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Abstract

The deficiency of macro (N, P, S, Ca, Mg and K) and micro (Zn, Cu, B, Mo, Cl, Mn and Fe)
minerals has a major effect on plant development. The lack of some nutrient minerals especially of
nitrogen, potassium, calcium, phosphorus and iron is a huge problem for agriculture and early
warning and prevention of the problem will be very useful for agro-industry. Methods currently
used to determine nutritional deficiency in plants are soil analysis, plant tissue analysis, or
combined methods. But these methods are slow and expensive. In this study, a new method for
determining nutrient deficiency in plants based on the prompt fluorescence of chlorophyll a is
proposed. In this paper bean plants are grown on a complete nutrient solution (control) were
compared with those grown in a medium, which lacked one of these elements - N, P, K, Ca and Fe.
In this article the mineral deficiency in nutrient solution was evaluated by the stress response of the
plants estimated by leaves photosynthetic activity. The photosynthetic activity was estimated by
analysis of the chlorophyll fluorescence using JIP-test approach that reflects functional activity of
Photosystems I and Il and of electron transfer chain between them, as well as the physiological state
of the photosynthetic apparatus as whole. Next the fluorescence transient recorded from plants
grown in nutrient solution with deficiency of N, P, K, Ca and Iron, as an input data in Artificial
Neural Network was used. This ANN was train to recognise deficiency of N, P, K, Ca and Iron in
bean plants. The results obtained were of high recognition accuracy. The ANN of fluorescence
transient was presented as a possible approach to identify/predict the nutrient deficiency using the
fast chlorophyll fluorescence records.

Introduction

To achieve their life cycle and physiological functions, plants need chemical elements such
as N, P, K, Ca, Mg, S, Fe, Mn, Zn, Cu, CIl, B and Mo. The elements (N, P, K, Ca, Mg, S) are
required in larger quantities (>1000 mg/kg dry matter) and are called macronutrients. Other
elements - iron and the elements Mn, Zn, Cu, Cl, B and Mo are required in very small amounts
(<100 mg/kg dry matter) and are called micronutrients. The pH levels in soils also affect the
availability of nutrients for plants. All minerals are available for plants in the pH range of 5.5-6.52.

1 Khan Towhid Osman, “Plant Nutrients and Soil Fertility Management,” in Soils: Principles, Properties and
Management, ed. Khan Towhid Osman (Dordrecht: Springer Netherlands, 2013), 129-59,
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2 R. E. LUCAS and J. F. DAVIS, “RELATIONSHIPS BETWEEN PH VALUES OF ORGANIC SOILS AND
AVAILABILITIES OF 12 PLANT NUTRIENTS,” Soil Science 92, no. 3 (1961),
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In this paper we will investigate how deficiency of N, P, K, Ca and Fe in Phaseolus vulgaris
will be determine with Artificial Intelligence algorithm.

Nitrogen is the most important mineral for plants and its deficiency is crucial for plant
vitality. Nitrogen is involved in the building of amino acids and nucleic acids, is important for
biochemistry of co-enzymes, photosynthetic pigments and polyamines®. The chloroplast proteins
contain almost 75% of the nitrogen that exists in the leaves of the plants and about 27% of this
utilised in Rubisco®. In the chloroplast the nitrogen is associated with the light harvesting apparatus:
the major integral protein complexes, including photosystem | (PSl), photosystem 11 (PSI1), electron
transport chain, peripheral proteins and ATF-synthase.

Nitrogen deficiency lead to reduction of plant size, because of breakdown Rubisco capacity
for CO: fixation that leads to a decrease in photosynthesis rate and inhibits plant growth®. In plants
with nitrogen starvation also there are decrease in chlorophyll content®. Furthermore, PSII activity
in plants with nitrogen deficiency is interrupted at each level. This lead to decrease of electron
transport rate through the electron transport chain in the thylakoid membrane’.

Phosphorus is another crucial macroelement for plant growth. It is involved in the
composition of ATP, DNA and RNA,; the phospholipids constituting the cell membranes; of the
sugar-phosphate intermediates; in photosynthesis and breathing. This element is involved in
virtually all metabolic processes. It plays an important role in the assimilation of carbon and
nitrogen, in energy processes and lipid metabolism.

Phosphorus deficiency in plants lead to retarded growth and low shoot/root dry matter ratio.
Also P-deficiency affected the development of reproductive organs and decreased number of
flowers as well as the formation of fruits and seeds?®.

The deficiency of P affect carbon metabolism in the plants, because orthophosphate (Pi ) is a
major regulator of this kind of metabolic processes. Low levels of phosphorus reduce CO:2
assimilation and this lead to reduction of photosynthetic electron transport rate®.

