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Abstract 1 

Many of the brain-computer interface (BCI) systems depend on the user`s voluntary eye movements. 2 

However, voluntary eye movement is impaired in people with some neurological disorders. Since their 3 

auditory system is intact, auditory paradigms are getting more patronage from researchers. However, lack of 4 

appropriate signal-to-noise ratio in auditory BCI necessitates using long signal processing windows to 5 

achieve acceptable classification accuracy at the expense of losing information transfer rate. Because users 6 

eagerly listen to their interesting stimuli, the corresponding classification accuracy can be enhanced without 7 

lengthening of the signal processing windows. In this study, six sinusoidal amplitude-modulated auditory 8 

stimuli with multiple message frequency coding has been proposed to evaluate two hypotheses: 1) these 9 

novel stimuli provide high classification accuracies (greater than 70%), 2) the novel rhythmic stimuli set 10 

reduces the subjects` fatigue compared to its simple counterpart. We recorded EEG from nineteen normal 11 

subjects (twelve female). Five-fold cross-validated naïve Bayes classifier classified EEG signals with respect 12 

to power spectral density at message frequencies, Pearson`s correlation coefficient between the responses 13 

and stimuli envelopes, canonical correlation coefficient between the responses and stimuli envelopes. Our 14 

results show that each stimuli set elicited highly discriminative responses according to all the features. 15 

Moreover, compared to the simple stimuli set, listening to the rhythmic stimuli set caused significantly lower 16 

subjects` fatigue. Thus, it is worthwhile to test these novel stimuli in a BCI experiment to enhance the number 17 

of commands and reduce the subjects` fatigue. 18 

Key words: rhythm; amplitude modulation; multiple message frequency coding; classification; fatigue 19 

 20 

Significance Statement 21 

Auditory BCI users eagerly listen to the stimuli they are interested in. Thus, response classification accuracy 22 

may be enhanced without the need for trial lengthening. Since humans enjoy listening to rhythmic sounds, 23 

this study was carried out for introducing novel rhythmic sinusoidal amplitude-modulated auditory stimuli 24 

with multiple message frequency coding. Our results show that each stimuli set evoked reliably 25 

discriminative responses according to all the features, and rhythmic stimuli set caused significantly lower 26 

fatigue in subjects. Thus, it is worthwhile to test these novel stimuli in a BCI study to increase the number 27 

of commands (by NN permutations of just N message frequencies) and reduce the subjects` fatigue. 28 

 29 
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Introduction 30 

Brain-computer interfaces (BCI) makes muscle-independent communication between brain 31 

and computer possible. Thus, translating the user`s intention to an external command (e.g., 32 

wheelchair control) comes true (Wolpaw et al., 2002). BCI can improve the quality of life for 33 

people with motor disabilities. Electroencephalogram (EEG) has been considered a reliable 34 

modality for using in BCI studies due to its noninvasiveness, good temporal resolution, easy 35 

implementation, and low cost (Wang et al., 2004; Hoffmann et al., 2008; Nijboer et al., 2008). 36 

Patients with some neurological disorders, such as late-stage amyotrophic lateral sclerosis 37 

(ALS) and minimally conscious state (MCS), cannot perform voluntary eye movements or 38 

fixate their gaze. Moreover, daily usage of tactile BCI is hard because most people do not have 39 

tactile stimulators at home (Kaufmann et al., 2013). Thus, there has been an increasing interest 40 

towards auditory BCI (aBCI) (Hill et al., 2004; Kanoh et al., 2008; Nijboer et al., 2008; Furdea 41 

et al., 2009; Klobassa et al., 2009; Kübler et al., 2009; Halder et al., 2010; Schreuder et al., 42 

2010; Higashi et al., 2011; Höhne et al., 2011; Kim et al., 2011; Schreuder et al., 2011; Kim et 43 

al., 2012; Lopez-Gordo et al., 2012; Käthner et al., 2013; Nakamura et al., 2013; Simon et al., 44 

2014; Kleih et al., 2015; Zhou et al., 2016; Heo et al., 2017; Kaongoen and Jo, 2017), which 45 

uses auditory selective attention to influence event-related potentials (ERPs) and auditory 46 

steady-state responses (ASSRs). ASSR is chiefly evoked by listening to amplitude-modulated 47 

(AM) tones, and its spectrum has peaks at message frequency (fm) (Picton et al., 2003; Lopez 48 

et al., 2009; Tanaka et al., 2013; Tanaka et al., 2015). 49 

In aBCI, lengthening the processing window enhances the classification accuracy, but it 50 

reduces the speed (Lopez-Gordo et al., 2012). However, because the users eagerly listen to 51 

their interesting stimuli, the classification accuracy is enhanced (Zhou et al., 2016; Heo et al., 52 

