadkarni V, Bahr J, Berg RA, Billi JE, Bossaert L, et al.
393 Cardiac arrest and cardiopulmonary resuscitation outcome reports:
394 update and simplification of the Utstein templates for resuscitation
395 registries. A statement for healthcare professionals from a task force of
396 the international liaison committee on resuscitation (American Heart
397 Association, European Resuscitation Council, Australian Resuscitation
398 Council, New Zealand Resuscitation Council, Heart and Stroke
399 Foundation of Canada, InterAmerican Heart Foundation, Resuscitation
400 Council of Southern Africa). *Resuscitation* 2004;63:233-49.


401 [12] Abramson NS, Detre K, Bradley K, Kelsey SF, Ricci E, Safar P, et
402 al. Impact evaluation in resuscitation research: discussion of clinical
403 trials. *Crit Care Med* 1988;16:1053-8.

404 [13] Stiell IG, Wells GA, Field B, Spaite DW, Nesbitt LP, De Maio VJ,
405 et al. Advanced Cardiac Life Support in Out-of-Hospital Cardiac Arrest.
406 *New England Journal of Medicine* 2004;351:647-56.


- 407 [14] Blom MT, Beesems SG, Homma PC, Zijlstra JA, Hulleman M, van
408 Hoeijen DA, et al. Improved survival after out-of-hospital cardiac arrest
409 and use of automated external defibrillators. *Circulation* 2014;130:1868-
410 75.
- 411 [15] Soholt H, Kjaergaard J, Bro-Jeppesen J, Hartvig-Thomsen J,
412 Lippert F, Kober L, et al. Prognostic Implications of Level-of-Care at
413 Tertiary Heart Centers Compared With Other Hospitals After
414 Resuscitation From Out-of-Hospital Cardiac Arrest. *Circ Cardiovasc
415 Qual Outcomes* 2015;8:268-76.
- 416 [16] Strote JA, Maynard C, Olsufka M, Nichol G, Copass MK, Cobb LA,
417 et al. Comparison of Role of Early (<6 Hours) to Later (>6 Hours) or No
418 Cardiac Catheterization Following Resuscitation From Out-of-hospital
419 Cardiac Arrest. *The American Journal of Cardiology* 2012;109:451-4.
- 420 [17] Hollenbeck RD, McPherson JA, Mooney MR, Unger BT, Patel NC,
421 McMullan PW, Jr., et al. Early cardiac catheterization is associated with
422 improved survival in comatose survivors of cardiac arrest without
423 STEMI. *Resuscitation* 2014;85:88-95.
- 424 [18] Zanuttini D, Armellini I, Nucifora G, Carchietti E, Trillò G, Spedicato
425 L, et al. Impact of Emergency Coronary Angiography on In-Hospital
426 Outcome of Unconscious Survivors After Out-of-Hospital Cardiac Arrest.
427 *The American Journal of Cardiology* 2012;110:1723-8.
- 428 [19] Wibrandt I, Norsted K, Schmidt H, Schierbeck J. Predictors for
429 outcome among cardiac arrest patients: the importance of initial cardiac
430 arrest rhythm versus time to return of spontaneous circulation, a
431 retrospective cohort study. *BMC Emergency Medicine* 2015;15:3.

- 432 [20] Rittenberger JC, Raina K, Holm MB, Kim YJ, Callaway CW.
433 Association between Cerebral Performance Category, Modified Rankin
434 Scale, and discharge disposition after cardiac arrest. Resuscitation
435 2011;82:1036-40.
- 436 [21] Camuglia AC, Randhawa VK, Lavi S, Walters DL. Cardiac
437 catheterization is associated with superior outcomes for survivors of out
438 of hospital cardiac arrest: review and meta-analysis. Resuscitation
439 2014;85:1533-40.
- 440 [22] Adrie C, Cariou A, Mourvillier B, Laurent I, Dabbane H, Hantala F,
441 et al. Predicting survival with good neurological recovery at hospital
442 admission after successful resuscitation of out-of-hospital cardiac arrest:
443 the OHCA score. Eur Heart J 2006;27:2840-5.
- 444 [23] Kragholm K, Wissenberg M, Mortensen RN, Hansen SM, Malta
445 Hansen C, Thorsteinsson K, et al. Bystander Efforts and 1-Year
446 Outcomes in Out-of-Hospital Cardiac Arrest. N Engl J Med
447 2017;376:1737-47.
- 448 [24] Stiell I, Nichol G, Wells G, De Maio V, Nesbitt L, Blackburn J, et al.
449 Health-related quality of life is better for cardiac arrest survivors who
450 received citizen cardiopulmonary resuscitation. Circulation
451 2003;108:1939-44.
- 452 [25] Bagai A, McNally BF, Al-Khatib SM, Myers JB, Kim S, Karlsson L,
453 et al. Temporal differences in out-of-hospital cardiac arrest incidence
454 and survival. Circulation 2013;128:2595-602.
- 455 [26] Matsumura Y, Nakada TA, Shinozaki K, Tagami T, Nomura T,
456 Tahara Y, et al. Nighttime is associated with decreased survival and

