

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

1 Multi-omic analyses reveal antibody-dependent natural killer cell-
2 mediated cytotoxicity in autoimmune thyroid diseases

3 [Authors](#)

4 Tiphaine C. Martin^{1,2,3,4}, Kristina M. Illieva^{5,6}, Alessia Visconti¹, Michelle Beaumont¹,
5 Steven J. Kiddie^{7,8}, Richard J.B. Dobson^{7,9}, Massimo Mangino^{1,10}, Ee Mun Lim^{11,12,13},
6 Marija Pezer¹⁴, Claire J. Steves¹, Jordana T. Bell¹, Scott G. Wilson^{1,2,11}, Gordan
7 Lauc^{14,15}, Mario Roederer¹⁶, John P. Walsh^{11,12}, Tim D. Spector^{1,a}, Sophia N.
8 Karagiannis^{5,6,a}

9

10 Affiliations:

11 1. Department of Twin Research and Genetic Epidemiology, King's College, London,
12 United Kingdom;

13 2. School of Biomedical Sciences, University of Western Australia, Crawley, Western
14 Australia, Australia;

15 3. Current address: Department of Oncological Sciences, Icahn School of Medicine at
16 Mount Sinai, New York City, NY 10029, USA;

17 4. Current address: Tisch Institute, Icahn School of Medicine at Mount Sinai, New York
18 City, NY 10029, USA;

19 5. St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's
20 College, London, Guy's Hospital, London, United Kingdom;

21 6. Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences,
22 King's College London, Guy's Cancer Centre, London, United Kingdom;

23 7. Department of Biostatistics and Health Informatics, Institute of Psychiatry,
24 Psychology and Neuroscience, King's College, London, United Kingdom;

25 8. MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK;

26 9. Health Data Research UK (HDR UK), London Institute of Health Informatics,
27 University College London, London, United Kingdom;

28 10. NIHR Biomedical Research Centre at Guy's and St. Thomas's NHS Foundation
29 Trust, London, United Kingdom;

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

30 11. Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital,
31 Nedlands, Western Australia, Australia;
32 12. Medical School, The University of Western Australia, Crawley, Western Australia,
33 Australia;
34 13. PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia;
35 14. Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia;
36 15. Genos, Glycoscience Research Laboratory, Zagreb, Croatia;
37 16. ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda,
38 MD 20892, USA.
39
40 a. Equal contribution as a joint senior

41 **Conflict of Interests Statement**

42 GL is the founder and CEO of Genos Ltd, a private research organization that
43 specializes in high-throughput glycomics analysis and has several patents in this field.
44 MP are employees of Genos Ltd.

45 **Acknowledgment**

46 • TwinsUK. The study was funded by the Wellcome Trust; European
47 Community's Seventh Framework Programme (FP7/2007-2013). The study
48 also receives support from the National Institute for Health Research (NIHR)-
49 funded BioResource, Clinical Research Facility and Biomedical Research
50 Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership
51 with King's College London and the Australian National Health and Medical
52 Research Council (PG 1087407).
53 • IgG N-glycan analysis was performed in Genos and partly supported by the
54 European Community's Seventh Framework Programme grants HighGlycan
55 (contract #278535), MIMOMics (contract #305280), HTP-GlycoMet (contract
56 #324400) and IntegraLife (contract #315997).

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

57 • SNP Genotyping was performed by The Wellcome Trust Sanger Institute and
58 National Eye Institute via NIH/CIDR.

59 • This study represents independent research partly funded by the National
60 Institute for Health Research (NIHR) Biomedical Research Centre at South
61 London and Maudsley NHS Foundation Trust and King's College London. The
62 views expressed are those of the authors and not necessarily those of the NHS,
63 the NIHR or the Department of Health. This study was supported by research
64 (RJBD) at the National Institute for Health Research University College London
65 Hospitals Biomedical Research Centre, and by awards establishing the Farr
66 Institute of Health Informatics Research at UCLPartners, from the Medical
67 Research Council, Arthritis Research UK, British Heart Foundation, Cancer
68 Research UK, Chief Scientist Office, Economic and Social Research Council,
69 Engineering and Physical Sciences Research Council, National Institute for
70 Health Research, National Institute for Social Care and Health Research, and
71 Wellcome Trust (grant MR/K006584/1). SJK is supported by an MRC Career
72 Development Award in Biostatistics (MR/L011859/1).

73 • The authors acknowledge support by Breast Cancer Now (147); and the
74 Medical Research Council (MR/L023091/1).

75 [Author Contributions](#)

76 T.C.M. designed the general study, developed, applied the biostatistical analysis,
77 interpreted findings, drafted the manuscript and produced the figures and tables. T.D.S.
78 coordinated the recruitment of the TwinsUK cohort and research projects applied to
79 this cohort. M.P. and G.L. performed glycan assays in the TwinsUK cohorts. S.J.K,
80 R.J.B.D and C.S. coordinated proteomic assays in the TwinsUK cohort. M.M
81 coordinated the detection of immune cell traits in the TwinsUK cohorts and performed

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

82 GWASs on these immune cell traits. M.R. performed the detection of immune cell traits
83 in the TwinsUK cohorts. A.V. removed the batch effect on immune cell traits. J.P.W.
84 and S.G.W coordinated, analyzed and interpreted thyroid function tests in the
85 TwinsUK cohort. E.M.L. performed thyroid function tests in the TwinsUK cohort. M.B
86 and J.T.B provided feedback on the paper. T.C.M., K.I., and S.N.K. edited the
87 manuscript with input from all authors. All authors read and approved the final
88 manuscript.

89 **Keywords**

90 Glycosylation, immune cell traits, proteomics, IgG, autoimmune thyroid diseases,
91 Hashimoto's disease, Graves' disease, TPOAb, genetic variants, apoptosis, ADCC

92

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

93 [Abstract](#)

94 The pathogenesis of autoimmune thyroid diseases (AITD) is poorly understood. We
95 previously observed systemic depletion of IgG core fucosylation and antennary α 1,2
96 fucosylation of peripheral blood mononuclear cells in AITD, correlated with thyroid
97 peroxidase antibody (TPOAb) levels. We hypothesized that deficiency in IgG core
98 fucose enhances antibody-dependent cell-mediated cytotoxicity of thyrocytes by
99 TPOAb, contributing to thyroid autoimmunity. Multi-omic evaluations in 622 individuals
100 (172 with AITD) from the TwinsUK cohort showed decreased IgG core fucosylation
101 levels associated with a subpopulation of natural killer (NK) cells featuring CD335,
102 CD314, and CD158b immunoreceptors, and increased levels of apoptosis-associated
103 Caspase-2 and Interleukin-1 α , positively associated with AITD. AITD-associated
104 genetic variants rs1521 and rs3094228 alter expression of thyrocyte ligands of the
105 CD314 and CD158b immunoreceptors on NK cells. The combination of low-core
106 fucose IgG associated with an NK cell subpopulation and genetic variant-promoted
107 ligand activation in thyrocytes may promote antibody-dependent NK cell-mediated
108 cytotoxicity of thyrocytes in AITD.

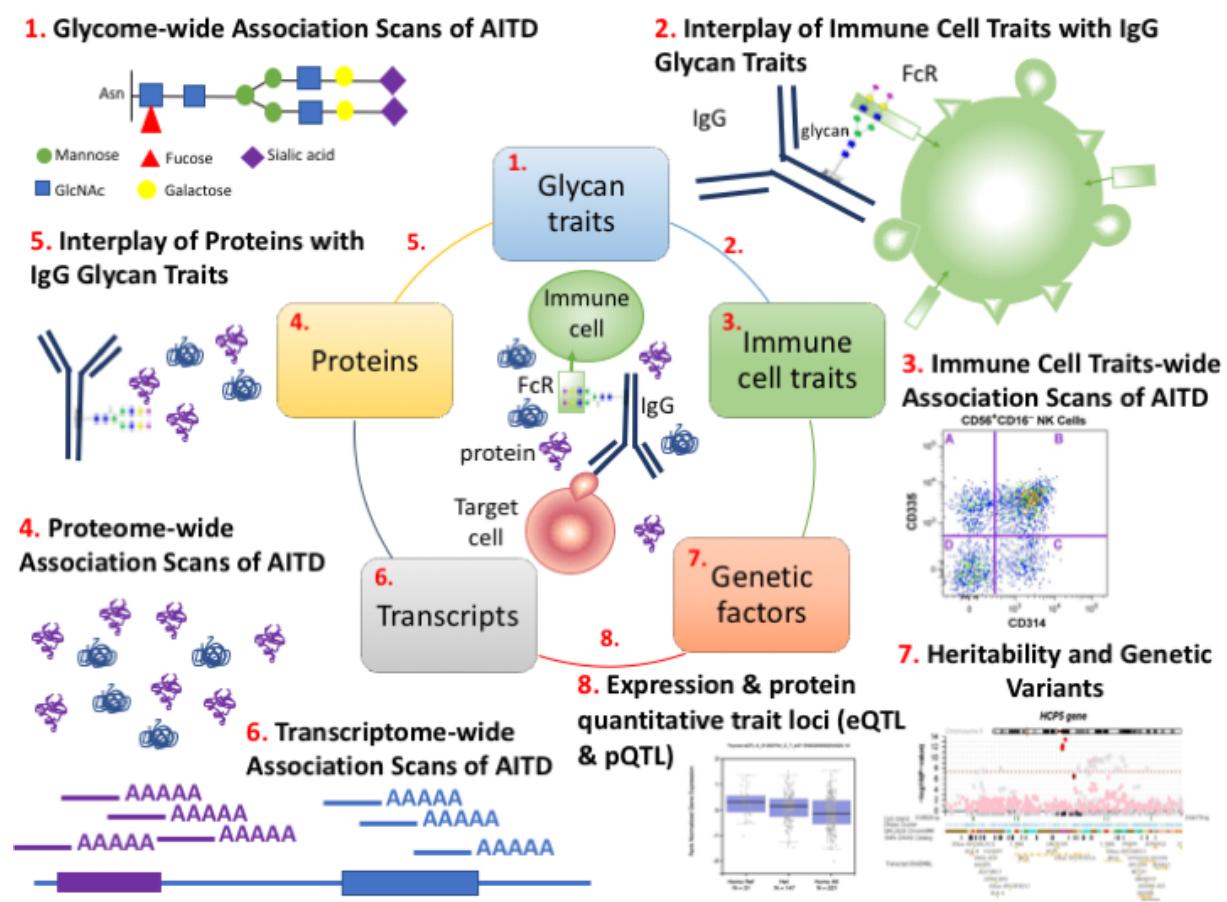
109

110

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

111 [Introduction](#)

112 Autoimmune thyroid diseases (AITD) are a class of chronic, organ-specific
113 autoimmune disorders that affect the thyroid gland with a high genetic heritability (55-
114 75%)¹⁻⁴. AITD are diagnosed in approximately 5% of the European population with a
115 gender disparity (i.e., women: 5-15%; men: 1-5%), and represent the most common
116 group of autoimmune diseases⁵⁻⁷. AITD are characterised by a dysregulation of the
117 immune system affecting several biological structures and processes, such as
118 antigen/antibody/effector cell complex formation⁸⁻¹⁰, likely driven by a combination of
119 genetic and environmental factors¹¹.


120 Pathologically, AITD are characterized by the production of autoantibodies against the
121 three key thyroid proteins (thyroid peroxidase (TPO), thyroglobulin (Tg), and the
122 thyroid-stimulating hormone (TSH) receptor (TSH-R)), infiltration of the thyroid gland
123 by immune cells (e.g. lymphocytes, NK cells, monocytes, and macrophages), as well
124 as the formation of germinal centers in the thyroid gland¹². Additionally, several vital
125 pathological players and biomarkers can be found in peripheral blood, such as high
126 levels of thyroid autoantibodies and dysregulated TSH levels^{13,14}. However, some
127 controversy exists surrounding the immune cell composition in peripheral blood
128 associated with AITD. Some studies have failed to observe a significant difference in
129 peripheral blood immune cell composition between AITD patients and healthy
130 individuals¹⁵, whereas others have reported significant differences in particular cell
131 types or specific marker expression on immune cells.¹⁶ Immune cells, thyroid
132 autoantibodies, and secreted proteins including cytokines may play critical roles in
133 AITD development¹⁷ and could participate in immune responses including antibody-
134 dependent cell-mediated cytotoxicity (ADCC) pathways^{18,19}.