2017). Moreover, rhythmic stimulation modulates the intrinsic neural oscillatory 53 

characteristics (Herrmann et al., 2016). Rhythmic sinusoidal AM tones elicited EEG (Heo et 54 
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al., 2017; Shamsi et al., 2017) and MEG (Kuriki et al., 2013), but each of those stimuli had just 55 

one message frequency. Further, responses were not classified in (Kuriki et al., 2013) and 56 

subjects` fatigue were not evaluated in (Kuriki et al., 2013; Heo et al., 2017). 57 

To our knowledge, there is not any research on AM sequences with multiple message 58 

frequencies. In this paper, six novel stimuli with multiple message frequency coding were 59 

introduced to test our hypotheses: 1) the resulting ASSRs are highly discriminative, and 2) 60 

listening to the novel rhythmic set reduces the subjects` fatigue compared to the simple set. 61 

 62 

Materials and Methods 63 

Subjects. Nineteen healthy (twelve female) volunteers took part in this study. They all 64 

participated in our previous study (Shamsi et al., 2017), too. Their age was in the range of 22-65 

29 years (25.26±2.05). All of them were right-handed according to Edinburgh Handedness 66 

Inventory (Oldfield, 1971) (Index: 0.75±0.26). Participants reported no musical expertise. The 67 

instructions were explained to them. Subjects signed written informed consent form before 68 

conducting the experiments. All the procedures were approved by the ethics committee and the 69 

deputy of research review board of Tehran University of Medical Sciences. 70 

Stimuli. In order to maintain consistency with other ASSR studies, double-sideband 71 

transmitted-carrier amplitude modulation with a modulation depth of 1 was used to generate 72 

the stimuli (to get more details, see (Lopez et al., 2009; Kuriki et al., 2013; Tanaka et al., 2013; 73 

Heo et al., 2017)): 74 

 75 

s(t)=sin(2πfct)(1+ sin(2πfmt) )  (1) 

 76 

Where s(t) stands for the stimulus signal. In addition, fc and fm are carrier and modulation (i.e., 77 

message) frequency, respectively. Two sets of stimuli were designed, each of which contained 78 
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three stimuli. All the stimuli had a duration of 180 s. Each stimulus comprised three fms. The 79 

stimuli sets is schematically represented in Figure 1. Using multiple message frequencies in 80 

each stimulus enriches its spectral content, because each fm can elicit its corresponding peak in 81 

ASSR spectrum. In this way, different orderings and permutations of fms make it possible to 82 

produce various commands in aBCI. That is to say, using this coding, only N message 83 

frequencies can generate NN permutations, which means NN stimuli and NN commands, 84 

whereas NN message frequencies in single-message sinusoidal AM tones are required for 85 

generating the same number of stimuli and commands. This is important because there is 86 

limitation for message frequency selection in the sense that strong ASSRs were elicited by 87 

message frequencies in the range of [30-50] Hz (Picton et al., 1987), so using multiple message 88 

frequency coding facilitates the construction of stimuli corresponding to possible commands.  89 

It is noteworthy that in this paper, whenever only a single carrier was present in the stimuli, 90 

those stimuli are called “simple”, while the stimuli containing more than one carrier are referred 91 

to as “rhythmic”. In other words, “rhythm” was generated using multiple carriers. For both sets 92 

of stimuli, fms were chosen to be among the (30, 35, 40) Hz. This is because consistent and 93 

robust ASSRs were elicited by message frequencies in the range of [30-50] Hz (Picton et al., 94 

1987). Carrier frequencies were selected among the musical notes to be interesting for the 95 

subjects to listen to them. In this way, fcs were members of the (262, 392, 494) Hz 96 

corresponding to “do”, “sol”, and “si” musical notes, respectively. For the rhythmic stimuli, 97 

the presence of each carrier was set to 0.5 s according to the best tempo sensitivity time interval 98 

(Drake and Botte, 1993). Frequency details are displayed in Table 1. Each stimuli set contained 99 

ascending, descending, and one of the possible zigzagging codings of message/carrier 100 

frequency. In other words, within each set, we constructed only three permutations (out of 27  101 

 102 

A 103 
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 104 

 105 

B 106 

107 

Figure 1. Schematic representation of the stimuli sets. A, simple set. B, rhythmic set. 108 

 109 

possible permutations). For instance, a pattern with 30-30-35 Hz (two identical fms at first and 110 

second portions of the triple pattern) or any similar permutation was not constructed. The 111 

reason is that we wanted to see the distinguishability that all of 30, 35 and 40 Hz within the 112 

proposed coding can provide in the corresponding ASSRs. Therefore, the presence of all three 113 

fms in the proposed coding was required in this study. All the stimuli were generated in 114 

