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Abstract

Many of the brain-computer interface (BCI) systems depend on the user’s voluntary eye movements.
However, voluntary eye movement is impaired in people with some neurological disorders. Since their
auditory system is intact, auditory paradigms are getting more patronage from researchers. However, lack of
appropriate signal-to-noise ratio in auditory BCI necessitates using long signal processing windows to
achieve acceptable classification accuracy at the expense of losing information transfer rate. Because users
eagerly listen to their interesting stimuli, the corresponding classification accuracy can be enhanced without
lengthening of the signal processing windows. In this study, six sinusoidal amplitude-modulated auditory
stimuli with multiple message frequency coding has been proposed to evaluate two hypotheses: 1) these
novel stimuli provide high classification accuracies (greater than 70%), 2) the novel rhythmic stimuli set
reduces the subjects™ fatigue compared to its simple counterpart. We recorded EEG from nineteen normal
subjects (twelve female). Five-fold cross-validated naive Bayes classifier classified EEG signals with respect
to power spectral density at message frequencies, Pearson’s correlation coefficient between the responses
and stimuli envelopes, canonical correlation coefficient between the responses and stimuli envelopes. Our
results show that each stimuli set elicited highly discriminative responses according to all the features.
Moreover, compared to the simple stimuli set, listening to the rhythmic stimuli set caused significantly lower
subjects’ fatigue. Thus, it is worthwhile to test these novel stimuli in a BCI experiment to enhance the number
of commands and reduce the subjects” fatigue.

Key words: rhythm; amplitude modulation; multiple message frequency coding; classification; fatigue

Significance Statement

Auditory BCI users eagerly listen to the stimuli they are interested in. Thus, response classification accuracy
may be enhanced without the need for trial lengthening. Since humans enjoy listening to rhythmic sounds,
this study was carried out for introducing novel rhythmic sinusoidal amplitude-modulated auditory stimuli
with multiple message frequency coding. Our results show that each stimuli set evoked reliably
discriminative responses according to all the features, and rhythmic stimuli set caused significantly lower
fatigue in subjects. Thus, it is worthwhile to test these novel stimuli in a BCI study to increase the number

of commands (by NN permutations of just N message frequencies) and reduce the subjects” fatigue.
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Introduction

Brain-computer interfaces (BCI) makes muscle-independent communication between brain
and computer possible. Thus, translating the user's intention to an external command (e.qg.,
wheelchair control) comes true (Wolpaw et al., 2002). BCI can improve the quality of life for
people with motor disabilities. Electroencephalogram (EEG) has been considered a reliable
modality for using in BCI studies due to its noninvasiveness, good temporal resolution, easy
implementation, and low cost (Wang et al., 2004; Hoffmann et al., 2008; Nijboer et al., 2008).

Patients with some neurological disorders, such as late-stage amyotrophic lateral sclerosis
(ALS) and minimally conscious state (MCS), cannot perform voluntary eye movements or
fixate their gaze. Moreover, daily usage of tactile BCI is hard because most people do not have
tactile stimulators at home (Kaufmann et al., 2013). Thus, there has been an increasing interest
towards auditory BCI (aBCl) (Hill et al., 2004; Kanoh et al., 2008; Nijboer et al., 2008; Furdea
et al., 2009; Klobassa et al., 2009; Kubler et al., 2009; Halder et al., 2010; Schreuder et al.,
2010; Higashi et al., 2011; Hohne et al., 2011; Kim et al., 2011; Schreuder et al., 2011; Kim et
al., 2012; Lopez-Gordo et al., 2012; Kathner et al., 2013; Nakamura et al., 2013; Simon et al.,
2014; Kleih et al., 2015; Zhou et al., 2016; Heo et al., 2017; Kaongoen and Jo, 2017), which
uses auditory selective attention to influence event-related potentials (ERPs) and auditory
steady-state responses (ASSRs). ASSR is chiefly evoked by listening to amplitude-modulated
(AM) tones, and its spectrum has peaks at message frequency (fm) (Picton et al., 2003; Lopez
et al., 2009; Tanaka et al., 2013; Tanaka et al., 2015).

In aBCl, lengthening the processing window enhances the classification accuracy, but it
reduces the speed (Lopez-Gordo et al., 2012). However, because the users eagerly listen to
their interesting stimuli, the classification accuracy is enhanced (Zhou et al., 2016; Heo et al.,
2017). Moreover, rhythmic stimulation modulates the intrinsic neural oscillatory

characteristics (Herrmann et al., 2016). Rhythmic sinusoidal AM tones elicited EEG (Heo et
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al., 2017; Shamsi et al., 2017) and MEG (Kuriki et al., 2013), but each of those stimuli had just
one message frequency. Further, responses were not classified in (Kuriki et al., 2013) and
subjects” fatigue were not evaluated in (Kuriki et al., 2013; Heo et al., 2017).

