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Abstract

Despite the increasing relevance of structural variants (SV) in the development of many human
diseases, progress in novel pathological SV discovery remains impeded, partly due to the challenges
of accurate and routine SV characterization in patients. The recent advent of third-generation
sequencing (3GS) technologies brings promise for better characterization of genomic aberrations by
virtue of having longer reads. However, the applications of 3GS are restricted by their high sequencing
error rates and low sequencing throughput. To overcome these limitations, we present NanoVar, an
accurate, rapid and low-depth (4X) 3GS SV caller utilizing long-reads generated by Oxford Nanopore
Technologies. NanoVar employs split-reads and hard-clipped reads for SV detection and utilizes a
neural network classifier for true SV enrichment. In simulated data, NanoVar demonstrated the highest
SV detection accuracy (F1 score = 0.91) amongst other long-read SV callers using 12 gigabases (4X) of
sequencing data. In patient samples, besides the detection of genomic aberrations, NanoVar also
uncovered many normal alternative sequences or alleles which were present in healthy individuals. The
low sequencing depth requirements of NanoVar enable the use of Nanopore sequencing for accurate
SV characterization at a lower sequencing cost, an approach compatible with clinical studies and large-
scale SV-association research.

Introduction There are currently two main standards of

Structural variations are implicated in the development
of many human diseases’? and account for most of
the genetic variation in the human population®4.
Structural variants (SVs), defined as genomic
alterations greater than 50 bp®, can functionally affect
cellular physiology by forming genetic lesions which
may lead to gene dysregulation or novel gene-fusions,
driving the development of diseases such as cancer®’,
Mendelian disorders®®, and complex diseases'®. SVs
can exist as different classes including deletion,
duplication, insertion, inversion and translocation.
Over the years, disease-associated SVs were
indicated as biomarkers for diagnosis®'", prognosis'?,
and therapy guidance for patients', which could be
screened through sequencing-based and non-
sequencing-based methods in clinics. As the clinical
impacts of SVs continue to unveil, there is a clear need
for accurate, rapid and inexpensive workflows for
routine SV profiling in patients to expedite biomarker
discovery and broaden clinical investigations’.

sequencing-based methods for comprehensive SV
detection: long-read or third-generation sequencing
(3GS) and short-read or second-generation
sequencing (2GS). Although 3GS technologies were
made accessible to a large audience, it has not yet
supplanted 2GS technologies due to its higher
sequencing error rate and lower throughput™. While
3GS is currently mainly restricted to the study of small
genomes'® or targeted sequencing'®, recent studies
have reported mammalian whole-genome sequencing
(WGS)'""® put at a higher sequencing cost per
megabase as compared to the older technologies. In the
domain of SV discovery, many groups have reported
that 3GS approaches provided higher SV detection
sensitivity and resolution than 2GS, despite their higher
sequencing error rate®'"°. This is mostly due to the
inadequacy of short reads (50-200 bp) to elucidate large
genomic variations also involving novel sequence
insertions or repetitive elements, which may give rise to
high false discovery rates®2°. On the other hand, longer
read lengths (>1 kb) reduce mapping ambiguity, resolve
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repetitive sequences?' and complex SVs8, and discover
a much larger extent of SVs than short-reads'” 8.
Despite better SV detection capabilities, the low
throughput and high sequencing cost per megabase of
3GS obstruct its feasibility to be used in routine SV
interrogation in patients.

To overcome these issues, we developed a new SV
caller tool, NanoVar, which utilizes low-depth Oxford
Nanopore Technologies (ONT) WGS data for accurate
SV characterization in patients. NanoVar adopts a
neural-network-based algorithm for high-confident SV
detection and SV zygosity estimation for all SV classes.
It is optimized to work with shallow long-read WGS data
at a minimum sequencing depth of 4X or 12 gigabases
(Gb) in total bases, which can be achieved with one to
five ONT MinlON sequencing runs, depending on the
flowcell chemistry, library preparation kit, and sample
quality. In this manuscript, we evaluated NanoVar's SV
detection precision and recall amongst other tools using
simulation datasets. When applied to patient data, we
demonstrated the feasibility and speed of implementing
the NanoVar workflow for SV discovery in low depth
3GS clinical samples.

Results

The NanoVar workflow.

The NanoVar workflow is a series of processes that
utilizes 3GS long reads to discover and characterize SVs
in DNA samples. The sequencing of the genome of
interest is carried out by ONT MinlON to produce long-
reads reported in FASTQ/FASTA formats (Fig. 1a). The
sequencing output of several sequencing runs can be
combined to achieve enough depth of coverage for SV
discovery. Based on our initial tests performed in
simulated dataset (cf. hereafter), we recommend having
at least 12 Gb of sequencing data (covering
approximately 4X of the human genome), which can be
achieved through one to five MinlON runs depending on
the flowcell chemistry (R9.4, R9.5), library preparation kit
(1D, 1D?, 2D), and DNA sample quality (purity, quantity
and fragment length). The R9.4 flowcell chemistry with a
1D sequencing library using high purity DNA with a mean
fragment length of 8 kb provides the highest throughput
per MinlON flowcell (above 12 Gb). The combined
FASTQ/FASTA file is used as input into the NanoVar tool
for SV processing. NanoVar begins by mapping the long
reads against a reference genome using HS-BLASTN?
to obtain the alignment profile of each read (Fig. 1b).
Reads with incomplete alignments (containing divergent
sequence/gap) are selected and evaluated through an
SV characterization algorithm (Supplementary Fig. 1) to
characterize for the possible SV classes. NanoVar can
distinguish six classes of SV: deletion (DEL), inversions
(INV), tandem duplication (DUP), insertion (INS, novel
sequence insertion/insertion of sequences absent from
reference genome), genomic insertion (insertion of
sequences found elsewhere in the reference genome)
and translocation. Due to the close resemblance in
altered sequences between a genomic insertion and a
translocation, they are collectively labeled as

