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ABSTRACT 

 

Background: The rapid development of single-cell RNA sequencing (scRNA-seq) provides 

unprecedented opportunities to study the tumor ecosystem that involves a heterogeneous 

mixture of cell types. However, the majority of previous and current studies related to 

translational and molecular oncology have only focused on the bulk tumor and there is a 

wealth of gene expression data accumulated with matched clinical outcomes.  

Results: In this paper, we introduce a scheme for characterizing cell compositions from bulk 

tumor gene expression by integrating signatures learned from scRNA-seq data. We derived 

the reference expression matrix to each cell type based on cell subpopulations identified in 

head and neck cancer dataset. Our results suggest that scRNA-Req-derived reference 

matrix outperforms the existing gene panel and reference matrix with respect to 

distinguishing immune cell subtypes.  

Conclusions: Findings and resources created from this study enable future and secondary 

analysis of tumor RNA mixtures in head and neck cancer for a more accurate cellular 

deconvolution, and can facilitate the profiling of the immune infiltration in other solid tumors 

due to the expression homogeneity observed in immune cells.  

 

Keywords: single-cell RNA-seq, tumor-infiltrating lymphocyte, reference gene expression 

profiles, head and neck cancer 
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BACKGROUND 

Cancer immunotherapy has made substantial progress and has dramatically impacted the 

treatment of multiple cancers, including skin cancer, lung cancer, and head and neck cancer. 

The cellular composition of a tumor and its immune microenvironment varies between 

patients and tissue types. The presence and higher content of tumor-infiltrating lymphocytes 

(TILs) is believed to be associated with response to the immunotherapy. In melanoma, it 

was also found that the composition of immune cells such as CD8+ cytotoxic lymphocytes 

and dendritic cells are strong prognostic predictors themselves and are associated with 

overall clinical outcomes. However, there are still considerable technological and analytical 

barriers to assess cancer and immune cell compositions in the tumor quantitatively. The 

pathological approaches such as immunohistochemical (IHC) staining and flow cytometry 

analysis are labor intensive and often involve considerable inter-observer variation. 

Therefore, the cell decomposition based on existing molecular profiles of tumors has 

received many attentions in recent years. Earlier work has been centered on whole exome 

sequencing data. Based on DNA mutational signatures and the distribution of local copy 

numbers, several methods have been proposed to infer the tumor purity—defined as the 

proportion of cancerous cells in the tumor tissue. Based on the similar computational model 

(Carter 2012), subclonal heterogeneity and somatic homozygosity can also be explored. 

Previous studies have also attempted to deconvolve gene expression profiles (including 

microarray and RNA-seq) of tumor samples to infer the stromal and immune cell admixture 

(Yoshihara 2013). These methods leverage distinct transcriptional properties of different cell 

types, which provide finer granularity in the cell composition estimation than using DNA 

mutational profiles alone.  

The software CIBERSORT has now been widely used in the area to estimate 

immune cell subsets from tumor expression profiles. But its application has been limited to 

microarray studies due to the source of the training gene expression panel. Only recently 

have efforts begun to extend the cell deconvolution method to RNA-seq data and to identify 

more microenvironment-informative markers. These reference markers were selected from 

whole transcriptome data and narrowed down through correlating gene expression with 

tumor purity estimates. The nCounter system (NanoString) has gained popularity in the 

clinical and translational setting as an alternative tool for immune cell profiling. The 

advantage of NanoString platform is that it is based on a highly sensitive and non-enzymatic 

process to enable a more precise quantification of RNA expression, which provides reliable 

data even with FFPE samples. However, nCounter is a targeted gene expression panel, and 

the surrogate expression profile cannot differentiate all cell subpopulations. Therefore, there 

is a pressing need to develop more efficient gene reference panel and related computational 
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tools to quantify the components of tumor microenvironment in situ on a larger scale, which 

will facilitate both retrospective and prospective studies. 

The recent maturation of single-cell RNA sequencing (scRNA-seq) has enabled us to 

directly profile the cell composition and understand tumor heterogeneity at a cellular level. 

With newly developed high-throughput cell sorting and barcoding technologies, thousands of 

individual cells per tumor can be profiled in parallel to capture intra-tumor heterogeneity at 

an unprecedented resolution [1-3]. Unless the main goal of a project is to study 

underrepresented cell populations, scRNA-seq experiments can be done without the need 

for cell sorting--which is laborious and prone to considerable bias due to cell death and cell 

selection. The unbiased and simultaneous characterization of both immune and cancer cell 

is essential for tracking and forecasting the tumor ecosystem, e.g., in patients before and 

after immunotherapy. The cellular composition, as well as the relationships between different 

cell subpopulations, are generally explored by clustering analysis using all gene expression 

data--most notably, based on the method called t-Distributed Stochastic Neighbor 

Embedding (t-SNE). Cell types corresponding to each cell cluster can then be inferred based 

on existing cell-type-specific marker genes and any available prior knowledge about the cells. 