Potassium (K*) is very important macronutrient for plant and it is involved in plant
development and productivity. The potassium ion is important for photosynthesis, osmoregulation,
enzyme activation, protein synthesis, ion homeostasis. The first visual symptoms of potassium
deficiency is chlorosis, which then develops into necrosis. The potassium ions are not involved
directly in photosynthetic metabolism, but K-deficiency strognly affect photosynthesis because
limitation of potassium lead to decrease of ATP synthesis, reduction of CO2 assimilation®. Also K-
deficiency lead to reduction of photosynthesis because of low chlorophyll content, poor chloroplast

3 Frans JM Maathuis, ‘“Physiological Functions of Mineral Macronutrients,” Physiology and Metabolism 12, no. 3
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ultrastructure, and restricted photoassimilates transport!!. In additon potassium play a crucial role
for plant resistance of pest and disease??.

Calcium deficiency is asociated with poor development of all plants, leaf necrosis and
deformation. Calcium is important for plant metabolism and regulate plant structure. Calcium ion
plays crucial role in membrane structure and its functionality, especially for membrane
permeability’®. Ca ions are involved in the regulation of enzyme synthesis (protein kinases or
phosphatases), in the synthesis of new cell walls and this is mean that Ca-deficiency will be very
harmful for the plants. Calcium deficiency disrupt plant photosynthesis because Ca is a part of in
Mn4CaOs -cluster.

Iron deficiency causes chlorosis due to the reduced amount of chlorophyll, and leaves
without Fe are smaller than normal*4. The photosynthesis is a sensitive process for lack of the iron
because this element is important for chlorophyll synthesis and it is participates in Fe—S proteins
and heme proteins ferredoxin and cytochromes in photosynthetic electron transport chain. Also Fe is
represented in the cytochrome b559 and like non-heme Fe in the PS Il acceptor side and in the
stromal part of core proteins between quinones Qa and Qg*°.

Plants emit several kinds of light: prompt fluorescence (PF), delayed fluorescence (DF),
thermoluminescence and phosphorescence. For aims of our research we use chlorophyll
fluorescence signals - PF and DF, emitted by plants as a data for our Artificial Intelligence
algorithm. We chose chlorophyll fluorescence because this techniques appear to be more sensitive
then other techniques for the study of plant physiology under stress conditions®®. The chlorophyll
fluorescence is a rapid, non-destructive method for diagnostic of plant stress conditions, especially
measurement and record of fluorescence induction Kkinetics data. At this moment there exist two
methods for measurement of the prompt chlorophyll fluorescence - a PF signal produced following
a pulse-amplitude-modulated excitation and a PF signal emitted during a strong continuous actinic
excitation’. In our experiments, we used the second way to measure PF signals. The fluorescence
rise during the first second of illumination from the initial (Fo) to the maximal (Fm) fluorescence
value, The nomenclature of the kinetic induction curves of the fast (up to 1-2 s) Chl a fluorescence
transient is OJIPS and the analysis of these curves is called JIP test, which are based on the theory
of energy fluxes in biomembranes!®. From PF signals and the indction curves are developed
different parameters which are linked with the different steps and phases of the PF transient and the
redox states of PSII and respectively with the efficiencies of electron transfer between PSII and PSI.
This make the JIP test analysis and parameters a possible tool for study of nutrient content of the

11 Duli Zhao, D.M. Oosterhuis, and C.W. Bednarz, “Influence of Potassium Deficiency on Photosynthesis,
Chlorophyll Content, and Chloroplast Ultrastructure of Cotton Plants,” Photosynthetica 39, no. 1 (March 1, 2001):
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012-9780-3.
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plants. ¥, The There are some articles that show that there is a good correlation between fast Chl a
fluorescence and nutrient deficiency. In other words, fluorescence of the chlorophyll a is a good
indicator of the nutritional status of plants®®?!?2, Because of the difference in induction curves
emitted by plants with different nutritional status, it is possible to use data from the OJIPS curves
and parameters as an Artificial Neural Network (ANN) input data. In this study we use ANN with
backpropagation of errors?®. Artificial Neural Network is one of the most important tools in modern
science. In this paper we will show how ANN could be used for recognition of nutrient deficieny of
plants.

The purpose of this study is to investigate how the kinetic induction curves and JIP test
parameters change due to nutrient deficiency in plants and use these parameters and curves as ANN
input data to determine nutritional status in plants. In this paper we design ANN based on
registration of PF signals to develop a tool for recognition of missing nutrient of plant.

Materials and methos
Plant material

Bean plants (Phaseolus vulgaris cv. Cheren Starozagorski) was grown in in 1 dm 3 dark
glass pots filled with a modified Hoagland nutrient solution (see tables 1, 2 and 3 for the
components of solution). Solutions were supplied with oxigen by electrical pumps and replaced
every 2 days. The pH of the nutrient mediums was about 5.0 for all modified solutions. The average
temperature for day/night was 26/18 °C, respectively, relative humidity was 50-60%, and the
photoperiod for the day/night cycle was 16/8 h. The maximum photosynthetically active radiation
was about 4000 umol (photons) m s "%, After a week of growth in full Hoagland solution the plants
were moved to stressed nutrient mediums. 14 days after the stress application (21 days after
emergence) prompt chlorophyll a fluorescence (PF) measurements were done on 9 fully developed
leaves for each treatment.