To our knowledge, there is not any research on AM sequences with multiple message
frequencies. In this paper, six novel stimuli with multiple message frequency coding were
introduced to test our hypotheses: 1) the resulting ASSRs are highly discriminative, and 2)

listening to the novel rhythmic set reduces the subjects™ fatigue compared to the simple set.

Materials and Methods

Subjects. Nineteen healthy (twelve female) volunteers took part in this study. They all
participated in our previous study (Shamsi et al., 2017), too. Their age was in the range of 22-
29 years (25.261+2.05). All of them were right-handed according to Edinburgh Handedness
Inventory (Oldfield, 1971) (Index: 0.75+0.26). Participants reported no musical expertise. The
instructions were explained to them. Subjects signed written informed consent form before
conducting the experiments. All the procedures were approved by the ethics committee and the
deputy of research review board of Tehran University of Medical Sciences.

Stimuli. In order to maintain consistency with other ASSR studies, double-sideband
transmitted-carrier amplitude modulation with a modulation depth of 1 was used to generate
the stimuli (to get more details, see (Lopez et al., 2009; Kuriki et al., 2013; Tanaka et al., 2013;

Heo et al., 2017)):

s(t)=sin(2mnf.t) (14 sin(2mft) ) (1)

Where s(t) stands for the stimulus signal. In addition, fc and fm are carrier and modulation (i.e.,

message) frequency, respectively. Two sets of stimuli were designed, each of which contained
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79  three stimuli. All the stimuli had a duration of 180 s. Each stimulus comprised three fms. The
80  stimuli sets is schematically represented in Figure 1. Using multiple message frequencies in
81  each stimulus enriches its spectral content, because each fm can elicit its corresponding peak in
82  ASSR spectrum. In this way, different orderings and permutations of fms make it possible to
83  produce various commands in aBCIl. That is to say, using this coding, only N message
84  frequencies can generate NN permutations, which means NN stimuli and NN commands,
85  whereas NN message frequencies in single-message sinusoidal AM tones are required for
86  generating the same number of stimuli and commands. This is important because there is
87  limitation for message frequency selection in the sense that strong ASSRs were elicited by
88  message frequencies in the range of [30-50] Hz (Picton et al., 1987), so using multiple message
89  frequency coding facilitates the construction of stimuli corresponding to possible commands.
90 It is noteworthy that in this paper, whenever only a single carrier was present in the stimuli,
91 those stimuli are called “simple”, while the stimuli containing more than one carrier are referred
92  toas “rhythmic”. In other words, “rhythm” was generated using multiple carriers. For both sets
93  of stimuli, fms were chosen to be among the (30, 35, 40) Hz. This is because consistent and
94  robust ASSRs were elicited by message frequencies in the range of [30-50] Hz (Picton et al.,
95  1987). Carrier frequencies were selected among the musical notes to be interesting for the
96  subjects to listen to them. In this way, fcs were members of the (262, 392, 494) Hz
97  corresponding to “do”, “sol”, and “si” musical notes, respectively. For the rhythmic stimuli,
98 the presence of each carrier was set to 0.5 s according to the best tempo sensitivity time interval
99 (Drake and Botte, 1993). Frequency details are displayed in Table 1. Each stimuli set contained
100 ascending, descending, and one of the possible zigzagging codings of message/carrier
101 frequency. In other words, within each set, we constructed only three permutations (out of 27

102

103 A
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108  Figure 1. Schematic representation of the stimuli sets. A, simple set. B, rhythmic set.

109

110  possible permutations). For instance, a pattern with 30-30-35 Hz (two identical fms at first and
111 second portions of the triple pattern) or any similar permutation was not constructed. The
112 reason is that we wanted to see the distinguishability that all of 30, 35 and 40 Hz within the
113 proposed coding can provide in the corresponding ASSRs. Therefore, the presence of all three
114  fms in the proposed coding was required in this study. All the stimuli were generated in
115 MATLAB R2016b (MathWorks Inc., Natick, MA, USA). Sampling frequency for all the
116  stimuli was 4410 Hz.