135 ADCC is triggered with the formation of antigen/antibody/Fc receptor complexes
136 bringing the effector cell (macrophages, NK cells) and the target cell (expressing the
137 antigen) in close contact. As the formation and the function of the antigen/antibody
138 complex are modulated by post-translational modifications of proteins^{20,21}, we
139 previously studied the glycosylation of total immunoglobulin G (IgG) and peripheral
140 blood mononuclear cells (PBMC) in patients with AITD⁴. We identified a depletion of
141 IgG core fucosylation and antennary α1,2 fucosylation of PBMCs in peripheral blood,
142 associated with TPOAb levels and AITD status⁴. IgG core fucose, which is observed

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

143 in approximately 95% of IgG in healthy individuals, is considered a “safe switch” by
144 attenuating potentially harmful ADCC activity against self-antigens^{22–26}. Therefore, it
145 is possible that the deficiency of IgG core fucose observed in AITD and correlated with
146 elevated TPOAb levels may be associated with TPOAb production in the thyroid gland
147 and could be a player in autoimmune response in AITD by enhancing the cytotoxicity
148 activities of TPOAb against thyrocytes through ADCC. Previous studies showed that
149 afucosylated antibodies have a higher affinity (~100-fold) in binding to the
150 immunoglobulin receptor Fc_YRIIIa (CD16a), expressed on NK cells, macrophages and
151 γδ T cells, and associated with enhanced ADCC potential *in vitro* and anti-tumor
152 activity *in vivo*^{22–24,26}. Consequently, we hypothesized that particular immune features
153 that accompany Fc-mediated functions of IgG, immune cells and associated
154 inflammation could be detected in PBMC of patients with AITD.
155 Therefore, this *in silico* study aimed to: 1) investigate the association of different
156 components of antigen/antibody/Fc receptor complexes with AITD, 2) identify
157 interactions between these different immune components, and 3) elucidate genetic
158 and environmental effects on these components within the bloodstream in 622
159 subjects from the TwinsUK cohort, of whom 172 have an AITD diagnosis. More
160 precisely, we examined the association of total serum IgG glycosylation, immune traits,
161 such as immune cell subpopulation frequencies (CSFs; i.e. the relative frequencies of
162 circulating immune cell subsets), immune cell surface protein expression levels
163 (SPELs; i.e. the measurement of the cell-surface expression of critical proteins) and
164 secreted proteins, from the peripheral blood of patients with AITD compared with those
165 in normal volunteer blood. Our study design is summarized in **Figure 1**, and the
166 sample sizes of these different studies are described more in detail in **Supplement**
167 **Table 1**.
168

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

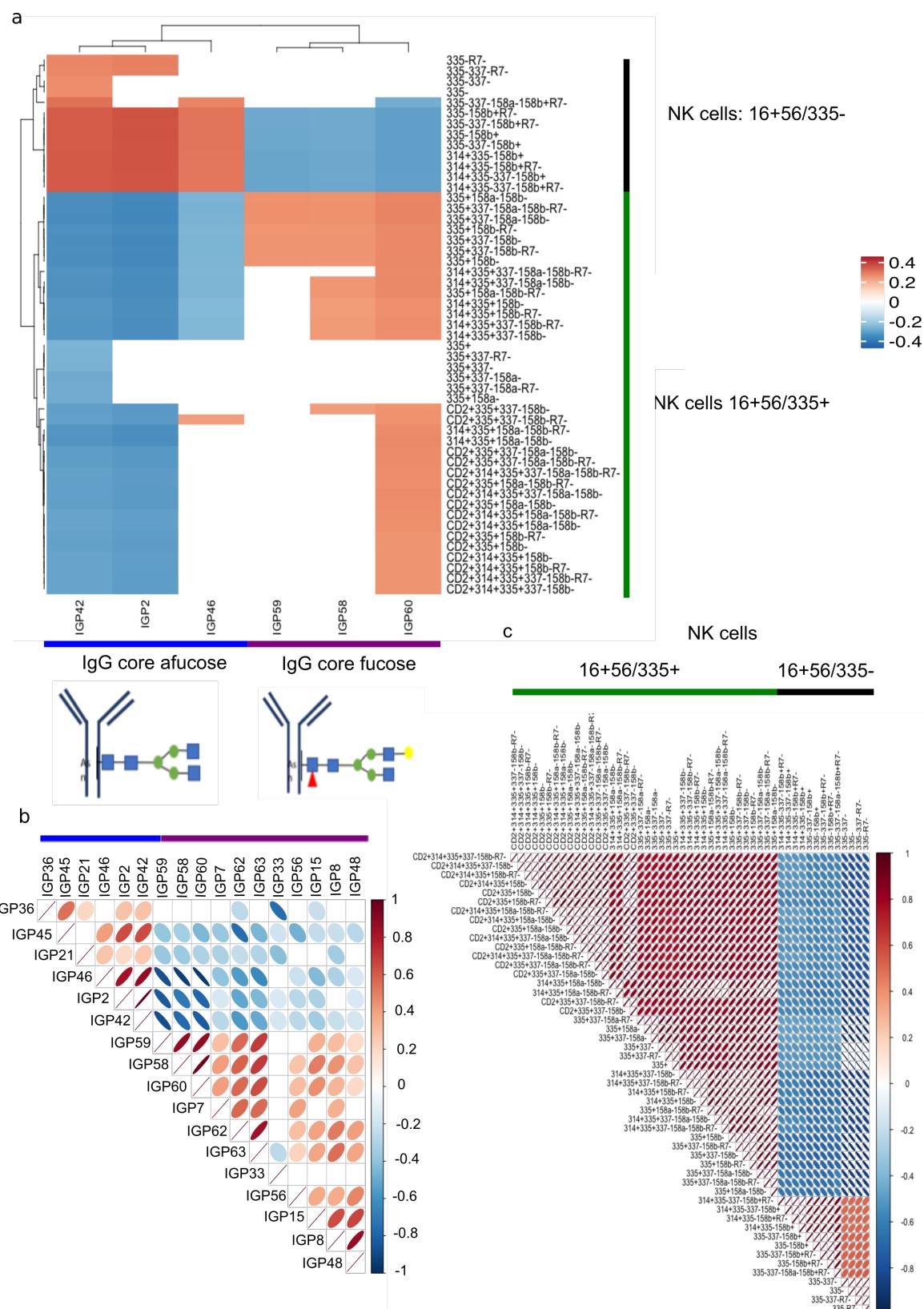
169
170

171 **Figure 1. Multi-omics computational analyses used to study the components of**
172 **antigen/antibody/effector cell complex structure in AITD.** (1) We performed
173 glycome-wide association studies of AITD and TPOAb levels in our previous work
174 using 3,146 individuals from three European cohorts, including the TwinsUK cohort
175 and identified 17 AITD-IgG N-glycan traits with seven replicated⁴. (2) Association study
176 of total IgG N-glycan traits with 23,485 immune cell traits in 383 individuals from the
177 TwinsUK cohort (regardless of disease status) showed that 6 out of the 17 AITD-IgG
178 glycan traits were correlated with 51 immune cell traits featuring the CD335, CD134,
179 and CD158b receptors. (3) However, none of these 51 immune cell traits appeared to
180 be associated with AITD in up to 374 individuals. (4) We observed 3 out of 1,113
181 circulating proteins tested in plasma of almost 300 individuals shown to be associated
182 with AITD status (TSH, Caspase-2, and Interleukin-1 α). (5) Several secreted proteins
183 were correlated with the level of plasma IgG glycan traits in 164 individuals, but none
184 of them were also associated with AITD. (6) Although transcriptome-wide association
185 studies of AITD, TPOAb level, and N-glycan structures were previously performed in
186 approximately 300 individuals, no finding was significant in this study¹⁰. (7) Furthermore,
187 we studied the genetic factors of these different findings. First, the
188 heritability of secreted proteins was performed in this study whereas the heritability of
189 AITD, TPOAb level and several omic features (IgG N-glycan traits and immune cell
8

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

190 traits) were performed in previous studies of the TwinsUK cohort^{4,27-29}. No shared
191 additive genetic variance between different phenotypes studied here (AITD status,
192 TPOAb level, level of IgG N-glycan traits, of immune cell traits and of circulating
193 proteins in the bloodstream) could be determined. (8) We identified genetic variants
194 that alter the expression of genes, proteins and cell-bound immune receptors
195 highlighted in this paper using the previous GWASs performed in the TwinsUK cohort
196 or from GWAS catalog, eQTLs from GTEx project and pQTLs from INTERVAL
197 project^{27,28,30-33}. The sample sizes of these different studies are described in
198 **Supplement Table 1**. GlcNAc = N-acetylglucosamine.

199 **Results**


200 Depletion of IgG core fucose is positively associated with increased
201 [CD158b⁺CD314⁺CD335⁻ NK cell subset count](#)

202 IgG N-glycosylation is considered indispensable for the effector function of IgG and
203 the control of inflammation³⁴⁻³⁸ and plays an essential role in the recognition and
204 binding to Fc receptors of immune cells³⁷. In our previous study⁴, we observed a
205 deficiency of IgG core fucose in the peripheral blood of AITD patients, and it is known
206 that IgG core fucose plays a role in ADCC^{22-24,26}. Recently, we performed genome-
207 wide association studies (GWASs) on 78,000 immune cell traits using a high-
208 resolution deep immunophenotyping flow cytometry analysis in 669 twins (497
209 discovery, 172 replication) from the TwinsUK cohort^{27,28} and identified genetic variants
210 known to confer autoimmune susceptibility^{27,28}. Following quality control of samples
211 and immune cell traits, 383 individuals have been identified to have measurements of
212 23,485 immune cell traits and 17 AITD-IgG N-glycan traits. Consequently, we
213 examined whether levels of the 17 IgG N-glycan traits previously associated with AITD
214 (IGP2, IGP7, IGP8, IGP15, IGP21, IGP33, IGP36, IGP42, IGP45, IGP46, IGP48,
215 IGP56, IGP58, IGP59, IGP60, IGP62 and IGP63) were also associated with the level
216 of specific immune cell trait subpopulations in the TwinsUK cohort (**Supplement Table**
217 **1**). We carried out the association analyses taking into account immune trait
218 correlations and the hierarchical nature between different immune cell traits as well as
219 IgG N-glycan trait correlations. We identified 1,357 independent immune cell traits
220 among 23,485 tested immune cell traits, 20 independent IgG N-glycan traits among
221 75 IgG N-glycan traits, and 6 independent AITD-IgG N-glycan traits among 17 AITD-
222 IgG N-glycan traits using Li & Ji's method⁴⁵. Association studies of total IgG N-glycan
9

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

223 traits with immune cell traits showed that 6 of the 17 significant IgG N-glycan traits
224 (IGP2, IGP42, IGP46, IGP58, IGP59, IGP60) previously associated with TPOAb level
225 and AITD status detected in the TwinsUK cohort, were also associated with 51
226 immune cell traits (**Supplement Table 2, Fig. 2**). Three IgG N-glycan traits (IGP2,
227 IGP42, IGP46) were negatively associated with the level of the activating
228 subpopulation of CD16⁺CD56⁺CD158b⁻CD335⁺ NK cells and positively associated
229 with the level of the CD16⁺CD56⁺CD335⁻ effector NK cell subpopulation and with the
230 activating subpopulation CD16⁺CD56⁺CD158b⁺CD314⁺CD335⁻ NK cells³⁹⁻⁴⁴. In
231 contrast, three other significant IgG N-glycan traits with core fucose (IGP58, IGP59,
232 and IGP60) had the opposite effect associations with the same subpopulations of NK
233 cells (**Fig. 2a**). It is noteworthy that we previously showed that there are negative
234 correlations between the set of IgG N-glycan traits without core fucose (IGP2, IGP42,
235 IGP46) and the set of IgG N-glycan traits describing IgG core fucose (IGP58, IGP59,
236 and IGP60)⁴ and these are highlighted in **Fig. 2b**. Moreover, we observed a strong
237 correlation between these 51 immune cell traits (**Fig. 2c**). The presence of correlation
238 patterns between the 17 AITD-IgG N-glycan traits (**Fig. 2b**) as well as between the 51
239 immune cell traits (**Fig. 2c**) is consistent with our observation of correlations between
240 the 6 AITD-IgG N-glycan traits and the 51 immune cell traits (**Fig. 2a**). Moreover, we
241 extended our analysis to the 58 remaining IgG N-glycan traits also identified in our
242 samples, but not associated with AITD, and we observed no significant association
243 between them and the 23,485 immune cell traits.
244 Consequently, we conclude that a subpopulation of NK cells with a combination of
245 specific immunoreceptors (CD314, CD335, CD2, CD158a, CD158b, R7) is associated
246 with the depletion of IgG core fucose observed in individuals with AITD.

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

247

248 **Figure 2. AITD-IgG N-glycan traits associated with a subpopulation of NK cells.**

249 a) Heatmap of immune cell traits associated with AITD-IgG N-glycan traits. The 51 NK

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

250 cell types were significantly associated with 6 out of 17 AITD-IgG N-glycan traits
251 previously identified⁴. Below the heatmap, there are one representative of IgG core
252 afucose (IGP2) and one representative of IgG core fucose (IGP7), that were both
253 associated with AITD and TPOAb levels⁴. b) Co-expressions between only 17 IgG N-
254 glycan traits previously associated significantly with AITD status and TPOAb level⁴. c)
255 Correlations between the profile of 51 immune cell traits that were associated
256 significantly with at least one of 17 AITD-IgG N-glycan traits. The order of immune cell
257 traits is the same as that in **Fig 2a**.

258

259 [No significant association between immune cell traits and AITD or TPOAb level could be](#)
260 [identified](#)