MATLAB R2016b (MathWorks Inc., Natick, MA, USA). Sampling frequency for all the 115 

stimuli was 4410 Hz. 116 

 117 

 118 
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Table 1. Message and carrier frequency details in the stimuli sets 119 

 Frequency (Hz)  

fc3 fc2 fc1  fm3 fm2 fm1   

       
Stimuli 

name 
 

-  262  40 35 30 SA 

Simple set - - 494  30 35 40 SB 

- - 392  35 30 40 SC 

         

392 262 494  40 35 30 RA 

Rhythmic set 494 392 262  30 35 40 RB 

262 392 494  35 30 40 RC 

         

 120 

Task. In order to assess the subjects` level of some psychological factors (i.e., depression, 121 

stress, anxiety) through the week before the experiment, they were asked to fill DASS 122 

questionnaire (Lovibond and Lovibond, 1995) preceding the stimuli presentation. Also, the 123 

subjects filled questionnaire of current motivation (QCM) (Rheinberg et al., 2001; Vollmeyer 124 

and Rheinberg, 2006) before the beginning of the experiment. In this way, it was possible to 125 

measure their motivation and interest for participation, sense of challenge about the task, and 126 

anxiety they feel about the task. Then, the participants were requested to remain eyes-closed, 127 

still, and listen to the stimuli. For preventing from effects of the stimuli presentation order on 128 

the reported fatigue, the stimuli were presented in a random order for each participant. In other 129 

words, stimuli presentation order differed between the subjects. After listening to each 130 

stimulus, participants reported the amount of stimulus-induced fatigue that they experienced, 131 

as an integer number from 0 (minimum fatigue) to 10 (maximum fatigue) according to the 132 

visual analog scale (VAS) and they were given a short break of 60-120 seconds before 133 

presentation of the next stimulus. This procedure was performed for every stimulus. There were  134 

 135 
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136 
Figure 2. Stimuli presentation procedure. “Stim” is the abbreviation of stimulus. The stimuli were presented in a 137 

random order. After listening to each stimulus, which was 180 s long, the subjects reported the level of stimulus-138 

induced fatigue that they experienced, as an integer number from 0 (minimum fatigue) to 10 (maximum fatigue) 139 

according to VAS. Then, they were given a short break of 60-120 s before presentation of the next stimulus. 140 

 141 

two reasons for this separate presentation: 1) we wanted to ensure that the stimuli in each set 142 

(i.e., simple, rhythmic) elicit sufficient inherently distinguishable responses in the brain, 2) we 143 

wanted to measure the amount of fatigue that each stimulus caused to each subject, so we had 144 

to present the stimuli separately (i.e., one by one). The stimuli presentation procedure is 145 

displayed in Figure 2. It is worth mentioning that all the previously mentioned psychological 146 

data were later used to explore whether there is a relationship between those factors and the 147 

fatigue level that subjects reported. 148 

Experiment apparatus and recording. Insert earphones ER-3A (Etymotic Research, Elk 149 

Grove Village, IL) presented the stimuli to the subjects. For each stimulus, the volume was set 150 

according to equal loudness level contours at the standard ISO 226:2003. 151 

Electrode placement was performed according to 10-20 international system. Active g.LADYbird 152 

electrodes were placed on Fz, Cz, T7 and T8. The reason for selecting Fz was that it is shown that Fz 153 

has the highest average amplitude of responses in subjects to whom a music is pleasant (Kayashima et 154 

al., 2017). Three other channels were consistently used in a number of previous ASSR studies (Lopez 155 

et al., 2009; Higashi et al., 2011; Kim et al., 2011; Heo et al., 2017; Shamsi et al., 2017). According to 156 

(Heo et al., 2017; Shamsi et al., 2017), right earlobe and Fpz were considered as the reference and 157 

ground, respectively. EEG was recorded by g.USBamp (g.tec Medical Engineering GmbH, Austria) at 158 
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a sampling frequency of 4800 Hz. Online filters consisted of a bandpass with a bandwidth of [0.5-2000] 159 

Hz, and a notch with a center frequency of 50 Hz. 160 

Signal analysis. Firstly, in order to detect ASSR, we explored that whether the amplitude 161 

spectrum at fm was larger than the mean+3×standard deviation (SD) of the amplitude spectrum 162 

at frequencies in the range of (fm-1 to fm-5) and (fm+1 to fm+5) (Tanaka et al., 2015). Then, 163 

prominent features (i.e., power spectral density (PSD), Pearson`s correlation coefficient (PCC), 164 

canonical correlation coefficient (CCC)) were extracted. Feature extraction and classification 165 

were performed across every 20-s segment of the EEGs to be consistent with the relevant 166 

literature and practical applications (Kim et al., 2011; Heo et al., 2017). All the analyses were 167 

carried out in MATLAB R2016b (MathWorks Inc., Natick, MA, USA) on a laptop, which had 168 