“breakends” (BND). After all reads are classified,
NanoVar calculates the read-depth coverages for all the
SV breakend sites, separating the number of breakend-
supporting reads and breakend-opposing reads. Lastly,
the read-depth coverage of each SV, together with other
SV characteristics, are used as features for a simulation-
trained neural network classifier to determine a
confidence score for each SV. This confidence score is
used to rank the SVs by confidence and reduce false
positives in the final output. The filtered list of SVs is
recorded in a standard Variant Calling Format (VCF) file
and an HTML report. The HTML report provides an
overview of the SV analysis and an SV output table
containing the information of each SV which can be
fitered and downloaded in MS Excel or CSV formats.
The figures presented in the report also include an SV
class distribution chart and read length distribution of the
sequencing reads which serves to QC for the input (Fig.
1c). NanoVar also assigns a breakend read ratio value
to each SV to estimate their SV zygosity, where a ratio
of 1.0 refers to a homozygous estimation and 0.5 refers
to a heterozygous estimation.

Benchmarking NanoVar using simulations.

To evaluate NanoVar's performance among other
existing SV callers, we utilized three simulated datasets
(doi:10.5281/zen0do.2599376). Each dataset contains
about 1,150 randomly located SVs of different classes
with sizes ranging from 25 bp to 100,000 bp
(Supplementary Fig. 2a). Sequencing reads of both long-
read and short-read sequencing were simulated to a
sequencing depth of 4X and 50X respectively and were
used as input for the workflows of each tool. Sniffles™®,
Picky?®> and NanoSV? are 3GS long-read SV callers
while novoBreak? and Delly?® are 2GS short-read SV
callers. Taking the ground truth SVs in each simulation
dataset as a reference, the precision and recall exhibited
by each tool could be calculated judging from the
genomic location of each SV, ignoring SV class
annotation accuracy (Supplementary Table 1). Among
long-read SV callers, NanoVar outperformed the rest in
precision and recall, achieving the highest average F1
score of 0.91 for all three simulations (Fig. 2a). At the
confidence score threshold of 1.4, NanoVar detected
85% of the ground truth with a high precision of 0.97,
while the other long-read SV callers had slightly lower
sensitivities (Sniffles: 0.81, NanoSV: 0.76, Picky: 0.81)
and substantially lower precisions (Sniffles: 0.70,
NanoSV: 0.21, Picky: 0.002), due to the reporting of
more false positive SVs. Short-read SV callers generally
exhibited higher precisions (Delly: 0.96, novoBreak:
0.99) and moderately lower recall (Delly: 0.78,
novoBreak: 0.66) than long-read SV callers. To
investigate the sensitivity of each tool in detecting SVs of
different sizes, we examined the recall of each SV size
and discovered that SVs with sizes ranging from 25 bp
to 50 bp were inadequately detected by NanoVar and all
other tools except Picky (Fig. 2b). After omitting these
SVs from the datasets, we saw a significant improvement
in the F1 scores of all tools except Picky, with an
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Figure 1: The NanoVar Workflow. (a) About 2 pug of human genomic DNA is set aside for library preparation and Nanopore sequencing to generate
3GS long sequencing reads. Long reads from all sequencing runs are combined into a single FASTQ/FASTA file (at least 12 gigabases) which is used as
input into NanoVar. (b) NanoVar SV characterization process. (Left) Long reads are aligned to a reference genome using HS-BLASTN to identify anchor
sequences (blue) and divergent sequences or gaps (red) within each read. Next, the alignment information is used to detect and characterize the
different SV classes. (Right) For each characterized SV, read-depth coverage is calculated at their breakend(s) site for the number of breakend-
supporting and breakend-opposing reads. The breakend read-depth, together with other alignment information, are employed as features in a neural
network model to infer a confidence score for each SV. (c) NanoVar outputs all characterized SVs in a VCF file and produces an HTML report for QC
and results visualization. The following figures can be found in the HTML report. (Top-left) Histogram showing the length distribution QC of the input
sequencing reads. (Top-middle) Donut chart showing the distribution of SV classes characterized in the dataset (after confidence score filtering).
Breakends represent translocation or genomic insertion SV. (Top-right) Scatter plot displaying the confidence score and breakend read ratio (fraction
of breakend-supporting reads at a breakend) of each SV, also showing the confidence score threshold parameter used for filtering (red line). (Bottom)
Table showing the details of all characterized SVs, which can be sorted, filtered and extracted in CSV or MS Excel formats.
increased in NanoVar's recall from 0.85 to 0.96 score close to its maximum, which is similar for