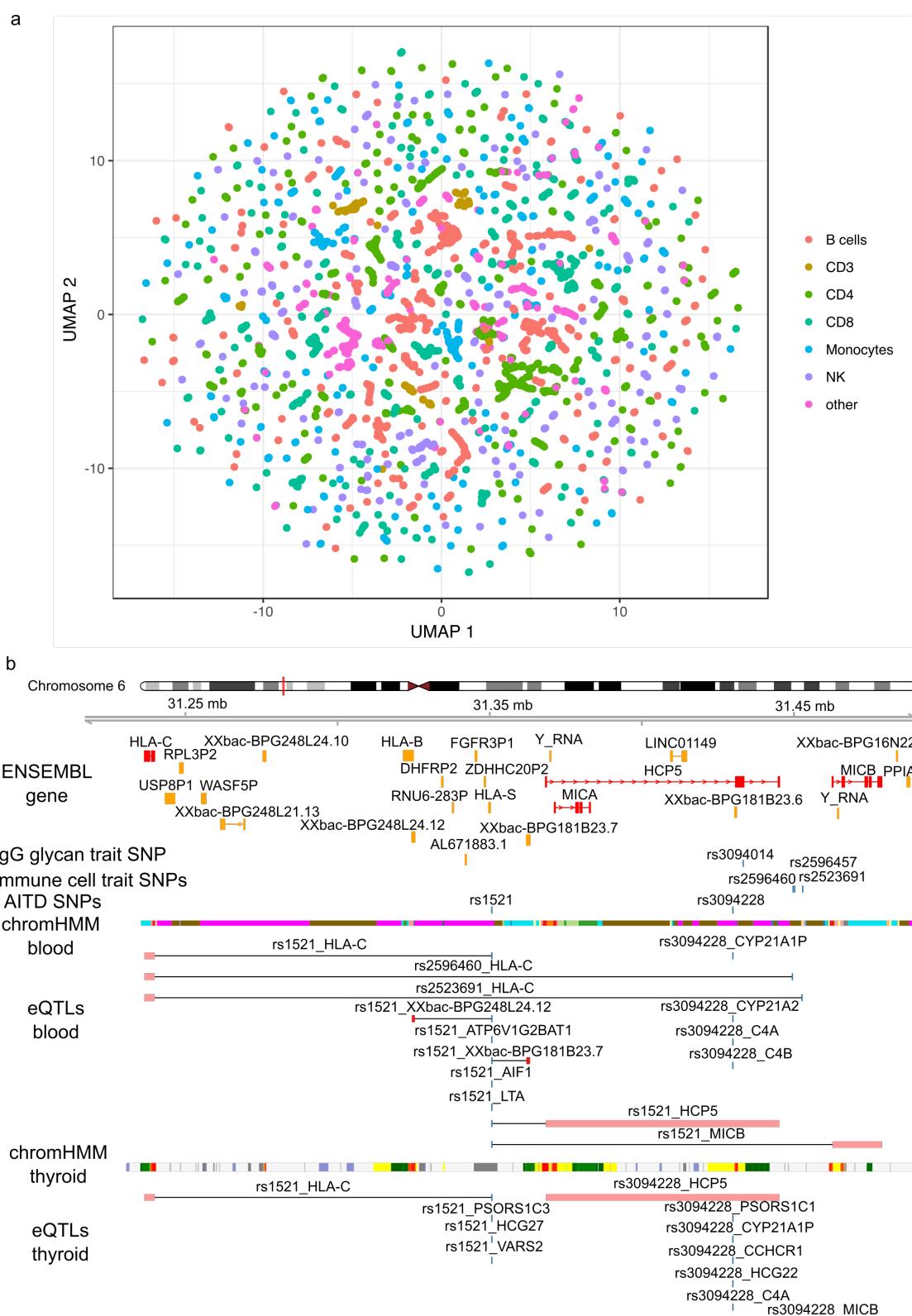
261 We furthermore investigated whether the 23,485 peripheral blood immune cell traits
262 are directly associated with TPOAb levels and AITD status in up to 374 individuals
263 from the TwinsUK cohort (**Supplement Table 1**). We performed association analyses
264 of TPOAb levels and AITD status with all 23,485 immune cell traits, with a particular
265 focus on the 51 immune cell traits identified in the previous analysis (respectively
266 1,357 and 6 independent immune cell traits) (**Fig. 2c and 3a**). No significant
267 associations of immune cell traits with TPOAb level or with AITD status could be
268 detected (**Supplement Table 3**). These results suggest that even if there are
269 correlations between IgG core fucose levels and immune cell traits in blood, and a
270 correlation between IgG core fucose and AITD, the association between immune cell
271 traits and AITD in blood appears to be mediated by more complex processes
272 (**Supplement Fig. 1**).

273

274 [The genetic variants, rs1521 and rs3094228, previously associated with AITD alter the](#)
275 [expression of the ligands of CD314 and CD158b immunoreceptors in the thyroid cells](#)

276 Although overall little is known about the specific functions of NK cells based on the
277 combination of their immunoreceptors, several studies describe the functions of each
278 of three crucial NK receptors: CD335 (NKp46), CD314 (NKG2D) and the killer cell
279 immunoglobulin-like receptors (KIRs) including CD158b. These are normally
280 associated with activated NK cell states, T cell co-stimulation, and mediating tumor

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019


281 cell lysis^{40,42}. We thus inspected genetic variants associated withAITD, TPOAb levels,
282 and immune cell traits from the previous GWAS^{27,28,30}, and compared these with
283 recent large-scale studies on tissue-specific expression quantitative traits (eQTLs),
284 mainly from the GTEx project^{32,33}, to determine whether genetic factors could
285 contribute toAITD, related immune features, or their pathways.

286 First, we identified loci and the reported genes with the lead single nucleotide
287 polymorphisms (SNPs) associated withAITD as well as immune cell traits from
288 previous GWASs^{27,28,30}. No single lead genetic variants identified by our previous
289 immune cell traits GWASs appeared to be also associated with at least one of thyroid
290 phenotypes previously studied and published in the GWAS catalog (e.g., Graves'
291 disease,AITD, TSH level, TPOAb level)³⁰. This was also the case when analyses were
292 extended to single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD;
293 $r^2 > 0.8$). On the other hand, using the adjacent genes identified in previous GWASs
294 and reported in GWAS catalog, we identified 14 genes that have SNPs in or near the
295 gene body, associated with both immune cell traits (30 lead SNPs) and thyroid
296 phenotypes (17 lead SNPs) (**Supplementary Table 4**). Two genes, *HCP5* and *MIC-*
297 *A*, are associated with TPOAb-positivity and Graves' disease as well as with three
298 immune cell traits (two NK cell types, 16+56/314-158a+ and 16+56/CD2-314+335-
299 337-158a+158b+, and one dendritic cell type, 11c+ (nodim)/1c-/16+/32+) (**Fig. 3b**).
300 We then investigated the effect of 47 SNPs associated with immune cell traits and
301 thyroid phenotypes on gene expression in blood and thyroid tissue using eQTLs from
302 the GTEx project and other publications^{32,33,46}. No genetic variants previously
303 associated withAITD or other thyroid phenotypes appeared to be also associated with
304 the expression of CD335 receptors or its known ligands in blood and thyroid cells. On
305 the other hand, we observed that two SNPs, rs1521 and rs3094228, associated with
306 Graves's diseases and TPOAb-positivity respectively fall in the gene regulatory
307 regions of *MIC-A* and *MIC-B* genes, two ligands of CD314 (*NKG2D*), and also increase
308 their gene expressions in thyroid cells as well as other cell types^{32,33,47-49} (**Fig. 3b**,
309 **Supplement Table 4, Supplement Fig. 2**). Consequently, this up-regulation of *MIC-*
310 *A* and *MIC-B* gene expressions in thyrocytes could activate the cytotoxicity of NK cells
311 and the cytokine production against thyrocytes when there is binding between NK cells
312 and thyrocytes. Furthermore, rs1521 also reduce the expression of the *HLA-C* gene,

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

313 ligand of CD158b, in the thyroid cells, as well as whole blood and other cell types^{32,33,46}
314 (**Fig. 3b, Supplement Table 4, Supplement Fig. 2**). This result suggests a potential
315 mechanism where down-regulation of HLA-C gene expression in thyrocytes caused
316 by genetic variants could not inhibit the activation of cytotoxicity of NK cells and
317 cytokine production when there is binding between NK cells and thyrocytes. Two of
318 three SNPs, rs2596460 and rs252369, associated with the level of the subpopulation
319 of NK featuring 16+56/CD2-314+335-337-158a+158b+, fell in the same locus (LD $r^2 >$
320 0.8) as the AITD-SNP, rs1521, and decrease the expression of *HLA-C* gene in the
321 whole blood.
322 Overall, two SNPs, rs1521 and rs3094228, associated with respectively Graves'
323 disease and TPOAb-positivity, appear to alter the expression of ligands of two
324 immunoreceptors of NK cells, CD314 and CD158b in thyrocytes, that could increase
325 the activation of cytotoxicity of NK cells after binding with target cells (**Supplement**
326 **Fig. 2**).

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

327

328 **Figure 3. Association of immune cell traits with AITD status.** a) Immune cell traits
 329 were arranged in two dimensions based on the similarity of their quantification profiles
 330 by the dimensionality reduction technique UMAP⁵⁰ using R package umapr⁵¹. Some

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

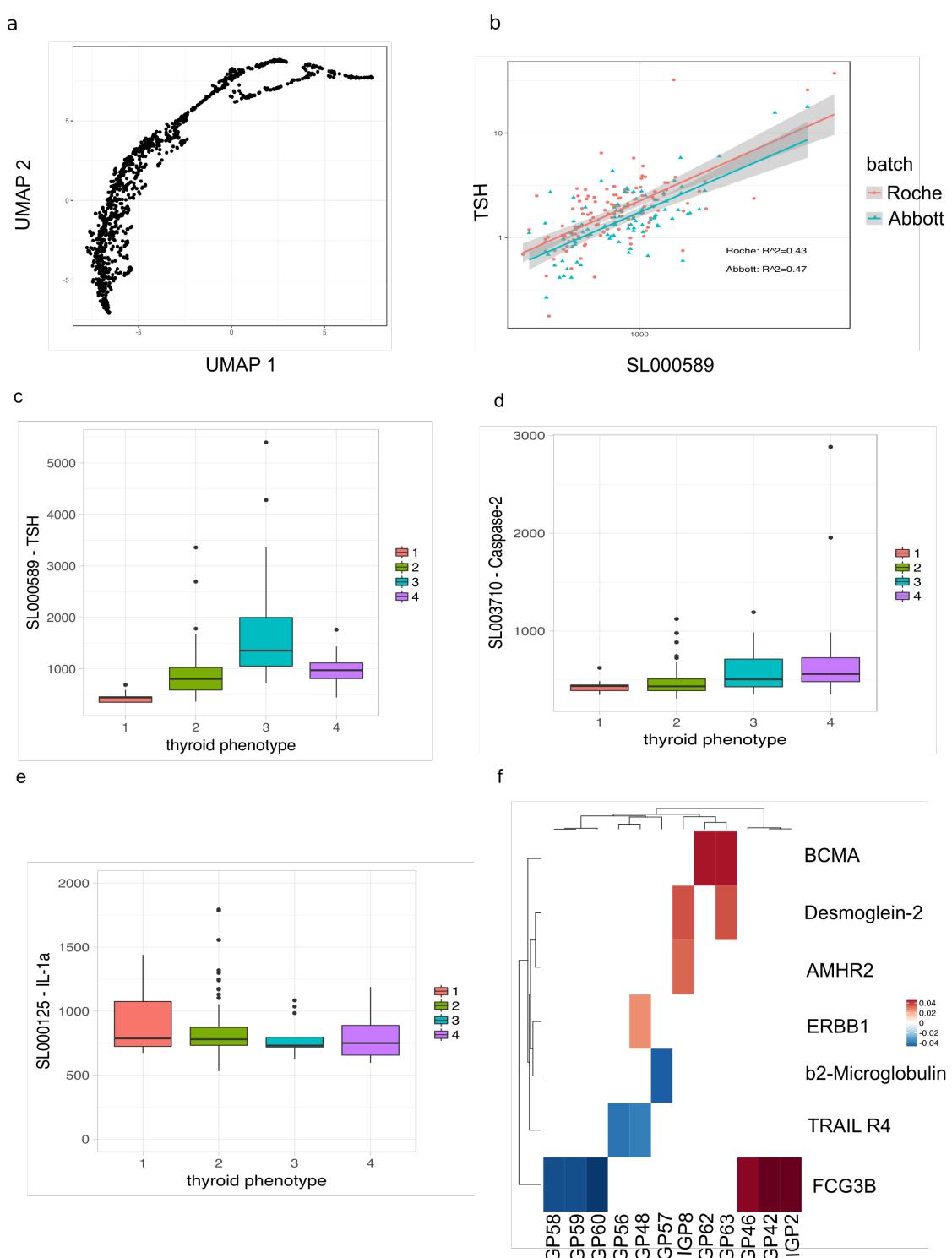
331 clusters that emerge spontaneously can be associated with specific immune cell types
332 (colors). b) Annotation tracks around *MIC-A*, *MIC-B* and *HLA-C* genes visualize
333 significant GWAS hits for immune cell traits, the ligands of certain immunoreceptors
334 (such as NK), and thyroid phenotypes previously identified in the TwinsUK cohort as
335 well as chromatin states identified using chromHMM from whole blood from
336 ENCODE⁵² and thyroid cells from CEMT⁵³ and eQTLs from GTEx project^{32,33}. The plot
337 was produced using functions from R packages Gviz and coMET⁵⁴.

338

339 AITD is associated with increased serum Caspase-2 and IL-1 α abundances

340 In addition to the production of thyroid autoantibodies and reduced levels of IgG core
341 fucose with a subpopulation of NK cells in AITD, we evaluated whether the abundance
342 of 1,113 free soluble proteins in peripheral blood may be associated with AITD status
343 (27 AITD patients versus 130 healthy controls) and TPOAb levels (155 individuals) in
344 the TwinsUK cohort (**Supplement Table 1**) using aptamer-based multiplex protein
345 assay (SOMAscan)⁵⁵. As there are partial correlations between proteins (**Fig. 4a**), we
346 identified 227 independent features using the Li and Ji's method⁴⁵ (Bonferroni multiple
347 testing correction, P-value<1.9x10⁻⁴). Levels of three proteins were positively
348 associated with AITD status: TSH (P-value=8.67x10⁻⁵; Beta=0.67; SE=0.16),
349 Caspase-2 (CASP-2; P-value=2.72x10⁻⁷; Beta=1.10; SE=0.20) and Interleukin-1 α (IL-
350 1 α ; P-value=7.46x10⁻⁵; Beta=0.41; SE=0.09). We also observed a higher level of TSH
351 on average in all patients with AITD or TPOAb-positivity compared with control
352 individuals (euthyroidism with TPOAb-negative). We observed a significant and
353 moderate correlation of TSH levels from two types of TSH measurement regardless
354 of manufacturer with ones from SOMAscan (**Fig. 4b**). These indicate that the
355 SOMAscan assay is a relevant new technology to quantify the secretion levels of
356 soluble proteins, as previously described^{56,57}. Although Caspase-2 and IL-1 α levels
357 were associated with AITD status, Caspase-2 and IL-1 α levels were not associated
358 with TPOAb or TSH levels as continuous variables (P-value>1.9x10⁻⁴). However,
359 when participants were divided into 4 categories according to TSH and TPOAb levels
360 (**Fig. 4c**), reflecting different clinical categories (hyperthyroidism,
361 euthyroidism/TPOAb-negative, hypothyroidism and euthyroidism/TPOAb-positive),

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019


362 Caspase-2 showed significantly higher mean and variance in two groups:
363 hypothyroidism and euthyroidism/TPOAb-positive compared to euthyroidism/TPOAb-
364 negative and hyperthyroidism (**Fig. 4d**). Participants in these two groups are likely to
365 have underlying Hashimoto's thyroiditis (HT). On the other hand, the variance of IL-1 α
366 was significantly larger in groups with euthyroidism/TPOAb-positive and
367 hyperthyroidism than in the groups with euthyroidism/TPOAb-negative and
368 hypothyroidism (**Fig. 4e**), but no significant difference for their mean. This means that
369 on average, individuals from 4 categories have the same level of secretion of IL-1 α ,
370 but there are more inter-individual variabilities in euthyroidism/TPOAb-positive and
371 hyperthyroidism than euthyroidism/TPOAb-negative and hypothyroidism.
372 In summary, we replicated the association of the plasma TSH levels withAITD status,
373 and we found two novel associations of plasma protein levels of Caspase-2 and IL-1 α
374 withAITD status, but their secretion (mean and variance) seems to also depend on
375 other factors associated with thyroid diseases such as the levels of TSH and TPOAb.
376

377 [Afucosylated IgG is associated with serum levels of several circulating proteins](#)
378 We next studied the correlation between the level of secreted TSH, Caspase-2 and
379 IL-1 α proteins and IgG N-glycan trait levels in peripheral blood of 164 individuals but
380 found no significant associations ($P\text{-value} > 8.3 \times 10^{-4}$, Bonferroni test considering only
381 3 independent proteins and 20 independent IgG N-glycan traits) (**Supplement Table**
382 **6, Fig. 4f**). On the other hand, several AITD-IgG N-glycan traits appeared to be
383 associated with other circulating proteins ($P\text{-value} < 3.67 \times 10^{-5}$, Bonferroni test in
384 considering only 227 independent proteins and 6 independent IgG N-glycan traits)
385 (**Supplement Table 6, Fig. 4f**). For example, three AITD-IgG N-glycan traits (IGP2,
386 IGP42, and IGP46) were positively associated with the circulating FCGR3B protein
387 (Fc γ RIIIb or CD16b), the receptor of polymorphonuclear neutrophils (PMN), whereas
388 three AITD-IgG N-glycan traits (IGP58, IGP59, and IGP60) were negatively associated
389 with FCGR3B protein. Also, IGP56 and IGP48 were negatively associated with β 2-
390 microglobulin, a protein involved in the presentation of intracellular antigens through
391 the MHC class I complex, and IGP48 was also positively associated with ERBB1
392 protein, also known as the epidermal growth factor receptor (EGFR), which serves as
393 a checkpoint for cell proliferation and differentiation.

