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ABSTRACT

Background: The rapid development of single-cell RNA sequencing (scRNA-seq) provides
unprecedented opportunities to study the tumor ecosystem that involves a heterogeneous
mixture of cell types. However, the majority of previous and current studies related to
translational and molecular oncology have only focused on the bulk tumor and there is a
wealth of gene expression data accumulated with matched clinical outcomes.

Results: In this paper, we introduce a scheme for characterizing cell compositions from bulk
tumor gene expression by integrating signatures learned from scRNA-seq data. We derived
the reference expression matrix to each cell type based on cell subpopulations identified in
head and neck cancer dataset. Our results suggest that scRNA-Req-derived reference
matrix outperforms the existing gene panel and reference matrix with respect to
distinguishing immune cell subtypes.

Conclusions: Findings and resources created from this study enable future and secondary
analysis of tumor RNA mixtures in head and neck cancer for a more accurate cellular
deconvolution, and can facilitate the profiling of the immune infiltration in other solid tumors

due to the expression homogeneity observed in immune cells.

Keywords: single-cell RNA-seq, tumor-infiltrating lymphocyte, reference gene expression

profiles, head and neck cancer
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BACKGROUND

Cancer immunotherapy has made substantial progress and has dramatically impacted the
treatment of multiple cancers, including skin cancer, lung cancer, and head and neck cancer.
The cellular composition of a tumor and its immune microenvironment varies between
patients and tissue types. The presence and higher content of tumor-infiltrating lymphocytes
(TILs) is believed to be associated with response to the immunotherapy. In melanoma, it
was also found that the composition of immune cells such as CD8" cytotoxic lymphocytes
and dendritic cells are strong prognostic predictors themselves and are associated with
overall clinical outcomes. However, there are still considerable technological and analytical
barriers to assess cancer and immune cell compositions in the tumor quantitatively. The
pathological approaches such as immunohistochemical (IHC) staining and flow cytometry
analysis are labor intensive and often involve considerable inter-observer variation.
Therefore, the cell decomposition based on existing molecular profiles of tumors has
received many attentions in recent years. Earlier work has been centered on whole exome
sequencing data. Based on DNA mutational signatures and the distribution of local copy
numbers, several methods have been proposed to infer the tumor purity—defined as the
proportion of cancerous cells in the tumor tissue. Based on the similar computational model
(Carter 2012), subclonal heterogeneity and somatic homozygosity can also be explored.
Previous studies have also attempted to deconvolve gene expression profiles (including
microarray and RNA-seq) of tumor samples to infer the stromal and immune cell admixture
(Yoshihara 2013). These methods leverage distinct transcriptional properties of different cell
types, which provide finer granularity in the cell composition estimation than using DNA
mutational profiles alone.

The software CIBERSORT has now been widely used in the area to estimate
immune cell subsets from tumor expression profiles. But its application has been limited to
microarray studies due to the source of the training gene expression panel. Only recently
have efforts begun to extend the cell deconvolution method to RNA-seq data and to identify
more microenvironment-informative markers. These reference markers were selected from
whole transcriptome data and narrowed down through correlating gene expression with
tumor purity estimates. The nCounter system (NanoString) has gained popularity in the
clinical and translational setting as an alternative tool for immune cell profiling. The
advantage of NanoString platform is that it is based on a highly sensitive and non-enzymatic
process to enable a more precise quantification of RNA expression, which provides reliable
data even with FFPE samples. However, nCounter is a targeted gene expression panel, and
the surrogate expression profile cannot differentiate all cell subpopulations. Therefore, there

is a pressing need to develop more efficient gene reference panel and related computational
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tools to quantify the components of tumor microenvironment in situ on a larger scale, which
will facilitate both retrospective and prospective studies.

The recent maturation of single-cell RNA sequencing (scRNA-seq) has enabled us to
directly profile the cell composition and understand tumor heterogeneity at a cellular level.
With newly developed high-throughput cell sorting and barcoding technologies, thousands of
individual cells per tumor can be profiled in parallel to capture intra-tumor heterogeneity at
an unprecedented resolution [1-3]. Unless the main goal of a project is to study
underrepresented cell populations, sScCRNA-seq experiments can be done without the need
for cell sorting--which is laborious and prone to considerable bias due to cell death and cell
selection. The unbiased and simultaneous characterization of both immune and cancer cell
is essential for tracking and forecasting the tumor ecosystem, e.g., in patients before and
after immunotherapy. The cellular composition, as well as the relationships between different
cell subpopulations, are generally explored by clustering analysis using all gene expression
data--most notably, based on the method called t-Distributed Stochastic Neighbor
Embedding (t-SNE). Cell types corresponding to each cell cluster can then be inferred based
on existing cell-type-specific marker genes and any available prior knowledge about the cells.
Furthermore, a differential expression analysis between distinct cell populations may provide
new marker genes for cell mixture deconvolution. Nevertheless, large-scale scRNA-seq
studies involve expensive sequencing efforts, prohibiting them from being more widely used
in practical and clinical settings. There is still considerable interest in the community to drive
cell-type-informative markers for facilitating the analysis of bulk tumor sequencing. It thus
motivates us to derive more efficient cell-type-informative markers by leveraging high-quality
scRNA-seq data generated from existing studies.