117

118
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119  Table 1. Message and carrier frequency details in the stimuli sets

Frequency (Hz)
fml fm2 fm3 fcl fc2 fc3
Stimuli
name
SA 30 35 40 262 -
Simple set SB 40 35 30 494 - -
SC 40 30 35 392 - -
RA 30 35 40 494 262 392
Rhythmic set RB 40 35 30 262 392 494
RC 40 30 35 494 392 262
120
121 Task. In order to assess the subjects’ level of some psychological factors (i.e., depression,

122 stress, anxiety) through the week before the experiment, they were asked to fill DASS
123 questionnaire (Lovibond and Lovibond, 1995) preceding the stimuli presentation. Also, the
124  subjects filled questionnaire of current motivation (QCM) (Rheinberg et al., 2001; VVollmeyer
125  and Rheinberg, 2006) before the beginning of the experiment. In this way, it was possible to
126  measure their motivation and interest for participation, sense of challenge about the task, and
127  anxiety they feel about the task. Then, the participants were requested to remain eyes-closed,
128  still, and listen to the stimuli. For preventing from effects of the stimuli presentation order on
129  the reported fatigue, the stimuli were presented in a random order for each participant. In other
130  words, stimuli presentation order differed between the subjects. After listening to each
131 stimulus, participants reported the amount of stimulus-induced fatigue that they experienced,
132 as an integer number from 0 (minimum fatigue) to 10 (maximum fatigue) according to the
133 visual analog scale (VAS) and they were given a short break of 60-120 seconds before
134  presentation of the next stimulus. This procedure was performed for every stimulus. There were

135
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136
137 Figure 2. Stimuli presentation procedure. “Stim” is the abbreviation of stimulus. The stimuli were presented in a

138 random order. After listening to each stimulus, which was 180 s long, the subjects reported the level of stimulus-
139 induced fatigue that they experienced, as an integer number from 0 (minimum fatigue) to 10 (maximum fatigue)

140  according to VAS. Then, they were given a short break of 60-120 s before presentation of the next stimulus.

141

142 two reasons for this separate presentation: 1) we wanted to ensure that the stimuli in each set
143 (i.e., simple, rhythmic) elicit sufficient inherently distinguishable responses in the brain, 2) we
144  wanted to measure the amount of fatigue that each stimulus caused to each subject, so we had
145  to present the stimuli separately (i.e., one by one). The stimuli presentation procedure is
146  displayed in Figure 2. It is worth mentioning that all the previously mentioned psychological
147  data were later used to explore whether there is a relationship between those factors and the
148  fatigue level that subjects reported.

149 Experiment apparatus and recording. Insert earphones ER-3A (Etymotic Research, Elk
150  Grove Village, IL) presented the stimuli to the subjects. For each stimulus, the volume was set
151  according to equal loudness level contours at the standard 1SO 226:2003.

152 Electrode placement was performed according to 10-20 international system. Active g.LADYbird
153 electrodes were placed on Fz, Cz, T7 and T8. The reason for selecting Fz was that it is shown that Fz
154  has the highest average amplitude of responses in subjects to whom a music is pleasant (Kayashima et
155  al.,, 2017). Three other channels were consistently used in a number of previous ASSR studies (Lopez
156  etal., 2009; Higashi et al., 2011; Kim et al., 2011; Heo et al., 2017; Shamsi et al., 2017). According to
157 (Heo et al., 2017; Shamsi et al., 2017), right earlobe and Fpz were considered as the reference and

158  ground, respectively. EEG was recorded by g.USBamp (g.tec Medical Engineering GmbH, Austria) at
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159  asampling frequency of 4800 Hz. Online filters consisted of a bandpass with a bandwidth of [0.5-2000]
160  Hz, and a notch with a center frequency of 50 Hz.

161 Signal analysis. Firstly, in order to detect ASSR, we explored that whether the amplitude
162  spectrum at fm was larger than the mean+3xstandard deviation (SD) of the amplitude spectrum
163  at frequencies in the range of (fm-1 to fm-5) and (fm+1 to fm+5) (Tanaka et al., 2015). Then,
164  prominent features (i.e., power spectral density (PSD), Pearson’s correlation coefficient (PCC),
165  canonical correlation coefficient (CCC)) were extracted. Feature extraction and classification
166  were performed across every 20-s segment of the EEGs to be consistent with the relevant
167 literature and practical applications (Kim et al., 2011; Heo et al., 2017). All the analyses were
168  carried out in MATLAB R2016b (MathWorks Inc., Natick, MA, USA) on a laptop, which had
169  Intel® Core™ i7-2670QM CPU @ 2.20 GHz as its processor.

