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Abstract 
Despite the increasing relevance of structural variants (SV) in the development of many human 
diseases, progress in novel pathological SV discovery remains impeded, partly due to the challenges 
of accurate and routine SV characterization in patients. The recent advent of third-generation 
sequencing (3GS) technologies brings promise for better characterization of genomic aberrations by 
virtue of having longer reads. However, the applications of 3GS are restricted by their high sequencing 
error rates and low sequencing throughput. To overcome these limitations, we present NanoVar, an 
accurate, rapid and low-depth (4X) 3GS SV caller utilizing long-reads generated by Oxford Nanopore 
Technologies. NanoVar employs split-reads and hard-clipped reads for SV detection and utilizes a 
neural network classifier for true SV enrichment. In simulated data, NanoVar demonstrated the highest 
SV detection accuracy (F1 score = 0.91) amongst other long-read SV callers using 12 gigabases (4X) of 
sequencing data. In patient samples, besides the detection of genomic aberrations, NanoVar also 
uncovered many normal alternative sequences or alleles which were present in healthy individuals. The 
low sequencing depth requirements of NanoVar enable the use of Nanopore sequencing for accurate 
SV characterization at a lower sequencing cost, an approach compatible with clinical studies and large-
scale SV-association research. 
________________________________________________________________________________________ 
 
 
Introduction 
Structural variations are implicated in the development 
of many human diseases1,2 and account for most of 
the genetic variation in the human population3,4. 
Structural variants (SVs), defined as genomic 
alterations greater than 50 bp5, can functionally affect 
cellular physiology by forming genetic lesions which 
may lead to gene dysregulation or novel gene-fusions, 
driving the development of diseases such as cancer6,7, 
Mendelian disorders8,9, and complex diseases10. SVs 
can exist as different classes including deletion, 
duplication, insertion, inversion and translocation. 
Over the years, disease-associated SVs were 
indicated as biomarkers for diagnosis9,11, prognosis12, 
and therapy guidance for patients13, which could be 
screened through sequencing-based and non-
sequencing-based methods in clinics. As the clinical 
impacts of SVs continue to unveil, there is a clear need 
for accurate, rapid and inexpensive workflows for 
routine SV profiling in patients to expedite biomarker 
discovery and broaden clinical investigations7. 

There are currently two main standards of 
sequencing-based methods for comprehensive SV 
detection: long-read or third-generation sequencing 
(3GS) and short-read or second-generation 
sequencing (2GS). Although 3GS technologies were 
made accessible to a large audience, it has not yet 
supplanted 2GS technologies due to its higher 
sequencing error rate and lower throughput14. While 
3GS is currently mainly restricted to the study of small 
genomes15 or targeted sequencing16, recent studies 
have reported mammalian whole-genome sequencing 
(WGS)17,18 but at a higher sequencing cost per 
megabase as compared to the older technologies. In the 
domain of SV discovery, many groups have reported 
that 3GS approaches provided higher SV detection 
sensitivity and resolution than 2GS, despite their higher 
sequencing error rate9,11,19. This is mostly due to the 
inadequacy of short reads (50-200 bp) to elucidate large 
genomic variations also involving novel sequence 
insertions or repetitive elements, which may give rise to 
high false discovery rates5,20. On the other hand, longer 
read lengths (>1 kb) reduce mapping ambiguity, resolve 
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repetitive sequences21 and complex SVs8, and discover 
a much larger extent of SVs than short-reads17,18. 
Despite better SV detection capabilities, the low 
throughput and high sequencing cost per megabase of 
3GS obstruct its feasibility to be used in routine SV 
interrogation in patients.  
To overcome these issues, we developed a new SV 
caller tool, NanoVar, which utilizes low-depth Oxford 
Nanopore Technologies (ONT) WGS data for accurate 
SV characterization in patients. NanoVar adopts a 
neural-network-based algorithm for high-confident SV 
detection and SV zygosity estimation for all SV classes. 
It is optimized to work with shallow long-read WGS data 
at a minimum sequencing depth of 4X or 12 gigabases 
(Gb) in total bases, which can be achieved with one to 
five ONT MinION sequencing runs, depending on the 
flowcell chemistry, library preparation kit, and sample 
quality. In this manuscript, we evaluated NanoVar’s SV 
detection precision and recall amongst other tools using 
simulation datasets. When applied to patient data, we 
demonstrated the feasibility and speed of implementing 
the NanoVar workflow for SV discovery in low depth 
3GS clinical samples. 