Here we investigated gene expression profiles of 6,000 single cells from 15 head and
neck squamous cell carcinoma (HNSCC) patients. To allow for a finer deconvolution of
immune cell subtypes, we employ an adaptive divide-and-conquer scheme to isolate cell
populations in silico. The reference gene expression profile matrix was then built based on
identified single cell populations. We show that the reference profiles obtained from single
cell expression data enable a more reliable estimation of cellular composition in bulk tumor,
and they have ability to discriminate immune cell types with finer granularity. Our work
demonstrates that established single cell gene expression in each tumor type can further
add value to the digital dissection the tumor microenvironments. We provide these reference
matrices and gene panels, namely single-cell gene expression profiles (scGEPs), to the

community as a useful resource for studying heterogeneous tumor ecosystems.
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METHODS

Single-cell RNAseq Data

We downloaded the single-cell RNA-seq data from Puram et al. [1] which generated
expression data of 6,000 single cells from head and neck squamous cell carcinoma (HNSCC)
patients. By reviewing all published single-cell RNA-seq data (up to Dec 2018) in cancer, we
found that this dataset covered the most diverse stromal, malignment and immune cells in
the tumor microenvironment (TME), and relatively large number of patients. Importantly, it
provides annotated cells from four T cell major subpopulations: regulatory T-cells (Tregs),
convectional CD4" T cells (CD4" Tconv), CD8" T and CD8" T exhausted. Therefore, single
cell expression profiles from Puram et al. study is an ideal source of reference data. Note
that expression profiles of malignant cells are highly specific to HNSCC, but we hypothesize
that expression reference of immune cells is applicable to other cancer types. After removing
the patient samples with less than 50 cells, 5712 cells from 16 treatment-naive patients plus
matched lymph nodes from three of these patients remained for analysis (Table S1). As
described in Methods in Puram et al. [1] gene expressions were quantified as y=log2
(TPM+1), where TPM refers to transcripts per million, a gene quantification method that has
been considered superior to FPKM (fragments per kilobase per million read) and more

robust to differences in RNA library size [4].

Enrichment analysis of cell-type-specific genes

We adapted the single-sample Gene Set Enrichment Analysis, or sSsSGSEA [5], to calculate
the enrichment scores of pre-existing cell-type-specific marker genes. These scores will be
used to assist the cell type assignment step to be described in the following sections.
ssGSEA is an extension of GSEA method that computes an aggregated enrichment score
for a gene set. But instead of gene-phenotype association score, ssGSEA considers
rankings of gene expression relative to remaining genes in the genome within each sample,
and calculate a score that represents the degree that genes in a gene set are coordinately
up- or down-regulated. Signature genes for HNSCC tumor, immune, and stromal cells were
obtained from previous studies [1, 6, 7]. To choose the most reliable and generalized
signatures, we used only the genes shared by all resources. Together, we collected 140
signature genes covering 15 cell types including HNSCC tumor cells, immune cells, T cell
subtypes, and stromal cells. The curated gene list is given in Supplementary Table S2. Note
that this list alone is not sufficient to be used as a reference panel for the cell content
deconvolution with bulk tumor gene expression data. Enrichment of each cell-type signature

was assessed using ssSGSEA implemented in R package gsva [6].

Cell type identification
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Similar to the data analysis presented in Purma study, we choose to use the t-SNE method
to visualize the cell clusters and explore the cell type compositions based on transcriptomes
of all examined cells. However, as shown in the previous analysis and in the results section,
t-SNE method alone is only able to identify clusters of major cell types and not able to
distinguish between T cell subpopulations. Furthermore, the location of the clusters in the t-
SNE map and their relative positions to other clusters will change across analysis runs. As a
limitation of the technique, t-SNE cannot reproduce the same clustering map if different cells
or perplexity parameters are chosen in one analysis run. Therefore, we propose to use a
multi-stage cell identification scheme for obtaining more accurate cell type inference--by
adaptively integrating t-SNE and ssGSEA results. The steps and detailed parameters used
are described below.