170 Power spectral density. Keeping in mind that PSD is a robust feature for analyzing ASSR,
171 it was computed (using amplitude spectrum at fm and its adjacent frequencies in the range of
172 fm—5-fm—1 and fm+1-fm+5) according to the literature (Tanaka et al., 2013; Tanaka et al.,
173 2015), as follows:

174

TIX(Fn-1:fm+1) |2

PSD(fr)= S (X (Em-5:f- D2+ X (ot 1 +5)[2) @

175

176~ Where |X(fm)| is the amplitude spectrum of the brain response at frequency of fm.

177 Pearson correlation coefficient. To investigate the amount of correlation between each
178  stimulus and its corresponding ASSR, Pearson's correlation coefficient was used, which,
179  through this paper, will be referred to as “PCC”. As previously mentioned, the spectrum of this
180  response has a peak at the modulation frequency (fm) (Tanaka et al., 2013; Tanaka et al., 2015),

181  which is exactly the same as the fundamental frequency of the stimulus envelope. Thus, PCC
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182  was calculated for investigating the amount of correlation between each stimulus™ envelope
183  (i.e., X) and the ASSR (i.e., Y) that stimulus elicited. It was calculated as follows:

184

__ cov(XY)
Pxy =

(3)

0x0yY

185

186  Where cov(X,Y), ox, and ov are the covariance of the two signals, the standard deviation of X

187  and the standard deviation of Y, respectively. p, ,, has a value within the interval of [-1, 1].

188  Obviously, if there is not any linear relationship between X and Y, it will be zero.

189 Canonical correlation coefficient. This method seeks for a pair of linear combinations for
190  two signals in such a way that the correlation between two canonical signals being maximized.
191 In this way, pairs having linear combinations with the most linear correlation are chosen in a
192  way that the previously identified pairs are orthogonal to them. If the EEG is represented by X
193  and the stimulus envelope is considered to be Y, their projection vectors are denoted by X =

194 w,Xand§ = wyTY, respectively. Solving the equation below, w, and w,, can be obtained:

195
__ E®Y
Wowy | YEGRDEGYD ()
196

197  Where, p is called the canonical correlation coefficient.

198 Classification. There were two cases for the classification, one for the responses to simple
199  stimuli set, and the other for those of the rhythmic stimuli set. That is to say, in this study, two
200 three-class classification problems existed. Classification was conducted by means of five-fold
201  cross-validated naive Bayes classifier. The chosen classifier utilizes the total probability
202  theorem and the Bayes theorem to estimate the posterior probability (i.e., the probability that

203 the features of an observation belong to a particular class) for each class. Then, for each
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204  observation, corresponding posterior probabilities are compared to each other and the most will
205  be selected as the outcome of the classification. Naive Bayes classifier performs classification
206  onthe assumption that features of each class have statistical independence, whereas sometimes
207  this is not the case. This classifier, however, works well in practice (Hastie et al., 2009).
208  Posterior probability was calculated as follows:

209

o T1E: P(X; k)
E 00 T, P(X[K)

P(kIX{,...Xp)= )

210

211 Where, k is the class index, Xai,...,Xp are the features for each observation, and (k) is the
212 empirical prior probability of class k. It is worth mentioning that the hyperparameters of the
213 naive Bayes classifier for each training fold was determined by Bayesian optimization.

214 In order to evaluate the amount of classification performance, classification accuracy and
215  Cohen’s kappa value were computed. Classification accuracy was defined to be the number of
216  correctly classified observations divided by the number of classified observations. According

217  to (Billinger et al., 2012), Cohen's kappa value was calculated as follows:

218
_ M. Ci.C
Pe= =—p7 (6)
Acc-pe
i 7
1-pe (7
219

220  Where, pe is the chance level, Ci; is the i-th row of confusion matrix, C.,i is the i-th column of

221 confusion matrix, M represents the number of classes, and N is the total number of classified
222  observations. Besides, K and Acc are the Cohen’s kappa value and the classification accuracy,

223 respectively.
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224 Experimental Design and Statistical Analysis. In order to examine the effect of stimuli type
225  (i.e., simple, rhythmic) and feature (i.e., PSD, PCC, CCC) on the classification performances,
226 we used the classification performance measures (i.e., accuracy, Cohen's kappa value) for all
227  the subjects (12 female, 7 male) as the dependent variable. Features and stimuli types were the

228  within-subjects factors. All these were carried out via within-subjects repeated measures

229
EEG Recording
ASSR Detection
Feature Extraction
(1.e., PSD. PCC, CCC)
Classification
Statistical Analyses
230

231 Figure 3. Signal recording and analyses procedure.

232

233 ANOVA. Mauchly's test checked whether the sphericity assumption held. Further,
234  Greenhouse-Geisser approximation corrected the degrees of freedom. We selected Tukey's
235  honest significant difference to perform post hoc comparisons.