Furthermore, a differential expression analysis between distinct cell populations may provide 

new marker genes for cell mixture deconvolution. Nevertheless, large-scale scRNA-seq 

studies involve expensive sequencing efforts, prohibiting them from being more widely used 

in practical and clinical settings. There is still considerable interest in the community to drive 

cell-type-informative markers for facilitating the analysis of bulk tumor sequencing. It thus 

motivates us to derive more efficient cell-type-informative markers by leveraging high-quality 

scRNA-seq data generated from existing studies. 

 Here we investigated gene expression profiles of 6,000 single cells from 15 head and 

neck squamous cell carcinoma (HNSCC) patients. To allow for a finer deconvolution of 

immune cell subtypes, we employ an adaptive divide-and-conquer scheme to isolate cell 

populations in silico. The reference gene expression profile matrix was then built based on 

identified single cell populations. We show that the reference profiles obtained from single 

cell expression data enable a more reliable estimation of cellular composition in bulk tumor, 

and they have ability to discriminate immune cell types with finer granularity. Our work 

demonstrates that established single cell gene expression in each tumor type can further 

add value to the digital dissection the tumor microenvironments. We provide these reference 

matrices and gene panels, namely single-cell gene expression profiles (scGEPs), to the 

community as a useful resource for studying heterogeneous tumor ecosystems.  
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METHODS 

Single-cell RNAseq Data 

We downloaded the single-cell RNA-seq data from Puram et al. [1] which generated 

expression data of 6,000 single cells from head and neck squamous cell carcinoma (HNSCC) 

patients. By reviewing all published single-cell RNA-seq data (up to Dec 2018) in cancer, we 

found that this dataset covered the most diverse stromal, malignment and immune cells in 

the tumor microenvironment (TME), and relatively large number of patients. Importantly, it 

provides annotated cells from four T cell major subpopulations: regulatory T-cells (Tregs), 

convectional CD4+ T cells (CD4+ Tconv), CD8+ T and CD8+ T exhausted. Therefore, single 

cell expression profiles from Puram et al. study is an ideal source of reference data. Note 

that expression profiles of malignant cells are highly specific to HNSCC, but we hypothesize 

that expression reference of immune cells is applicable to other cancer types. After removing 

the patient samples with less than 50 cells, 5712 cells from 16 treatment-naive patients plus 

matched lymph nodes from three of these patients remained for analysis (Table S1). As 

described in Methods in Puram et al. [1] gene expressions were quantified as y=log2 

(TPM+1), where TPM refers to transcripts per million, a gene quantification method that has 

been considered superior to FPKM (fragments per kilobase per million read) and more 

robust to differences in RNA library size [4]. 

 

Enrichment analysis of cell-type-specific genes 

We adapted the single-sample Gene Set Enrichment Analysis, or ssGSEA [5], to calculate 

the enrichment scores of pre-existing cell-type-specific marker genes. These scores will be 

used to assist the cell type assignment step to be described in the following sections. 

ssGSEA is an extension of GSEA method that computes an aggregated enrichment score 

for a gene set. But instead of gene-phenotype association score, ssGSEA considers 

rankings of gene expression relative to remaining genes in the genome within each sample, 

and calculate a score that represents the degree that genes in a gene set are coordinately 

up- or down-regulated. Signature genes for HNSCC tumor, immune, and stromal cells were 

obtained from previous studies [1, 6, 7]. To choose the most reliable and generalized 

signatures, we used only the genes shared by all resources. Together, we collected 140 

signature genes covering 15 cell types including HNSCC tumor cells, immune cells, T cell 

subtypes, and stromal cells. The curated gene list is given in Supplementary Table S2. Note 

that this list alone is not sufficient to be used as a reference panel for the cell content 

deconvolution with bulk tumor gene expression data. Enrichment of each cell-type signature 

was assessed using ssGSEA implemented in R package gsva [6].  

 

Cell type identification 
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Similar to the data analysis presented in Purma study, we choose to use the t-SNE method 

to visualize the cell clusters and explore the cell type compositions based on transcriptomes 

of all examined cells. However, as shown in the previous analysis and in the results section, 

t-SNE method alone is only able to identify clusters of major cell types and not able to 

distinguish between T cell subpopulations. Furthermore, the location of the clusters in the t-

SNE map and their relative positions to other clusters will change across analysis runs. As a 

limitation of the technique, t-SNE cannot reproduce the same clustering map if different cells 

or perplexity parameters are chosen in one analysis run. Therefore, we propose to use a 

multi-stage cell identification scheme for obtaining more accurate cell type inference--by 

adaptively integrating t-SNE and ssGSEA results. The steps and detailed parameters used 

are described below. 