Table 1
Nonmodified Hoagland solution
Compound Molecular Concentration | Volume of stock Elemen | Final

weight of stock solution per liter |t concentration

solution of final solution of element
Macronutrients | g mol*? gL mi mM ppm
KNOs 101.10 101.10 6.0 N 16 224
K 6 235

Ca 236.16 236.16 4.0 Ca 4 160
(NOs),-4H,0
NH4H,PO, 115.08 115.08 2.0 P 2 62
MgSQ,-7H,0 246.48 246.49 1.0 S 1 32

19 Strasser, Tsimilli-Michael, and Srivastava.

20 V ALEKSANDROV et al., “Deficiency of Some Nutrient Elements in Bean and Maize Plants Analyzed by
Luminescent Method,” Bulgarian Journal of Agricultural Science Supplement 1 (2014): 24-30.

21 Hazem M. Kalaji et al., “ldentification of Nutrient Deficiency in Maize and Tomato Plants by in Vivo Chlorophyll a
Fluorescence Measurements,” Photosynthesis Research for Sustainability 81 (August 1, 2014): 16-25,
https://doi.org/10.1016/j.plaphy.2014.03.029.

22 M.D. Cetner et al., “Effects of Nitrogen-Deficiency on Efficiency of Light-Harvesting Apparatus in Radish,” Plant
Physiology and Biochemistry 119 (October 1, 2017): 81-92, https://doi.org/10.1016/j.plaphy.2017.08.016.

23 Daniel Svozil, Vladimir Kvasnicka, and Jifi Pospichal, “Introduction to Multi-Layer Feed-Forward Neural
Networks,” Chemometrics and Intelligent Laboratory Systems 39, no. 1 (November 1, 1997): 43-62,
https://doi.org/10.1016/S0169-7439(97)00061-0.
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Mg 1 24
Micronutrients | g mol? gL? ml uM ppm
KCI 74.55 1.864 2.0 Cl 50 1.77
H3BOs; 61.83 0.773 2.0 B 25 0.27
MnSO,-H,0 169.01 0.169 2.0 Mn 2.0 0.11
ZnS047H,0 287.54 0.288 2.0 Zn 2.0 0.13
CuS04-5H,0 249.68 0.062 2.0 Cu 0.5 0.03
NaFeDTPA(10% | 468.20 30.0 0.3-1.0 Fe 16.1- 1.00-
Fe) 53.7 3.00

Source: After Epstein 1972.

Table 2

Modified Hoagland Solution. The composition of the various culture media in mM. The concentration
of minerals was achieved by addition X cm? of concentrated stock solution (1 mol per 1 dm?®) of
corresponding component per 1 dm? of medium. Numbers in the brackets indicate

the pH of each nutrient solution.

Hoagland Solution
Full
pH | € (=K) (=N) (-P) (-Fe)
cog| PH489 | pH482 | pH4.87 pH 4.94 pH 5.12
Ca (NO3).4H20 4 - 4 - 4 4
KNOs; 6 6 - - 6 6
MgS0,.7H,0 2 - 2 2 2 2
NH4H,PO4 2 2 2 - - 2
Mg (NOs)2.6H.0 - |4 - - - -
MgCl,.6H,0 - - - - - -
N8.2804 - 2 - - - -
NaNO3 - - 6 - - -
CaCl, - - - 4 - -
KCI - - - 2 - -
NaH2PO4 - - - 2 - -
NHsNO; - - - 1 -
1% Iron Citrate 1 1 1 1 1 -
Microelements 1 1 1 - 1
(solution A)
Microelements - - - 1 - -
(solution B)
Table 3
Salts containing micronutrients (without iron) used in modified Hoagland solution.
Salts containing micronutrients Quantity (g dm H.0)
Solution A Solution B
H3BO3 2.85 2.85
MnSO4.4H20 1.10 -
ZnSO4.7H20 0.28 -
CuS0..5H,0 0.10 -
(NH4)5MO7024.4H20 0.02 -
NaCl 3.12 3.12
MnCl.4H,0 - 0.93
ZnCl, - 0.13
CuCl,.2H,0 - 0.07
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Chlorophyll fluorescence measurement

Induction kinetics of PF were measure with using a Multifunctional Plant Efficiency
Analyzer, M-PEA (Hansatech Instrument Ltd., King's Lynn, Norfolk, PE30 4NE, UK)?*. Before
measuring every plant was kept in dark at least for 30 min. Measurements were made on the abaxial
surface of fully developed leaves on the middle part of chosen leaf. Measured signal were analysed
by M-PEA-data analyzer version 5.4 software (this software is laboratory designed in Dept.
Biophysics and Radiobiology, Sofia University by Petko Chernev, PhD).

JIP test parameters

These parameters are obtained from different characteristics points of photoinduced
chlorophyll fluorescence transients and are useful instrument for analysis of plant photosynthetic
apparatus®?%, The parameters that are used in this paper are described in Table 4.

Table 4
Definition of terms and formulae for calculation of the JIP-test parameters from the Chl a fluorescence
transient OJIP emitted by dark-adapted leaves.