(Supplementary Fig. 3a). To investigate NanoVar’s
capability to handle datasets of different sequencing
depth coverages, we tested NanoVar on simulated
datasets with 1X to 40X depth of coverages generated
from simulation 1 (Supplementary Fig. 3b). At low
coverages (1X and 2X), NanoVar performed
inadequately with F1 scores between 0.70 and 0.90. With
coverage of 4X, NanoVar was able to achieve an F1

coverages higher than 4X (8X, 16X, 32X, 40X). These
results imply that 4X is the minimal coverage required for
optimal NanoVar SV characterization and that increasing
the coverage above 4X will not affect its performance. To
evaluate the SV class characterization accuracy of each
tool, we calculated the F+ scores for each SV class
separately considering the SV class annotation accuracy
of each tool in simulation 1 with 25 bp and 50 bp SVs
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Figure 2: NanoVar performance benchmarking. (a) Precision and recall of SV detection by SV caller tools in simulation data (Three
datasets with about 1150 SV each, sizes from 25 bp to 100k bp). The representation of curves and optimal confidence threshold score
(labeled as t) are only depicted for tools which have confidence scoring for each breakend. The asterisk (*) on the NanoVar curve marks
the confidence threshold score of t=2.6, which is the threshold used for higher stringency in patient data. (b) SV recall of varying SV
sizes (in base pairs) detected by each tool in simulation data. Vertical red dotted line demarks SV of size 100 bp. (c) Radar charts
showing the F1 scores for each SV class characterized by each tool for SV sizes 100 bp to 100k bp in simulation 1. DUP: tandem
duplication, DEL: deletion, INS: insertion, BND: breakend, INV: inversion.

omitted (Fig. 2c, Supplementary Table 2). Short-read SV
callers achieved high F1 scores (between 0.72 — 0.98) for
all SV classes except INSs, of which none was detected
for both tools. Conversely, long-read SV caller Sniffles
was able to characterize all SV classes but with lower F+
scores (between 0.51 — 0.86). NanoSV was able to

characterize INSs but was inadequate in characterizing
other SV classes, mainly due to them having incorrect
SV class annotations. Picky performed relatively well in
characterizing DUPs, INVs and BNDs, but had acutely
low F1 scores for DELs and INSs due to the high number
of false positives. Lastly, NanoVar was able to
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characterize all SV classes with higher F1 scores than
the other 3GS SV callers (DUP: 0.96, DEL: 0.98, INS:
0.62, BND: 0.90, INV: 0.90). In conclusion, NanoVar
exhibits higher SV characterization recall and precision
amongst other long-read SV callers at a sequencing
coverage of 4X.

Precise SV characterization in AML patients using
NanoVar.

We tested the NanoVar workflow on two Asian patients
diagnosed with acute myeloid leukemia (AML) (Patient 1
and Patient 2) to evaluate the workflow’s feasibility and
SV characterization accuracy in low sequencing depth
clinical samples. Genomic DNA extracted from bone
marrow mononuclear cells of each patient was
sequenced by Nanopore sequencing using two to five
MinlON flowcells, generating about 12.4 gigabases (Gb)
and 12.3 Gb of sequencing data respectively
(Supplementary Table 3). The sequencing reads were
applied to NanoVar for read mapping and SV
characterization. A total of 7030 SVs (1794 DUPs, 2296
DELs, 2320 INSs, 493 BNDs, 127 INVs) were
characterized in Patient 1, and 7761 SVs (1694 DUPs,
3361 DELs, 2098 INSs, 493 BNDs, 115 INVs) in Patient
2 (Supplementary Fig. 4). To evaluate NanoVar’s
accuracy in these samples, we surveyed eight SVs from
each patient for PCR validation. The SVs were selected
according to their confidence score and breakend read
ratio which estimates for SV zygosity. A single top
confidence scoring SV was selected from each breakend
read ratio interval of 0.1 from 0.4 to 0.9, while the top
three highest confidence scoring SVs were selected for
the interval of 0.9 to 1.0 (Fig. 3a). All the selected SVs
are situated in autosomal chromosomes (Supplementary
Table 4). Primer sequences were designed flanking the
breakend location(s) of each SV according to the
reference genome and their referenced amplicon lengths
(in silico PCR length) are recorded in Figure 3b, along
with their breakend read ratios and estimated SV sizes.
PCR performed for each SV in their respective patient
samples revealed that all 16 SVs were validated to be
true based on their product size deviation (Fig. 3c lanes
1 and 8, Supplementary Table 5a). Moreover, the PCR
results were agreeable with the SV class, SV size, and
SV zygosities estimated by NanoVar, based on the
number of PCR products (one product for homozygous,
two products for heterozygous). All amplified products
were gel extracted and their sequence identity validated
by Sanger sequencing (Supplementary data). Besides
PCR validation, all 16 SVs were also found to be
supported by mapped 2GS short-reads generated by
lllumina WGS (Supplementary Fig 5). Figure 3d
illustrates an example of how a deletion SV (SV 1-2),
characterized by 3GS Nanopore long-reads, can be
supported by 2GS lllumina short-reads and 1GS Sanger
sequencing. The successful validation of SVs with
varying breakend read ratios and varying confidence
scores  affirms  NanoVar's precision in SV
characterization in clinical samples.

NanoVar recalls SVs discovered by PCR.