(1) Tumor cell classification: To classify HNSCC malignant cells, we performed t-SNE 

analysis of all cells using perplexity parameter of 50 followed by DBscan clustering (with 

parameters eps=5 and minPts =5). Clusters were classified as malignant cells and non-

malignant cells based on their ssGSEA enrichment scores using signature genes for 

HNSCC tumor cells (Figure S1A,B). As reported previously in various cancer studies [1, 3], 

malignant cells were clustered by patients while non-malignant cells were clustered by cell 

types (Figure S1C). 

(2) Non-tumor cell classification: The non-tumor cells identified in step 1 were subjective to a 

secondary stage of clustering analysis. t-SNE with the perplexity of 30 was performed 

followed by DBscan clustering (with parameters eps=6 and minPts =15). These parameters 

were chosen based on two criteria: (1) the resulted clusters should maximize the degree of 

differentiation of cell populations; (2) the resulted clusters should have the greatest 

consensus possible with the ssGSEA metrics. Based on the ssGSEA enrichment scores, 

clusters are assigned to major immune and stromal cell types including Fibroblasts, B cell, 

Macrophages, Endothelial cells, Dendritic cells, Mast cells and T cells (Figure S2A and 

Figure S2B).  

(3) T cell subtype identification: Similar procedure was used to classify T cell subtypes from 

the lumped T cells population identified in step 2. We performed single-cell consensus 

clustering (SC3) analysis [8] and were able to identify four distinct clusters of T cell 

subpopulations. These four clusters were assigned to conventional CD4+ T cells (CD4+ 

Tconv), T-regulatory cells (Treg), conventional CD8+ T cells (CD8+ Tconv), and exhausted 

CD8+ T cells, based on their ssGSEA enrichment scores (Figure S3A and Figure S3B). Next, 

differential expression analysis was performed comparing CD4 Tconv vs. Treg cells, and 

CD8+ Tconv vs. exhausted CD8+ T cells using R package limma [9]. Only genes with 

|log2FoldChange| >1 and Benjamini-Hochberg adjusted p-value < 0.05 were considered 
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significantly differentially expressed and reported in Table S3. The identified differentially 

expressed genes were compared with previously reported marker genes for these cell types.  

 

scRNA-derived marker genes 

To develop a finer panel of cell-type-specific genes, we identified marker genes that are 

specifically expressed in each cell type. Differential expression analysis was first performed 

between any pairs of the 11 cell types using R package limma. Then marker genes of each 

cell type were identified as those significantly highly expressed in cell type under 

consideration compared to at least 5 other cell types (log2FoldChange >3 and Benjamini-

Hochberg adjusted p-value < 0.05). In total, we identified 581 marker genes and reported the 

gene names and limma results in Table S4. 

 

Deconvolution method for bulk tumor 

The objective of the deconvolution algorithm is designed to solve for the linear equations 

� � � �  �, where � is the input gene expression profile (GEP) matrix, � is a vector of cell 

fractions to be estimated, and � is the gene expression signature or reference GEP matrix. 

A machine learning method, ν-support vector regression (ν-SVR) combining feature 

selection with a linear loss function and L2-regularisation [10], was used to infer the 

compositions of the malignant cells, tumor-infiltrating cell types/subtypes, and stromal cells 

from the bulk gene expression. This method has been implemented in CIBERSOR [11], a 

tool that has now been widely used for in cancer research. The initial setting of CIBERSORT 

was designed for estimating 22 immune cell types using 547 signature genes (LM22) 

derived from microarray data. In this study, we will apply the same SVR method 

implemented in CIBERSORT to infer cell types that are more representative in head and 

neck tumors. The reference GEP panels used in SVR will be described in the following 

section. 

 

In silico assessment of final reference GEP panels 

With the availability of high-resolution scRNA-seq data, one main objective of this study is to 

explore new ways to generate the reference GEP matrices to be used in bulk tumor 

deconvolution, i.e., the matrix B as described in the previous section. The ideal B matrix 

should be able to yield maximal and robust discriminatory power between cell type clusters. 