Fluorescence Description
parameters
Fo minimal fluorescence, when all PS Il RCs are
open (att=0)
Fwm maximal fluorescence, when all PS Il RCs are
closed
v,=tF relative variable fluorescence at the J-step
Fy—Fo
Qopo= 1— fo maximum  quantum  yield of  primary
Fm photochemistry (at t = 0)
Qo= (1 — i)(l —V) quantum yield of electron transport (at t = 0)
Fym
Qro=(1 — ﬁ)(l —V) quantum vyield for reduction of end electron
Fum acceptors at the PSI acceptor side (RE)
Yyeo=1-V, probability (at t = 0) that a trapped exciton moves
an electron into the electron transport chain beyond Qa’
ORo efficiency/probability With which an electron
from the intersystem electron carriers moves to reduce
end electron acceptors at the PSI acceptor side (RE)
YRe = —RC. probability that a PSII Chl molecule -functions as
Chliotal RC
kn is proportional to i Non-photochemical de-excitation constant
Plags = YRC _Pro _Wko performance index (potential) for energy
1-yre 1-¢po 1-Ygo conservation from exciton to the reduction of intersystem
electron acceptors

24 Reto J. Strasser et al., “Simultaneous in Vivo Recording of Prompt and Delayed Fluorescence and 820-Nm
Reflection Changes during Drying and after Rehydration of the Resurrection Plant Haberlea Rhodopensis,” 16th
European  Bioenergetics  Conference 2010 1797, no. 6 (June 1, 2010): 1313-26,
https://doi.org/10.1016/j.bbabio.2010.03.008.

25 Strasser, Tsimilli-Michael, and Srivastava, “Analysis of the Chlorophyll a Fluorescence Transient.”

26 Strasser et al., “Simultaneous in Vivo Recording of Prompt and Delayed Fluorescence and 820-Nm Reflection
Changes during Drying and after Rehydration of the Resurrection Plant Haberlea Rhodopensis.”
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Pliotal = PI,pg SRo performance index (potential) for energy
1=0ro conservation from exciton to the reduction of PSI end
acceptors
ABS/RC = _1;VRC absorption flux (of antenna Chls) per RC
RC
Mo approximated initial slope (in ms?) of the
fluorescence transient V = f(t)
TRJ/RC =M, (Vi> trapping flux (leading to Qa reduction) per RC
/
ET./RC electron transport flux (further than Qa") per RC
RE./RC electron flux reducing end electron acceptors at
the PSI acceptor side, per RC
RC/CSo= PoFO(ﬁ) density of RCs (Qa  reducing PSII reaction
? Mo centres)

Statistical analysis

All experiment data were statistically analysed and the non-parametric Kruskale-Wallis one-way
analysis of variance by ranks was applied.

Artificial Neural Network

The Atrtificial Neural Networks are computer models based on ideas for multiple regression and
classification analysis that consist of several elements operating in parallel. The functionality and
capacity of the network depend on the links between the neurons that build it, and the way they are
located (for details see fig. 1). For an ANN to function, it must be trained for the work it will
perform. The topology of Artificial Neural Network is formed from nods (neurons) which are
grouped in layers. The first layer is called input layer. The last layer is called output layer. Between
them there are other layers that are called hidden layers or computational layers?’. Depending on the
structure and way of learning, there are different types of ANNs: feed-forward Artificial Neural
Networks, recurrent Artificial Neural Networks, EIman and Jordan Artificial Neural Networks, long
short term memory, Bi-directional Artificial Neural Networks (Bi-ANN), Self-Organizing Map
(SOM), stochastic Artificial Neural Network. There exist three major types of learning: supervised
learning, unsupervised learning and reinforcement learning?.

In this study, we used feed-forward Artificial Neural Network with supervised learning. The
supervised learning is machine learning algorithm that is used for training of ANN to recognize or
classified data. For this purpose a training data set is used. The training data consist input and
desirable output data. To be achieved complete training of ANN the input and output data have to be
fit. In our work is used learning algorithm called - backpropagation of errors. This type of learning
consist of two passes trough the layers of ANN - a forward pass and a backward pass. In the
forward pass, an active signal are applied to input layer and the signal propagate through hidden
layers to output layer. When this signal reach the output layer, it produce signal in response of input
signal and than the output signal is pass back to input layer. The propagated output signal changes
the input layer in such a way that the next input signal to produce an output signal with close
properties to desirable output signal. This process is repeated until it reaches the desired signal?®.

27 Oludare Isaac Abiodun et al., “State-of-the-Art in Artificial Neural Network Applications: A Survey,” Heliyon 4, no.
11 (November 1, 2018): e00938, https://doi.org/10.1016/j.heliyon.2018.e00938.

28 Andrej Krenker, “Introduction to the Artificial Neural Networks,” in Artificial Neural Networks, ed. Janez Bester
(Rijeka: IntechOpen, 2011), Ch. 1, https://doi.org/10.5772/15751.