We went on to uncover shared SVs between Patient 1
and Patient 2 amongst the selected SVs by testing the
SVs reciprocally in each patient by PCR using the same
primers and cycle conditions (Fig. 3c lanes 7 and 2).
Patient 1 was discovered to possess all eight SVs that
were validated in Patient 2, while Patient 2 possesses six
of the eight SVs validated in Patient 1. In total, 14 out of
16 validated SVs were discovered to be shared between
Patient 1 and Patient 2, leaving SV 1-5 and 1-8 to be
Patient 1 specific (Fig. 3c, Supplementary Table 5). Next,
we investigated if NanoVar was sensitive enough to
capture these shared-SVs in the respective patient.
Among the eight shared-SVs in Patient 1 and six shared-
SVs in Patient 2, NanoVar was able to capture five
shared-SVs of each, aggregating to 10 out of 14 shared-
SVs detected (Supplementary Table 5). We investigated
the four undetected shared-SVs and found out that three
of them (SVs 2-2, 2-3, 1-7) were in fact captured by
NanoVar but did not pass the confidence score threshold
of 2.6, possibly due to insufficient read depth coverage
(3X to 5X) for heterozygous SV detection. The other
undetected heterozygous shared-SV (SV 2-8) was not
detected due to the absence of SV-associated reads at
its locus. This SV locus was found to be under-
sequenced, covered only by two reads that likely
originated from the wild-type allele in Patient 1.

NanoVar characterizes polymorphic SVs.

Upon assessing the presence of these SVs across more
samples, we observed that most SVs appeared to be
polymorphic. We tested the SVs in several samples
consisting of normal hematopoietic stem cells (HSCs)
from two non-AML Asian individuals (Normal A and
Normal B), an epithelial colorectal carcinoma cell line
(HCT116), and a Caucasian non-tumorigenic breast
epithelial cell line (MCF10A). We found out that normal
HSC samples do possessed many of the SVs (13 out of
the 16 SVs) which existed in at least one allele in either
one or both HSC samples, while SVs 1-5, 1-8, and 2-4
were absent in both HSC samples (Fig. 3c lanes 3, 4, 9,
10). Interestingly, these 13 shared-SVs were also
present in both Patient 1 and Patient 2, suggesting that
these SVs might be prevalently found in cells,
irrespective of AML disease. On the contrary, SVs
absent in the HSC samples (SVs 1-5 and 1-8) were
exclusively found in Patient 1, except for SV 2-4, which
was found in both patient samples. Out of these 13
shared-SVs, 11 of them were also present in non-
hematopoietic cell lines such as HCT116 and MCF10A
(Fig. 3c lanes 5, 6, 11, 12), leaving two SVs (SV 2-7, 2-
8) undetected in either cell lines. Taken together, the
majority of the SVs (11 out of 16 SVs) were commonly
found across the samples regardless of AML disease
status, cell type, and ethnicity. Moreover, most SVs
exhibited different zygosities among the samples (All
SVs excluding SV 1-1, 1-2, 1-8, 2-5), which portrayed the
polymorphic nature of these SVs. Within the scope of this
study, we categorized the SVs into three groups based
on their prevalence and zygosity variation across the
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samples: (1) Rare sample-specific SVs (SV 1-8), (2) polymorphic SVs (remaining SVs) which constituted
Common SVs with no zygosity variation (SV 1-1, 1-2, 2- most of the SVs characterized by NanoVar.
5), and (3) Common SVs with zygosity variation or
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Figure 3: Precise patients’ SV characterization by NanoVar (and SV zygosity prediction.) (a) Scatter plots showing the confidence
score and breakend read ratio of each SV characterized in Patient 1 (top) and Patient 2 (bottom). SVs selected for validations are labeled
on the plots by their SV id. The red horizontal line indicates the confidence score threshold used for filtering. (b) Table displaying the
details of SVs selected for validation for Patient 1 and Patient 2. (c) Gel electrophoresis images of PCR products corresponding to each
of the SVs in table (b), amplified from the genomic DNA of Patient 1 and 2, normal donors (Normal 1 and Normal 2) and cell lines (HCT116
and MCF10A). Sample names in red (left image lane 1, right image lane 2) indicate the sample where the SV was initially detected. (d)
Schematic illustrating a 409 bp deletion (SV 1-2) in the intronic region of the gene BPGM in Patient 1, supported by 3GS Nanopore reads
(top), 2GS lllumina reads (middle) and 1GS Sanger sequencing chromatogram (bottom). Blue and red arrows represent the primer
locations used for PCR amplification. For each Nanopore read, base substitutions and base insertions are represented by red and orange
markers respectively. Base deletions are represented by gaps. All Nanopore reads have at least 90% alignment identity. lllumina paired-
end short reads are represented by pink (forward) and blue (reverse) small rectangles and the read coverages are displayed in grey above
all the reads. The red dotted line on the sequencing chromatogram marks the precise breakpoint of the deletion at single nucleotide
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The NanoVar workflow is time efficient.

We compared the CPU time and maximum resident set
size (memory) used by the workflows of each tool for SV
characterization in Patient 1 to evaluate their processing
speed and memory usage (Supplementary Table 6).
Among 3GS SV callers, NanoVar stood out as the most
time efficient tool by requiring about 10-fold lesser CPU
hours than the rest to process 12 Gb of sequencing data
using 24 threads. In real time, NanoVar took 194 minutes
for the entire analysis of Patient 1 which is the fastest
amongst all other tools. In exchange for its speed,
NanoVar employs about 1.7-fold more memory than the
rest, having a higher memory cap of 32 gigabytes.

Discussion

NanoVar is a novel SV characterization tool that excels
in accuracy and speed while overcoming the low-depth
and error-prone sequencing of 3GS WGS. We showed
that NanoVar can achieve a high SV detection accuracy
(Precision: 0.97, Recall, 0.85) when using only 4X
coverage datasets in simulations, which was observed to
outperform existing 3GS SV callers. However, like most
SV callers, NanoVar fails to resolve many small SVs or
indels shorter than 100 bp in length and would require
future optimizations in algorithm and technological
improvements in ONT basecalling error-rate. NanoVar’s
performance in the simulation was also reflected in low-
depth patient data where we successfully validated a
small subset of SVs discovered by NanoVar (16/16) and
showed that its estimations on SV class, size and
zygosity were reliable.