Meanwhile, the pooled scRNA-seq data can be served as ground truth for benchmarking the 

performance of reference GEP as well as deconvolution methods—because the true cell 

composition in the bulk gene expression data will be known. The similar idea has been 

implemented in a recent study [7]. The first step of constructing reference GEP matrices is to 

choose a panel of reference genes that can distinguish the cell populations. In this study, we 
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will focus on four gene panels: (1) LM22 gene reference panel, designed by Newman et al: it 

contains 547 genes that distinguish 22 human hematopoietic cell phenotypes including 

several T-cells types, B cells, and natural killer cells. This panel is the default panel used in 

CIBERSORT and thus has been used extensively; (2) A panel of signature genes identified 

from previous literature: it contains 140 genes that are served as signatures for 15 major cell 

types including HNSCC tumor cells, immune cells, T cell subtypes, and stromal cells (Table 

S2). (3) The scRNA-derived marker gene panel discovered through the steps described 

previously in the method: which contains genes that uniquely expressed in each cell 

population identified from HNSC scRNA-seq data (Table S4); (4) A T-cell-specific GEP 

panel discovered through steps similar to GEP panel (3) but with a focus on four T cell 

subtypes (Table S3). Note that we only used the gene list information of these panels. The 

GEP matrix of these genes is formed through averaging all single cells assigned to these 

populations. In order to assess the prediction performance of the above four GEP panels, 

we tested them on in silico bulk tumors by aggregating the single cell transcriptome data. 

Expression data of individual cells from the same patient in Puram study were pooled to 

form 15 in-silico tumors, which exhibit varied cellular compositions. 

 

RESULTS 

Identifiable cell types using HNSCC single cell data. Overall, the adaptive clustering 

analysis on single-cell transcriptome data pooled from all HNSCC tumor samples identified 

distinct 11 cell clusters to be used in generating reference GEP. These cells types are: 

HNSCC Malignant cells, Fibroblasts, Macrophages, Dendritic cells, Endothelial cells, Mast 

cells, B cells, conventional CD4+ T cells, T-regulatory cells, conventional CD8+ T cells, and 

exhausted CD8+ T cells. As shown in the t-SNE plot with all cells projected (Figure 1A), most 

cells from same immune cell types are grouped together while malignant cell and Fibroblasts 

cell clusters contains multiple subgroups within each cluster. In the follow-up analyses, we 

will show that these subgroups are mainly driven by inter-tumor heterogeneity. The cell 

grouping information was then used to construct the cell composition map back in each 

tumor. As illustrated in the stacked bar chart in Figure 1B, the proportions of malignant cells 

(tumor purity) vary uniformly between 0 and 1. This pattern reflects the original experimental 

design and is consistent with results from the original analysis [1]. We also observed that 

some important immune subsets such as tumor-infiltrating Treg cells (coded with dark blue) 

only exist in tumor samples with lower tumor purity, i.e. sample towards the right side of the 

plot. Treg cells plays important role as regulators of anti-tumor immune suppression and 

Treg/CD8+ T cell ratio may have a clinical significance in analyzing tumors in HNSCC 

patients [12]. However, results from scRNA-seq data suggests that the overall Treg 
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expression signature may be underrepresented in genomic projects that are biased towards 

tumors with higher purity, such as TCGA. In the following, we briefly describe results 

generated from each step. First, we observed that the unsupervised clustering on all cells 

based on t-SNE revealed eight major clusters as depicted in Figure S1A. Note that, at this 

stage, we had no information about cell types underlying these cell groups and the number 

of clusters might differ subject to the perplexity parameter choice in t-SNE. We started the 

cell type identification from first distinguishing tumor and non-tumor cells. By adding ssGSEA 

scores representing the tumor cell signature into the t-SNE map (Figure S1B), we identified 

two major cluster regions of malignant cells located in the very top and lower regions. By 

further adding the color layers reflecting the tumor origin, we observed that the cell clusters 

in these regions were clearly separated by patient IDs while they were mixed together in a 

mosaic pattern in other cluster regions (Figure S1C). The results above align with previous 

findings [1, 3, 7] that inter-tumor heterogeneity may arise more at the tumor malignant cell 

level than at the immune cell level—suggesting that immune cell signatures abstracted from 

the proposed scheme will be applicable to not only HNSCC samples generated from 

different studies but also samples from different tumor types. Next, we performed a second 

round of t-SNE analysis by excluding all tumor cells identified from previous steps. The new 

clustering analysis revealed seven major cell clusters (Figure S2A). We were able to identify 

the cell types corresponding to each cluster by adding ssGSEA score specific to Fibroblasts, 

B cell, Macrophages, endothelial cells, dendritic cells, mast cell, and T cells one at each time 

as depicted in Figure S2B. As expected, this subset of cell population is dominated by 

Fibroblasts and T cells. When we adding the color layers reflecting patient origins into Figure 

S2A, we found a similar pattern that patient IDs were mixed together in each cell type cluster, 

indicating that the sub-clusters (such as in the T cells) may reveal further cell subtypes. This 

leads us to the next step by further zooming into the expression profiles of cells from T cell 

populations.  

Deconvolution of T cell subtypes using identified T cell population. Based on SC3, we 

further identified four clusters from T cells (Figures 2A). The cell types in the T cell 

subpopulation were first determined based on the gene enrichment signatures of CD4+ and 

CD8+ cells (as shown in the upper panel in Figure S3B). Within these two subpopulations, 

[CD8+ cells further marked with ssGSEA signatures for CD8+ Tconv and CD8+ exhausted; 

and CD4+ cells were marked with CD4+ Tconv and Treg cells signature values (Figure S3B). 