Intel® Core™ i7-2670QM CPU @ 2.20 GHz as its processor. 169 

Power spectral density. Keeping in mind that PSD is a robust feature for analyzing ASSR, 170 

it was computed (using amplitude spectrum at fm and its adjacent frequencies in the range of 171 

fm−5-fm−1 and fm+1-fm+5) according to the literature (Tanaka et al., 2013; Tanaka et al., 172 

2015), as follows: 173 

 174 

PSD(fm)=
∑|X(fm-1:fm+1)|2

∑ (|X(fm-5:fm-1)|2+|X(fm+1:fm+5)|2)
  

 

(2) 

 175 

Where |X(fm)| is the amplitude spectrum of the brain response at frequency of fm. 176 

Pearson correlation coefficient. To investigate the amount of correlation between each 177 

stimulus and its corresponding ASSR, Pearson`s correlation coefficient was used, which, 178 

through this paper, will be referred to as “PCC”. As previously mentioned, the spectrum of this 179 

response has a peak at the modulation frequency (fm) (Tanaka et al., 2013; Tanaka et al., 2015), 180 

which is exactly the same as the fundamental frequency of the stimulus envelope. Thus, PCC 181 
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was calculated for investigating the amount of correlation between each stimulus` envelope 182 

(i.e., X) and the ASSR (i.e., Y) that stimulus elicited. It was calculated as follows: 183 

 184 

ρ
X,Y 

= 
cov(X,Y)

σXσY
  (3) 

 185 

Where cov(X,Y), σX, and σY are the covariance of the two signals, the standard deviation of X 186 

and the standard deviation of Y, respectively. ρ
X,Y

  has a value within the interval of [-1, 1]. 187 

Obviously, if there is not any linear relationship between X and Y, it will be zero. 188 

Canonical correlation coefficient. This method seeks for a pair of linear combinations for 189 

two signals in such a way that the correlation between two canonical signals being maximized. 190 

In this way, pairs having linear combinations with the most linear correlation are chosen in a 191 

way that the previously identified pairs are orthogonal to them. If the EEG is represented by X 192 

and the stimulus envelope is considered to be Y, their projection vectors are denoted by x̃ =193 

wx
TX and ỹ = wy

TY, respectively. Solving the equation below, wx and wy can be obtained: 194 

 195 

max
wx, wy 

ρ =
Ε(x̃ỹT)

√Ε(x̃x̃T)Ε(ỹỹT)
  (4) 

 196 

Where, ρ is called the canonical correlation coefficient. 197 

Classification. There were two cases for the classification, one for the responses to simple 198 

stimuli set, and the other for those of the rhythmic stimuli set. That is to say, in this study, two 199 

three-class classification problems existed. Classification was conducted by means of five-fold 200 

cross-validated naïve Bayes classifier. The chosen classifier utilizes the total probability 201 

theorem and the Bayes theorem to estimate the posterior probability (i.e., the probability that 202 

the features of an observation belong to a particular class) for each class. Then, for each 203 
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observation, corresponding posterior probabilities are compared to each other and the most will 204 

be selected as the outcome of the classification. Naïve Bayes classifier performs classification 205 

on the assumption that features of each class have statistical independence, whereas sometimes 206 

this is not the case. This classifier, however, works well in practice (Hastie et al., 2009). 207 

Posterior probability was calculated as follows: 208 

 209 

P̂(k|X1,…,XP)=
π(k) ∏ P(Xj|k)P

j=1

∑ π(k) ∏ P(Xj|k)P
j=1

M
k=1

  (5) 

 210 

Where, k is the class index, X1,…,XP are the features for each observation, and π(k) is the 211 

empirical prior probability of class k. It is worth mentioning that the hyperparameters of the 212 

naïve Bayes classifier for each training fold was determined by Bayesian optimization. 213 

In order to evaluate the amount of classification performance, classification accuracy and 214 

Cohen`s kappa value were computed. Classification accuracy was defined to be the number of 215 

correctly classified observations divided by the number of classified observations. According 216 

to (Billinger et al., 2012), Cohen`s kappa value was calculated as follows: 217 

 218 

pe= 
∑ Ci,:C:,i

M
i=1

N2   (6) 

κ = 
Acc-pe

1-pe
  (7) 

 219 

Where, pe is the chance level, Ci,: is the i-th row of confusion matrix, C:,i is the i-th column of 220 

confusion matrix, M represents the number of classes, and N is the total number of classified 221 

observations. Besides, κ and Acc are the Cohen`s kappa value and the classification accuracy, 222 

respectively. 223 
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Experimental Design and Statistical Analysis. In order to examine the effect of stimuli type 224 