 
Results 
The NanoVar workflow.  
The NanoVar workflow is a series of processes that 
utilizes 3GS long reads to discover and characterize SVs 
in DNA samples. The sequencing of the genome of 
interest is carried out by ONT MinION to produce long-
reads reported in FASTQ/FASTA formats (Fig. 1a). The 
sequencing output of several sequencing runs can be 
combined to achieve enough depth of coverage for SV 
discovery. Based on our initial tests performed in 
simulated dataset (cf. hereafter), we recommend having 
at least 12 Gb of sequencing data (covering 
approximately 4X of the human genome), which can be 
achieved through one to five MinION runs depending on 
the flowcell chemistry (R9.4, R9.5), library preparation kit 
(1D, 1D2, 2D), and DNA sample quality (purity, quantity 
and fragment length). The R9.4 flowcell chemistry with a 
1D sequencing library using high purity DNA with a mean 
fragment length of 8 kb provides the highest throughput 
per MinION flowcell (above 12 Gb). The combined 
FASTQ/FASTA file is used as input into the NanoVar tool 
for SV processing. NanoVar begins by mapping the long 
reads against a reference genome using HS-BLASTN22 
to obtain the alignment profile of each read (Fig. 1b). 
Reads with incomplete alignments (containing divergent 
sequence/gap) are selected and evaluated through an 
SV characterization algorithm (Supplementary Fig. 1) to 
characterize for the possible SV classes. NanoVar can 
distinguish six classes of SV: deletion (DEL), inversions 
(INV), tandem duplication (DUP), insertion (INS, novel 
sequence insertion/insertion of sequences absent from 
reference genome), genomic insertion (insertion of 
sequences found elsewhere in the reference genome) 
and translocation. Due to the close resemblance in 
altered sequences between a genomic insertion and a 
translocation, they are collectively labeled as 

“breakends” (BND). After all reads are classified, 
NanoVar calculates the read-depth coverages for all the 
SV breakend sites, separating the number of breakend-
supporting reads and breakend-opposing reads. Lastly, 
the read-depth coverage of each SV, together with other 
SV characteristics, are used as features for a simulation-
trained neural network classifier to determine a 
confidence score for each SV. This confidence score is 
used to rank the SVs by confidence and reduce false 
positives in the final output. The filtered list of SVs is 
recorded in a standard Variant Calling Format (VCF) file 
and an HTML report. The HTML report provides an 
overview of the SV analysis and an SV output table 
containing the information of each SV which can be 
filtered and downloaded in MS Excel or CSV formats. 
The figures presented in the report also include an SV 
class distribution chart and read length distribution of the 
sequencing reads which serves to QC for the input (Fig. 
1c). NanoVar also assigns a breakend read ratio value 
to each SV to estimate their SV zygosity, where a ratio 
of 1.0 refers to a homozygous estimation and 0.5 refers 
to a heterozygous estimation. 
 