One major advantage of 3GS over 2GS SV calling
approaches is the amount of raw sequencing data
consumed. In our study, we showed that 12 Gb of 3GS
data (4X coverage) produced a more comprehensive SV
detection outcome than 160 Gb of 2GS data (50X
coverage) when comparing analysis done by NanoVar
and 2GS SV callers (Fig. 2c). The considerable reduction
in sequencing data requirements could speed up SV
analysis and reduce computational resources. 3GS
approaches may be used in large-scale SV-association
studies or routine  sequencing-based  clinical
investigations to analyze and store massive amounts of
sequencing FASTQ/FASTA files more efficiently>’.
Despite NanoVar's high accuracy, many of its
characterized SVs might be SV polymorphisms
commonly found in the human population. We observed
that most of the validated SVs found in our AML patients
also existed with mixed zygosities in normal HSC
samples and other cell lines, suggesting that they might
be benign polymorphic SVs. As SV polymorphisms are
widespread in the human genome?’-32, it is important to
annotate these SVs by cross-referencing to collective
polymorphic-SV databases to facilitate the discovery of
disease-associated SVs. Alternatively, the GRCH38
human reference genome could be improved to
encompass polymorphic sequence variations where
polymorphic SVs could be readily identified®3. The use of
low-depth Nanopore sequencing for accurate and
routine SV characterization could supply a steady flow of

knowledge to the construction of such cohort reference
genome and inclusive SV databases.

Material and methods

The NanoVar pipeline

NanoVar takes as input a WGS long-read
FASTQ/FASTA file (at least 12 gigabases) and a
reference genome and outputs two variant calling
format (VCF) files (Total SV and filtered SV) and an
HTML summary report. The NanoVar workflow
comprises of three main stages: 1) long-read sequence
mapping, 2) SV characterization with read-depth
calculation and 3) artificial neural network (ANN)
inferencing from a simulation-trained model.

Stage 1: Long-read sequence mapping

The first stage aligns long-read sequences to a user-
provided reference genome using the tool HS-
BLASTN? (version 0.0.5+). HS-BLASTN is an
accelerated sequence alignment search tool that uses
the MegaBLAST algorithm. We selected HS-BLASTN
over other long-read aligner tools because of its faster
computational speed and accurate read alignment,
based on our evaluation. Before running HS-BLASTN,
tools from NCBI-BLAST+ are used to build a blast
database (makeblastdb®, version 2.6.0+) and mask
highly repetitive sequences (windowmasker343%, version
2.6.0+). HS-BLASTN is run with the following
parameters: “reward 2 -penalty -3 -gapopen 0 -
gapextend 4 -max_target_seqs 3 -outfmt 6”. The output
is a BLAST-like tabular file containing alignment
information of each read. Due to overlapping alignments
within some reads, a Python script is used to trim the
overlapped regions or select the best alignment based
on alignment bitscore.

Stage 2: SV characterization and read-depth calculation
The alignment anchor sequences and divergent
sequences/gaps of each read are analyzed by Python
scripts to detect reads containing novel adjacencies
(reads possessing split-read or hard-clipped alignments)
and subsequently characterizes their SV class. A novel
adjacency is defined as two adjacent genomic
coordinates in a sample genome that are not found to be
adjacent in the reference genome. A novel adjacency is
represented as two genomic coordinates in the reference
genome, each known as a breakend. We use an
algorithm of conditional control statements for novel
adjacency detection and SV characterization, described
in Supplementary Figure 1. Any read that is found to
possess a novel adjacency is labeled as an SV-
associated read, otherwise, labeled as a normal read.
Next, the read-depth was calculated at each breakend
for SV-associated reads and normal reads separately.
This gives us the number of breakend-supporting reads
B and breakend-opposing reads O at each breakend.
Due to repetitive sequences in the genome, artificial
breakends with unusually high B may be falsely
detected. In order to filter-out these untrue breakends,
we define the upper limit of B as U, where breakends
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with B > U are considered outliers and removed. U is
calculated by

k n
U=4 ;Zl:lxi —mX)| + m(X)

where n is the total number of genomic locations chosen,
x; is the read-depth at genomic location i, m(X) is the
median read-depth of all chosen genomic locations, and
k is the constant scale factor 1.4826. The value of U is
defined as four times the mean absolute deviation
around the median (MAD) from the median in the
distribution of a breakend read-depth assessment. This
outlier detection method is an adaptation from Leys et al.
where they proposed that the median absolute deviation
is a more robust measure of dispersion than the standard
deviation®®. In our method, we use the MAD instead of
the median absolution deviation to reduce fluctuations
caused by discontinuous median integers. The breakend
read-depth assessment is a sampling procedure to
approximate the read-depth of SV throughout the
genome. It is performed by randomly choosing n number
of genomic locations and calculating the number of reads
covering each location after adjusting for G . This
produces a distribution similar to a gamma distribution
and the median m(X) and MAD can be computed.
According to our simulations, we empirically defined U,
the deviation of more than four times the MAD from the
median m(X), to be an outlier threshold, in the context of
the human genome. Hence, any breakend which has B
greater than U will be omitted and the remaining
breakends will proceed to the next stage of ANN
inferencing.