(1) Tumor cell classification: To classify HNSCC malignant cells, we performed t-SNE
analysis of all cells using perplexity parameter of 50 followed by DBscan clustering (with
parameters eps=5 and minPts =5). Clusters were classified as malignant cells and non-
malignant cells based on their ssGSEA enrichment scores using signature genes for
HNSCC tumor cells (Figure S1A,B). As reported previously in various cancer studies [1, 3],
malignant cells were clustered by patients while non-malignant cells were clustered by cell
types (Figure S1C).

(2) Non-tumor cell classification: The non-tumor cells identified in step 1 were subjective to a
secondary stage of clustering analysis. t-SNE with the perplexity of 30 was performed
followed by DBscan clustering (with parameters eps=6 and minPts =15). These parameters
were chosen based on two criteria: (1) the resulted clusters should maximize the degree of
differentiation of cell populations; (2) the resulted clusters should have the greatest
consensus possible with the ssGSEA metrics. Based on the ssGSEA enrichment scores,
clusters are assigned to major immune and stromal cell types including Fibroblasts, B cell,
Macrophages, Endothelial cells, Dendritic cells, Mast cells and T cells (Figure S2A and
Figure S2B).

(3) T cell subtype identification: Similar procedure was used to classify T cell subtypes from
the lumped T cells population identified in step 2. We performed single-cell consensus
clustering (SC3) analysis [8] and were able to identify four distinct clusters of T cell
subpopulations. These four clusters were assigned to conventional CD4" T cells (CD4"
Tconv), T-regulatory cells (Treg), conventional CD8" T cells (CD8" Tconv), and exhausted
CD8" T cells, based on their ssGSEA enrichment scores (Figure S3A and Figure S3B). Next,
differential expression analysis was performed comparing CD4 Tconv vs. Treg cells, and
CD8" Tconv vs. exhausted CD8" T cells using R package limma [9]. Only genes with

[log2FoldChange| >1 and Benjamini-Hochberg adjusted p-value < 0.05 were considered
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significantly differentially expressed and reported in Table S3. The identified differentially

expressed genes were compared with previously reported marker genes for these cell types.

scRNA-derived marker genes

To develop a finer panel of cell-type-specific genes, we identified marker genes that are
specifically expressed in each cell type. Differential expression analysis was first performed
between any pairs of the 11 cell types using R package limma. Then marker genes of each
cell type were identified as those significantly highly expressed in cell type under
consideration compared to at least 5 other cell types (log2FoldChange >3 and Benjamini-
Hochberg adjusted p-value < 0.05). In total, we identified 581 marker genes and reported the

gene names and limma results in Table S4.

Deconvolution method for bulk tumor

The objective of the deconvolution algorithm is designed to solve for the linear equations
m = f X B, where mis the input gene expression profile (GEP) matrix, f is a vector of cell
fractions to be estimated, and B is the gene expression signature or reference GEP matrix.
A machine learning method, v-support vector regression (v-SVR) combining feature
selection with a linear loss function and L2-regularisation [10], was used to infer the
compositions of the malignant cells, tumor-infiltrating cell types/subtypes, and stromal cells
from the bulk gene expression. This method has been implemented in CIBERSOR [11], a
tool that has now been widely used for in cancer research. The initial setting of CIBERSORT
was designed for estimating 22 immune cell types using 547 signature genes (LM22)
derived from microarray data. In this study, we will apply the same SVR method
implemented in CIBERSORT to infer cell types that are more representative in head and
neck tumors. The reference GEP panels used in SVR will be described in the following

section.

In silico assessment of final reference GEP panels

With the availability of high-resolution scRNA-seq data, one main objective of this study is to
explore new ways to generate the reference GEP matrices to be used in bulk tumor
deconvolution, i.e., the matrix B as described in the previous section. The ideal B matrix
should be able to yield maximal and robust discriminatory power between cell type clusters.
Meanwhile, the pooled scRNA-seq data can be served as ground truth for benchmarking the
performance of reference GEP as well as deconvolution methods—because the true cell
composition in the bulk gene expression data will be known. The similar idea has been
implemented in a recent study [7]. The first step of constructing reference GEP matrices is to