Benchmarking NanoVar using simulations. 
To evaluate NanoVar’s performance among other 
existing SV callers, we utilized three simulated datasets 
(doi:10.5281/zenodo.2599376). Each dataset contains 
about 1,150 randomly located SVs of different classes 
with sizes ranging from 25 bp to 100,000 bp 
(Supplementary Fig. 2a). Sequencing reads of both long-
read and short-read sequencing were simulated to a 
sequencing depth of 4X and 50X respectively and were 
used as input for the workflows of each tool. Sniffles19, 
Picky23 and NanoSV24 are 3GS long-read SV callers 
while novoBreak25 and Delly26 are 2GS short-read SV 
callers. Taking the ground truth SVs in each simulation 
dataset as a reference, the precision and recall exhibited 
by each tool could be calculated judging from the 
genomic location of each SV, ignoring SV class 
annotation accuracy (Supplementary Table 1). Among 
long-read SV callers, NanoVar outperformed the rest in 
precision and recall, achieving the highest average F1 
score of 0.91 for all three simulations (Fig. 2a). At the 
confidence score threshold of 1.4, NanoVar detected 
85% of the ground truth with a high precision of 0.97, 
while the other long-read SV callers had slightly lower 
sensitivities (Sniffles: 0.81, NanoSV: 0.76, Picky: 0.81) 
and substantially lower precisions (Sniffles: 0.70, 
NanoSV: 0.21, Picky: 0.002), due to the reporting of 
more false positive SVs. Short-read SV callers generally 
exhibited higher precisions (Delly: 0.96, novoBreak:  
0.99) and moderately lower recall (Delly: 0.78, 
novoBreak: 0.66) than long-read SV callers. To 
investigate the sensitivity of each tool in detecting SVs of 
different sizes, we examined the recall of each SV size 
and discovered that SVs with sizes ranging from 25 bp 
to 50 bp were inadequately detected by NanoVar and all  
other tools except Picky (Fig. 2b). After omitting these 
SVs from the datasets, we saw a significant improvement 
in the F1 scores of all tools except Picky, with an 
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increased in NanoVar’s recall from 0.85 to 0.96 
(Supplementary Fig. 3a). To investigate NanoVar’s 
capability to handle datasets of different sequencing 
depth coverages, we tested NanoVar on simulated 
datasets with 1X to 40X depth of coverages generated 
from simulation 1 (Supplementary Fig. 3b). At low 
coverages (1X and 2X), NanoVar performed 
inadequately with F1 scores between 0.70 and 0.90. With 
coverage of 4X, NanoVar was able to achieve an F1 

score close to its maximum, which is similar for 
coverages higher than 4X (8X, 16X, 32X, 40X). These 
results imply that 4X is the minimal coverage required for 
optimal NanoVar SV characterization and that increasing 
the coverage above 4X will not affect its performance. To 
evaluate the SV class characterization accuracy of each 
tool, we calculated the F1 scores for each SV class 
separately considering the SV class annotation accuracy 
of each tool in simulation 1 with 25 bp and 50 bp SVs 

Figure 1: The NanoVar Workflow. (a) About 2 µg of human genomic DNA is set aside for library preparation and Nanopore sequencing to generate 
3GS long sequencing reads. Long reads from all sequencing runs are combined into a single FASTQ/FASTA file (at least 12 gigabases) which is used as 
input into NanoVar. (b) NanoVar SV characterization process. (Left) Long reads are aligned to a reference genome using HS-BLASTN to identify anchor 
sequences (blue) and divergent sequences or gaps (red) within each read. Next, the alignment information is used to detect and characterize the 
different SV classes. (Right) For each characterized SV, read-depth coverage is calculated at their breakend(s) site for the number of breakend-
supporting and breakend-opposing reads. The breakend read-depth, together with other alignment information, are employed as features in a neural 
network model to infer a confidence score for each SV. (c) NanoVar outputs all characterized SVs in a VCF file and produces an HTML report for QC 
and results visualization. The following figures can be found in the HTML report. (Top-left) Histogram showing the length distribution QC of the input 
sequencing reads. (Top-middle) Donut chart showing the distribution of SV classes characterized in the dataset (after confidence score filtering). 
Breakends represent translocation or genomic insertion SV. (Top-right) Scatter plot displaying the confidence score and breakend read ratio (fraction 
of breakend-supporting reads at a breakend) of each SV, also showing the confidence score threshold parameter used for filtering (red line). (Bottom) 
Table showing the details of all characterized SVs, which can be sorted, filtered and extracted in CSV or MS Excel formats. 
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omitted (Fig. 2c, Supplementary Table 2). Short-read SV 
callers achieved high F1 scores (between 0.72 – 0.98) for 
all SV classes except INSs, of which none was detected 
for both tools. Conversely, long-read SV caller Sniffles 
was able to characterize all SV classes but with lower F1 
scores (between 0.51 – 0.86). NanoSV was able to 