29 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, “Learning Representations by Back-Propagating
Errors,” Nature 323, no. 6088 (October 1, 1986): 533-36, https://doi.org/10.1038/323533a0.
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The code for our ANN is written on Python. We created free-forward neural network with with
hyperbolic tangent sigmoid transfer function in the hidden layers and a linear transfer function in
the output layer3%3,

The input signals in our ANNs are PF induction curves and JIP test parameters recorded and
calculated respectively from leguminous plants grown hydroponically in nutrient mediums under
various nutrient deficiencies. The number of the input induction curves is 150 for each deficient and
for control plants. The hidden neurons are 8 and input parameters are 2 - induction curves for
control plants and induction curves for plants with deficiency of some nutrient element. The ANNSs
were trained with 600, 800 and 1000 repeats of the learning algorithm. The 3/4 of data set for each
nutrient used for deficiency was training of the ANN's.

Results
Chlorophyll a fluorescence and JIP test

Prompt chlorophyll fluorescence changes are considered to be sensitive indicator for nutrient
deficiency in plants®?*334 The PF is measured from all leaves displayed OJIPS transients when
plotted on a logarithmic time scale. The OJIPS curves in health plants have two points between O
and P points. J is displayed about 2 ms and | is 30 ms after the beginning of fluorescence emitted by
the chlorophyll. The OJ phase depend on light and contains information on antenna size and
connectivity between PSII reaction centres®®. The rise of transient from J to P is called thermal
phase and depend on reduction of the rest of the electron transport chain®®.

In our studies we observed that the curves of induction kinetics for different deficits were changed.

30 Grady Hanrahan, Artificial Neural Networks in Biological and Environmental Analysis, First, Analytical Chemistry
(CRC Press, 2017).

31 Simon O. Haykin, Neural Networks: A Comprehensive Foundation, 2nd e

32 V ALEKSANDROV et al., “Deficiency of Some Nutrient Elements in Bean and Maize Plants Analyzed by
Luminescent Method,” Bulgarian Journal of Agricultural Science Supplement 1 (2014): 24-30.

33 M.D. Cetner et al., “Effects of Nitrogen-Deficiency on Efficiency of Light-Harvesting Apparatus in Radish,” Plant
Physiology and Biochemistry 119 (October 1, 2017): 81-92, https://doi.org/10.1016/j.plaphy.2017.08.016.

34 Hazem M. Kalaji et al., “Identification of Nutrient Deficiency in Maize and Tomato Plants by in Vivo Chlorophyll a
Fluorescence Measurements,” Photosynthesis Research for Sustainability 81 (August 1, 2014): 16-25,
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Fig. 1 Induction curves of PF, measured in Phaseolus vulgaris leaf, control and grown in Ca, N, K, P and Fe nutrient
deficiencies. Fluorescence was measured by illumination of the plant with red light with an intensity of 4000 pmol hw
m-2s-i

Figure 1 shows the fluorescence curves measured in Phaseolus vulgaris L. (Cheren Starozagorski),
grown as a water culture in Hougland complete solution (control) or in modified Hoagland solution
for nutrient deficiency. The transient induction curves of chlorophyll fluorescence are presented in
logarithmic scale of time. On all induction curves the characteristic J and | phases are clearly
observable. The phase J is due of accumulation of Qa-. By the level of the relative fluorescence in
the J phase, we can understand how the various deficiencies affect the photoinduced reduction of
Qaand the subsequent oxidation of Qa- by the photosynthetic electron transport chain.

In table 5 the values of JIP test parameters for plants grow in deficiency solution are presented.
Only parameters with statistically significant differences in the values between control and
experimental plants will be discussed.

Table 5
Calculated JIP parameters in relative units for N, P, K, Ca and Fe deficiency Phaseolus vulgaris plants, normalized to
respective parameter values, calculated for control plants.

Table 5a (-N)

JIP parameters Vi Vi d(Ro) o(Po) ¢(Eo) y(Eo) Y(RC)
Control 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(-N) 1.2340.005 | 1.14+0.04 | 0.69+0.004 | 0.98+0.08* | 0.85+0.005 | 0.86+0.005 | 0.84+0.005
r;]a:rameters ABS/RC  |[TRo/RC | Mo RC/ABS |PI(ABS) |[Pl(total) |ETo/RC |REJ/RC
(-N) 1.3240.003 | 1.36+0.003 | 1.69+0.004 | 0.75+0.005 | 0.53+0.002 | 0.294+0.003 | 1.16+0.04 | 0.81=+0.
Table 5b (-P)

JIP parameters Vs Vi 8(Ro) o(Po) o(Eo) y(Eo) Y(RO)
Control 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(-P) 1.06+£0.05 | 1.06+0.05 |0.87+0.004 | 1.02+0.08* | 0.98+0.08* | 0.97+0.07* | 0.90+0.05
JIP ‘ ABS/RC | TRo/RC Mo RC/ABS |PI(ABS) |Pl(total) |EToRC REJ/RC
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parameters

(-P) 1.19+£0.04 | 1.17+0.04 | 1.23£0.005 | 0.84+0.006 | 0.82+0.006 | 0.66+0.005 | 1.13+0.04 |0.99+
Table 5¢ (-K)