choose a panel of reference genes that can distinguish the cell populations. In this study, we
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will focus on four gene panels: (1) LM22 gene reference panel, designed by Newman et al: it
contains 547 genes that distinguish 22 human hematopoietic cell phenotypes including
several T-cells types, B cells, and natural killer cells. This panel is the default panel used in
CIBERSORT and thus has been used extensively; (2) A panel of signature genes identified
from previous literature: it contains 140 genes that are served as signatures for 15 major cell
types including HNSCC tumor cells, immune cells, T cell subtypes, and stromal cells (Table
S2). (3) The scRNA-derived marker gene panel discovered through the steps described
previously in the method: which contains genes that uniquely expressed in each cell
population identified from HNSC scRNA-seq data (Table S4); (4) A T-cell-specific GEP
panel discovered through steps similar to GEP panel (3) but with a focus on four T cell
subtypes (Table S3). Note that we only used the gene list information of these panels. The
GEP matrix of these genes is formed through averaging all single cells assigned to these
populations. In order to assess the prediction performance of the above four GEP panels,
we tested them on in silico bulk tumors by aggregating the single cell transcriptome data.
Expression data of individual cells from the same patient in Puram study were pooled to
form 15 in-silico tumors, which exhibit varied cellular compositions.

RESULTS

Identifiable cell types using HNSCC single cell data. Overall, the adaptive clustering
analysis on single-cell transcriptome data pooled from all HNSCC tumor samples identified
distinct 11 cell clusters to be used in generating reference GEP. These cells types are:
HNSCC Malignant cells, Fibroblasts, Macrophages, Dendritic cells, Endothelial cells, Mast
cells, B cells, conventional CD4" T cells, T-regulatory cells, conventional CD8" T cells, and
exhausted CD8" T cells. As shown in the t-SNE plot with all cells projected (Figure 1A), most
cells from same immune cell types are grouped together while malignant cell and Fibroblasts
cell clusters contains multiple subgroups within each cluster. In the follow-up analyses, we
will show that these subgroups are mainly driven by inter-tumor heterogeneity. The cell
grouping information was then used to construct the cell composition map back in each
tumor. As illustrated in the stacked bar chart in Figure 1B, the proportions of malignant cells
(tumor purity) vary uniformly between 0 and 1. This pattern reflects the original experimental
design and is consistent with results from the original analysis [1]. We also observed that
some important immune subsets such as tumor-infiltrating Treg cells (coded with dark blue)
only exist in tumor samples with lower tumor purity, i.e. sample towards the right side of the
plot. Treg cells plays important role as regulators of anti-tumor immune suppression and
Treg/CD8" T cell ratio may have a clinical significance in analyzing tumors in HNSCC

patients [12]. However, results from scRNA-seq data suggests that the overall Treg
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expression signature may be underrepresented in genomic projects that are biased towards
tumors with higher purity, such as TCGA. In the following, we briefly describe results
generated from each step. First, we observed that the unsupervised clustering on all cells
based on t-SNE revealed eight major clusters as depicted in Figure S1A. Note that, at this
stage, we had no information about cell types underlying these cell groups and the number
of clusters might differ subject to the perplexity parameter choice in t-SNE. We started the
cell type identification from first distinguishing tumor and non-tumor cells. By adding ssGSEA
scores representing the tumor cell signature into the t-SNE map (Figure S1B), we identified
two major cluster regions of malignant cells located in the very top and lower regions. By
further adding the color layers reflecting the tumor origin, we observed that the cell clusters
in these regions were clearly separated by patient IDs while they were mixed together in a
mosaic pattern in other cluster regions (Figure S1C). The results above align with previous
findings [1, 3, 7] that inter-tumor heterogeneity may arise more at the tumor malignant cell
level than at the immune cell level—suggesting that immune cell signatures abstracted from
the proposed scheme will be applicable to not only HNSCC samples generated from
different studies but also samples from different tumor types. Next, we performed a second
round of t-SNE analysis by excluding all tumor cells identified from previous steps. The new
clustering analysis revealed seven major cell clusters (Figure S2A). We were able to identify
the cell types corresponding to each cluster by adding ssSGSEA score specific to Fibroblasts,
B cell, Macrophages, endothelial cells, dendritic cells, mast cell, and T cells one at each time
as depicted in Figure S2B. As expected, this subset of cell population is dominated by
Fibroblasts and T cells. When we adding the color layers reflecting patient origins into Figure
S2A, we found a similar pattern that patient IDs were mixed together in each cell type cluster,
indicating that the sub-clusters (such as in the T cells) may reveal further cell subtypes. This
leads us to the next step by further zooming into the expression profiles of cells from T cell

populations.