236 In addition, Wilcoxon signed rank test was used to see whether the level of stimuli-induced

237  fatigue corresponding to the two sets of stimuli differ significantly within the subjects. In this
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238  statistical design, subjects” fatigue was the dependent variable and type of the stimuli sets (i.e.,
239  simple and rhythmic) were within-subjects factors.

240 To investigate whether there is a relationship between psychological factors, which were
241  evaluated via the questionnaires, and the reported fatigue, Spearman’s correlation test was
242  performed. All the analyses were conducted in MATLAB R2016b (MathWorks Inc., Natick,

243 MA, USA).

244 Moreover, signal recording and analyses procedure is illustrated in Figure 3.
245
246  Results

247  Response detection

248  For each stimulus, amplitude spectrum of its corresponding EEG was computed. We checked
249  whether the amplitude spectrum at fm was larger than the mean+3xstandard deviation (SD) of
250 the amplitude spectrum at frequencies in the range of (fm-1 to fm-5) and (fm+1 to fm+5) (Tanaka
251 et al., 2015) to make sure that ASSR was appeared. For simple and rhythmic stimuli set,
252 amplitude spectrum corresponding to one stimulus is denoted in Figure 4. as a representative,
253  because all the ASSRs satisfied the aforementioned condition (Tanaka et al., 2015).
254  Consequently, these newly designed auditory stimuli with multiple message frequency coding
255  elicited robust ASSRs.

256
257  Behavioral results

258  After listening to each stimulus, participants reported the amount of fatigue that they
259  experienced by listening to that stimulus. All the subjects reported their level of fatigue as an
260 integer number in the range from 0 (minimum) to 10 (maximum) according VAS. In
261  comparison to the simple stimuli, the rhythmic stimuli caused significantly lower fatigue (p =

262 0.005, Wilcoxon signed rank,). This confirms our second hypothesis (fatigue reduction using
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271 Figure 4. Amplitude spectrum of the responses to A, simple set. B, rhythmic set.
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the proposed novel rhythmic stimuli set). Boxplot representation of fatigue due to the stimuli
in each set is illustrated in Figure 5. In addition, there was not any significant correlation
between psychological factors and fatigue caused by listening to each stimulus. This is an
indication of the fact that the subjects truly reported the fatigues that were chiefly caused by
listening to the stimuli, regardless of their psychological factors. For each stimulus, scatter plot
of the data that yielded strongest Spearman’s correlation coefficient, along with the best
monotone curve fitted to the data are denoted on Figure 6. In each case, the best-fit curve was
obtained through nonlinear least squares method. Details of all the Spearman tests (Spearman’s

correlation coefficients and corresponding p-values) are illustrated Table 2.

Fatigue
w

I
ok 1 4

Simple Rhythmic
Stimulus Type

Figure 5. Boxplot representation of fatigue caused by the stimuli (fatigue levels were integers from 0 (minimum
fatigue) to 10 (maximum fatigue) according to VAS). Rhythmic set significantly reduced the subjects™ fatigue (p

= 0.005, Wilcoxon signed rank).


https://doi.org/10.1101/663344
http://creativecommons.org/licenses/by-nc-nd/4.0/

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

Fatigue

bioRxiv preprint doi: https://doi.org/10.1101/663344; this version posted June 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

SA

o r=-0.217
P =0.372

0
15 20 25 30 35

0 10 20 0 10 20
Stress Anxiety (from DASS) Interest
RA RB
10 10
r=0.268 r=0.454
P =0.267 P =0.051
g . e .
2 5 L Ete o o
E .e
. L]
e e L ] .
t—/.’./‘ . " o . .
0 s ol 0l
0 10 20 0 10 20 0 10 20

Anxiety (from DASS) Anxiety (from DASS) Anxiety (from DASS)

Figure 6. Scatter plots of the data that yielded strongest Spearman’s correlation coefficient between the
psychological factors and fatigue caused by each stimulus (each plot’s name), along with the best monotone curve
fitted to the data. There was not any significant correlation between psychological factors and fatigue caused by
listening to each stimulus. In each plot, r represents Spearman’s correlation coefficient, while P is the p obtained

in the Spearman’s correlation test.