JIP parameters Vi Vi 8(Ro) o(Po) o(Eo) y(Eo) Y(RC)
Control 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(-K) 1.17+0.005 | 1.09£0.05 |0.83=+0.005 | 0.99+0.09* | 0.90£0.05 |0.90+0.05 |0.93£0.05
JIP

parameters |ABS/RC | TRo/RC Mo RC/ABS |PI(ABS) |Pl(total) |ETo/RC REo/RC
(-K) 1.13+0.03 | 1.14+0.03 | 1.33+0.003 | 0.88+0.007 | 0.65+0.005 | 0.52+0.002 | 1.03+0.07* | 0.85+0.0
Table 5d (-Ca)

JIP parameters Vi Vi d(Ro) o(Po) ¢(Eo) y(Eo) Y(RO)
Control 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(-Ca) 1.57+0.005 | 1.13+£0.05 [0.93+£0.05 |0.74+0.005 | 0.58+0.003 | 0.67+0.005 | 1.15+0.05
JIP

parameters | ABS/RC | TRoJ/RC | Mo RC/ABS |PI(ABS) |Pl(total) [ETo/RC REo/RC
(-Ca) 0.81+0.007 | 1.31+£0.007 | 2.25+0.003 | 1.40+0.006 | 0.40-+0.005 | 0.36=0.008 | 0.75+0.007 | 0.71%0.007
Table 5e (-Fe)

JIP parameters Vi Vi d(Ro) ¢ (Po) ¢(Eo) y(Eo) Y(RO)
Control 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(-Fe) 0.75+0.006 | 0.63+0.005 | 1.42+0.009 | 1.16:0.002 | 0.69+0.005 | 0.75+0.008 | 0.68+0.005
JIP

parameters | ABS/RC | TRo/RC Mo RC/ABS |PI(ABS) |Pl(total) |EToRC REJ/RC
(-Fe) 0.7620.006 | 0.80+0.006 | 0.99+0.09* | 0.73+0.006 | 0.41+0.008 | 0.30+0.009 | 0.69+0.005 | 0.55+0.003

deviations from the control values are unreliable at a level of significance <0.05.
Artificial Neural Network

JIP analyzes made for plants grown in the absence of a nutrient element indicate that the 1Cs of the
PF and the JIP test parameters are different for each missing element. Based on these differences,
we designed ANH to identify the missing nutrient in plants. To construct ANN, as input data, we
used the induction curves measured in the Phaseolus vulgaris leaf as well as some JIP test
parameters. The plants were grown in modified Hoagland solution at different nutrient deficiency.
In our case the deficits presented in the network were: (-Fe), (-K), (-N), (-P), (-Ca) and (Con) -
control plants grown in a complete nutrient medium. We have 6-component output vector of the
type [1, 0, 0, 0, 0, 0, 0], and 1 match the data for the first deficit delivered at the entrance of ANN.
Once the data for the first deficit is submitted, the data for the second is given, with the output
vector having the form [0, 1, 0, 0, 0, 0, 0] and so on. We used 3/4 of network training data using the
Bayesian Regularization method by training our network 600 to 1000 times. The first task was
measured fluorescence signals of PF of bean plants to be used as input network data and to check
whether these signals can be used to detect nutrient deficiencies in the plants. The data that was
obtained during the training of the network are presented in Table 5. Using all induction curves
(representing the plants with nutrient deficiency (-Fe), (-K), (-N), (-P), (-Ca) and the control plants),
the optimal Network operation for 600, 800, and 1000 reps is reached at 8 hidden neurons. The
increase of the number of hidden neurons does not increase network accuracy. On the other hand,
the increase the repeatability of the training (epochs) after 800 repetitions in practice not increases
the accuracy of the network and for this reason we have accepted that the optimal number of reps is
800.
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Table 6
Input and output data of ANN trained to detect nutritional deficiencies in Phaseolus vulgaris. The number of trains
of the network (epochs) varies from 600 to 1000. The number of hidden neurons varies from 2 to 10 and the input
parameters are 6, which corresponds to measurements of the fluorescence signals of PF for plants grown in
environments with different nutrient deficiencies (5 variants) + signal from control plants.

Input data and | Input Hidden Wrong answers (%)
repetitions parameters Neurons Training Test Total
Phaseolus vulgaris 6 2 43.6 43.8 43.7
PF (600)

Phaseolus vulgaris 6 2 43.2 43.6 435
PF (800)

Phaseolus vulgaris 6 2 43.3 43.6 434
PF (1000)

Phaseolus vulgaris 6 4 25.7 35.8 28.2
PF (600)

Phaseolus vulgaris 6 4 255 33.9 27.6
PF (800)

Phaseolus vulgaris 6 4 25.3 32.8 27.0
PF (1000)

Phaseolus vulgaris 6 8 25.9 29.6 26.8
PF (600)

Phaseolus vulgaris PF|6 8 25.2 28.4 26.0
(800)

Phaseolus vulgaris 6 8 25.3 28.6 26.5
PF (1000)

Phaseolus vulgaris 6 10 25.5 30.2 26.7
PF (600)

Phaseolus vulgaris 6 10 25.2 29.8 26.3
PF (800)

Phaseolus vulgaris 6 10 24.9 29.6 26.2
PF (1000)

In Table 7 are represented the results obtained when the network is trained to detect only one
nutrient deficiency. As input data we use two elements - the data on one macro element deficiency
and the data on control plants.