(i.e., simple, rhythmic) and feature (i.e., PSD, PCC, CCC) on the classification performances, 225 

we used the classification performance measures (i.e., accuracy, Cohen`s kappa value) for all 226 

the subjects (12 female, 7 male) as the dependent variable. Features and stimuli types were the 227 

within-subjects factors. All these were carried out via within-subjects repeated measures  228 

 229 

230 

Figure 3. Signal recording and analyses procedure. 231 

 232 

ANOVA. Mauchly`s test checked whether the sphericity assumption held. Further, 233 

Greenhouse-Geisser approximation corrected the degrees of freedom. We selected Tukey`s 234 

honest significant difference to perform post hoc comparisons. 235 

In addition, Wilcoxon signed rank test was used to see whether the level of stimuli-induced 236 

fatigue corresponding to the two sets of stimuli differ significantly within the subjects. In this 237 
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statistical design, subjects` fatigue was the dependent variable and type of the stimuli sets (i.e., 238 

simple and rhythmic) were within-subjects factors. 239 

To investigate whether there is a relationship between psychological factors, which were 240 

evaluated via the questionnaires, and the reported fatigue, Spearman`s correlation test was 241 

performed. All the analyses were conducted in MATLAB R2016b (MathWorks Inc., Natick, 242 

MA, USA). 243 

Moreover, signal recording and analyses procedure is illustrated in Figure 3. 244 

 245 

Results 246 

Response detection 247 

For each stimulus, amplitude spectrum of its corresponding EEG was computed. We checked 248 

whether the amplitude spectrum at fm was larger than the mean+3×standard deviation (SD) of 249 

the amplitude spectrum at frequencies in the range of (fm-1 to fm-5) and (fm+1 to fm+5) (Tanaka 250 

et al., 2015) to make sure that ASSR was appeared. For simple and rhythmic stimuli set, 251 

amplitude spectrum corresponding to one stimulus is denoted in Figure 4. as a representative, 252 

because all the ASSRs satisfied the aforementioned condition (Tanaka et al., 2015). 253 

Consequently, these newly designed auditory stimuli with multiple message frequency coding 254 

elicited robust ASSRs. 255 

 256 

Behavioral results 257 

After listening to each stimulus, participants reported the amount of fatigue that they 258 

experienced by listening to that stimulus. All the subjects reported their level of fatigue as an 259 

integer number in the range from 0 (minimum) to 10 (maximum) according VAS. In 260 

comparison to the simple stimuli, the rhythmic stimuli caused significantly lower fatigue (p = 261 

0.005, Wilcoxon signed rank,). This confirms our second hypothesis (fatigue reduction using  262 
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 263 

A 264 

 265 

 266 

 267 

B 268 

 269 

 270 

Figure 4. Amplitude spectrum of the responses to A, simple set. B, rhythmic set. 271 

 272 
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the proposed novel rhythmic stimuli set). Boxplot representation of fatigue due to the stimuli 273 

in each set is illustrated in Figure 5. In addition, there was not any significant correlation 274 

between psychological factors and fatigue caused by listening to each stimulus. This is an 275 

indication of the fact that the subjects truly reported the fatigues that were chiefly caused by 276 

listening to the stimuli, regardless of their psychological factors. For each stimulus, scatter plot 277 

of the data that yielded strongest Spearman`s correlation coefficient, along with the best 278 

monotone curve fitted to the data are denoted on Figure 6. In each case, the best-fit curve was 279 

obtained through nonlinear least squares method. Details of all the Spearman tests (Spearman`s 280 

correlation coefficients and corresponding p-values) are illustrated Table 2. 281 

 282 

 283 

Figure 5. Boxplot representation of fatigue caused by the stimuli (fatigue levels were integers from 0 (minimum 284 

fatigue) to 10 (maximum fatigue) according to VAS). Rhythmic set significantly reduced the subjects` fatigue (p 285 

= 0.005, Wilcoxon signed rank). 286 

 287 
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 288 

Figure 6. Scatter plots of the data that yielded strongest Spearman`s correlation coefficient between the 289 

psychological factors and fatigue caused by each stimulus (each plot`s name), along with the best monotone curve 290 

fitted to the data. There was not any significant correlation between psychological factors and fatigue caused by 291 

listening to each stimulus. In each plot, r represents Spearman`s correlation coefficient, while P is the p obtained 292 

in the Spearman`s correlation test. 293 

 294 

Classification performance 295 

To investigate whether the designed stimuli yield intrinsically discriminative responses, we 296 

performed classification (for features and classifier parameters used, see Materials and 297 

Methods). For both sets of stimuli, high classification accuracy and Cohen`s kappa value (up 298 

to a maximum of 100% and 1, respectively) were obtained. There was no significant difference 299 

between the responses to the simple and rhythmic stimuli sets in terms of classification 300 

performance (F(1,15) = 4.06, p = 0.062, repeated measures ANOVA). Furthermore, there was 301 

not any significant difference between PSD, PCC, and CCC features in terms of classification 302 

performance (F(2,30) = 1.21, p = 0.307, repeated measures ANOVA). These indicate that the 303 

responses to the stimuli in each set are sufficiently discriminative. Further, the results show 304 

that all the extracted features were discriminant measures for the responses to each set. Group 305 