Classification performance

To investigate whether the designed stimuli yield intrinsically discriminative responses, we
performed classification (for features and classifier parameters used, see Materials and
Methods). For both sets of stimuli, high classification accuracy and Cohen's kappa value (up
to a maximum of 100% and 1, respectively) were obtained. There was no significant difference
between the responses to the simple and rhythmic stimuli sets in terms of classification
performance (F(1,15) = 4.06, p = 0.062, repeated measures ANOVA). Furthermore, there was
not any significant difference between PSD, PCC, and CCC features in terms of classification
performance (F(2,30) = 1.21, p = 0.307, repeated measures ANOVA). These indicate that the
responses to the stimuli in each set are sufficiently discriminative. Further, the results show

that all the extracted features were discriminant measures for the responses to each set. Group
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307  Table 2. Spearman’s correlation test (r: Spearman’s correlation coefficient, P: p obtained via the test).

308  There was not any significant correlation between the psychological factors and stimuli-caused fatigue

Success Anxiety Anxiety
Challenge Interest Depression Stress
Probability  (QCM) (DASS)

r=-0.088 r=-0.055 r=0.099 r=0.086 r=-0122 r=-0.098 r=-0.217
Fatigue Caused by SA

P=0.721 P=0.823 P=068 P=0726 P=0619 P=0.691 P=0.372

r=0.049 r=0.185 r=0.086 r=0.114 r=0.025 r=0.263 r=0.015
Fatigue Caused by SB

P=0.843 P=0.449 P=0.726 P=0643 P=0920 P=0.276 P=0.952

r=0.149 r=0.314 r=0.109 r=0.084 r=-0127 r=0.176 r=-0.101
Fatigue Caused by SC

P=0543 P=0.191 P=0658 P=073 P=0603 P=0470 P=0.680

r=-0.074 r=-0.160 r=-0.055 r=0.015 r=0.071 r=0.268 r=-0.006
Fatigue Caused by RA

P=0.765 P=0.512 P=0823 P=0951 P=0.772 P=0.267 P=0.981

r=-0.012 r=-0.190 r=-0.047 r=0.170 r=0.371 r=0.454 r=0.308
Fatigue Caused by RB

P=0962 P=0.435 P=0.848 P=0488 P=0.118 P=0.051 P=0.200

r=0.176 r=-0.070 r=-0.298 r=0.049 r=0.247 r=0438 r=0413
Fatigue Caused by RC

P=0472 P=0.776 P=0.216 P=0844 P=0308 P=0.061 P=0.079
309
310  Table 3. Between-subjects classification performance for different stimuli sets and features

PSD PCC CcCC
Simple Rhythmic Simple Rhythmic Simple Rhythmic
Accuracy (%) 92.98 88.89 93.57 81.29 94.15 83.04
Cohen’s kappa value  0.90 0.83 0.90 0.72 0.91 0.75
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314 Figure 7. Top, Group means of the classification accuracy for the three features (PSD, PCC, CCC) as a function
315 of stimuli type (illustrated as Simple, Rhythmic). Bottom, Group means of the Cohen's kappa value for the three
316  features (PSD, PCC, CCC) as a function of stimuli type (illustrated as Simple, Rhythmic).
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318  Table 4. A comparison between the results of this paper and those of some relevant ASSR studies

Average Fatigue
] o Segment o
Study Subjects Number of stimuli / Type classification measurement
(seconds)
accuracy (%)
(Kimetal., 2011) 6 normal 2 / single-message AM tones 20 76.25 Not included
(Nakamura et al., 2013) 8 normal 2/ single-message AM speech 9 78.6 Not included
sentence
(Kaongoen and Jo, 2017) 10 normal 2 /simple single-message AM 21 82.90 Not included
tones
(Heo et al., 2017) 6 normal 2 [ simple single-message AM 20 74 Not included
tones
(Heo et al., 2017) 6 normal 2/ single-message AM natural 20 87.67 Not included
sound carrier
(Heo et al., 2017) 6 normal 2/ single-message AM musical 20 89.67 Not included
carrier
(Shamsi et al., 2017) 19 normal 3/ simple single-message 20 82.46 Median: 4
sinusoidal AM tone
(Shamsi et al., 2017) 19 normal 3/ rhythmic single-message 20 80.70 Median: 2
sinusoidal AM sequence
PSD: 91.23
This work 19 normal 3/ simple multiple-message 20 PCC: 97.66 Median: 5
sinusoidal AM tone CCC: 93.57
PSD: 82.46
This work 19 normal 3/ rhythmic multiple-message 20 PCC: 89.48 Median: 3
sinusoidal AM sequence CCC: 83.63