Table 7

Input and output data of ANN trained to detect nutritional deficiencies in Phaseolus vulgaris. For the input parameters
the data obtained by measuring the fluorescence signals of PF are used simultaneously. The number of network
exercises (epochs) is 800 iterations. The number of hidden neurons is 8 and the input parameters are 2, which
corresponds to a signal measured from a plant grown in a nutrient mineral deficiency + signal from control plants.

Input data and | Input Hidden Wrong answers (%0)

repetitions parameters |Neurons |Training Test Total
F8%ﬁe%ml§e\;mgg(:fr?trols 2 8 31 4.0 35
e I e | s o2
e I e |2 o aa Jsa o
e e o | s o oo
e R |2 e
58%%'5)9?':?{”'9&”5 6 8 51.6 529 |51.9
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Discussion

For the normal physiological state of the plant the availability of micro and macro-elements is very
important. In this study we measured chlorophyll a flourescence transient to analyse the changes in
light phase of photosynthesis in nutrient-deficient bean plants. The plants were grown
hydroponically to determine possible effect of macronutrients (N, P, K and Ca) and micronutrient
(Fe) deficiency on the Electron Transport Chain in the chloroplasts. Nutrient deficiency induced
changes in chlorophyll a fluorescence induction curve as well as in JIP test parameters. Because of
these changes in fluorescence induction curve and in JIP test parameters we could use both of them
for nutrient deficiency recognition.

Nitrogen deficiency. The value of Fo for plants with nitrogen deficiency is higher than the value of
Fo for control plants. The higher initial fluorescence value, measured in the absence of nitrogen at
the plant is proof of the lower efficiency of transmitting of the excitation energy from the Light
Harvesting Complex (LHCII)to the reaction centers of PSI137. On the other hand, plants subject to
nitrogen deficiency have a higher value for Fm compared to the control plants. The Vj and Vi values
of the control plants are less than those of plants with nitrogen deficiency and this means that PSI
oxidizes stronger the plaquequinone pool in plants that develop in the absence of nitrogen. The
lower value of y(Eo) for nitrogen-stressed plants shows that electron transport after primary
quinone is much less likely. The lack of nitrogen in the plants leads to a reduction in electron
transport by ETC, reflected by the parameter ¢(Eo). The value of parameter y(RC) for stressed
plants is lower than the value of this parameter for control plants. This means that the relative
amount of chlorophyll molecules acting as RCs in plants grown in nitrogen deficiency is less than
in control plants. The fact that the value of REo/RC is lower in plants grown under nitrogen
deficiency compared to control plants indicates that much less electrons manage to reduce the last
acceptors of PSI. The two performance indices PI(ABS) and PI(total) have very low values for
stressed plants compared to unstressed. This shows that, in general, the lack of nitrogen has a strong
negative effect on the photosynthetic apparatus. The higher value of the TRo/RC parameter for
nitrogen deficiency plants shows that they capture more energy in the RC than the control plants.
The value of the N parameter for the plants with nitrogen deficiency is lower than the value of this
parameter for control plants. Therefore, fewer electrons are required for the complete recovery of
acceptors after Qa.

Phosphorus deficiency. The value of minimal fluorescence signal (Fo) in plants with phosphorus
deficiency is higher then the value of Fo in control plants as well as Fm. The parameters 8(Ro) and
Y(RC) are lower values then the values of the control plants. The first of these parameters gives
information about the ability of the intermediate carriers to reduce the last acceptors of PS I. The
lower value for y(RC) indicates that the plants with a deficiency of phosphorus have a relatively
smaller number of RC relative to plants grown in normal environment. In the case of phosphorus
deficiency, the value for N is lower than in the control plants. The values of ABS/RC and TRo/RC
for plants with phosphorus deficiency are higher than in unstressed plants. The ETo/RC parameter,
which gives information about the flow of electrons after Qa is greater in plants with phosphorus
deficiency than in unstressed ones. This is an indication that a greater number of electrons are able
to pass ETC after the primary quinone acceptor in PSII. On the other hand, the REo/RC parameter
is not substantially altered, indicating that approximately the same number of electrons in both
stressed and unstressed plants reach to the final acceptors of PSI. This means that for stressed plants
the losses of energy are mainly observed at intermediate carriers in ETC. One reason for this may
be the water-water cycle38.

37 Michel Havaux, Hubert Greppin, and Reto J. Strasser, “Functioning of Photosystems I and II in Pea Leaves
Exposed to Heat Stress in the Presence or Absence of Light,” Planta 186, no. 1 (December 1, 1991): 88-98,
https://doi.org/10.1007/BF00201502.