Stage 3: ANN inference

A trained ANN model is employed to improve SV
characterization accuracy by evaluating read alignment
characteristics and breakend read-depth information.
For each novel adjacency, 23 scaled features are
inferred by the ANN model which produces an inference
value P ranging from 0 to 1. Next, P is exponentially
scaled inversely according to the value of B and the final
predicted score S is expressed logarithmically related to
its error rate. S is described as

S = —101log;,(1 — (tanh(0.4B) - P))

where B is the number of breakend-supporting reads at
a novel adjacency and P is the ANN inference value of
a novel adjacency. The hyperbolic tangent function is
used to decrease the value of P non-linearly when B is
low (B =[1,2,3]), as a low B confers low confidence.
The value of S is proportional to the confidence level of
a novel adjacency and is used to filter confident novel
adjacencies from the total VCF output file to create the
filtered VCF output file. A HTML summary report is also
generated at the end of each run.

Artificial neural network model and training

The features used by the ANN are described below

(number in parentheses represent the number of

neurons):

¢ Aligned/unaligned percentages flanking the novel
adjacency (5)

¢ Alignment E-values flanking the novel adjacency (2)

¢ Relative alignment bit scores flanking the novel
adjacency (2)

¢ Alignment identities flanking the novel adjacency (2)

¢ The fraction of mismatches in alignments flanking the
novel adjacency (2)

o A fraction of gaps in alignments flanking the novel
adjacency (2)

o SV complexity - number of coexisting SV found at the
novel adjacency (1)

¢ Total number of alignments found on read (1)

e Total number of SV that seemed to be captured by
read (1)

o Number of different chromosomes the read aligns (1)

¢ The fraction of alignments less than 5% of read
length (1)

o Number of breakend-supporting reads B (1)

o A fraction of breakend-supporting reads B over total
read depth B+O (1)

o |If SV is an insertion/deletion, the size of the
inserted/deleted segment (1)

The value of each feature is scaled to the range of [0, 1]
by min-max normalization. The Python library Keras®
was used to build and infer the ANN model. The
backend engine used with Keras is TensorFlow3é. The
neural network model is a feed-forward network
consisting of a 23 neurons input layer, two hidden layers
of 12 and 5 neurons sequentially, and a single neuron
output layer. The Rectified Linear Unit (ReLU) activation
function is used for the two hidden layers, while the
Sigmoid activation function is used for the output layer.
Dropout regularizations were implemented after each
hidden layer with probabilites of 0.4 and 0.3
sequentially. If y; ; denotes the value of the i-th neuron
in the k-layer, we have that

Yii=F Z W}’i Vk-1,j
j

where F(x) = max(x,0) denotes the RelLU non-
linearity and I/I/;"l is the neural weight between the j-
th neuron of the (k-1)-th layer and the i-th neuron of
the k-th layer.

In silico 3GS reads from a simulated genome
consisting of 61,316 mixed zygosity SV was used to
train a binary classifier ANN model through supervised
learning. The training dataset consist of 933,124 true
and 62,902 false examples of novel adjacencies.
Another simulated dataset with a different SV profile
was used as the test dataset. Binary cross entropy was
used as the loss function and stochastic gradient
descent (SGD) was used as the optimizer algorithm
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with their default parameters. The classification
accuracy is collected and reported as the metric to
assess the performance of the model. One hundred
epochs were performed for the model training, with
each epoch having 12,000 true and 12,000 false
randomly selected examples and a batch size of 400
examples per iteration.

SV genome simulation for test datasets

The template genome used for genome simulation
consisted of the main nuclear chromosomes
(Chromosome 1 to Y) in the GRCh38 human reference
genome assembly with their gap regions (N regions)
replaced by tandemly repeated sequences. Telomeric
(TTAGGG)n®*® sequence replaced the gap regions at
chromosome ends, and consensus centromeric alpha
DNA?*41 replaced the centromeric and remaining gap
regions. The removal of gap regions will allow
uniformity in read simulation and a proper simulation of
a real sequencing library. The R Bioconductor package,
RSVSim*?, was used to introduce novel adjacencies
systematically in a reference genome to create different
classes of SV. Five classes of SV were introduced into
the template genome at varying amounts: 650
deletions, 200 inversions, 100 tandem duplications with
single duplication each, 150 human genomic sequence
insertions and 50 viral sequence insertions (serving as
novel sequence insertions). Viral sequences used for
viral insertions were part of 54 viral genomes taken
from GenBank*® (Supplementary Table 7). The virus
selection was based on their ability to integrate into the
host genome. The amounts for each SV were based
approximately on SV occurrence statistics of clinical
cancer genomes by Hillmer et al.*. To simulate SV
sequence variability, each novel adjacency has a 20 bp
flanking region where bases had a 25% chance of
single nucleotide polymorphism (SNP) and a 50%
chance of introducing indels with a maximum indel
length of 5 bp. The location of each SV was randomly
generated throughout the whole genome by RSVSim.
The sizes and quantity for each class of SV are
recorded in Supplementary Figure 2a. A total of three
genomes were simulated and their FASTA files can be
downloaded from doi:10.5281/zen0do.2599376 or
http://dx.doi.org/10.5281/zenodo.2599376.