characterize INSs but was inadequate in characterizing 
other SV classes, mainly due to them having incorrect 
SV class annotations. Picky performed relatively well in 
characterizing DUPs, INVs and BNDs, but had acutely 
low F1 scores for DELs and INSs due to the high number 
of false positives. Lastly, NanoVar was able to 

Figure 2: NanoVar performance benchmarking. (a) Precision and recall of SV detection by SV caller tools in simulation data (Three 
datasets with about 1150 SV each, sizes from 25 bp to 100k bp). The representation of curves and optimal confidence threshold score 
(labeled as t) are only depicted for tools which have confidence scoring for each breakend. The asterisk (*) on the NanoVar curve marks 
the confidence threshold score of t=2.6, which is the threshold used for higher stringency in patient data. (b) SV recall of varying SV 
sizes (in base pairs) detected by each tool in simulation data. Vertical red dotted line demarks SV of size 100 bp. (c) Radar charts 
showing the F1 scores for each SV class characterized by each tool for SV sizes 100 bp to 100k bp in simulation 1. DUP: tandem 
duplication, DEL: deletion, INS: insertion, BND: breakend, INV: inversion. 
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characterize all SV classes with higher F1 scores than 
the other 3GS SV callers (DUP: 0.96, DEL: 0.98, INS: 
0.62, BND: 0.90, INV: 0.90). In conclusion, NanoVar 
exhibits higher SV characterization recall and precision 
amongst other long-read SV callers at a sequencing 
coverage of 4X. 
 
Precise SV characterization in AML patients using 
NanoVar.  
We tested the NanoVar workflow on two Asian patients 
diagnosed with acute myeloid leukemia (AML) (Patient 1 
and Patient 2) to evaluate the workflow’s feasibility and 
SV characterization accuracy in low sequencing depth 
clinical samples. Genomic DNA extracted from bone 
marrow mononuclear cells of each patient was 
sequenced by Nanopore sequencing using two to five 
MinION flowcells, generating about 12.4 gigabases (Gb) 
and 12.3 Gb of sequencing data respectively 
(Supplementary Table 3). The sequencing reads were 
applied to NanoVar for read mapping and SV 
characterization. A total of 7030 SVs (1794 DUPs, 2296 
DELs, 2320 INSs, 493 BNDs, 127 INVs) were 
characterized in Patient 1, and 7761 SVs (1694 DUPs, 
3361 DELs, 2098 INSs, 493 BNDs, 115 INVs) in Patient 
2 (Supplementary Fig. 4). To evaluate NanoVar’s 
accuracy in these samples, we surveyed eight SVs from 
each patient for PCR validation. The SVs were selected 
according to their confidence score and breakend read 
ratio which estimates for SV zygosity. A single top 
confidence scoring SV was selected from each breakend 
read ratio interval of 0.1 from 0.4 to 0.9, while the top 
three highest confidence scoring SVs were selected for 
the interval of 0.9 to 1.0 (Fig. 3a). All the selected SVs 
are situated in autosomal chromosomes (Supplementary 
Table 4). Primer sequences were designed flanking the 
breakend location(s) of each SV according to the 
reference genome and their referenced amplicon lengths 
(in silico PCR length) are recorded in Figure 3b, along 
with their breakend read ratios and estimated SV sizes. 
PCR performed for each SV in their respective patient 
samples revealed that all 16 SVs were validated to be 
true based on their product size deviation (Fig. 3c lanes 
1 and 8, Supplementary Table 5a). Moreover, the PCR 
results were agreeable with the SV class, SV size, and 
SV zygosities estimated by NanoVar, based on the 
number of PCR products (one product for homozygous, 
two products for heterozygous). All amplified products 
were gel extracted and their sequence identity validated 
by Sanger sequencing (Supplementary data). Besides 
PCR validation, all 16 SVs were also found to be 
supported by mapped 2GS short-reads generated by 
Illumina WGS (Supplementary Fig 5). Figure 3d 
illustrates an example of how a deletion SV (SV 1-2), 
characterized by 3GS Nanopore long-reads, can be 
supported by 2GS Illumina short-reads and 1GS Sanger 
sequencing. The successful validation of SVs with 
varying breakend read ratios and varying confidence 
scores affirms NanoVar’s precision in SV 
characterization in clinical samples. 
 