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

394 Overall, 11 AITD-IgG N-glycan traits (IGP2, IGP8, IGP42, IGP46, IGP48, IGP56,
395 IGP58, IGP59, IGP60, IGP62, and IGP63) were associated with serum levels of 5
396 circulating proteins (AMHR2, BCMA, β 2-microglobulin, ERBB1, and FCGR3B) in the
397 TwinsUK cohort, but no triplet (AITD, IgG N-glycan structures, and circulating proteins)
398 could be identified. More studies need to be performed to understand the relationships
399 between these two components of immune responses in AITD.

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

400

401 **Figure 4. Association of circulating protein abundances with thyroid diseases**

402 **and with AITD-IgG N-glycan structures.** a) 1,113 circulating proteins were arranged

403 in two dimensions based on the similarity of their secretion profiles in the serum by the

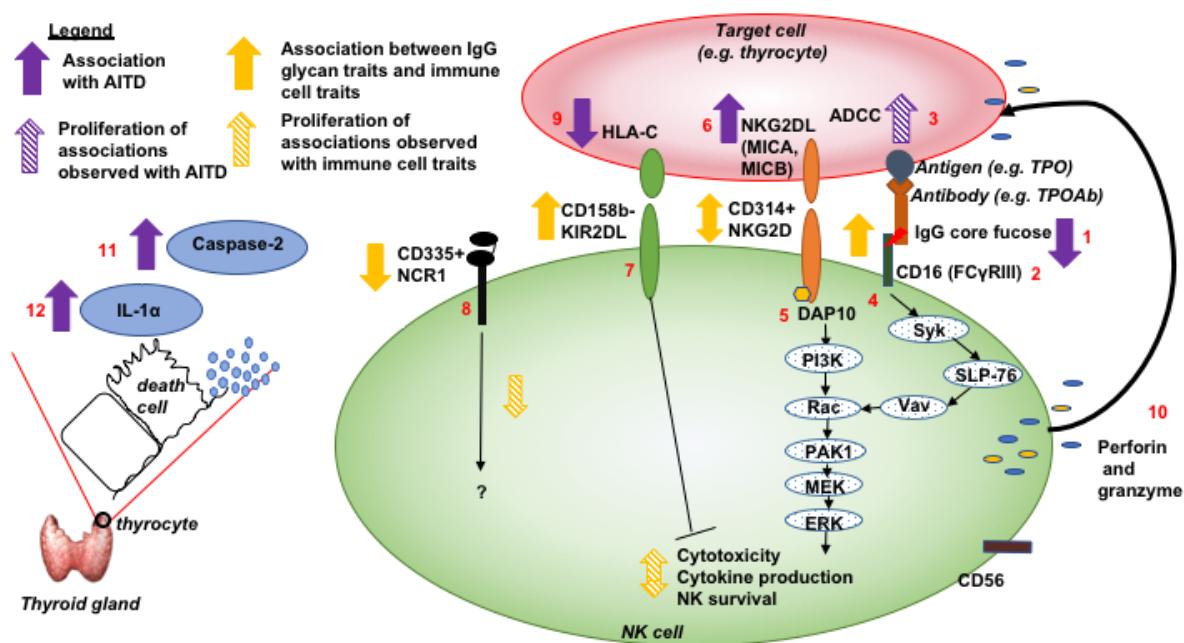
19

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

404 dimensionality reduction technique UMAP⁵⁰ using R package umapr⁵¹. b) Correlation
405 of log10-transformed TSH measurements between two clinical FDA approved clinical
406 immunoassays (Roche and Abbott) and SOMAscan assay in 217 individuals (122
407 using Roche immunoassay and 95 using Abbott immunoassay). c) Box plot of the level
408 of circulating TSH measured by SOMAscan assay in the serum according to the group
409 of thyroid status. d) Box plot of the level of circulating Caspase-2 measured by
410 SOMAscan assay in the serum according to the group of TSH. e) Box plot of the level
411 of circulating IL-1 α measured by SOMAscan assay. An extreme outlier sample in the
412 group 4 with an IL-1 α of 250,000mg/ml was discarded for the analysis. f) Heatmap of
413 circulating protein abundances associated with AITD-IgG N-glycan structures. In
414 fig.2c-e, participants were assigned to 4 categories according to TSH level and TPOAb
415 status: 1=hyperthyroidism (TSH<=0.1 mIU/L; 13 individuals), 2=euthyroidism/TPOAb-
416 negative (0.4<TSH>4 mIU/L & TPOAb < 6 IU/mL (Abbott) or TPOAb < 34 IU/mL
417 (Roche); 196 healthy individuals), 3=hypothyroidism (TSH>=4 mIU/L; 21 individuals),
418 and 4=euthyroidism/TPOAb-positive (0.4<TSH>4 mIU/L & TPOAb >= 6 IU/mL (Abbott)
419 or TPOAb >= 34 IU/mL (Roche); 28 individuals).

420

421 The abundance of free-soluble plasma Desmoglein-2 protein is associated with AITD
422 genetic variants and two AITD-IgG N-glycan traits, but not significantly with AITD status
423 Recently, several GWASs on secreted proteins (protein quantification locus traits,
424 pQTL) have been performed³¹, which allowed us to determine whether the secretion
425 of proteins associated with AITD or with AITD-IgG N-glycan traits are driven by SNPs
426 also associated with AITD. We studied whether the SNPs previously associated with
427 plasma circulating protein abundance were also associated with at least one of thyroid
428 phenotypes published in the GWAS catalog including GD and TPOAb-positivity³⁰ and
429 with one of 17 AITD-IgG N-glycan structures. We found no SNPs associated with one
430 of 17 AITD-IgG N-glycan structures that are also pQTL. However, four genetic variants
431 associated with thyroid phenotypes (rs3761959, rs7528684, rs505922, and rs3184504)
432 are also associated in *cis* and *trans* with nine circulating protein abundances (BGAT,
433 CHSTB, DC-SIGN, Desmoglein-2, DYR, FCRL3, GP1BA, MBL, and VCAM-1)
434 (**Supplement Table 7**). None of these proteins were associated directly with AITD or
435 TPOAb levels in our study. However, we found that the Desmoglein-2 protein was
20


Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

436 associated with two AITD-IgG N-glycan traits, IGP8, and IGP63⁴ (**Supplement Fig. 3**).
437 This protein is highly expressed in epithelial cells including thyrocytes and
438 cardiomyocytes and plays a role in the cell-cell junction between epithelial, myocardial,
439 and certain other cell types. It was also proposed to be a novel regulator of apoptosis⁵⁹.
440 Therefore, four genetic variants (rs3761959, rs7528684, rs505922, and rs3184504)
441 are associated with nine secreted protein abundances in blood and also associated
442 with several thyroid phenotypes. Further studies need to be performed to better
443 understand these links (e.g., causality, pleiotropy effects).

444

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

445

446

447

448 **Figure 5. Model of different potential contributing players and their pathways**
449 **activated in proposed antibody-dependent NK cell-mediated cytotoxicity in the**
450 **thyroid gland of AITD patients.** (1) The depletion of IgG core fucose was associated
451 with TPOAb level and AITD status⁴. (2) The IgG N-glycan traits associated with AITD
452 were also associated with a subpopulation of NK cells in our current study; for example,
453 the depletion of IgG core fucose is associated positively with NK cells with the patterns
454 of co-receptors CD335- or CD335-CD158b+CD314+. (3) Previous studies showed
455 that a-fucosylated antibodies had increased affinity for binding to CD16 (Fc γ RIIIa), cell
456 receptors of NK cells, and to enhance ADCC^{22-24,26} via (4) protein tyrosine kinase-
457 dependent pathways, through crosstalk with (5) NKG2D receptor (CD314)^{60,61}. (6) Two
458 SNPs, rs3094228 and rs1521, were associated with GD and TPOAb-positivity⁴⁷⁻⁴⁹ and
459 fall in gene regulatory regions of the *MIC-A* and *MIC-B* genes and increase their
460 expression in thyroid cells³². These two genes encode heavily glycosylated proteins
461 that are ligands for the NKG2D type II receptor (CD314). (7) The KIR2DL (CD158b)
462 receptor is known to regulate the cytotoxicity of NK cells by unknown pathways,
463 whereas (8) the NCR1 (CD335) receptor can contribute to the increased potency of
464 activated NK cells to mediate cell lysis by unknown pathway^{39,40}. (9) The SNP, rs1521
465 associated with GD⁴⁷, is also shown to reduce the expression of *HLA-C* gene,

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

466 producing the ligand of CD158b, in thyroid cells^{32,33,43,44}. (10) All together (the binding
467 of NK cells with target cells through antibodies and their ligands), these lead to the
468 activation of NK cells, which release cytotoxic granules containing perforin and
469 granzymes. This release mediates ADCC of target cells (3), which are thyrocytes in
470 AITD. Also, (11) a positive association between the circulation abundance of Caspase-
471 2 protein and AITD were found in this study that could be associated with the
472 destruction of thyrocytes. (12) A positive correlation of circulating abundance of IL-1 α
473 with AITD was also found in the bloodstream that could be a marker of lymphocyte
474 infiltration in the thyroid gland of individuals with AITD, and thus of inflammation^{62,63}.

475 [Discussion](#)

476 The dysregulation of the immune system in AITD affects several biological structures
477 and processes, such as antigen/antibody/Fc receptor complex formation, all driven by
478 genetic and environmental factors. Little is known about the key players, the
479 mechanisms of disease, and the role of genetic variants found in previous GWASs of
480 patients with AITD. Altered biological structures and processes in AITD act in the
481 thyroid gland, but some of them could be detected in the peripheral blood and
482 potentially used as biomarkers. We previously identified a depletion of IgG core fucose
483 in the peripheral blood of people with AITD, and we suggested that this feature is
484 associated with TPOAb levels and may play a role in ADCC in patients with AITD⁴.
485 However, ADCC, as an immunological mechanism, depends on the formation of
486 antigen/antibody/Fc receptor complexes of substantial affinity or avidity. Thus,
487 immune effector cells and other molecules, such as ligands and secreted proteins are
488 also talented players in the activation of ADCC, and these were examined in this study.
489

490 We applied for the first-time an *in silico* multi-omic approach on individuals from the
491 TwinsUK cohort to better understand the cross-talk between immune features and
492 genetic variants in AITD. In AITD patient samples, we observed increased levels of
493 three circulating proteins (TSH, Caspase-2, and Interleukin-1 α) and a decreased level
494 of IgG core fucosylation associated with a subpopulation of NK cells defined primarily
495 by the expression of CD335, CD134, and CD158b receptors. Our data confirmed the
496 previously reported association of plasma TSH level with AITD status and importantly

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

497 revealed previously unknown biomarkers for AITD, which are highly associated with
498 immunological activation functions such as ADCC, apoptosis and pro-inflammatory
499 pathways. Several SNPs associated with AITD appear to alter the secretion of several
500 ligands of NK immunoreceptors in thyrocytes and plasma circulating proteins, showing
501 that genetic background may play potential roles in NK-ADCC in individuals with AITD.
502

503 The main limitation of our study is the lack of replication of our findings in other cohorts.
504 However, to our knowledge, no other cohorts have large datasets with the same
505 diversity of -omics data with AITD phenotype or TPOAb levels that would allow us to
506 fully or even partially replicate our findings. For example, NK cells are primarily
507 classified into only three subsets, CD56⁻, CD56^{dim}, and CD56^{bright}, and not with other
508 immunoreceptors⁶⁴. Using high-resolution deep immunophenotyping flow cytometry,
509 the categorization of immune cell traits performed in the TwinsUK cohort is composed
510 of a set of several immunoreceptors. Another limitation is the absence of *in vitro*
511 experimental evidence that could validate our findings. It is challenging to obtain
512 thyroid tissues from healthy individuals or patients with Hashimoto's thyroiditis, and to
513 our knowledge, no thyroid cell lines from patients with AITD are currently available.
514 We can, nevertheless, appreciate that different markers identified in our study
515 contribute to concluding the presence or activation of ADCC mechanisms in AITD.
516

517 Based on the TSH and TPOAb levels, Hashimoto's thyroiditis predominates in AITD
518 in our cohort. This finding was also observed in several other cohorts around the
519 world⁶⁵. Although Hashimoto's thyroiditis is mostly characterized by the progressive
520 destruction of normal thyroid tissue⁶⁶ whereas Graves' disease is characterized by
521 stimulatory antibodies to the thyroid-stimulating hormone receptor (TSH-R), with
522 reduced apoptosis of thyrocytes⁶⁷, previous studies have often not distinguished
523 between subgroups of AITD and that could make it more difficult to interpret further
524 findings. However, ADCC has been reported in AITD without restriction to subgroups
525 of patients with AITD using ADCC assays with extracted antibodies from the blood of
526 patients with the different subgroups of AITD. As expected, more patients with
527 Hashimoto's thyroiditis than with Graves' disease present ADCC activities^{18,19}.