319
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320 means of the classification accuracy and Cohen's kappa value for different conditions (i.e.,
321  features) as a function of the stimuli type (i.e., simple, rhythmic) are illustrated in Figure 7.
322 The results show that all the average classification accuracies are well above 70%, which is the
323  minimum acceptable classification accuracy in BCI systems. Thus, the responses to the stimuli in each
324  set are highly discriminative. In other words, our first hypothesis was confirmed. To investigate
325  whether there is generalizability in terms of response discrimination, we performed between-
326  subjects classification for the responses to each set. Classification accuracy and Cohen’s kappa
327  value for between-subjects classification according to each feature are listed in Table 3.

328

329 Discussion

330  According to the facts that humans enjoy listening to rhythmic sounds (Zhou et al., 2016; Heo
331 etal., 2017) and rhythmic stimulation influences the intrinsic neural oscillatory characteristics
332 (Herrmann et al., 2016), it seems that utilizing rhythmic auditory stimuli in the experiments
333 that aim to evoke and examine auditory responses in the brain reduces the subjects’ fatigue.
334  Thus, this study was carried out to test our two hypotheses 1) the ASSRs to the novel stimuli
335  with multiple message frequency coding are highly discriminative, and 2) listening to the novel
336 rhythmic stimuli set with multiple message frequency coding reduces the subjects fatigue. All
337  these were conducted to determine whether the stimuli introduced in this paper have enough
338  feasibility (in terms of classification performance and subjects™ fatigue) to be used in an aBCI.
339  In some previous studies, rhythmic sinusoidal amplitude-modulated tones were used to elicit
340 EEG (Heo et al., 2017; Shamsi et al., 2017) and MEG (Kuriki et al., 2013), but all of them
341 utilized single message frequency. Further, response classification and subjects’ fatigue
342  evaluation were not conducted in (Kuriki et al., 2013). Although user acceptance evaluated in
343  (Heoetal., 2017), user fatigue was not taken into account. Thus, both the stimuli sets designed

344 in this study were novel in the sense of having multiple message frequency coding. In addition,
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345  response classification and fatigue evaluation were carried out for these stimuli for the very
346  first time. For a better insight into the novelty of this work, a comparison between the results
347 of this paper and those of some relevant ASSR studies, which performed response
348  classification, are illustrated in Table 4.

349 Robust peak in ASSR spectrum at message frequencies (corresponding to the envelope of
350 the stimuli) is consistent with previous findings (Lopez et al., 2009; Kim et al., 2011;
351  Nozaradan et al., 2012; Kuriki et al., 2013; Kaongoen and Jo, 2017) and confirms the notion
352 that human's auditory system acts like an envelope detector, which can be an amplitude
353  demodulator (Miyazaki et al., 2013). In addition, amplitudes of the responses to the rhythmic
354  set were lower than those of the simple set. This may be due to the more complex structure of
355  the rhythmic set, compared to that of the simple set. There is relevant supporting evidence that
356  more complex stimuli elicited less amplitude, when compared to stimuli with simpler structure
357  (Nakamura et al., 2013; Shamsi et al., 2017).

358 Moreover, the rhythmic stimuli set resulted in less fatigue in the subjects, compared to that
359  of the simple stimuli set. This is in agreement with the findings in our previous study on the
360 comparison between the fatigue levels that simple and rhythmic single-message sinusoidal AM
361  stimuli can cause (Shamsi et al., 2017) and confirms our second hypothesis. In addition, the
362 insignificant and infinitesimal correlation between the fatigue and the psychological factors
363  can ensure us that the subjects truly reported the fatigue that was chiefly caused by listening to
364  the stimuli, regardless of their psychological factors.