Mix zygosity SV genome simulation for the training
dataset

The mix zygosity SV genome was created by three
simulated genomes with varying number of SV from the
same SV profile: Genome A has 61,316 SV (100%),
Genome B has 51,099 SV (83%), and Genome C has
30,659 SV (50%). The SVs in Genome C are a subset
of SVs in Genome B. Different number of in silico 3GS
reads were generated for each genome: 5 million reads
from Genome A, 5 million reads from Genome B, and
10 million reads from Genome C. The combination of all
the reads produced the simulation of homozygous SV
(50%), heterozygous SV (33%), and low-confidence SV
(17%). A homozygous SV only has breakend-

supporting reads at their breakends while a
heterozygous SV has both breakend-supporting and
breakend-opposing reads at similar proportions. A low-
confidence SV simulates a false SV event and has a
majority of its breakend reads being breakend-opposing.

In silico Third-Generation sequencing (3GS)
Nanosim® was used to generate in silico 3GS reads
from the simulated SV genomes. Read features, such
as read length, SNP, and indel profile, were modeled
according to that of real ONT MinlON reads from Patient
1 and Patient 2, which are provided as input into
Nanosim. Two million reads were generated for each SV
genome. Comparison for read length and indel
proportion between real reads and in silico generated
reads are shown in Supplementary Figures 2b and 2c.
Statistics of reads and genome mapping can be found
in Supplementary Table 8.

In silico Second-Generation sequencing (2GS)
DWGSIM*¢ was used to generate in silico 2GS reads
from the three simulated SV genomes. The generation
of 2GS reads followed these settings: lllumina platform,
307 bp average insert size, 59 bp standard deviation of
insert size, 150 bp read length, paired-end reads, 50X
mean coverage across all regions, uniformly increasing
per base error rate from 0.1% at start of read to 1% at
end of read, and contains no mutations, indels, or
random DNA reads. The insert size, read length and
coverage follow that of real whole genome 2GS data of
Patient 1 and Patient 2.

Statistics of reads and genome mapping can be found
in Supplementary Table 8.

Performance evaluation in simulation datasets

For each simulation dataset, a filtered list of ground
truth SV genomic coordinates (BED file with + 400 bp
window about each breakend coordinate) was used to
evaluate SV detection precision and recall for each tool.
The original ground truth SV list was filtered to remove
SVs that were not covered by any long-read or SVs
which fell into genomic gap regions due to random
generation. For the output SVs from each tool, we
removed any SV entry which corresponds to
translocation/insertion SVs at genome gap junctions
indirectly introduced during N region replacement for
genome simulation. The intersection between ground
truth and query SV coordinates were carried out by
BEDTools*’. Precision and recall were computed by
Scikit-learn*® and Fi score was calculated by the
equation:

2(RecallxPrecision)
F1score =————.
(Recall+Precision)

DNA sample source

DNA samples used in this study were acquired from
four individuals: two patients with AML (Patient 1,
Patient 2) and two healthy donors (Normal A, Normal
B). Informed consent from all subjects was obtained for
genetic profiing such as whole genomic DNA
sequencing. Patient 1 and Patient 2 had the M5 AML
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classification (Acute monocytic leukemia) with FLT-3
Asp835 mutations, but the absence of recurrent SV
based on karyotyping. Patient 1 also has a mutation in
the NPM1 gene. All subjects are of Asian ethnicity.

Cell lines

The HCT116 and MCF10A cell lines were obtained
from Horizon Discovery (HD PAR-007) and ATCC
(ATCC CRL-10317™) respectively and grown in their
respective recommended growth culture conditions.

Genomic DNA extraction

Mononuclear cells (MNCs) of all individuals were isolated
from bone marrow. Bone marrow from the pelvic bone
was used for Patient 1 and 2, and bone marrow from the
femur was used for Normal A and B. For Patient 1 and 2,
bone marrow was diluted in phosphate-buffered saline
(PBS) containing 2% HyClone™ Fetal Bovine Serum
(FBS) (GE Healthcare Life Sciences) and 2 mM EDTA.
MNCs were then isolated by Ficoll-Paque layering using
Ficoll-Paque PLUS (GE Healthcare Life Sciences)
following the manufacturer’s protocol. For Normal A and
B, additional processing steps were carried out due to
the presence of liquid fats. Femoral marrow was diluted
in PBS containing 10% FBS, 3 mM EDTA and 0.4%
sodium citrate. Cells were strained using a 100 ym cell
strainer and pelleted by centrifugation at 300 g for 10 min
at room temperature (RT) without acceleration and
brakes. Red blood cells were lysed in 40 ml ACK lysis
buffer (0.15 M NH4Cl, 1 mM KHCOs3, 0.1 mM EDTA-Naz,
pH adjusted to 7.2 - 7.4) at RT for 5 min. Cells were
pelleted by centrifugation again with the same settings.
The cell pellet was resuspended in PBS containing 2%
FBS and 2 mM EDTA, and subsequently MNC isolation
by Ficoll-Paque layering following the manufacturer’s
protocol. MNCs of Normal A and B were enriched for
hematopoietic stem cells (HSCs) by CD34 cell surface
marker selection using the CD34 MicroBead kit, human
(Miltenyi ~ Biotec) according to  manufacturer’s
instructions. The buffer used for CD34+ cell selection is
PBS containing 2% FBS and 2 mM EDTA. Genomic DNA
of MNCs and CD34+ cells were extracted using AllPrep
DNA/RNA/mIiRNA universal kit (Qiagen) and genomic
DNA of HCT116 and MCF10A cells were extracted using
conNorventional phenol-chloroform extraction method.
Nanopore and
basecalling