38 X.-Y. Weng et al., “Water-Water Cycle Involved in Dissipation of Excess Photon Energy in Phosphorus Deficient
Rice Leaves,” Biologia Plantarum 52, no. 2 (June 1, 2008): 307, https://doi.org/10.1007/s10535-008-0064-X.
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Potassium deficiency. The ICs of control plants and those with K-deficiency are distinguished
slightly from each other, indicating that the lack of K does not significantly affect the
photosynthetic apparatus. This may be due to partial replacement of missing potassium ions with
sodium ions in processes related to photosynthesis. Significant differences exist only with two
parameters: V, and 6(Ro). The first parameter tells us that in plants lacking potassium there is a
relatively greater number of closed reaction centers at the J level of IC compared to control plants.
The lower values for the parameter 6(Ro) show that the probability of reducing the last acceptors of
PS | is lower for plants with potassium deficiency. The JIP parameters ABS/RC, TRo/RC, Mo,
RC/ABS, PI(ABS), Pl(total) and RE0/RC are altered due to potassium deficiency. Low values for
PI(ABS) and PI(total) indicate that lack of potassium leads to changes in ETC and lowering the
photosynthetic activity of the plants.

Calcium deficiency. For plants growing in a calcium-free environment, fluorescence is much less
intense than that of the control plants. This is evident from the large difference between the value of
the parameter Fv of the stressed and unstressed plants. Lack of calcium causes changes in almost all
JIP parameters. The PI(ABS) and PI(total) parameters have very low values for stressed plants
relative to unstressed. JIP analysis shows that calcium deficiency has an extremely strong impact on
the photosynthetic apparatus and affects almost all of its components.

Iron deficiency. The higher value for Fo indicates that the light harvesting complex of the stressed
plants is less effective than the light harvesting complex of the control plants. For bean plants
grown in iron deficient environments, the parameters ¢(Po) and 6(Ro) have higher values than in
the control plants. The first of the two parameters gives information that in the stressed plants the
transfer of electrons from RC to Qa is more likely. The second parameter indicates that the
probability, with which electron reduces the last acceptors of PS I, is greater for plants grown in
Iron free environments. ¢(Eo) and y(Eo) provide information that the probability of transfer of
electrons after the primary quinone acceptor is much lower for stressed plants. The reason for this is
probably due to the lack of intermediate non-heme iron between Qa and Qg. The lack of iron in
plants has a negative impact on the whole photosynthetic apparatus.

It is clear that deficiency of some nutrients lead to difference in JIP test parameters and fluorescence
induction curves in plants. This gave us reason to use artificial neural network for fast and accuracy
recognition of nutrient deficiency in bean plants. The network which we used in our work was ANN
with backpropagation of error.

We used % of network training data using the Bayesian Regularization method and we trained the
network from 600 to 1000 times.

The first task was to use the measured fluorescence signals of PF of bean plants to be used as
incoming network data and to check if it can be used to detect nutrient deficiencies. Firts we trained
the network 600 times. We first trained the network with 600 iterations by changing the number of
input parameters (deficiencies) and the number of hidden neurons.The number of induction curves
is 648. The data obtained during the training of the network are presented in Table 6. Using all
parameters (representing plants with 5 types of tested deficits: (-Fe), (-K), (-N), (-P), (-Ca) and
control plants) optimal network operation for 600, 800 and 1000 reps are reached in 8 hidden
neurons. Increasing the number of hidden neurons does not increase the accuracy of the network.
On the other hand, increasing repetition of training (epochs) after 800 iterations does not actually
increase the accuracy of the network and therefore we have accepted that the optimal number of
iterations is 800.

The next task was to use as an input network data only two signals - one for the signals measured by
the deficiency plants and signals measured by the control plants. The results are presented in Table
7. From Table 6 and Table 7 it is evident that the trained network for only two parameters gives a
much smaller error compare to network trained to detect all deficiencies at once.

The network gives the biggest training error to recognize iron and nitrogen deficiency. The network
trained to detect phosphorus deficiency does not produce any erroneous results. On the other hand,
when we submitted the total number of data on all analyzed options: control and deficient, the error
increased to 52%.
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This gives us reason to assume that the appropriate strategy for recognizing nutrient deficiencies is
for the network to be trained to recognize each deficiency individually.

The record of OJIP transient in our experiments and the JIP test allowed us to quantify
photosynthetic parameters that were significant for the evaluation of the photosynthetic apparatus of
the investigated plants subjected of nutrient deficiency stress. From our results it is clear that the
same photosynthetic parameters calculated for plants subject to a different nutritional deficiency
have different values. These results are important, because they shown that some photosynthetic
partameters are sensitive to nutrient deficiency and could be used as a fluorescence phenotype
marker.

Applying the Al to OJIP transient data allows us to recognize which nutrients are missing in plants.
This approach allows to be developed fast and high accurate method for plants monitoring in vivo
conditions.

Conclusion

Deficiency of all analysed elements changed the physiological state of bean plants that was
displayed in modifications of the chlorophyll fluorescence transients. The effects of the lack of
these elements included the impairments in electron transport chain in both donor and acceptor
sides of PSII and of PSI. The Artificial Newral Network with backpropagation was applied to
recognize nutrient deficiency on the basis of chlorophyll fluorescence data. Our results suggest that
the Artificial Newral Network approach for early recognition of nutrient deficiency based on
chlorophyll fluorescence data is very useful and powerful tool.
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