NanoVar recalls SVs discovered by PCR. 
We went on to uncover shared SVs between Patient 1 
and Patient 2 amongst the selected SVs by testing the 
SVs reciprocally in each patient by PCR using the same 
primers and cycle conditions (Fig. 3c lanes 7 and 2). 
Patient 1 was discovered to possess all eight SVs that 
were validated in Patient 2, while Patient 2 possesses six 
of the eight SVs validated in Patient 1. In total, 14 out of 
16 validated SVs were discovered to be shared between 
Patient 1 and Patient 2, leaving SV 1-5 and 1-8 to be 
Patient 1 specific (Fig. 3c, Supplementary Table 5). Next, 
we investigated if NanoVar was sensitive enough to 
capture these shared-SVs in the respective patient. 
Among the eight shared-SVs in Patient 1 and six shared-
SVs in Patient 2, NanoVar was able to capture five 
shared-SVs of each, aggregating to 10 out of 14 shared-
SVs detected (Supplementary Table 5). We investigated 
the four undetected shared-SVs and found out that three 
of them (SVs 2-2, 2-3, 1-7) were in fact captured by 
NanoVar but did not pass the confidence score threshold 
of 2.6, possibly due to insufficient read depth coverage 
(3X to 5X) for heterozygous SV detection. The other 
undetected heterozygous shared-SV (SV 2-8) was not 
detected due to the absence of SV-associated reads at 
its locus. This SV locus was found to be under-
sequenced, covered only by two reads that likely 
originated from the wild-type allele in Patient 1. 
 
NanoVar characterizes polymorphic SVs. 
Upon assessing the presence of these SVs across more 
samples, we observed that most SVs appeared to be 
polymorphic. We tested the SVs in several samples 
consisting of normal hematopoietic stem cells (HSCs) 
from two non-AML Asian individuals (Normal A and 
Normal B), an epithelial colorectal carcinoma cell line 
(HCT116), and a Caucasian non-tumorigenic breast 
epithelial cell line (MCF10A). We found out that normal 
HSC samples do possessed many of the SVs (13 out of 
the 16 SVs) which existed in at least one allele in either 
one or both HSC samples, while SVs 1-5, 1-8, and 2-4 
were absent in both HSC samples (Fig. 3c lanes 3, 4, 9, 
10). Interestingly, these 13 shared-SVs were also 
present in both Patient 1 and Patient 2, suggesting that 
these SVs might be prevalently found in cells, 
irrespective of AML disease. On the contrary, SVs 
absent in the HSC samples (SVs 1-5 and 1-8) were 
exclusively found in Patient 1, except for SV 2-4, which 
was found in both patient samples. Out of these 13 
shared-SVs, 11 of them were also present in non-
hematopoietic cell lines such as HCT116 and MCF10A 
(Fig. 3c lanes 5, 6, 11, 12), leaving two SVs (SV 2-7, 2-
8) undetected in either cell lines. Taken together, the 
majority of the SVs (11 out of 16 SVs) were commonly 
found across the samples regardless of AML disease 
status, cell type, and ethnicity. Moreover, most SVs 
exhibited different zygosities among the samples (All 
SVs excluding SV 1-1, 1-2, 1-8, 2-5), which portrayed the 
polymorphic nature of these SVs. Within the scope of this 
study, we categorized the SVs into three groups based 
on their prevalence and zygosity variation across the 
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samples: (1) Rare sample-specific SVs (SV 1-8), (2) 
Common SVs with no zygosity variation (SV 1-1, 1-2, 2-
5), and (3) Common SVs with zygosity variation or 