Deconvolution of T cell subtypes using identified T cell population. Based on SC3, we
further identified four clusters from T cells (Figures 2A). The cell types in the T cell
subpopulation were first determined based on the gene enrichment signatures of CD4" and
CD8" cells (as shown in the upper panel in Figure S3B). Within these two subpopulations,
[CD8" cells further marked with ssGSEA signatures for CD8" Tconv and CD8" exhausted:;
and CD4" cells were marked with CD4" Tconv and Treg cells signature values (Figure S3B).
As shown in Figure S3, the signatures for two CD8" cell types are overlapped and it is
difficult to assign these cells to any subtypes. As further summarized in the heatmap of
sSGSEA scores (Figure S4), the ssGSEA analysis based on curated signature genes were

able to distinguish between major cell types using single cell level expression data but failed
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to provide the necessary granularity in separating T cell subtypes. To determine T cell
subtypes, especially CD8" subtypes, we performed differential expression analysis between
the two cell groups identified within CD4" T cells and CD8" T cells. Differentially expressed
genes (adjusted p value < 0.05, limma moderated t-test, and |log2fold-change| >1) are
reported in Table S3. Cell subtypes were then inferred from the status of top differentially
expressed genes, by comparing them with existing cell-type-specific marker genes. Figure
2B and Figure 2C are heatmaps depicting top differentially expressed genes between CD8"
cell clusters and CD4" cell clusters, respectively. Candidate genes that overlapped with
marker genes identified from previous studies are listed and labeled in heatmaps. Note that
several exhaustion-related genes can serve as markers for separating both subtypes in CD4
and CD8, such as TIGIT and CTLAA4. For the CD8" T cell subtypes, we compared the
candidate marker genes identified in our DE analysis to the exhausted CD8" T cells marker
genes reported in a previous single-cell RNA-seq from infiltrating T cells of lung cancer [13].
A total of 36 genes are found shared by the two studies and all labeled in Figure 2B. Among
these 36 genes also includes 14 known exhaustion markers, such as PCCD1, TIGIT,
HAVCR2, and CTLA4 (Figure 2B, text in red), which further confirmed the identify of these
exhausted CD8" T cells. The other CD8" T cell cluster without expression of exhaustion
genes is considered as conventional CD8" T cells. For the CD4" T cell subtypes, we also
compared the candidate marker genes identified from the DE analysis with the Tregs marker
genes reported by four previously published scRNA-seq data from different cancer types
[13-16] (Figure 2D). We observed that there were 20 genes shared by all five studies (Figure
2C, text in red), including known Tregs markers FOXP3, TIGIT, and CLTA4; and there were
many more genes previously identified at least once (Figure 2E). Our study also identified
207 genes that uniquely enriched in this HNSCC dataset (Figure 2E), including PPP1CA,
RUNX3, CCR6, and PSMB8 which were previously reported to be associated with Tregs
and their functions [17-20]. Based on these observations, we assigned Tregs to this cluster
of CD4" T cells. The other CD4" cluster with low expression of exhaustion markers and with
exclusively high expression of CCR7, CXCR4, and TOBI was considered as conventional
CD4" T cells.

Evaluation of prediction performance of reference GEPs. For each cell type identified
from previous steps, we established cell-type-specific reference GEP matrix by the mean
expression values of selected genes. We use C1 to denote the curated gene list from
previous literatures which are used in sSSGSEA (Table S2), C2 to denote marker genes
selected from the DE analysis described above (Table S4), T1 to denote the marker genes
selected from DE analyses for separating T cell subtypes (Table S3), and M1 to denote

marker genes selected from DE analyses for separating tumor and non-tumor cells. In our
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analysis, we constructed reference GEP matrices by taking the mean from the following
ensemble gene lists: (1) LM22, (2) C1, (3) C2, (4) LM22+C1, (5) LM22+C1+T1, (6)
LM22+C1+T1+M1, and (7) LM22+C1+C2+T1+M1. As presented in Figure S5, we evaluated
the prediction performance of CIBERSORT using these GEPs in terms of correlation
between predicted abundance and the true abundance in the simulated bulk tumor (through
pooling all cells in one patient, see Methods). We observed that all of these reference GEPs
achieved promising prediction accuracies (r>0.9). This result indicates that existing marker
genes provides saturated signatures if forming GEPs on right cell groups. Therefore, we will
focus on the evaluation of the LM22+C1 gene panel because of it has a moderate number of
genes and all genes included are well studied. All reference GEPs matrices used in this
study are provided in Supplementary Table S5.