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

528 Consequently, our cohort seems to represent the main mechanism in Hashimoto's
529 thyroiditis rather than in Graves' disease, namely the destruction of thyroid cells.

530

531 Interestingly, two secreted proteins (Caspase-2 and IL-1 α), which play a role in
532 apoptosis and inflammatory response, were positively associated with AITD but were
533 not linearly associated with TPOAb and TSH levels. The Caspase-2 protein mediates
534 cellular apoptosis and plays a role in stress-induced cell death pathways and cell cycle
535 maintenance⁶⁸. In addition to the positive association of Caspase-2 with AITD, we
536 observed an increase of its secretion in patients with hypothyroidism and
537 euthyroidism/TPOAb-positive. As TPOAb has been proposed to promote ADCC
538 against thyroid cells^{4,10,18,19,69}, the Caspase-2 protein may represent a marker
539 signifying the destruction of thyroid cells by TPOAb. The IL-1 α protein, on the other
540 hand, is a member of the interleukin 1 cytokine family and is produced mainly by
541 activated immune cells as well epithelial and endothelial cells in response to cell injury
542 and induces apoptosis. It is thus considered an apoptosis index of the target cell⁷⁰.
543 Thyroid follicular cells produce IL-1 α as well as IL-6 (no significant association
544 detected in this study), proportional to the degree of lymphoid infiltration in thyroid
545 disorders⁶². IL-1 α seems to reduce the thyroid epithelial barrier without necessary
546 signs of general cytotoxicity⁶³. In our study, the IL-1 α protein was secreted more in
547 AITD than in healthy individuals and its variance was greater in euthyroidism/TPOAb-
548 positive and hyperthyroidism. IL-1 α levels thus could be a biomarker of dysregulation
549 in cell structures in the thyroid gland and suggest high variability in the levels of injured
550 thyroid cells in patients with AITD. Overall, one could speculate that Caspase-2 and
551 IL-1 α could be potential biomarkers of the degree of tissue dysregulation, thyroid cell
552 death or apoptosis and lymphoid infiltration of the thyroid gland.

553

554 Glycome-wide association studies with immune cell traits in the general population
555 suggested that IgG core fucose levels are associated with a subpopulation of NK cells.
556 Here, in the bloodstream of the TwinsUK cohort we observed that IgG with core fucose
557 was positively associated with a subpopulation of NK cells with an activating NK
558 receptor (CD314) and a differentiation receptor (CD335) profile, whereas the same
559 IgG with core fucose was negatively associated with a subpopulation of NK cells with

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

560 an inhibitory NK receptor (CD158b) and conversely between the same subpopulations
561 of NK cells featuring CD335, CD314, CD158b immunoreceptor expression with IgG
562 without core fucose. In the presence of IgG core fucose, three immunoreceptors,
563 CD335, CD314, CD158b, of NK cells appeared to play a role in the activation of
564 cytotoxicity of NK cells when they interact with their ligands on the target cells, which
565 are thyrocytes in AITD^{39–44,71}, and this is expected to increase inflammation and
566 susceptibility to autoimmune disease⁷².

567
568 The role of IgG core fucosylation in ADCC could thus be enhanced via a cross-talk
569 with a subpopulation of NK cells. Previous studies showed that afucosylated
570 antibodies have a much higher affinity (100-fold) for Fc_YRIIIa (CD16a) and so,
571 enhance ADCC⁷³. Moreover, a study using *in vitro* assay and human peripheral blood
572 cells showed that ADCC via Fc_YRIIIa requires NK cells, but not monocytes or
573 polymorphonuclear cells and that the activity levels of the antigen/antibody/effector
574 cell complexes correlated only with the NK cell numbers present in the PBMCs²⁴. Our
575 associations between the level of IgG core fucose and of a subpopulation of NK cells
576 reinforce the notion that there is a complementarity between IgG core fucose levels
577 and NK cells, that could influence ADCC potency.

578
579 Moreover, our findings suggest that two opposing mechanisms combining NK
580 receptors with IgG core fucose levels are working together to achieve homeostasis in
581 NK cell activation, i.e. with IgG glycosylation as a way to fine-tune the balance between
582 activation and inhibition, depending on the NK cell repertoire, or conversely, the NK
583 cell repertoire may be a way to fine tune the presence of IgG. It is noteworthy that a
584 complex balance between activating receptors, inhibitory receptors and co-receptors
585 controls NK cell activation and cytotoxicity⁷⁴. However, it was proposed that when
586 antibodies specific to an antigen, such as TPOAb on TPO, cross-link NK cells with
587 target cells, the activating stimulus from Fc_YRIIIa of NK cells overcomes inhibitory
588 signals⁷⁵. This leads to the activation of NK cells, which release cytotoxic granules
589 containing perforin and granzymes, potentiating ADCC. Consequently, fine-tuning via
590 the IgG glycosylation proposed here can be complementary to the presence of multiple

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

591 receptors on NK cells in the activation of ADCC. This concept merits further
592 investigation.

593

594 The role of NK cells in AITD has been previously studied, but the measurement of NK
595 activity in the blood of individuals with AITD using *in vitro* assays produced variable
596 and potentially contradictory results, at first view^{76,77}. For example, one study showed
597 that an increase of NK cell activity is associated with a worsening of AITD, both in HT
598 and GD, and suggests that NK cells might contribute to the severity of disease in
599 autoimmune thyroid conditions⁷⁶. On the other hand, another study observed a
600 functional defect of a subpopulation of NK cells in the bloodstream of individuals with
601 early-HT and proposed that this could lead to the expansion of auto-reactive T-and B-
602 cells and so, to the pathogenesis of HT⁷⁷. However, NK cell functions may be specific
603 to their local tissue microenvironment and potentially also specific to the stage of
604 disease, as NK cells may exert both cell-mediated cytotoxicity and regulatory
605 functions⁷⁸. Consequently, NK cells may be involved in various stages of AITD, both
606 HT and GD, development through different roles.

607

608 Although AITD are highly heritable (55-75%)⁴, no common additive genetic variance
609 between these different features studied here and AITD could be determined. We
610 previously estimated the heritability of AITD, IgG N-glycan traits, and immune cell traits
(Supplement Table 8)^{4,27}. Although GWAS signals for a large panel secreted protein
612 levels were identified³¹, their heritability has not yet been estimated, and a previous
613 study estimated the heritability of only 342 secreted protein abundances⁵⁸. To tackle
614 this gap, we estimated the proportion of genetic and environmental variance of 1,129
615 proteins studied in the present paper using the Structural Equation Modeling and twin
616 structures present in the TwinsUK cohort (**Supplement Table 9**). We found a small
617 proportion of proteins having additive genetic variances in their heritability, which is in
618 concordance with previous findings⁵⁸. As the best model of heritability in AITD is only
619 with dominant genetic variance, the shared genetic variance between AITD and
620 proteins could not be estimated with accuracy as well as with IgG N-glycan traits and
621 immune cell traits.

622

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

623 On the other hand, in our study, we identified several genetic variants previously
624 associated with thyroid phenotypes to be also associated with the secretion of proteins
625 and ligands of two immunoreceptors. Specifically, we found that two genetic variants,
626 rs1521 and rs3094228, associated with GD and TPOAb-positivity, alter the expression
627 of thyroid cell-expressed ligands, *MIC-A*, *MIC-B*, *HLA-C*, known to recognize CD134
628 and CD158b immunoreceptors expressed on NK cells. Thus, individuals having the
629 variant rs1521 associated with GD have a reduction of expression of *HLA-C* gene, but
630 an increase of expression of *MIC-B* in thyrocytes whereas the carriers of rs3094228
631 genetic variant associated with TPOAb-positivity have an increase of the expression
632 of *MIC-B* gene in thyrocytes. Consequently, if their thyrocytes cross-talk with the
633 subpopulation of NK cells with CD158b and CD314 immunoreceptor, they could not
634 inhibit, but trigger the production of cytokines and cytotoxicity by these NK cells, and
635 thus trigger ADCC. Thus, drawing from the knowledge generated in a large number of
636 previous reports and from our present findings, our study highlights different immune
637 features (glycan structures on antibodies, a subpopulation of NK cells, the secretion
638 of Caspase-2 and IL-1 α) as potential biomarkers of AITD status detectable in the
639 bloodstream in addition to TSH and TPOAb levels. Moreover, if one speculates that
640 active antibodies with low core-fucose are thyroid autoantibodies (e.g., TPOAb) and
641 target cells are thyroid cells, we could propose that these biomarkers crosstalk in an
642 antibody-dependent NK cell-mediated cytotoxicity-associated fashion in individuals
643 with AITD^{10,79}. In support of this, we found that two genetic variants, rs1521 and
644 rs3094228, associated with AITD which could participate in this crosstalk in altering
645 the expression of ligands (*MIC-A*, *MIC-B*, and *HLA-C*) of NK immunoreceptors (CD314
646 and CD158b) in thyrocytes. We thus propose a model of positive autoreactive
647 antibody-dependent NK cell-mediated cytotoxicity in the thyroid gland of AITD patients
648 illustrated in **Fig. 5**^{15,18,19,80,81}.

649

650 We also speculate that targeting TPOAb, perhaps only by their glycosylation⁸², or a
651 subpopulation of NK cells in patients with HT may lead to a deceleration in the
652 destruction of the thyroid gland and could lead to potential complementary targets for
653 drugs in the treatment of hypothyroidism and HT. On the other hand, the combination
654 of afucosylated TPOAb with the activation of a specific subpopulation of NK cells could

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

655 trigger the lysis of thyroid cells and could also be a new potential treatment in
656 disseminated radioactive iodine-resistant differentiated thyroid cancer. A previous *in*
657 *vitro* study⁶⁹ tested the hypothesis that TPOAb from patients with GD could be used
658 as thyroid cancer immunotherapy and showed potential to destroy thyroid cells, more
659 precisely thyroid cancer cells that express cell surface TPO proteins, by ADCC or CDC
660 involving monocytes or NK cells as effector cells. They observed that the
661 deglycosylation of TPOAb reduced the binding to Fc_YRs and thus inhibited the
662 apoptosis of thyroid cancer cells via CDC and cytotoxicity via ADCC, showing the
663 importance of glycosylation on TPOAb in the destruction of thyroid cancer cells. We
664 suggest that the production of afucosylated thyroid autoantibodies with the activation
665 of specific subpopulations of NK cells could enhance the cytotoxicity activities of
666 TPOAb on cancer thyrocytes. Advanced new technologies in glycosylation
667 engineering⁸²⁻⁸⁴ and in immunotherapy such as the activation of specific
668 subpopulations of NK cells⁸⁵⁻⁸⁹ in tumors could help to validate this hypothesis.

669

670

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

671 [Materials and Methods](#)

672 [Study Sample](#)

673 The samples for immune cell traits, glycosylation, proteomics, and GWAS for immune
674 cell traits consisted of twins from the UK Adult Twin Registry (TwinsUK cohort). The
675 TwinsUK cohort is comprised of approximately 12,000 monozygotic and dizygotic
676 twins unselected for any particular disease or trait. The cohort is from Northern
677 European/UK ancestry and has been shown to be representative of singleton
678 populations and the UK population in general^{90,91}. The project was approved by the
679 local Ethics Committee, and informed consent was obtained from all participants. The
680 TwinsUK cohort for each omics is described in **the Supplementary Table 1**. TwinsUK
681 glycomic, immunological, transcriptomic, proteomic, genetic data and GWAS results
682 are publicly available upon request on the department website
683 (<http://www.twinsuk.ac.uk/data-access/accessmanagement/>).

684 [Detection of TSH and TPOAb and Definition of AITD](#)

685 The study was performed using a clinical AITD definition and TPOAb as a threshold
686 trait as we do not have clinical diagnostic data related to AITD confirmed by a clinician.
687 Individuals were considered to have AITD if they had a positive TPOAb titer (3 times
688 more than the threshold set by the manufacturer [18 IU/mL for Abbott assay and 100
689 IU/mL for Roche assay]) or had a TSH level more than 10 mIU/L. On the other hand,
690 we considered individuals as controls if they had a TSH level in the normal range and
691 a negative TPOAb titer, with no previous clinical diagnosis of thyroid disease and not
692 treated with thyroid medications or steroids. Individuals with a history of thyroid cancer
693 or thyroid surgery were excluded.

694 Sera to assess TPOAb and TSH levels were collected between February 1994 and
695 May 2007 and kept frozen at -80°C until use. Quantitative determination of TSH and
696 TPOAb (only IgG class) levels was performed on the sera either by a
697 chemiluminescent microparticle immunoassay (CMIA) [ARCHITECT® Anti-TPO or
698 TSH (ABBOTT Diagnostics Division, Wiesbaden, Germany, 2005)] (TPOAb titer>6
699 mIU/L considered positive; reference range for TSH level 0.4-4.0 mIU/L) or by an
700 electrochemiluminescence immunoassay "ECLIA" [Elecsys and Cobas e analyzers,

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

701 (Roche Diagnostics, Indianapolis, IN, USA, 2010)] (TPOAb titer>34 IU/mL considered
702 positive; reference range for TSH 0.4-4.0 mIU/L).