 306 
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Table 2. Spearman`s correlation test (r: Spearman`s correlation coefficient, P: p obtained via the test). 307 

There was not any significant correlation between the psychological factors and stimuli-caused fatigue 308 

 Challenge Interest 

Success 

Probability 

Anxiety 

(QCM) 

Depression 

Anxiety 

(DASS) 

Stress 

Fatigue Caused by SA 

r = -0.088 

P = 0.721 

r = -0.055 

P = 0.823 

r = 0.099 

P = 0.685 

r = 0.086 

P = 0.726 

r = -0.122 

P = 0619 

r = -0.098 

P = 0.691 

r = -0.217 

P = 0.372 

Fatigue Caused by SB 

r = 0.049 

P = 0.843 

r = 0.185 

P = 0.449 

r = 0.086 

P = 0.726 

r = 0.114 

P = 0.643 

r = 0.025 

P = 0.920 

r = 0.263 

P = 0.276 

r = 0.015 

P = 0.952 

Fatigue Caused by SC 

r = 0.149 

P = 0.543 

r = 0.314 

P = 0.191 

r = 0.109 

P = 0.658 

r = 0.084 

P = 0.736 

r = -0.127 

P = 0.603 

r = 0.176 

P = 0.470 

r = -0.101 

P = 0.680 

Fatigue Caused by RA 

r = -0.074 

P = 0.765 

r = -0. 160 

P = 0.512 

r = -0.055 

P = 0.823 

r = 0.015 

P = 0.951 

r = 0.071 

P = 0.772 

r = 0.268 

P = 0.267 

r = -0.006 

P = 0.981 

Fatigue Caused by RB 

r = -0.012 

P = 0.962 

r = -0.190 

P = 0.435 

r = -0.047 

P = 0.848 

r = 0.170 

P = 0.488 

r = 0.371 

P = 0.118 

r = 0.454 

P = 0.051 

r = 0.308 

P = 0.200 

Fatigue Caused by RC 

r = 0.176 

P = 0.472 

r = -0.070 

P = 0.776 

r = -0.298 

P = 0.216 

r = 0.049 

P = 0.844 

r = 0.247 

P = 0.308 

r = 0.438 

P = 0.061 

r = 0.413 

P = 0.079 

 309 

Table 3. Between-subjects classification performance for different stimuli sets and features 310 

 PSD  PCC  CCC 

 Simple Rhythmic  Simple Rhythmic  Simple Rhythmic 

Accuracy (%) 92.98 88.89  93.57 81.29  94.15 83.04 

Cohen`s kappa value 0.90 0.83  0.90 0.72  0.91 0.75 
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 311 

 312 

 313 

Figure 7. Top, Group means of the classification accuracy for the three features (PSD, PCC, CCC) as a function 314 

of stimuli type (illustrated as Simple, Rhythmic). Bottom, Group means of the Cohen`s kappa value for the three 315 

features (PSD, PCC, CCC) as a function of stimuli type (illustrated as Simple, Rhythmic). 316 

 317 
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Table 4. A comparison between the results of this paper and those of some relevant ASSR studies 318 

Study Subjects Number of stimuli / Type 
Segment 

(seconds) 

Average 

classification 

accuracy (%) 

Fatigue 

measurement 

(Kim et al., 2011) 6 normal 2 / single-message AM tones 20 76.25 Not included 

(Nakamura et al., 2013) 8 normal 

 

2 / single-message AM speech 

sentence 

9 78.6 

 

Not included 

(Kaongoen and Jo, 2017) 10 normal 

 

2 / simple single-message AM 

tones 

21 82.90 

 

Not included 

(Heo et al., 2017) 6 normal 

 

2 / simple single-message AM 

tones 

20 74 

 

Not included 

(Heo et al., 2017) 6 normal 

 

2 / single-message AM natural 

sound carrier 

20 87.67 

 

Not included 

(Heo et al., 2017) 6 normal 

 

2 / single-message AM musical 

carrier 

20 89.67 

 

Not included 

(Shamsi et al., 2017) 19 normal 

 

3 / simple single-message 

sinusoidal AM tone 

20 82.46 

 

Median: 4 

(Shamsi et al., 2017) 19 normal 

 

3 / rhythmic single-message 

sinusoidal AM sequence 

20 80.70 

 

Median: 2 

      

This work 19 normal 

 

3 / simple multiple-message 

sinusoidal AM tone 

20 

PSD: 91.23 

PCC: 97.66 

CCC: 93.57 

 