As shown in Figure S3, the signatures for two CD8+ cell types are overlapped and it is 

difficult to assign these cells to any subtypes. As further summarized in the heatmap of 

ssGSEA scores (Figure S4), the ssGSEA analysis based on curated signature genes were 

able to distinguish between major cell types using single cell level expression data but failed 
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to provide the necessary granularity in separating T cell subtypes. To determine T cell 

subtypes, especially CD8+ subtypes, we performed differential expression analysis between 

the two cell groups identified within CD4+ T cells and CD8+ T cells. Differentially expressed 

genes (adjusted p value < 0.05, limma moderated t-test, and |log2fold-change| >1) are 

reported in Table S3. Cell subtypes were then inferred from the status of top differentially 

expressed genes, by comparing them with existing cell-type-specific marker genes. Figure 

2B and Figure 2C are heatmaps depicting top differentially expressed genes between CD8+ 

cell clusters and CD4+ cell clusters, respectively. Candidate genes that overlapped with 

marker genes identified from previous studies are listed and labeled in heatmaps. Note that 

several exhaustion-related genes can serve as markers for separating both subtypes in CD4 

and CD8, such as TIGIT and CTLA4. For the CD8+ T cell subtypes, we compared the 

candidate marker genes identified in our DE analysis to the exhausted CD8+ T cells marker 

genes reported in a previous single-cell RNA-seq from infiltrating T cells of lung cancer [13].  

A total of 36 genes are found shared by the two studies and all labeled in Figure 2B. Among 

these 36 genes also includes 14 known exhaustion markers, such as PCCD1, TIGIT, 

HAVCR2, and CTLA4 (Figure 2B, text in red), which further confirmed the identify of these 

exhausted CD8+ T cells. The other CD8+ T cell cluster without expression of exhaustion 

genes is considered as conventional CD8+ T cells. For the CD4+ T cell subtypes, we also 

compared the candidate marker genes identified from the DE analysis with the Tregs marker 

genes reported by four previously published scRNA-seq data from different cancer types 

[13-16] (Figure 2D). We observed that there were 20 genes shared by all five studies (Figure 

2C, text in red), including known Tregs markers FOXP3, TIGIT, and CLTA4; and there were 

many more genes previously identified at least once (Figure 2E). Our study also identified 

207 genes that uniquely enriched in this HNSCC dataset (Figure 2E), including PPP1CA, 

RUNX3, CCR6, and PSMB8 which were previously reported to be associated with Tregs 

and their functions [17-20]. Based on these observations, we assigned Tregs to this cluster 

of CD4+ T cells. The other CD4+ cluster with low expression of exhaustion markers and with 

exclusively high expression of CCR7, CXCR4, and TOBI was considered as conventional 

CD4+ T cells. 

Evaluation of prediction performance of reference GEPs. For each cell type identified 

from previous steps, we established cell-type-specific reference GEP matrix by the mean 

expression values of selected genes. We use C1 to denote the curated gene list from 

previous literatures which are used in ssGSEA (Table S2), C2 to denote marker genes 

selected from the DE analysis described above (Table S4), T1 to denote the marker genes 

selected from DE analyses for separating T cell subtypes (Table S3), and M1 to denote 

marker genes selected from DE analyses for separating tumor and non-tumor cells. In our 
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analysis, we constructed reference GEP matrices by taking the mean from the following 

ensemble gene lists: (1) LM22, (2) C1, (3) C2, (4) LM22+C1, (5) LM22+C1+T1, (6) 

LM22+C1+T1+M1, and (7) LM22+C1+C2+T1+M1. As presented in Figure S5, we evaluated 

the prediction performance of CIBERSORT using these GEPs in terms of correlation 

between predicted abundance and the true abundance in the simulated bulk tumor (through 

pooling all cells in one patient, see Methods). We observed that all of these reference GEPs 

achieved promising prediction accuracies (r>0.9). This result indicates that existing marker 

genes provides saturated signatures if forming GEPs on right cell groups. Therefore, we will 

focus on the evaluation of the LM22+C1 gene panel because of it has a moderate number of 

genes and all genes included are well studied. All reference GEPs matrices used in this 

study are provided in Supplementary Table S5. 