- 457 resuscitation efforts for out-of-hospital cardiac arrests: a prospective
458 observational study. Crit Care 2016;20:141.

1A

1B

Figure 1A+1B

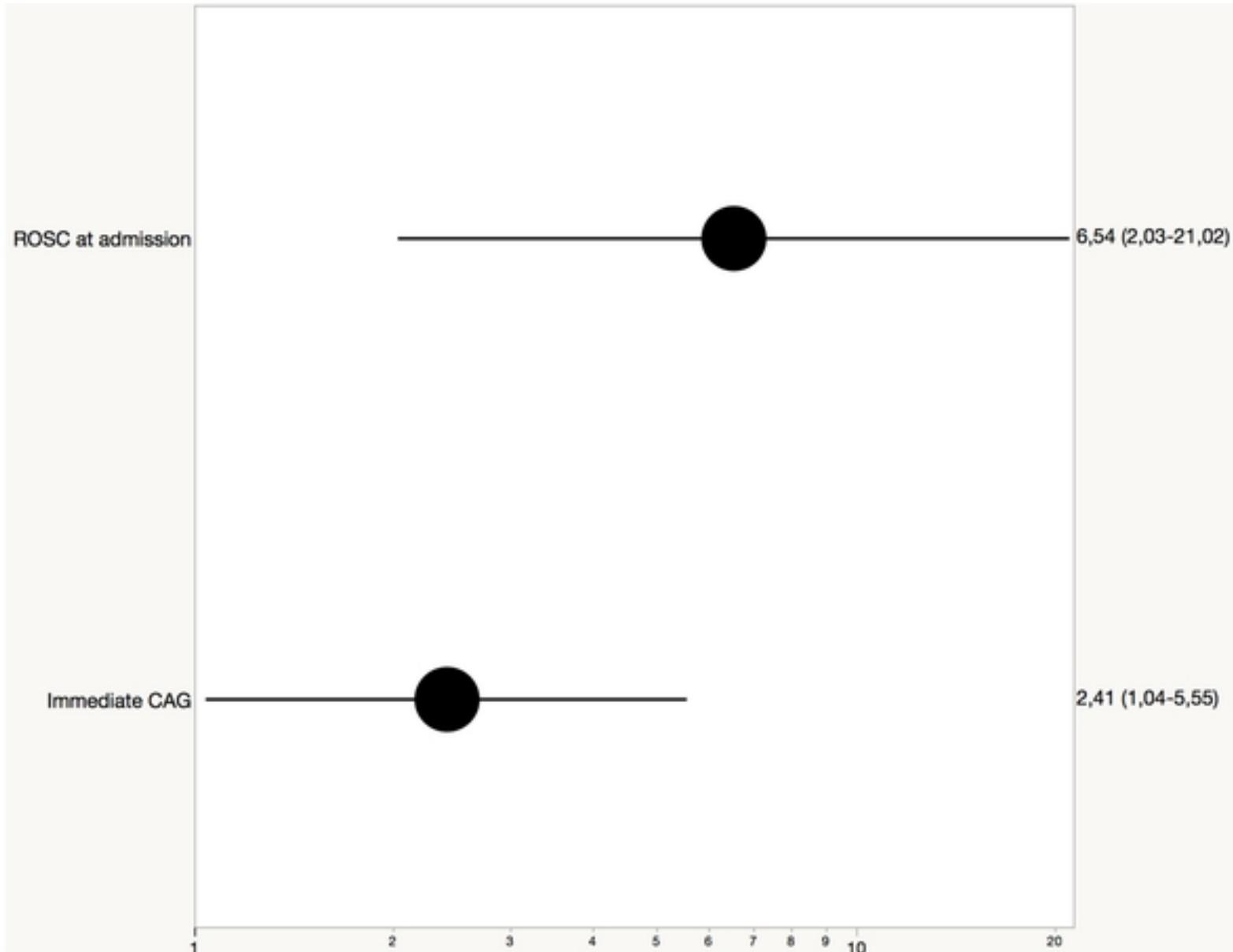


Figure 2

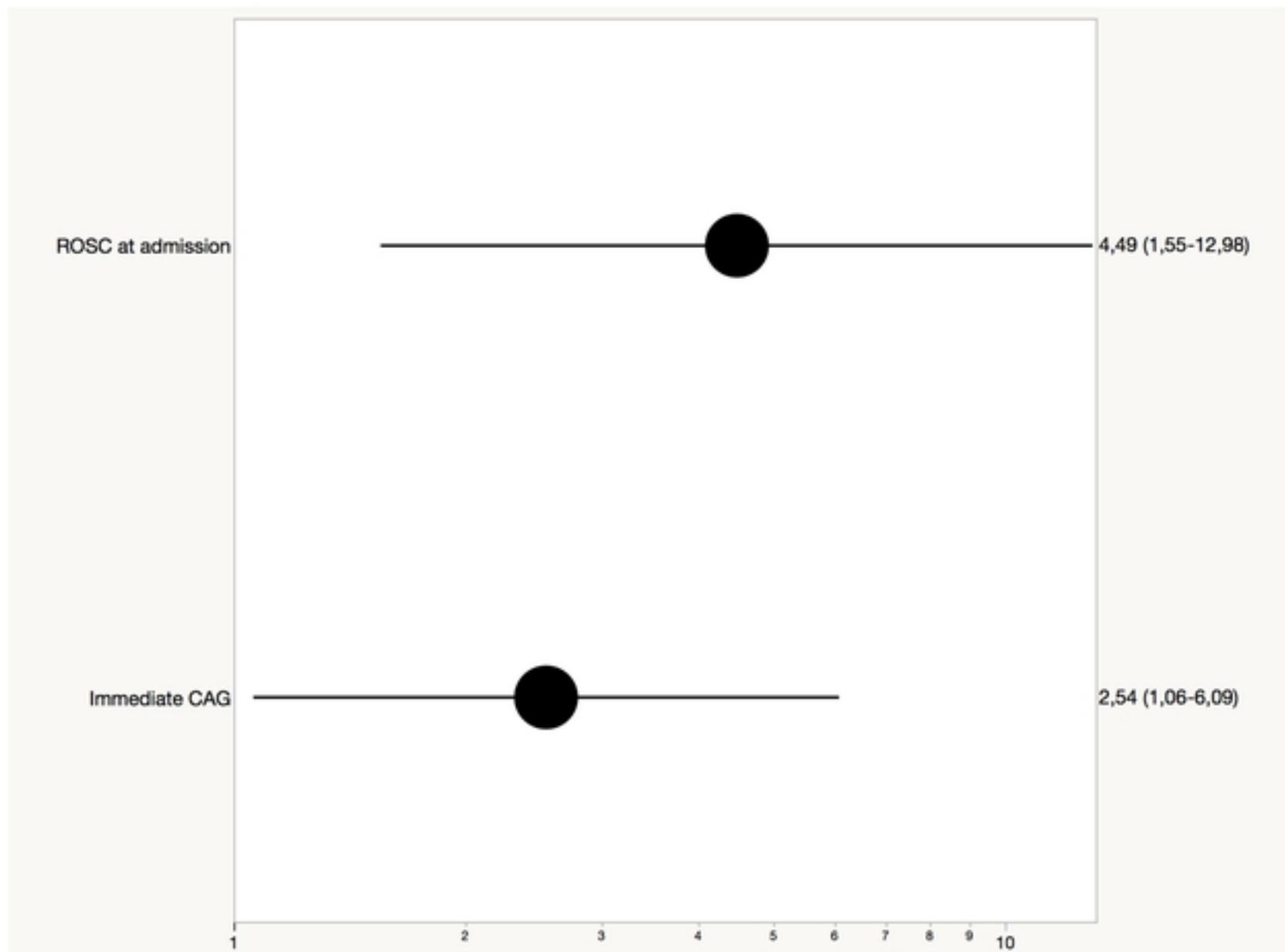


Figure 3