Median: 5 

      

This work 19 normal 

 

3 / rhythmic multiple-message 

sinusoidal AM sequence 

20 

PSD: 82.46 

PCC: 89.48 

CCC: 83.63 

 

Median: 3 

      

 319 
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means of the classification accuracy and Cohen`s kappa value for different conditions (i.e., 320 

features) as a function of the stimuli type (i.e., simple, rhythmic) are illustrated in Figure 7. 321 

The results show that all the average classification accuracies are well above 70%, which is the 322 

minimum acceptable classification accuracy in BCI systems. Thus, the responses to the stimuli in each 323 

set are highly discriminative. In other words, our first hypothesis was confirmed. To investigate 324 

whether there is generalizability in terms of response discrimination, we performed between-325 

subjects classification for the responses to each set. Classification accuracy and Cohen`s kappa 326 

value for between-subjects classification according to each feature are listed in Table 3. 327 

 328 

Discussion 329 

According to the facts that humans enjoy listening to rhythmic sounds (Zhou et al., 2016; Heo 330 

et al., 2017) and rhythmic stimulation influences the intrinsic neural oscillatory characteristics 331 

(Herrmann et al., 2016), it seems that utilizing rhythmic auditory stimuli in the experiments 332 

that aim to evoke and examine auditory responses in the brain reduces the subjects` fatigue. 333 

Thus, this study was carried out to test our two hypotheses 1) the ASSRs to the novel stimuli 334 

with multiple message frequency coding are highly discriminative, and 2) listening to the novel 335 

rhythmic stimuli set with multiple message frequency coding reduces the subjects` fatigue. All 336 

these were conducted to determine whether the stimuli introduced in this paper have enough 337 

feasibility (in terms of classification performance and subjects` fatigue) to be used in an aBCI. 338 

In some previous studies, rhythmic sinusoidal amplitude-modulated tones were used to elicit 339 

EEG (Heo et al., 2017; Shamsi et al., 2017) and MEG (Kuriki et al., 2013), but all of them 340 

utilized single message frequency. Further, response classification and subjects` fatigue 341 

evaluation were not conducted in (Kuriki et al., 2013). Although user acceptance evaluated in 342 

(Heo et al., 2017), user fatigue was not taken into account. Thus, both the stimuli sets designed 343 

in this study were novel in the sense of having multiple message frequency coding. In addition, 344 
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response classification and fatigue evaluation were carried out for these stimuli for the very 345 

first time. For a better insight into the novelty of this work, a comparison between the results 346 

of this paper and those of some relevant ASSR studies, which performed response 347 

classification, are illustrated in Table 4. 348 

Robust peak in ASSR spectrum at message frequencies (corresponding to the envelope of 349 

the stimuli) is consistent with previous findings (Lopez et al., 2009; Kim et al., 2011; 350 

Nozaradan et al., 2012; Kuriki et al., 2013; Kaongoen and Jo, 2017) and confirms the notion 351 

that human`s auditory system acts like an envelope detector, which can be an amplitude 352 

demodulator (Miyazaki et al., 2013). In addition, amplitudes of the responses to the rhythmic 353 

set were lower than those of the simple set. This may be due to the more complex structure of 354 

the rhythmic set, compared to that of the simple set. There is relevant supporting evidence that 355 

more complex stimuli elicited less amplitude, when compared to stimuli with simpler structure 356 

(Nakamura et al., 2013; Shamsi et al., 2017). 357 

Moreover, the rhythmic stimuli set resulted in less fatigue in the subjects, compared to that 358 

of the simple stimuli set. This is in agreement with the findings in our previous study on the 359 

comparison between the fatigue levels that simple and rhythmic single-message sinusoidal AM 360 

stimuli can cause (Shamsi et al., 2017) and confirms our second hypothesis. In addition, the 361 

insignificant and infinitesimal correlation between the fatigue and the psychological factors 362 

can ensure us that the subjects truly reported the fatigue that was chiefly caused by listening to 363 

the stimuli, regardless of their psychological factors. 364 

We were able to perform highly accurate, precise and reliable classification on within- and 365 

between-subjects responses without any artifact rejection. This shows that there was adequate 366 

inherent discrimination even at the raw signal level for the responses to each stimuli set. It can 367 

be seen from the within-subjects classification performance results that: 1) stimuli with 368 

multiple message frequencies generate highly distinguishing ASSRs, so they have the potential 369 
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be utilized in aBCI to increase the number of available commands, and therefore the 370 

information transfer rate, by means of multiple permutations of just a few message frequencies, 371 

which is accessible via the coding presented in this paper. In other words, fewer message 372 

frequencies (N in the proposed multiple message coding, compared to NN in single-message 373 