Scatterplots in Figure 3A demonstrate strong correlations between true cell proportions
and predicted cell proportions based on GEP curated form LM22+C1 scRNA-seq data,
where each point represents a simulated bulk sample. Figure 3B further compares the cell
abundance estimation accuracy (correlation) for the reference GEP included in CIBERSORT
and the reference GEP trained based on the LM22+C1 scRNA-seq panel. Our method
shows better prediction performance in all case for cell types that CIBERSORT can provide
estimation, especially in estimating CD8 T cells. We further gauged the estimated cell
proportion from CIBERSROT by taking into account the fact that the original GEP only
include reference for immune cells. Such adjustment was made by assuming that tumor cell
(purity) and stromal cell proportion were known so that a relative abundance on each
remaining cell types can be calculated. Even with this unrealistic scenario, the prediction
performance based on the adjusted proportion was still inferior to the scRNA-seq trained
GEP in all cases. But we did observe that CIBERSORT estimation on macrophages and
dendritic cells was greatly improved with this adjustment (Figure S6). To test the robustness
of the GEP panel to the cell components, we re-run the devolution analysis on all simulated
samples using the leave-one-out GEP, i.e. each time we remove one cell-type-specific
vector from the GEP matrix. As shown in Figure S7, the high prediction accuracy was
maintained in most scenarios, and only the estimations for fibroblasts and malignant cells
were detectably impacted by the leave-one-out GEP.

Although C2 and T1 gene sets (determined based on DE tests) did not provide additional
information as a gene panel in constructing GEP, they provide a new alternative cell-type-
specific biomarker for future studies. As shown in violin plots (Figure S14), these markers
are exclusively over-expressed in cell types that they are representing, indicating their
validity as independent surrogate biomarkers. A total of 182 genes were found overlapping

between groups C2+T1 and LM22+C1. Expressions of these genes for each single cell were
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plotted in Figure S15, demonstrating their ability as biomarker panel alone to separate major
cell types but not T cell subtypes.

Finally, as a supportive validation, we tested the proposed scGEP on TCGA HNSCC
tumor samples and compared with results generated from similar methods developed for
bulk tumor deconvolution. Figure S8 compared the tumor purity estimates with three other
methods: ABSOLUTE [21], ESTIMATE [22] and CPE [23]. These methods are based on
WES, RNAseq and a consensus score based on all molecular data. Our method showed the
best correlation with the estimation from ESTIMATE in terms of purity estimation. Further,
we compared the Immune and Stromal score predicted by ESTIMATE with the absolute
proportion estimates from the scGEP-based method. As shown in Figure S9, the analysis
showed a good agreement between two methods. We also compared the estimated total
immune cell proportions and total T cell proportions between HPV positive and HPV
negative cancer patients. As expected, tumors from HPV positive patients showed higher
infiltration of immune cells and T cells (Figure S10). Abundance of tumor infiltrating CD8 and
total immune cells were also found associated with survival outcomes in TCGA HNSCC
patients (Figure S11).

Discussion

scRNA-seq provides high resolution data to study cell heterogeneity, and provides new
chance to understand the dynamic ecosystem comprising tumor cells, fibroblasts, and
immune cells. Nevertheless, gene expression data from bulk tumors is indispensable and
still dominates the clinical and translational settings. In this study we developed a pipeline to
construct the reference gene expression profile matrix based on scRNA-seq data (scGEP),
and assessed its performance in estimating cancer and immune cell compositions from bulk
tumor gene expression data. By combining gene expression profiles of major cancer and
immune cell types in HNSCC established from a high-quality single cell data, our approach
overcomes a key shortcoming of most existing studies that relied on limited source of FACS-
purified cell populations for the reference signature gene matrix. As noted in previous
studies, PBMC-based GEP is also insufficient to provide accurate estimate on bulk tumor
samples. The scGEP matrix derived from our analysis provides a new resource for future
endeavors in analyzing expression data in head and neck cancers. The estimation on tumor
purity will be greatly improved with the tailored reference signature for HNSCC malignant
cells. Importantly, more accurate estimation on cancer cells partly contributes to better
estimation on the relative abundance of immune cells. We validated results by using in silico
pooled bulk tumor samples, and also showed that single-cell-derived signatures provides the
ability to separate T cell subtypes. The finer and more accurate tumor immune profiling of

HNSCC samples will help reveal more prognostic biomarkers with implications for
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immunotherapy. Furthermore, because immune cell share very similar expression profiles
across cancer types, in theory the reference matrix can be broadly employed to other solid
tumors, but it will only provide relative abundance for immune cell types. With the increased
availability of single-cell data in cancers such as melanoma and lung cancers, an ideal
scGEP matrix should be generated based on the same tumor type using the proposed
pipeline.