703 [Detection of IgG glycosylation profiling for discovery](#)

704 Plasma for the analysis of IgG glycosylation was collected between 1997 and 2013 in
705 2,279 individuals from the TwinsUK cohort. The IgG glycosylation profiling was
706 performed on total IgGs glycome from plasma (combined Fc and Fab glycans and all
707 IgG subclasses) in Genos Glycoscience Research Laboratory, Croatia using UPLC
708 analysis of 2AB-labelled glycans. The protocol, as well as the data pre-processing and
709 normalization of data in the TwinsUK cohort, was previously described⁴. Briefly, using
710 UPLC analysis of 2AB-labelled glycans, the chromatograms were all separated in the
711 same manner into 24 peaks, and the amount of glycans in each peak was expressed
712 as a percentage of the total integrated area. One glycan was excluded before any
713 transformation and standardization of data because of its co-elution with a
714 contaminant that significantly affected its values in some samples whereas two glycan
715 peaks (GP) GP20 and GP21 (Zagreb code) were combined into a single trait called
716 GP2021 (Zagreb code) because of difficulty in distinguishing between these peaks in
717 some samples. A global normalization and natural logarithm transformation were
718 applied to 22 directly measured glycan structures. As many of these structures share
719 the same structural features (galactose, sialic acid, core-fucose, bisecting N-
720 acetylglucosamine (GlcNAc)), 55 additional derived traits were calculated that average
721 these features across multiple glycans from the 22 normalized and non-transformed
722 directly measured glycans. Technical confounders (batch and run-day effects) were
723 addressed using R package ComBat. The 22 directly measured glycans and 55
724 derived glycan traits were centered and scaled to have a mean of 0 and standard
725 deviation (SD) of 1. Samples being more than 6 SD from the mean were considered
726 as outliers and excluded from the analysis.

727 [Detection of immune cell traits](#)

728 Plasma samples for assessment of 78,000 immune traits have collected between 2010
729 and 2012 in 669 female participants from the UK Adults Twin Register, TwinsUK (497
730 for a discovery cohort and 172 for a replication cohort) using high-resolution deep
731 immunophenotyping flow cytometry analysis with a protocol described previously²⁸.
732 78,000 cell-types captured by 7 distinct 14-color immunophenotyping panels were
31

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

733 detected and described immune cell subset frequencies (CSF) and immune cell-
734 surface protein expression levels (SPELs). After quality control removing immune cell
735 traits that appeared as poor reproducibility or out of range, 23,485 immune cell traits
736 from 497 individuals of the discovery cohort were analyzed in this study. For the
737 current analysis, only 374 twins have immune cell traits data and TPOAb level
738 detected by Roche immunoassay and 245 individuals in a case-control study in
739 combining Roche and Abbott assays (204 controls and 41 AITD). Immune traits were
740 quantile normalized residuals of a linear mixed effect model where age was included
741 as fixed effects, and the batches were considered as random effects.

742 [Detection of protein profiling in plasma](#)

743 1,129 proteins were measured in 2013 on plasma samples collected between 2004
744 and 2011 from 211 female twins from the TwinsUK Adult twin registry using
745 SOMAscan v2 (SomaLogic Inc, Boulder, CO). The protocol was described in a
746 previous paper^{92,93}. Briefly, hemolyzed samples were first excluded. Proteins were
747 then measured using a SOMAmer-based capture array called “SOMAscan.” Quality
748 control was performed at the sample and SOMAmer level and involves the use of
749 control SOMAmers on the microarray and calibration samples. At the sample level,
750 hybridization controls on the microarray are used to monitor sample-by-sample
751 variability in hybridization, while the median signal over all SOMAmers is used to
752 monitor overall technical variability. The resulting hybridization scale factor and
753 median scale factor are used to normalize data across samples. The acceptance
754 criteria for these values are 0.4–2.5, based on historical trends in these values.
755 Somamer-by-somamer calibration occurs through the repeated measurement of
756 calibration samples; these samples are of the same matrix as the study samples and
757 are used to monitor repeatability and batch to batch variability. Historical values for
758 these calibrator samples for each SOMAmer are used to generate a calibration scale
759 factor. The acceptance criteria for calibrator scale factors is that 95% of SOMAmers
760 must have a calibration scale factor within ± 0.4 of the median. For the current analysis,
761 only 1,113 proteins were then studied.

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

762 [Statistical Methods](#)

763 All statistical analyses were run using R version 3.2.3. Linear mixed effect models
764 were done in using R lme of package lme4⁹⁷, and linear models were done in using R
765 function lm of package stat.

766 [Determination of effective number of independent tests for different omic data](#)

767 Due to high and partial correlations within both glycans and immune cell traits, we
768 decided to use the equation 5 proposed by Li & Ji (2005)⁴⁵ to define an effective
769 number (M_{eff}) of independent tests. We then used this number to define the effective
770 Bonferroni P-value threshold such as $0.05/M_{eff}$ instead of $0.05/M$, with M the actual
771 number of tests. 20 independent tests were estimated for 76 glycans. Consequently,
772 to account for multiple testing in the discovery cohort, we present results surpassing
773 a conservative Bonferroni correction assuming 20 independent tests, thus giving a
774 significant threshold of (P -value $<2.5 \times 10^{-3} = 0.05/20$). 1,357 independent tests were
775 estimated for 23,485 immune cell traits, thus giving a significant threshold of 3.68×10^{-5}
776 (0.05/1,357). 227 independent tests were estimated among 1,113 proteins
777 ($P < 0.05/227 = 1.9 \times 10^{-4}$).

778 [Association studies between omics features and thyroid phenotypes](#)

779 To examine whether one of the 17 AITD-IgG N-glycan traits was significantly
780 associated with one of the 23,485 immune cell traits, we compared the fitted model in
781 equation (2) with a model that did not include the residual of glycan in equation (1):

782 Model null: $Y_i \sim a + h$ (fixe intercepts) + g (random intercepts) + ε_{ij} (1)

783 Model 1: $Y_i \sim a + bG_{ij}$ + h (fixe intercepts) + g (random intercepts) + ε_{ij} (2)

784 Where Y_i represents the quantification of immune cell traits for individual i and G_{ij} is
785 glycan structure of type j among 75 N -glycans for the same individual i . If biological
786 covariates (age, sex) have not been adjusted before association analysis, they have
787 been added in the model. A random intercept was added only in the discovery cohort
788 in order to model the family-relatedness.

789 To examine whether an immune cell trait was significantly associated with TPOAb
790 level and AITD status, we compared the fitted model in equation (2) with a model that
791 did not include the immune cell traits in equation (1) where G_{ij} become the immune
792 cell trait of type j among 23,485 in discovery cohort for the same individual i . For the

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

793 discovery and replication cohorts in TwinsUK, we added a random intercept in order
794 to model the family-relatedness.

795 To examine whether one of the 1,113 protein was significantly associated with TPOAb
796 level and AITD status, we compared the fitted model in equation (2) with a model that
797 did not include the protein in equation (1): where G_{ij} become the protein of type j
798 among 1,129 in discovery cohort for the same individual i . We added a random
799 intercept in order to model the family-relatedness.

800 To examine whether one of 1,113 proteins was significantly associated with one of 17
801 significant glycans, we compared the fitted model in equation (2) with a model that did
802 not include the protein in equation (1): where G_{ij} become the protein of type j among
803 1,129 in discovery cohort for the same individual i . We added a random intercept in
804 order to model the family-relatedness.

805 [Genome-wide Association Analysis on IgG N-glycan traits, immune cell traits, proteins, gene](#)
806 [expressions in several tissues, and thyroid phenotypes](#)

807 To define the list of SNPs associated with glycosylation profiles regardless of specific
808 phenotypes in the TwinsUK cohort, we ran analyses using GenABEL software
809 package⁹⁸, which is designed for GWAS analysis of family-based data by incorporating
810 pairwise kinship matrix calculated using genotyping data in the polygenic model to
811 correct relatedness and hidden population stratification. We selected SNPs for each
812 IgG N-glycan traits that have a P-value under GWAS P-value threshold (P-value <
813 5×10^{-8}). Moreover, we added the list of SNPs previously defined^{29,99}.

814 To define the list of SNPs associated with immune cell traits regardless to any specific
815 phenotypes in the TwinsUK cohort, we ran extracted SNPs for each immune cell traits
816 that have a P-value under GWAS P-value threshold (P-value < 5×10^{-8}) from previous
817 published GWASs on these immune cell traits^{27,28}.

818 To define the list of SNPs associated with protein abundance found in this study, we
819 extracted the significant SNPs reported in INTERVAL project³¹.

820 To define the list of SNPs associated with gene expression (eQTL), we extracted the
821 eQTLs reported significant by GTEx and previous papers present in HaploReg
822 V4.1^{31,32}.

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

823 To define the list of SNPs associated with AITD and thyroid functions, we selected to
824 SNPs listed in the NHGRI GWAS catalog³⁰ with words “thyroid” or “Graves” or
825 “Hashimoto.”

826 Determination of shared SNPs and genes between IgG N-glycan traits, immune cell traits,
827 proteins abundance, and thyroid functions and diseases.

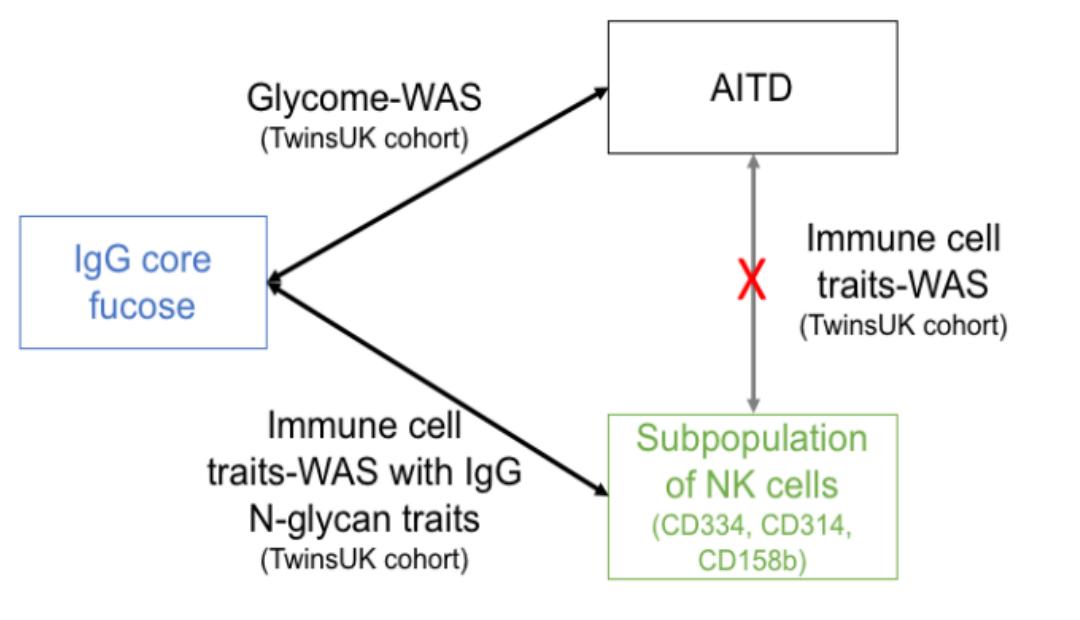
828 To examine whether glycans, immune cell traits, and thyroid functions and diseases
829 shared SNPs or genes, we compared the list of SNPs from GWASs done on TwinsUK
830 data and from the NHGRI GWAS catalog (cf. above). As SNPs detected by GWASs
831 could be lead SNPs and not necessarily causal SNPs¹⁰⁰, we extended the list of SNPs
832 to other variants in linkage disequilibrium (LD) with an r^2 threshold of 0.8 from 1000G
833 Phase 1 European population. Using HaploReg V4.1¹⁰¹, we extracted the closest
834 annotated genes and transcript from GENCODE.

835 [Heritability analysis for proteins](#)

836 Using twin data and ADCE models (additive genetics (A), dominante genetics (D),
837 shared environment (C) and non-shared environment (E)), heritability of glycosylation
838 structures, immune cell traits and AITD were estimated using the R package called
839 mets that allows us to run the analysis with monozygotic and dizygotic twins as well
840 as unrelated individuals. The significance of variance components A, D, and C was
841 assessed by dropping each component sequentially from the full model (ADCE) and
842 comparing the sub-model fit to the full model. Sub-models were compared to full
843 models by hierarchical χ^2 tests. The difference between log-likelihood values between
844 sub-model and full model is asymptotically distributed as χ^2 with degrees of freedom
845 (df) equal to the difference in df of sub-model and the full model. A statistical indicator
846 of goodness-of-fit is the Akaike information criterion (AIC), computed as $\chi^2 - 2df$; sub-
847 models are accepted as the best-fitting model if there is no significant loss of fit when
848 a latent variable (A, C, D, or E) is fixed to equal zero. When two sub-models have the
849 same AIC compared to the full model, we decide to keep the model the most likely
850 (with additive genetic variance) or with the lowest P-value for different components.

851

852 [Visualization](#)


853 Heatmaps were created in using R package ComplexHeatmap, and we visualized only
854 beta values having significant associations from linear mixed models (Fig. 2a and 4f).