Scatterplots in Figure 3A demonstrate strong correlations between true cell proportions 

and predicted cell proportions based on GEP curated form LM22+C1 scRNA-seq data, 

where each point represents a simulated bulk sample. Figure 3B further compares the cell 

abundance estimation accuracy (correlation) for the reference GEP included in CIBERSORT 

and the reference GEP trained based on the LM22+C1 scRNA-seq panel. Our method 

shows better prediction performance in all case for cell types that CIBERSORT can provide 

estimation, especially in estimating CD8 T cells. We further gauged the estimated cell 

proportion from CIBERSROT by taking into account the fact that the original GEP only 

include reference for immune cells. Such adjustment was made by assuming that tumor cell 

(purity) and stromal cell proportion were known so that a relative abundance on each 

remaining cell types can be calculated. Even with this unrealistic scenario, the prediction 

performance based on the adjusted proportion was still inferior to the scRNA-seq trained 

GEP in all cases. But we did observe that CIBERSORT estimation on macrophages and 

dendritic cells was greatly improved with this adjustment (Figure S6). To test the robustness 

of the GEP panel to the cell components, we re-run the devolution analysis on all simulated 

samples using the leave-one-out GEP, i.e. each time we remove one cell-type-specific 

vector from the GEP matrix. As shown in Figure S7, the high prediction accuracy was 

maintained in most scenarios, and only the estimations for fibroblasts and malignant cells 

were detectably impacted by the leave-one-out GEP.  

Although C2 and T1 gene sets (determined based on DE tests) did not provide additional 

information as a gene panel in constructing GEP, they provide a new alternative cell-type-

specific biomarker for future studies. As shown in violin plots (Figure S14), these markers 

are exclusively over-expressed in cell types that they are representing, indicating their 

validity as independent surrogate biomarkers. A total of 182 genes were found overlapping 

between groups C2+T1 and LM22+C1. Expressions of these genes for each single cell were 
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plotted in Figure S15, demonstrating their ability as biomarker panel alone to separate major 

cell types but not T cell subtypes.  

  Finally, as a supportive validation, we tested the proposed scGEP on TCGA HNSCC 

tumor samples and compared with results generated from similar methods developed for 

bulk tumor deconvolution. Figure S8 compared the tumor purity estimates with three other 

methods: ABSOLUTE [21], ESTIMATE [22] and CPE [23]. These methods are based on 

WES, RNAseq and a consensus score based on all molecular data. Our method showed the 

best correlation with the estimation from ESTIMATE in terms of purity estimation. Further, 

we compared the Immune and Stromal score predicted by ESTIMATE with the absolute 

proportion estimates from the scGEP-based method. As shown in Figure S9, the analysis 

showed a good agreement between two methods. We also compared the estimated total 

immune cell proportions and total T cell proportions between HPV positive and HPV 

negative cancer patients. As expected, tumors from HPV positive patients showed higher 

infiltration of immune cells and T cells (Figure S10). Abundance of tumor infiltrating CD8 and 

total immune cells were also found associated with survival outcomes in TCGA HNSCC 

patients (Figure S11). 

 

Discussion 

scRNA-seq provides high resolution data to study cell heterogeneity, and provides new 

chance to understand the dynamic ecosystem comprising tumor cells, fibroblasts, and 

immune cells. Nevertheless, gene expression data from bulk tumors is indispensable and 

still dominates the clinical and translational settings. In this study we developed a pipeline to 

construct the reference gene expression profile matrix based on scRNA-seq data (scGEP), 

and assessed its performance in estimating cancer and immune cell compositions from bulk 

tumor gene expression data. By combining gene expression profiles of major cancer and 

immune cell types in HNSCC established from a high-quality single cell data, our approach 

overcomes a key shortcoming of most existing studies that relied on limited source of FACS-

purified cell populations for the reference signature gene matrix. As noted in previous 

studies, PBMC-based GEP is also insufficient to provide accurate estimate on bulk tumor 

samples. The scGEP matrix derived from our analysis provides a new resource for future 

endeavors in analyzing expression data in head and neck cancers. The estimation on tumor 

purity will be greatly improved with the tailored reference signature for HNSCC malignant 

cells. Importantly, more accurate estimation on cancer cells partly contributes to better 

estimation on the relative abundance of immune cells. We validated results by using in silico 

pooled bulk tumor samples, and also showed that single-cell-derived signatures provides the 

ability to separate T cell subtypes. The finer and more accurate tumor immune profiling of 

HNSCC samples will help reveal more prognostic biomarkers with implications for 
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immunotherapy. Furthermore, because immune cell share very similar expression profiles 

across cancer types, in theory the reference matrix can be broadly employed to other solid 

tumors, but it will only provide relative abundance for immune cell types. With the increased 

availability of single-cell data in cancers such as melanoma and lung cancers, an ideal 

scGEP matrix should be generated based on the same tumor type using the proposed 

pipeline.  

 The key step in constructing scGEP matrix involves accurately identifying cells of the 

same types or subtypes from heterogeneous populations, which is the in-silico equivalent of 

isolating cells using physical sorting methods. Compared to traditional sorting methods such 

as FACS, in-silco methods are less time consuming, less laborious, and more cost effective. 