The key step in constructing scGEP matrix involves accurately identifying cells of the
same types or subtypes from heterogeneous populations, which is the in-silico equivalent of
isolating cells using physical sorting methods. Compared to traditional sorting methods such
as FACS, in-silco methods are less time consuming, less laborious, and more cost effective.
Cell type determination at cellular level have benefited greatly from specialized clustering
methods developed for scRNA-seq [8, 14, 24-26]. While there are more advanced
approaches including deep learning [27, 28] have been proposed in recent years, fully
automated decomposition of cell types is still a challenging problem. Part of the difficulty
arises from the fact that each tumor includes a large variety of malignant and nonmalignant
cells at different stages. The cellular mixing component and proportions even with the same
section of a tumor can be very different if sampled under different time or conditions, e.g.,
before or after treatment. In addition, due to the limitations of the scRNA-seq technology
itself, single cell gene expression data are often very noisy. And hence cells of the same
type can end up in different clusters, and cells of different types can be in the same cluster
due to unknown technology batch effects. Therefore, it is important to carefully curate and
select high-quality cell clusters before calculating cell-type-specific reference matrix. In this
study, we adopted an adaptive divide-and-conquer scheme to identify all major cell types in
HNSCC tumor tissues, starting from the easiest split of cancer vs. non-cancer cells to the
most challenging T cell subtype separation. In every step of the process, cell types are
inferred based on both the results from the unsupervised clustering analysis and the
expression status of existing marker genes. Any prior knowledge about the cellular
component of the studied tumor type also helps in assigning a cell cluster to a cell types. In
later stages of the analysis where cell subtypes are getting harder to distinguish, multiple
settings or even multiple methods of clustering analysis need to tired. This process cannot
be automated due to the need to visually inspect the clustering results in each step, but can
achieve the best possible results for cell mixture deconvolution. The adaptive method was
also based on a key assumption and it was further demonstrated in our clustering analysis:
despite the significant heterogeneity of malignant cells across tumors, cells from the same
immune cell types can be clustered together due to their relatively similar gene expression

profiles.
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It is important to highlight main advantage of using the data from Puram et al. as
training dataset: it by far contains the largest collection of single cells from solid tumors (in
terms of patient number and cell number) from a single study. The above-described property
allows us to calculate the composite reference GEP not only from pooled cells from different
tumor samples, but also from different SCRNA-seq experiments. A caveat is that data pooled
across studies involves more complicated batch effects and it is by now generally accepted
that correcting for the batch effect in RNAseq data across experiments is technically
challenging. Itis interesting to note, though, that some recently proposed ideas for batch
effect correction with sScRNA-seq data are based on consensus clustering, which leverages
the same philosophy mentioned above by projecting more homogenous immune cells into
the same cluster. As pointed out in the original analysis, some apparent batch effect
observed may be linked to the enzyme used for reverse transcription in the scRNA
experiments. We further investigated the factor of enzyme usage in the adaptive clustering
scheme and found that it explains well the sub-clusters observed in Fibroblast cell
populations (Figure S12), but had limited impact on other cell types (Figure S13).

One notable observation in our simulation studies is that the GEP calculated based
on existing marker gene panel (LM22+C1) can provide as accurate a predictive capability as
the genes selected only from the differential expression of single cell populations, although
they are overlapped in many genes. We conclude that the prediction performance of GEP is
more sensitive to the cell populations purified for a particular cell type than the marker gene
panel. Nevertheless, the newly discovered genes from the scRNA-seq data and their
underlying pathway warrant further validations as potential biomarkers, especially those
genes that are differentially expressed between T subtypes.

Although we have only tested support vector regression method for cell mixture
estimation, the HNSCC single cell sequencing data curated from this study provides a useful
source for the assessment of accuracy of newly developed deconvolution methods. For
example, the core SVR algorithm implemented in CIBESRORT only uses a single kernel
under the fixed default parameter setting. The prediction performance might be improved
through searching for an optimal kernel or using the state-of-the-art multiple kernel learning
technologies [24]. Currently there is a lack of suitable benchmark dataset that allows a fair
and systematic evaluation of methods for estimating cell mixtures in solid tumors. Weak
correlations were often found between molecular-data-based estimations and pathology
based methods such as IHC and H&E images [29]. This is partially due to the fact that each
of these assays was carried out using input materials from different parts of a tumor.
Because all cell proportions are known, the in silico pooled bulk tumor data from individual
cells provides a more accurate reference at almost zero cost. Plus the composite cells from

a single tumor could better mimic the real case scenario than creating bulk expression


https://doi.org/10.1101/663500
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/663500; this version posted June 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

dataset through conducting RNA-seq on randomly mixed cells. For head and neck cancer
per se, the scRNA-seq data from Puram study provide an ideal source for both training and
validation purposes because the studied tumors have (1) uniformly varied tumor purity, and
(2) it provides reference for subpopulations such as exhaustive CD8" T cell that were not
present in previous SCRNA-seq experiments on melanoma and lung cancers. A limitation of
the in silico method is that the cell size factor has not been taken into account. As cell types
of different size have different amount of RNA yield, it is of interest for future research to be
able to adjust for the cell size factor so that the estimated relative abundance will be closer
to absolute cell proportions.