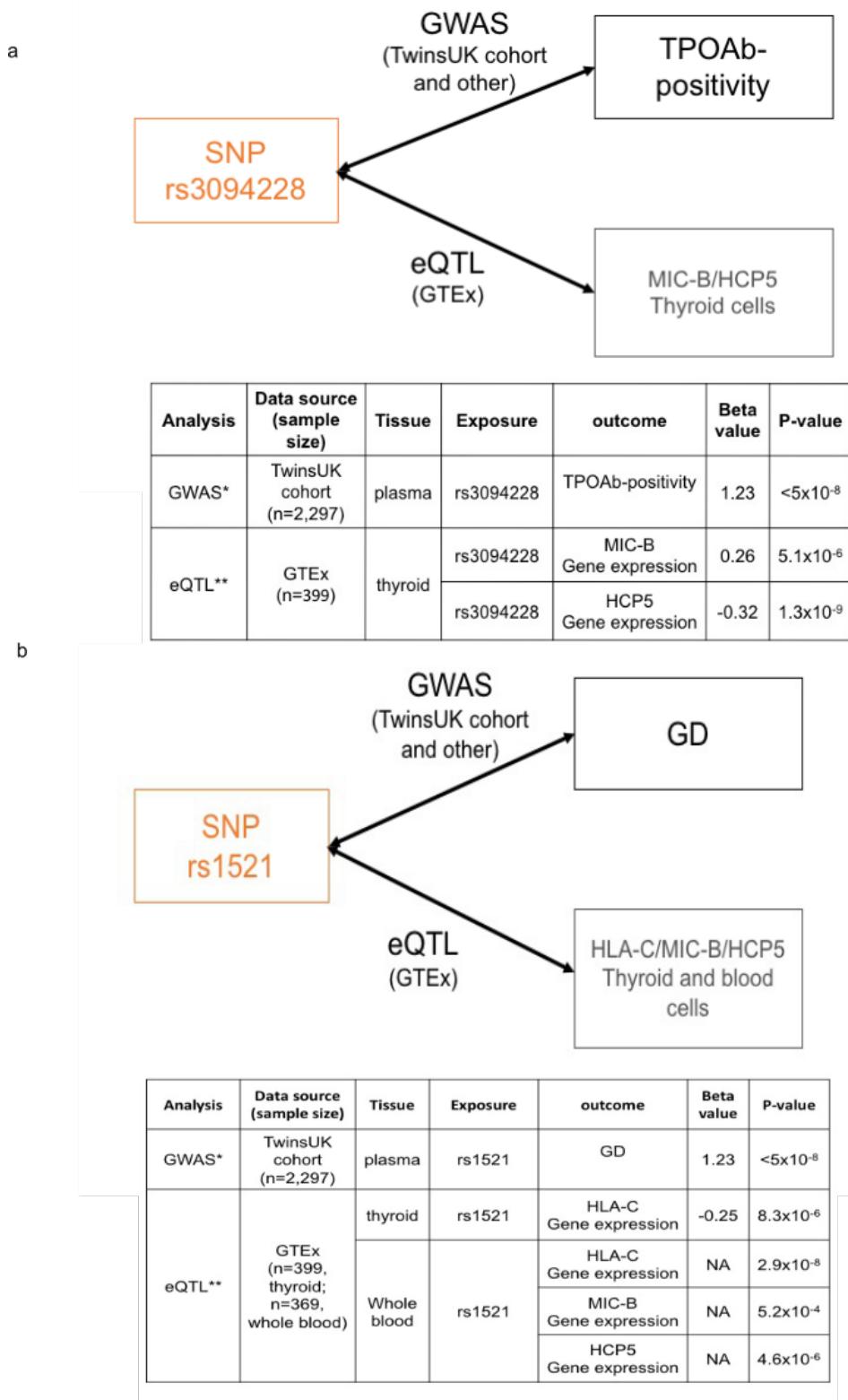
Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

855 Correlation between 51 immune cell traits and between 17 AITD-IgG N-glycans (Fig
856 2b and c) were created with R package corrplot. Boxplots and scatter plot were created
857 in using R package ggplot2 (Fig 4b-e).

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

858

Analysis	Data source (sample size)	Tissue	Exposure	outcome	Sign of Beta value	P-value
Glycome-WAS*	TwinsUK cohort (n=2,297), Polish cohort (n=219) and Croatian cohort (n=163)	plasma	AITD status/ TPOAb level	11 core fucose IgG N-glycan traits (IGP7, IGP8, IGP15, IGP33, IGP48, IGP56, IGP58, IGP59, IGP60, IGP62 and IGP63)	-	<2.5x10 ⁻³
				6 core afucose IgG N-glycan traits (IGP2, IGP21, IGP36, IGP42, IGP45, IGP46)	+	
Immune cell traits-WAS with IgG N-glycan traits	TwinsUK cohort (n=383)	plasma	3 core fucose IgG N-glycan traits	NK cells 16+56+/CD335- (CD314+, CD158b-)	-	<2.4x10 ⁻⁶
				NK cells 16+56+/CD335+ (CD314-, CD158b+)	+	
			3 core afucose IgG N-glycan traits	NK cells 16+56+/CD335- (CD314+, CD158b-)	+	
				NK cells 16+56+/CD335+ (CD314-, CD158b+)	-	
Immune cell traits-WAS	TwinsUK cohort (n=374)	plasma	AITD status/ TPOAb level	51 immune cell traits (NK cells – CD335, CD314, CD158b)	NS	>0.05


859

860 **Supplement Figure 1: Overview of associations observed between IgG core-
861 fucose, a subpopulation of NK cells and AITD status in the TwinsUK cohort.**

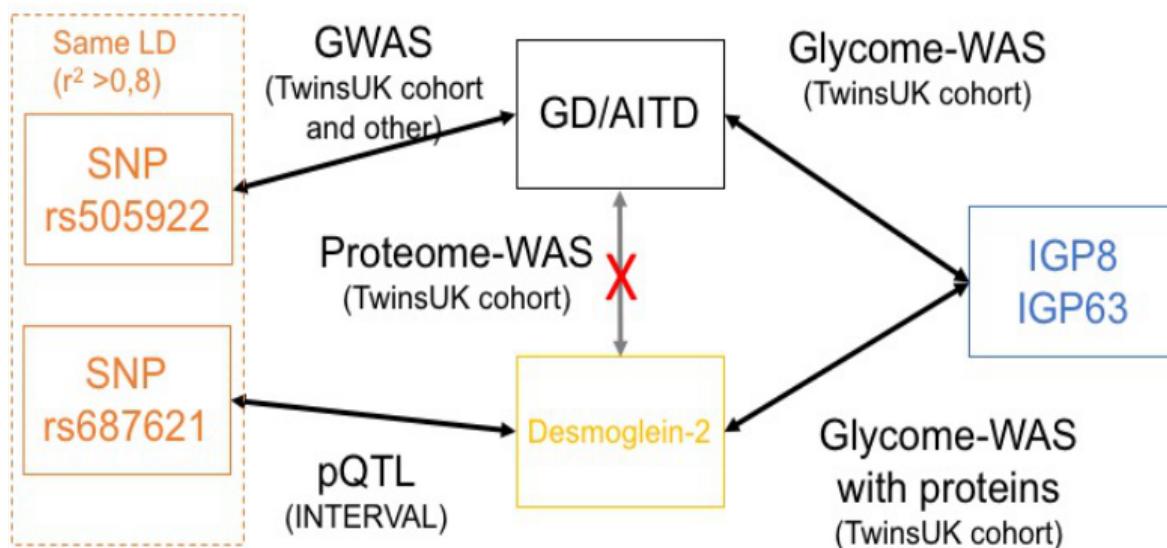
862 *Glycome-wide association studies of AITD and TPOAb levels were previously
863 performed⁴.

864

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

865

866 **Supplement Figure 2: Overview of associations between AITD-SNP and eQTL in**
 867 **thyroid and blood cells.** *Genome-wide association studies of AITD and TPOAb-


Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

868 positivity were previously performed, and the findings are available via GWAS
869 catalog^{27,30} whereas **eQTLs come from GTEx project^{31,32}.

870

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

871

Analysis	Data source (sample size)	Tissue	Exposure	outcome	Beta value/ OR	P-value
GWAS*	TwinsUK cohort (n=2,297)	plasma	rs505922	GD	1.13	$<2.5 \times 10^{-3}$
Protein-quantitative trait loci**	INTERVAL (n=3,301)	plasma	rs687621	Desmoglein-2	0.20	1.9×10^{-11}
Protein-WAS	TwinsUK cohort (n= up to 348)	plasma	AITD status/ TPOAb level	Desmoglein-2	NS	$>1.9 \times 10^{-4}$
Glycome-WAS***	TwinsUK cohort (n=2,297), Polish cohort (n=219) and Croatian cohort (n=163)	plasma	AITD status/ TPOAb level	IGP8	-6.93	2.1×10^{-3}
				IGP63	-7.23	1.2×10^{-3}
Protein-WAS	TwinsUK cohort (n= 164)	plasma	IGP8	Desmoglein-2	0.032	2.2×10^{-6}
			IGP63	Desmoglein-2	0.032	8.0×10^{-6}

872

873 **Supplement Figure 3: Overview of multi-omic findings associated with**
874 **Desmoglein-2 in individuals with AITD status and general population.** We
875 highlighted a locus with high LD having SNPs and two IgG glycan traits that are both
876 associated with GD and the abundance of secreted plasma Desmoglein-2 in plasma.
877 However, no direct association of AITD status with the abundance of secreted plasma
878 Desmoglein-2. We previously performed glycome-wide association studies of AITD
879 and TPOAb levels⁴. Genome-wide association studies of AITD and TPOAb-positivity
880 were previously performed, and the findings are available via GWAS catalog^{27,30}
881 whereas pQTLs come from INTERVAL project³¹. IGP8 = the percentage of FA2[3]G1

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

882 glycan in total IgG glycans. IGP63 = The percentage of fucosylation (without bisecting
883 GlcNAc) of agalactosylated structures.

884

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

885 [Reference](#)

- 886 1. Brix, T. H., Kyvik, K. O., Christensen, K. & Hegedüs, L. Evidence for a Major
887 Role of Heredity in Graves' Disease: A Population-Based Study of Two Danish
888 Twin Cohorts ¹. *J. Clin. Endocrinol. Metab.* **86**, 930–934 (2001).
- 889 2. Hansen, P. S. *et al.* The relative importance of genetic and environmental factors
890 in the aetiology of thyroid nodularity: A study of healthy Danish twins. *Clin.*
891 *Endocrinol. (Oxf.)* **62**, 380–386 (2006).
- 892 3. Brix, T. H., Kyvik, K. O. & Hegedüs, L. A population-based study of chronic
893 autoimmune hypothyroidism in Danish twins. *J. Clin. Endocrinol. Metab.* **85**,
894 536–539 (2000).
- 895 4. Martin, T. C., Šimurina, M., Ząbczyńska, M. & Martini, M. Decreased IgG core
896 fucosylation, a player in antibody-dependent cell-mediated cytotoxicity, is
897 associated with autoimmune thyroid diseases. *bioRxiv* 362004 (2018).
898 doi:10.1101/362004
- 899 5. Simmonds, M. J. & Gough, S. C. L. Genetic insights into disease mechanisms
900 of autoimmunity. *Br. Med. Bull.* **71**, 93–113 (2005).
- 901 6. Fröhlich, E. & Wahl, R. Thyroid autoimmunity: Role of anti-thyroid antibodies in
902 thyroid and extra-thyroidal diseases. *Frontiers in Immunology* **8**, 521 (2017).
- 903 7. Wang, B., Shao, X., Song, R., Xu, D. & Zhang, J. A. The emerging role of
904 epigenetics in autoimmune thyroid diseases. *Frontiers in Immunology* **8**, 396
905 (2017).
- 906 8. Rydzewska, M., Jaromin, M., Pasierowska, I. E., Stożek, K. & Bossowski, A.
907 Role of the T and B lymphocytes in pathogenesis of autoimmune thyroid
908 diseases. *Thyroid Res.* **11**, 1–11 (2018).
- 909 9. Weetman, A. Autoimmunity to the Thyroid Gland. (2016).
- 910 10. Rebuffat, S. A., Nguyen, B., Robert, B., Castex, F. & Peraldi-Roux, S.
911 Antithyroperoxidase antibody-dependent cytotoxicity in autoimmune thyroid
912 disease. *J. Clin. Endocrinol. Metab.* **93**, 929–934 (2008).
- 913 11. Effraimidis, G. & Wiersinga, W. M. Mechanisms in endocrinology: autoimmune
914 thyroid disease: old and new players. *Eur. J. Endocrinol.* **170**, R241-52 (2014).
- 915 12. Armengol, M. P. *et al.* Thyroid autoimmune disease: demonstration of thyroid
916 antigen-specific B cells and recombination-activating gene expression in

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

917 chemokine-containing active intrathyroidal germinal centers. *Am. J. Pathol.* **159**,
918 861–73 (2001).

919 13. Braverman, L. & Wartofsky, L. *Thyroid Tests. National Endocrine and Metabolic*
920 *Diseases Information Service* (2014). at
921 <<http://endocrine.niddk.nih.gov/pubs/thyroidtests/>>

922 14. British Thyroid Association. *UK Guidelines for the Use of Thyroid Function Tests*
923 *July 2006 1. Consultant* (2006).

924 15. Calder, E. A., Penhale, W. J., McLeman, D., Barnes, E. W. & Irvine, W. J.
925 Lymphocyte-dependent antibody-mediated cytotoxicity in Hashimoto thyroiditis.
926 *Clin. Exp. Immunol.* **14**, 153–8 (1973).

927 16. Nada, A. M. & Hammouda, M. Immunoregulatory T cells, LFA-3 and HLA-DR in
928 autoimmune thyroid diseases. *Indian J. Endocrinol. Metab.* **18**, 574–581 (2014).

929 17. Mikos, H., Mikos, M., Rabska-Pietrzak, B. & Niedziela, M. The clinical role of
930 serum concentrations of selected cytokines: IL-1beta, TNF-alpha and IL-6 in
931 diagnosis of autoimmune thyroid disease (AITD) in children. *Autoimmunity* **47**,
932 466–472 (2014).

933 18. Rodien, P. et al. Antibody-dependent cell-mediated cytotoxicity in autoimmune
934 thyroid disease: relationship to antithyroperoxidase antibodies. *J. Clin.*
935 *Endocrinol. Metab.* **81**, 2595–2600 (1996).

936 19. Metcalfe, R. a, Oh, Y. S., Stroud, C., Arnold, K. & Weetman, A. P. Analysis of
937 antibody-dependent cell-mediated cytotoxicity in autoimmune thyroid disease.
938 *Autoimmunity* **25**, 65–72 (1997).

939 20. Maverakis, E. et al. Glycans in the immune system and The Altered Glycan
940 Theory of Autoimmunity: A critical review. *J. Autoimmun.* **57**, 1–13 (2015).

941 21. Marth, J. D. & Grewal, P. K. Mammalian glycosylation in immunity. *Nat. Rev.*
942 *Immunol.* **8**, 874–887 (2008).

943 22. Kanda, Y. et al. Comparison of biological activity among nonfucosylated
944 therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides:
945 The high-mannose, hybrid, and complex types. *Glycobiology* **17**, 104–118
946 (2007).