365 We were able to perform highly accurate, precise and reliable classification on within- and
366  between-subjects responses without any artifact rejection. This shows that there was adequate
367 inherent discrimination even at the raw signal level for the responses to each stimuli set. It can
368 be seen from the within-subjects classification performance results that: 1) stimuli with

369  multiple message frequencies generate highly distinguishing ASSRs, so they have the potential
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370  be utilized in aBCl to increase the number of available commands, and therefore the
371 information transfer rate, by means of multiple permutations of just a few message frequencies,
372 which is accessible via the coding presented in this paper. In other words, fewer message
373 frequencies (N in the proposed multiple message coding, compared to NN in single-message
374 SAM tones) can generate NN commands in aBCl, 2) the rhythmic stimuli elicit discriminative
375  responses, which are as distinct as that of the simple stimuli, 3) all the features (PSD, PCC, and
376  CCC) are discriminant measures for the classification of the ASSR to the stimuli with multiple
377 message frequencies. Also, high amounts of between-subjects classification performance
378 indicates that the ASSRs to the stimuli in each set were reliably distinct and generalizable.
379  Furthermore, all the average classification accuracies were far above 70%, which is sufficient
380 for a BCI system. In other words, our first hypothesis was confirmed. Thus, the stimuli
381  designed in this paper have the adequate potential to be corresponding to several different
382  commands and generate distinct responses in BCI systems.

383 The average classification performances obtained in this study outperformed previous
384  studies, which utilized single-message AM tones (Lopez et al., 2009; Kim et al., 2011; Heo et
385 al.,, 2017; Kaongoen and Jo, 2017; Shamsi et al., 2017) and single-message AM sentences
386 (Nakamura et al., 2013). Particularly, the average classification performances obtained for our
387  simple set was higher than those of a research, which used single-message AM natural sound
388  carriers (Heo et al., 2017). However, the average classification performances for our rhythmic
389  set was a bit lower than those of a study, which made use of single-message AM instrumental
390 music carriers (Heo et al., 2017). It is worth mentioning that in the current study, each stimulus
391  was presented separately, while the stimuli in most of the compared studies were played
392  simultaneously, which may decrease their classification performance. In other words, for each
393  subject of the current study, each stimulus played, the fatigue reported by the subject was

394  written down, and another stimulus was presented, and so on. There were two reasons for this:
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395 1) we wanted to ensure that whether the stimuli in each introduced set evoke adequate
396 inherently distinguishable responses in the brain, 2) we wanted to measure the amount of
397  fatigue that each stimulus caused to each subject, so we had to present the stimuli separately
398  (i.e., one by one). Although simultaneous presentation of the stimuli is required in BCI
399  paradigms, this is not the case in our study, which is not a BCI paradigm. This study is a
400 preliminary step that investigated the feasibility of utilizing the proposed stimuli in aBCl
401  paradigm. For this purpose, the amount of inherent distinguishability between the responses in
402  each set, along with subjects” fatigue were measured through the separate presentation.
403  Therefore, our purpose required this kind of stimuli presentation. However, in simultaneous
404  presentation of the stimuli, fc coding in the rhythmic set will help the users to focus on and
405  discriminate between the stimuli. This implies that the classification performance of the
406  responses in the simultaneous stimuli presentation would not be too different from our results,
407  which are obtained via separate stimuli presentation.

408 The results showed that stimuli in each set have sufficient inherent discrimination to the
409  extent that it is worthwhile to use these novel auditory stimuli with multiple message frequency
410 coding in a BCI experiment. If we are asked to choose one of our proposed stimuli sets to be
411 utilized in BCI studies, the choice will be the “rhythmic set”. The reason is listening to the
412 rhythmic set reduced the subjects™ fatigue and the brain responses to the rhythmic set were
413  classified via a common classifier, with a high performance close to the simple set, so this set
414  will be able to increase the number of possible commands by permutation of the message
415  frequencies of its stimuli.

416 Sinusoidal amplitude-modulated tones are helpful in studies concerning encoding of
417  envelope and periodicity in human's auditory system. Moreover, they can be used in ASSR-
418 based BCI systems. Therefore, exploring sinusoidal AM tone-evoked ASSR is chiefly

419  important. In this paper, each stimuli set contained ascending, descending and one of the
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420 possible zigzagging codings of message/carrier frequency. For future work, it is suggested to
421  explore ASSR to other possible zigzagging permutations of message/carrier frequency, and
422  make a comparison between the responses to stimuli with different coding types (ascending,
423  descending and zigzagging) and frequency effects. Also, testing auditory stimuli constructed
424  with other modulations (e.g., frequency modulation (FM), pulse width modulation (PWM),
425  etc.) would be valuable. Further, conducting the experiment performed in this paper on
426  completely locked-in state syndrome (CLIS) patients is proposed for future work to see whether
427  they are useful for those individuals. In this study, we aimed at exploring the responses in
428 common domains (e.g., time and frequency). However, nonlinear and/or time-frequency
429  analyses can be performed and compared in future studies.

430
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