The key idea proposed in this work is most similar to a previous study conducted by
Schelker et al. [7] which focused on scRNA-seq data from melanoma and PBMC. The two
main differences between the two works are (1) the melanoma data used by Schelker et al.
only provided sufficient information for distinguish nine major cell types and three T cell
subtypes, whereas the HNSCC data we studied was able to further separate exhaustive
CD8 T cells and provide corresponding reference GEP; (2) In our method, we used both
marker gene information and a global ssGSEA scores to determine cell types from adaptive
clustering analysis. We believe that more studies along this line will be conducted to
generate more accurate cancer-type-specific and T-cell-subtype-specific reference GEP.
Finally, we believe that apart from looking for reference profiles based on gene expression,
the same approach can be extended in future search to identify reference DNA methylation
profiles (DMP). DMP will be a promising new resource for tumor composition deconvolution
because Alternations at DNA methylation level are deemed to be more stable than the gene
expression level. But the single-cell DNA methylation analysis, such as bisulfite sequencing,

is still in an experimental phase.

Conclusions

List of abbreviations

scRNA-seq: single-cell RNA sequencing

TILS: tumor-infiltrating lymphocytes

IHC: immunohistochemical

t-SNE: t-Distributed Stochastic Neighbor Embedding

HNSCC: head and neck squamous cell carcinoma

GEP: gene expression profiles  scGEPs: single-cell gene expression profiles
TME: tumor microenvironment

CD4" Tconv: conventional CD4" T cells

CD8" Tconv: conventional CD8* T cells
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TPM: transcripts per million
ssGSEA: the single-sample Gene Set Enrichment Analysis

v-SVR: v-support vector regression
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Figure 1. Profiling cellular composition of HNSCC tumors using scRNA-seq.

(A) 2D t-sne projection of the expression profiles of 5,712 single cells (3,259 immune
cells and 2,453 malignant cells) from 20 HNSCC tumors and lymph node samples of 16
patients. Single cells are shown in dot and colored by cell types. (B) Cell composition per
sample. Patients are ordered by their fractions of malignant cells.
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Figure 2. Deconvolution of T cell subtypes.

(A) 2D t-sne projection of T cells. T cell subtypes identified by clustering analysis are
annotated and marked by color codes. (B) Heatmap of genes significantly expressed in
exhausted CD8" T cells comparing to conventional CD8" T cells (adjusted p-value <
0.05, log2fold-change > 1). Genes also reported by a previous study are labeled on left,
of which the known exhaustion markers are labeled in red text. Cell types are indicated
by the colored bar at top. (C) Heatmap of genes differentially expressed in Tregs
comparing with conventional CD4" T cells (adjusted p-value < 0.05, |log2fold-change| >
1). Selective Treg genes are labeled in dark blue and known markers for conventional
CD4" T cells are labeled in light blue. (D) Intersections between Treg genes identified in
(C) using Puram et al. HNSCC data with those from previous studies. Numbers of genes
in each intersection are shown as the bars at the top panel. Studies involved in each
intersection are linked together by lines at the bottom panel. The 20 genes shared by all
five studies are highlighted in orange and labeled in (C). (E) Volcano plot of genes
differentially expressed in Tregs vs. conventional CD4" T cells. Unique genes found by
this study are labeled in green. Those identified once (blue), twice (red), and three times
(pink) previously are also labeled.
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Figure 3. Estimation accuracy of cellular compositions using LM22+C1 scGEPs.
(A) Scatter plots of the estimated and true cell proportions for the 20 simulated bulk
tumor samples. Each dot represents one sample and r denotes the Pearson’s correlation
coefficient. (B) Comparing the estimation accuracy between LM22+C1 scGEPs and
CIBERSORT microarray GEPs. The pie charts show the Pearson’s correlation
coefficient of true proportion and proportion estimated using CIBERSORT microarray
GEPs (top), and LM22+C1 scGEPs (bottom). The missing cell types in CIBERSORT
microarray GEPs are denoted by dash. T cell composition was calculated taking sum of
the four T cell subtypes.
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