Cell type determination at cellular level have benefited greatly from specialized clustering 

methods developed for scRNA-seq [8, 14, 24-26]. While there are more advanced 

approaches including deep learning [27, 28] have been proposed in recent years, fully 

automated decomposition of cell types is still a challenging problem. Part of the difficulty 

arises from the fact that each tumor includes a large variety of malignant and nonmalignant 

cells at different stages. The cellular mixing component and proportions even with the same 

section of a tumor can be very different if sampled under different time or conditions, e.g., 

before or after treatment. In addition, due to the limitations of the scRNA-seq technology 

itself, single cell gene expression data are often very noisy. And hence cells of the same 

type can end up in different clusters, and cells of different types can be in the same cluster 

due to unknown technology batch effects. Therefore, it is important to carefully curate and 

select high-quality cell clusters before calculating cell-type-specific reference matrix. In this 

study, we adopted an adaptive divide-and-conquer scheme to identify all major cell types in 

HNSCC tumor tissues, starting from the easiest split of cancer vs. non-cancer cells to the 

most challenging T cell subtype separation. In every step of the process, cell types are 

inferred based on both the results from the unsupervised clustering analysis and the 

expression status of existing marker genes. Any prior knowledge about the cellular 

component of the studied tumor type also helps in assigning a cell cluster to a cell types. In 

later stages of the analysis where cell subtypes are getting harder to distinguish, multiple 

settings or even multiple methods of clustering analysis need to tired. This process cannot 

be automated due to the need to visually inspect the clustering results in each step, but can 

achieve the best possible results for cell mixture deconvolution. The adaptive method was 

also based on a key assumption and it was further demonstrated in our clustering analysis: 

despite the significant heterogeneity of malignant cells across tumors, cells from the same 

immune cell types can be clustered together due to their relatively similar gene expression 

profiles.  
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It is important to highlight main advantage of using the data from Puram et al. as 

training dataset: it by far contains the largest collection of single cells from solid tumors (in 

terms of patient number and cell number) from a single study. The above-described property 

allows us to calculate the composite reference GEP not only from pooled cells from different 

tumor samples, but also from different scRNA-seq experiments. A caveat is that data pooled 

across studies involves more complicated batch effects and it is by now generally accepted 

that correcting for the batch effect in RNAseq data across experiments is technically 

challenging.  It is interesting to note, though, that some recently proposed ideas for batch 

effect correction with scRNA-seq data are based on consensus clustering, which leverages 

the same philosophy mentioned above by projecting more homogenous immune cells into 

the same cluster. As pointed out in the original analysis, some apparent batch effect 

observed may be linked to the enzyme used for reverse transcription in the scRNA 

experiments. We further investigated the factor of enzyme usage in the adaptive clustering 

scheme and found that it explains well the sub-clusters observed in Fibroblast cell 

populations (Figure S12), but had limited impact on other cell types (Figure S13).   

One notable observation in our simulation studies is that the GEP calculated based 

on existing marker gene panel (LM22+C1) can provide as accurate a predictive capability as 

the genes selected only from the differential expression of single cell populations, although 

they are overlapped in many genes. We conclude that the prediction performance of GEP is 

more sensitive to the cell populations purified for a particular cell type than the marker gene 

panel. Nevertheless, the newly discovered genes from the scRNA-seq data and their 

underlying pathway warrant further validations as potential biomarkers, especially those 

genes that are differentially expressed between T subtypes.  

 Although we have only tested support vector regression method for cell mixture 

estimation, the HNSCC single cell sequencing data curated from this study provides a useful 

source for the assessment of accuracy of newly developed deconvolution methods. For 

example, the core SVR algorithm implemented in CIBESRORT only uses a single kernel 

under the fixed default parameter setting. The prediction performance might be improved 

through searching for an optimal kernel or using the state-of-the-art multiple kernel learning 

technologies [24]. Currently there is a lack of suitable benchmark dataset that allows a fair 

and systematic evaluation of methods for estimating cell mixtures in solid tumors. Weak 

correlations were often found between molecular-data-based estimations and pathology 

based methods such as IHC and H&E images [29]. This is partially due to the fact that each 

of these assays was carried out using input materials from different parts of a tumor. 

Because all cell proportions are known, the in silico pooled bulk tumor data from individual 

cells provides a more accurate reference at almost zero cost. Plus the composite cells from 

a single tumor could better mimic the real case scenario than creating bulk expression 
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dataset through conducting RNA-seq on randomly mixed cells. For head and neck cancer 

per se, the scRNA-seq data from Puram study provide an ideal source for both training and 

validation purposes because the studied tumors have (1) uniformly varied tumor purity, and 

(2) it provides reference for subpopulations such as exhaustive CD8+ T cell that were not 

present in previous scRNA-seq experiments on melanoma and lung cancers. A limitation of 

the in silico method is that the cell size factor has not been taken into account. As cell types 

of different size have different amount of RNA yield, it is of interest for future research to be 

able to adjust for the cell size factor so that the estimated relative abundance will be closer 

to absolute cell proportions.  