High molecular weight genomic DNA (1-1.5 pg) was
sheared to 6-10 kb fragments by the G-tube (Covaris).
Library preparation was performed using ONT 1D or 2D
Ligation Sequencing kits (SQK-LSK108, SQK-LSK208)
following their protocol. FFPE DNA repair was not carried
out. DNA ends were prepared using NEBNext Ultra I
End Repair/dA-Tailing Module (New England Biolabs)
for extended incubation time (30 min - 20°C, 30 min -
65°C). Ligation of sequencing adapters was performed
using Blunt/TA Ligase Master Mix (New England
Biolabs). Libraries were sequenced using the MinlON
sequencer on either R9.4 or R9.5 flowcells for 48 h

whole-genome  sequencing

10

without local base-calling. Base-calling was carried out
by Metrichor or Albacore. Details of sequencing runs are
documented in Supplementary Table 3. FASTQ/FASTA
files were extracted from FASTS5 files using h5dump
(version 1.8.16) from HDF5 tools*. For the 2D protocol,
the FASTQ/FASTA was extracted from the template
strand instead of the combined strand if the
complementary strand failed in quality.

Nanopore read mapping and SV calling

For SV calling with NanoSV? (version 1.1.6), LAST
(version 938) was used to map reads to the reference
genome with default parameters using 24 threads. The
scoring parameters for LAST were generated from a
20,000 reads subsample using last-train. NanoSV was
run with the default configuration parameters using 24
threads and we input our own hg38 random BED file for
coverage depth calculations. We obtained the
confidence score for each breakend from their QUAL
value found in the output VCF file. We called SV with
Picky?® (version 0.2.a) using the BASH script they
provided with 24 threads. We used their recommended
LAST parameters for read mapping: “-C2 -K2 -r1 -q3 -
a2 -b1 -v -v”. Picky was run with default parameters as
in the BASH script. For SV calling with Sniffles'® (version
1.0.8), NGMLR (version 0.2.6) was used for read
mapping with default parameters and 24 threads.
Sniffles was run using 24 threads with the -s 2
parameter which allowed at least two reads as minimum
support for an SV to be reported. All SAM file sorting,
BAM conversion and BAM indexing were carried out by
SAMtools®. For calculating read mapping statistics,
BWA-0.7.15%" was used for read alignment with the
BWA-MEM parameter “-x ont2d” and statistics were
calculated using SAMTools®°.

lllumina whole-genome sequencing, mapping and
SV calling

Genomic DNA (1 pg) was randomly sheared to 350 bp
fragments with Covaris cracker (Covaris) followed by
sequencing library preparation using the Truseq Nano
DNA HT Library Prep kit (lllumina). Sequencing
libraries were sequenced paired-end 150 bp on the
HiSeq X Ten sequencing platform (lllumina) with the
HiSeq X Ten Reagent Kit v2.5 (lllumina) to a mean
depth of coverage of about 50x. Reads were mapped
to GRCh38 genome assembly using BWA-0.7.17°%" with
the default BWA-MEM parameters and 24 threads.
SAM files were processed to sorted and indexed BAM
files using SAMtools®. For SV calling with novoBreak?
(version 1.1.3rc), sorted and indexed BAM files were
input with default run parameters using 24 threads. A
dummy BAM file was simulated (GRCh38) to be used
as a matched normal control. The confidence score for
each breakend was obtained from the QUAL scores in
the output VCF file. For SV calling with Delly?® (version
0.7.8), duplicated reads in the BAM files were identified
by Picard MarkDuplicates®? before running Delly with
the provided hg38 exclude file and its default
parameters.
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SV experimental validation

Polymerase chain reaction (PCR) was carried out to
amplify SV-containing regions in the genomes of each
sample. We used two different PCR master mixes.
REDiant 2X PCR Master Mix (Axil Scientific) was used
for conventional PCR amplification, whereas LongAmp
Taq 2X Master Mix (New England Biolabs) was used
for longer (>1.5 kbp) or AT-rich PCR products. DMSO
was added to a final concentration of 3% to increase
the success rate of GC-rich product amplification.
Primer sequences were designed using PrimerQuest
Tool by Integrated DNA Technologies and shown in
Supplementary Table 9. Forward and reverse primers
were added to a final concentration of 0.4 yM each. 2 -
5 ng of genomic DNA was used as the template in each
25 pl PCR reaction. Standard three-step PCR settings
were used for most PCR reactions on a thermal cycler.
Touchdown PCR conditions may be implemented for
some reactions to reduce unspecific products. PCR
products were separated on 1% agarose TBE ethidium
bromide gel by gel electrophoresis and DNA bands
were visualized by UV light. DNA fragments were
excised and extracted using a cotton wool gel filtration
protocol as described in Sun et al. 2012 or QlAquick
Gel Extraction Kit (Qiagen). DNA was subsequently
purified using Agencourt AMPure XP beads (Beckman
Coulter) following their protocol for PCR purification.
Primary or nested PCR product sequences were
validated by Sanger sequencing.

CPU time and maximum memory consumption
assessment

GNU Time (version 1.7) was used to assess the CPU
time and maximum memory consumption of each
tool. We assessed each tool by executing the
following command: ‘/usr/bin/time —verbose -
output=output.txt sh -c “Tool command™, and the
results are stored in the output.txt file. The CPU time
is calculated by combining the user and system time,
and the maximum resident set size is taken as the
maximum memory consumption.

Code availability

NanoVar is an open-source free software available at
GitHub (https://github.com/benoukraflab/NanoVar),
licensed under the GNU Public License.
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