SAM tones) can generate NN commands in aBCI, 2) the rhythmic stimuli elicit discriminative 374 

responses, which are as distinct as that of the simple stimuli, 3) all the features (PSD, PCC, and 375 

CCC) are discriminant measures for the classification of the ASSR to the stimuli with multiple 376 

message frequencies. Also, high amounts of between-subjects classification performance 377 

indicates that the ASSRs to the stimuli in each set were reliably distinct and generalizable. 378 

Furthermore, all the average classification accuracies were far above 70%, which is sufficient 379 

for a BCI system. In other words, our first hypothesis was confirmed. Thus, the stimuli 380 

designed in this paper have the adequate potential to be corresponding to several different 381 

commands and generate distinct responses in BCI systems. 382 

The average classification performances obtained in this study outperformed previous 383 

studies, which utilized single-message AM tones (Lopez et al., 2009; Kim et al., 2011; Heo et 384 

al., 2017; Kaongoen and Jo, 2017; Shamsi et al., 2017) and single-message AM sentences 385 

(Nakamura et al., 2013). Particularly, the average classification performances obtained for our 386 

simple set was higher than those of a research, which used single-message AM natural sound 387 

carriers (Heo et al., 2017). However, the average classification performances for our rhythmic 388 

set was a bit lower than those of a study, which made use of single-message AM instrumental 389 

music carriers (Heo et al., 2017). It is worth mentioning that in the current study, each stimulus 390 

was presented separately, while the stimuli in most of the compared studies were played 391 

simultaneously, which may decrease their classification performance. In other words, for each 392 

subject of the current study, each stimulus played, the fatigue reported by the subject was 393 

written down, and another stimulus was presented, and so on. There were two reasons for this: 394 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/663344doi: bioRxiv preprint 

https://doi.org/10.1101/663344
http://creativecommons.org/licenses/by-nc-nd/4.0/


1) we wanted to ensure that whether the stimuli in each introduced set evoke adequate 395 

inherently distinguishable responses in the brain, 2) we wanted to measure the amount of 396 

fatigue that each stimulus caused to each subject, so we had to present the stimuli separately 397 

(i.e., one by one). Although simultaneous presentation of the stimuli is required in BCI 398 

paradigms, this is not the case in our study, which is not a BCI paradigm. This study is a 399 

preliminary step that investigated the feasibility of utilizing the proposed stimuli in aBCI 400 

paradigm. For this purpose, the amount of inherent distinguishability between the responses in 401 

each set, along with subjects` fatigue were measured through the separate presentation. 402 

Therefore, our purpose required this kind of stimuli presentation. However, in simultaneous 403 

presentation of the stimuli, fc coding in the rhythmic set will help the users to focus on and 404 

discriminate between the stimuli. This implies that the classification performance of the 405 

responses in the simultaneous stimuli presentation would not be too different from our results, 406 

which are obtained via separate stimuli presentation. 407 

The results showed that stimuli in each set have sufficient inherent discrimination to the 408 

extent that it is worthwhile to use these novel auditory stimuli with multiple message frequency 409 

coding in a BCI experiment. If we are asked to choose one of our proposed stimuli sets to be 410 

utilized in BCI studies, the choice will be the “rhythmic set”. The reason is listening to the 411 

rhythmic set reduced the subjects` fatigue and the brain responses to the rhythmic set were 412 

classified via a common classifier, with a high performance close to the simple set, so this set 413 

will be able to increase the number of possible commands by permutation of the message 414 

frequencies of its stimuli. 415 

Sinusoidal amplitude-modulated tones are helpful in studies concerning encoding of 416 

envelope and periodicity in human`s auditory system. Moreover, they can be used in ASSR-417 

based BCI systems. Therefore, exploring sinusoidal AM tone-evoked ASSR is chiefly 418 

important. In this paper, each stimuli set contained ascending, descending and one of the 419 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 6, 2019. ; https://doi.org/10.1101/663344doi: bioRxiv preprint 

https://doi.org/10.1101/663344
http://creativecommons.org/licenses/by-nc-nd/4.0/


possible zigzagging codings of message/carrier frequency. For future work, it is suggested to 420 

explore ASSR to other possible zigzagging permutations of message/carrier frequency, and 421 

make a comparison between the responses to stimuli with different coding types (ascending, 422 

descending and zigzagging) and frequency effects. Also, testing auditory stimuli constructed 423 

with other modulations (e.g., frequency modulation (FM), pulse width modulation (PWM), 424 

etc.) would be valuable. Further, conducting the experiment performed in this paper on 425 

completely locked-in state syndrome (CLIS) patients is proposed for future work to see whether 426 

they are useful for those individuals. In this study, we aimed at exploring the responses in 427 

common domains (e.g., time and frequency). However, nonlinear and/or time-frequency 428 

analyses can be performed and compared in future studies. 429 

 430 
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