947 23. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide
948 improves binding to human Fc γ RIII and antibody-dependent cellular toxicity. *J.*

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

981 36. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact
982 of glycosylation on the biological function and structure of human
983 immunoglobulins. *Annu. Rev. Immunol.* **25**, 21–50 (2007).

984 37. Subedi, G. P. & Barb, A. W. The Structural Role of Antibody N-Glycosylation in
985 Receptor Interactions. *Structure* **23**, 1573–1583 (2015).

986 38. Subedi, G. P. & Barb, A. W. The immunoglobulin G1 N-glycan composition
987 affects binding to each low affinity Fc γ receptor. *MAbs* **8**, 1512–1524 (2016).

988 39. Sivori, S. et al. P46, a Novel Natural Killer Cell-Specific Surface Molecule That
989 Mediates Cell Activation. *J. Exp. Med.* **186**, 1129–1136 (1997).

990 40. Pessino, A. et al. Molecular cloning of NKp46: a novel member of the
991 immunoglobulin superfamily involved in triggering of natural cytotoxicity. *J. Exp.*
992 *Med.* **188**, 953–960 (1998).

993 41. Lanier, L. L. Up on the tightrope: Natural killer cell activation and inhibition.
994 *Nature Immunology* **9**, 495–502 (2008).

995 42. Billadeau, D. D., Upshaw, J. L., Schoon, R. A., Dick, C. J. & Leibson, P. J.
996 NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent
997 regulatory pathway. *Nat. Immunol.* **4**, 557–564 (2003).

998 43. Gendzakhadze, K. et al. Co-evolution of KIR2DL3 with HLA-C in a human
999 population retaining minimal essential diversity of KIR and HLA class I ligands.
1000 *Proc Natl Acad Sci U S A* **106**, 18692–18697 (2009).

1001 44. van Bergen, J. et al. Phenotypic and functional characterization of CD4 T cells
1002 expressing killer Ig-like receptors. *J. Immunol.* **173**, 6719–6726 (2004).

1003 45. Li, J. & Ji, L. Adjusting multiple testing in multilocus analyses using the
1004 eigenvalues of a correlation matrix. *Heredity (Edinb)* **95**, 221–227 (2005).

1005 46. Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers
1006 of known disease associations. *Nat. Genet.* **45**, 1238–1243 (2013).

1007 47. Chu, X. et al. A genome-wide association study identifies two new risk loci for
1008 Graves' disease. *Nat. Genet.* **43**, 897–901 (2011).

1009 48. Medici, M. et al. Identification of novel genetic Loci associated with thyroid
1010 peroxidase antibodies and clinical thyroid disease. *PLoS Genet.* **10**, e1004123
1011 (2014).

1012 49. Cho, W. K. et al. Association of MICA alleles with autoimmune thyroid disease

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

1013 in korean children. *Int. J. Endocrinol.* **2012**, (2012).

1014 50. McLnnes, L. & Healy, J. UMAP: Uniform Manifold Approximation and Projection
1015 for Dimension Reduction. *arXiv* (2018). at <<https://arxiv.org/pdf/1802.03426.pdf>>

1016 51. Li, A., Kim, J., Smith, M., Hughes, S. & Laderas, T. umapr. (2018). at
1017 <<https://github.com/ropenscilabs/umapr>>

1018 52. Hoffman, M. M. et al. Integrative annotation of chromatin elements from
1019 ENCODE data. *Nucleic Acids Res.* **41**, 827–841 (2013).

1020 53. Siu, C. et al. Characterization of the human thyroid epigenome. *J. Endocrinol.*
1021 **235**, 153–165 (2017).

1022 54. Martin, T. C., Yet, I., Tsai, P.-C. & Bell, J. T. coMET: Visualisation of regional
1023 epigenome-wide association scan results and DNA co-methylation patterns.
1024 *BMC Bioinformatics* **16**, (2015).

1025 55. Rohloff, J. C. et al. Nucleic acid ligands with protein-like side chains: Modified
1026 aptamers and their use as diagnostic and therapeutic agents. *Molecular Therapy - Nucleic Acids* **3**, e201 (2014).

1027 56. Fredolini, C. et al. Immunocapture strategies in translational proteomics. *Expert Rev. Proteomics* **13**, 83–98 (2016).

1028 57. Christiansson, L. et al. The use of multiplex platforms for absolute and relative
1029 protein quantification of clinical material. *EUPROT open protein* **3**, 37–47 (2014).

1030 58. Liu, Y. et al. Quantitative variability of 342 plasma proteins in a human twin
1031 population. *Mol. Syst. Biol.* **11**, 786 (2015).

1032 59. Nava, P. et al. Desmoglein-2: a novel regulator of apoptosis in the intestinal
1033 epithelium. *Mol. Biol. Cell* **18**, 4565–78 (2007).

1034 60. Vivier, E., Nunès, J. A. & Vély, F. Natural Killer Cell Signaling Pathways. *Science*
1035 (80-.). **306**, (2004).

1036 61. Ullrich, E., Koch, J., Cerwenka, A. & Steinle, A. New prospects on the
1037 NKG2D/NKG2DL system for oncology. *Oncoimmunology* **2**, e26097 (2013).

1038 62. Grubbeck-Loebenstein, B. et al. Analysis of intrathyroidal cytokine production in
1039 thyroid autoimmune disease: thyroid follicular cells produce interleukin-1 alpha
1040 and interleukin-6. *Clin. Exp. Immunol.* **77**, 324–30 (1989).

1041 63. Nilsson, M., Husmark, J., Björkman, U. & Ericson, L. E. Cytokines and thyroid
1042 epithelial integrity: Interleukin-1 α induces dissociation of the junctional complex

1043

1044

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

1045 and paracellular leakage in filter- cultured human thyrocytes. *J. Clin. Endocrinol.*
1046 *Metab.* **83**, 945–952 (1998).

1047 64. Mandal, A. & Viswanathan, C. Natural killer cells: In health and disease. *Hematol.*
1048 *Oncol. Stem Cell Ther.* **8**, 47–55 (2015).

1049 65. McLeod, D. S. A. & Cooper, D. S. The incidence and prevalence of thyroid
1050 autoimmunity. *Endocrine* **42**, 252–265 (2012).

1051 66. Stassi, G. & De Maria, R. Autoimmune thyroid disease: new models of cell death
1052 in autoimmunity. *Nat. Rev. Immunol.* **2**, 195–204 (2002).

1053 67. Matthews, D. C. & Syed, A. A. The role of TSH receptor antibodies in the
1054 management of Graves' disease. *European Journal of Internal Medicine* **22**,
1055 213–216 (2011).

1056 68. Shalini, S., Dorstyn, L., Dawar, S. & Kumar, S. Old, new and emerging functions
1057 of caspases. *Cell Death Differ.* **22**, 526–39 (2015).

1058 69. Rebuffat, S. A. et al. Human recombinant anti-thyroperoxidase autoantibodies:
1059 in vitro cytotoxic activity on papillary thyroid cancer expressing TPO. *Br. J.*
1060 *Cancer* **102**, 852–861 (2010).

1061 70. Berda-Haddad, Y. et al. Sterile inflammation of endothelial cell-derived apoptotic
1062 bodies is mediated by interleukin-1alpha. *Proc. Natl. Acad. Sci.* **108**, 20684–
1063 20689 (2011).

1064 71. Wagtmann, N., Rajagopalan, S., Winter, C. C., Peruui, M. & Long, E. O. Killer
1065 cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding
1066 and by functional transfer. *Immunity* **3**, 801–809 (1995).

1067 72. Moesta, A. K. & Parham, P. Diverse functionality among human NK cell
1068 receptors for the C1 epitope of HLA-C: KIR2DS2, KIR2DL2, and KIR2DL3. *Front.*
1069 *Immunol.* **3**, 336 (2012).

1070 73. Yamane-Ohnuki, N. et al. Establishment of FUT8 knockout Chinese hamster
1071 ovary cells: An ideal host cell line for producing completely defucosylated
1072 antibodies with enhanced antibody-dependent cellular cytotoxicity. *Biotechnol.*
1073 *Bioeng.* **87**, 614–622 (2004).

1074 74. Stanietsky, N. & Mandelboim, O. Paired NK cell receptors controlling NK
1075 cytotoxicity. *FEBS Letters* **584**, 4895–4900 (2010).

1076 75. Chan, W. K. et al. Antibody-dependent cell-mediated cytotoxicity overcomes NK

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

1077 cell resistance in MLL-rearranged leukemia expressing inhibitory KIR ligands
1078 but not activating ligands. *Clin. Cancer Res.* **18**, 6296–305 (2012).

1079 76. Hidaka, Y. *et al.* Increase in peripheral natural killer cell activity in patients with
1080 autoimmune thyroid disease. *Autoimmunity* **11**, 239–246 (1992).

1081 77. Solerte, S. B. *et al.* Defect of a subpopulation of natural killer immune cells in
1082 Graves' disease and Hashimoto's thyroiditis: Normalizing effect of
1083 dehydroepiandrosterone sulfate. *Eur. J. Endocrinol.* **152**, 703–712 (2005).

1084 78. Zhang, C. & Tian, Z. NK cell subsets in autoimmune diseases. *Journal of*
1085 *Autoimmunity* **83**, 22–30 (2017).

1086 79. Ehlers, M. *et al.* Evidence of a Combined Cytotoxic Thyroglobulin and
1087 Thyroperoxidase Epitope-Specific Cellular Immunity in Hashimoto's Thyroiditis.
1088 *J. Clin. Endocrinol. Metab.* **97**, 1347–1354 (2012).

1089 80. Bogner, U., Wall, J. . & Schleusener, H. Cellular and antibody mediated
1090 cytotoxicity in autoimmune thyroid disease. *Acta Endocrinol. (Copenh).*
1091 **Supplement**, 133–8 (1987).

1092 81. Forbes, B. I. J., Roitt, I. M., Doniach, D. & Solomon, I. L. The presence of
1093 circulating autoantibodies in patients with Hashimoto 's disease suggests that
1094 autoimmunity is implicated in the disease process , but the ultimate proof of an
1095 autoimmune patho- genesis of thyroiditis and other human diseases must be
1096 obta. **41**, 996–1006 (1962).

1097 82. Li, T. *et al.* Modulating IgG effector function by Fc glycan engineering. *Proc. Natl.*
1098 *Acad. Sci. U. S. A.* **114**, 3485–3490 (2017).

1099 83. Jefferis, R. Recombinant antibody therapeutics: the impact of glycosylation on
1100 mechanisms of action. *Trends in Pharmacological Sciences* **30**, 356–362 (2009).

1101 84. Presta, L. G. Molecular engineering and design of therapeutic antibodies.
1102 *Current Opinion in Immunology* **20**, 460–470 (2008).

1103 85. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation.
1104 *Nat. Rev. Immunol.* **11**, 762–74 (2011).

1105 86. Shi, F. D., Ljunggren, H. G., La Cava, A. & Van Kaer, L. Organ-specific features
1106 of natural killer cells. *Nat Rev Immunol* **11**, 658–671 (2011).

1107 87. Childs, R. W. & Carlsten, M. Therapeutic approaches to enhance natural killer
1108 cell cytotoxicity against cancer: the force awakens. *Nat. Rev. Drug Discov.* **14**,

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

1109 487–498 (2015).

1110 88. Guillerey, C., Huntington, N. D. & Smyth, M. J. Targeting natural killer cells in
1111 cancer immunotherapy. *Nat. Immunol.* **17**, 1025–1036 (2016).

1112 89. Chiossone, L., Dumas, P.-Y., Vienne, M. & Vivier, E. Natural killer cells and other
1113 innate lymphoid cells in cancer. *Nat. Rev. Immunol.* **1** (2018).
1114 doi:10.1038/s41577-018-0061-z

1115 90. Spector, T. D. & Williams, F. M. K. The UK Adult Twin Registry (TwinsUK). *Twin*
1116 *Res. Hum. Genet.* **9**, 899–906 (2006).

1117 91. Moayyeri, A., Hammond, C. J., Valdes, A. M. & Spector, T. D. Cohort Profile:
1118 TwinsUK and Healthy Ageing Twin Study. *Int. J. Epidemiol.* **42**, 76–85 (2013).

1119 92. Menni, C. et al. Circulating proteomic signatures of chronological age. *Journals*
1120 *Gerontol. - Ser. A Biol. Sci. Med. Sci.* **70**, 809–816 (2014).

1121 93. Kiddle, S. J. et al. Plasma protein biomarkers of Alzheimer's disease
1122 endophenotypes in asymptomatic older twins: early cognitive decline and
1123 regional brain volumes. *Transl. Psychiatry* **5**, e584 (2015).

1124 94. Richards, J. B. et al. Bone mineral density, osteoporosis, and osteoporotic
1125 fractures: a genome-wide association study. *Lancet* **371**, 1505–1512 (2008).

1126 95. Soranzo, N. et al. Meta-analysis of genome-wide scans for human adult stature
1127 identifies novel loci and associations with measures of skeletal frame size. *PLoS*
1128 *Genet.* **5**, e1000445 (2009).

1129 96. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype
1130 imputation method for the next generation of genome-wide association studies.
1131 *PLoS Genet.* **5**, (2009).

1132 97. Bates, D. et al. lme4: Linear Mixed-Effects Models using 'Eigen' and S4. (2015).
1133 at <<https://cran.r-project.org/web/packages/lme4/index.html>>

1134 98. Genabel. (2016). at <<http://genabel.org/>>

1135 99. Shen, X. et al. Multivariate discovery and replication of five novel loci associated
1136 with Immunoglobulin G N-glycosylation. *Nat. Commun.* **8**, 447 (2017).

1137 100. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune
1138 disease variants. *Nature* **518**, 337–43 (2015).

1139 101. Ward, L. D. & Kellis, M. HaploReg v4: systematic mining of putative causal
1140 variants, cell types, regulators and target genes for human complex traits and

Martin et al., Multi-omic analyses reveal an antibody-dependent natural killer cell-mediated cytotoxicity happening in autoimmune thyroid diseases, 2019

1141 disease. *Nucleic Acids Res.* **44**, gkv1340 (2015).

1142