 The key idea proposed in this work is most similar to a previous study conducted by 

Schelker et al. [7] which focused on scRNA-seq data from melanoma and PBMC. The two 

main differences between the two works are (1) the melanoma data used by Schelker et al. 

only provided sufficient information for distinguish nine major cell types and three T cell 

subtypes, whereas the HNSCC data we studied was able to further separate exhaustive 

CD8 T cells and provide corresponding reference GEP; (2) In our method, we used both 

marker gene information and a global ssGSEA scores to determine cell types from adaptive 

clustering analysis. We believe that more studies along this line will be conducted to 

generate more accurate cancer-type-specific and T-cell-subtype-specific reference GEP. 

Finally, we believe that apart from looking for reference profiles based on gene expression, 

the same approach can be extended in future search to identify reference DNA methylation 

profiles (DMP). DMP will be a promising new resource for tumor composition deconvolution 

because Alternations at DNA methylation level are deemed to be more stable than the gene 

expression level. But the single-cell DNA methylation analysis, such as bisulfite sequencing, 

is still in an experimental phase. 

 

Conclusions 

 

List of abbreviations 

scRNA-seq: single-cell RNA sequencing 

TILS: tumor-infiltrating lymphocytes 

IHC: immunohistochemical 

t-SNE: t-Distributed Stochastic Neighbor Embedding  

HNSCC: head and neck squamous cell carcinoma 

GEP: gene expression profiles     scGEPs: single-cell gene expression profiles  

TME: tumor microenvironment 

CD4+ Tconv: conventional CD4+ T cells  

CD8+ Tconv: conventional CD8+ T cells     

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/663500doi: bioRxiv preprint 

https://doi.org/10.1101/663500
http://creativecommons.org/licenses/by-nc-nd/4.0/


CD8+ exhausted: exhausted CD8+ T cells     

TPM: transcripts per million 

ssGSEA: the single-sample Gene Set Enrichment Analysis 

v-SVR: ν-support vector regression 
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Figure 1. Profiling cellular composition of HNSCC tumors using scRNA-seq. 
(A) 2D t-sne projection of the expression profiles of 5,712 single cells (3,259 immune 
cells and 2,453 malignant cells) from 20 HNSCC tumors and lymph node samples of 16 
patients. Single cells are shown in dot and colored by cell types. (B) Cell composition per 
sample. Patients are ordered by their fractions of malignant cells. 
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Figure 2. Deconvolution of T cell subtypes. 
(A) 2D t-sne projection of T cells. T cell subtypes identified by clustering analysis are 
annotated and marked by color codes. (B) Heatmap of genes significantly expressed in 
exhausted CD8+ T cells comparing to conventional CD8+ T cells (adjusted p-value < 
0.05, log2fold-change > 1). Genes also reported by a previous study are labeled on left, 
of which the known exhaustion markers are labeled in red text. Cell types are indicated 
by the colored bar at top. (C) Heatmap of genes differentially expressed in Tregs 
comparing with conventional CD4+ T cells (adjusted p-value < 0.05, |log2fold-change| > 
1). Selective Treg genes are labeled in dark blue and known markers for conventional 
CD4+ T cells are labeled in light blue. (D) Intersections between Treg genes identified in 
(C) using Puram et al. HNSCC data with those from previous studies. Numbers of genes 
in each intersection are shown as the bars at the top panel. Studies involved in each 
intersection are linked together by lines at the bottom panel. The 20 genes shared by all 
five studies are highlighted in orange and labeled in (C). (E) Volcano plot of genes 
differentially expressed in Tregs vs. conventional CD4+ T cells. Unique genes found by 
this study are labeled in green. Those identified once (blue), twice (red), and three times 
(pink) previously are also labeled.  
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Figure 3. Estimation accuracy of cellular compositions using LM22+C1 scGEPs. 
(A) Scatter plots of the estimated and true cell proportions for the 20 simulated bulk 
tumor samples. Each dot represents one sample and r denotes the Pearson’s correlation 
coefficient. (B) Comparing the estimation accuracy between LM22+C1 scGEPs and 
CIBERSORT microarray GEPs. The pie charts show the Pearson’s correlation 
coefficient of true proportion and proportion estimated using CIBERSORT microarray 
GEPs (top), and LM22+C1 scGEPs (bottom). The missing cell types in CIBERSORT 
microarray GEPs are denoted by dash. T cell composition was calculated taking sum of 
the four T cell subtypes. 
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