polymorphic SVs (remaining SVs) which constituted 
most of the SVs characterized by NanoVar. 
 

Figure 3: Precise patients’ SV characterization by NanoVar (and SV zygosity prediction.) (a) Scatter plots showing the confidence 
score and breakend read ratio of each SV characterized in Patient 1 (top) and Patient 2 (bottom). SVs selected for validations are labeled 
on the plots by their SV id. The red horizontal line indicates the confidence score threshold used for filtering. (b) Table displaying the 
details of SVs selected for validation for Patient 1 and Patient 2. (c) Gel electrophoresis images of PCR products corresponding to each 
of the SVs in table (b), amplified from the genomic DNA of Patient 1 and 2, normal donors (Normal 1 and Normal 2) and cell lines (HCT116 
and MCF10A). Sample names in red (left image lane 1, right image lane 2) indicate the sample where the SV was initially detected. (d) 
Schematic illustrating a 409 bp deletion (SV 1-2) in the intronic region of the gene BPGM in Patient 1, supported by 3GS Nanopore reads 
(top), 2GS Illumina reads (middle) and 1GS Sanger sequencing chromatogram (bottom). Blue and red arrows represent the primer 
locations used for PCR amplification. For each Nanopore read, base substitutions and base insertions are represented by red and orange 
markers respectively. Base deletions are represented by gaps. All Nanopore reads have at least 90% alignment identity. Illumina paired-
end short reads are represented by pink (forward) and blue (reverse) small rectangles and the read coverages are displayed in grey above 
all the reads. The red dotted line on the sequencing chromatogram marks the precise breakpoint of the deletion at single nucleotide 
resolution. 
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The NanoVar workflow is time efficient. 
We compared the CPU time and maximum resident set 
size (memory) used by the workflows of each tool for SV 
characterization in Patient 1 to evaluate their processing 
speed and memory usage (Supplementary Table 6). 
Among 3GS SV callers, NanoVar stood out as the most 
time efficient tool by requiring about 10-fold lesser CPU 
hours than the rest to process 12 Gb of sequencing data 
using 24 threads. In real time, NanoVar took 194 minutes 
for the entire analysis of Patient 1 which is the fastest 
amongst all other tools. In exchange for its speed, 
NanoVar employs about 1.7-fold more memory than the 
rest, having a higher memory cap of 32 gigabytes. 
 
Discussion 
NanoVar is a novel SV characterization tool that excels 
in accuracy and speed while overcoming the low-depth 
and error-prone sequencing of 3GS WGS. We showed 
that NanoVar can achieve a high SV detection accuracy 
(Precision: 0.97, Recall, 0.85) when using only 4X 
coverage datasets in simulations, which was observed to 
outperform existing 3GS SV callers. However, like most 
SV callers, NanoVar fails to resolve many small SVs or 
indels shorter than 100 bp in length and would require 
future optimizations in algorithm and technological 
improvements in ONT basecalling error-rate. NanoVar’s 
performance in the simulation was also reflected in low-
depth patient data where we successfully validated a 
small subset of SVs discovered by NanoVar (16/16) and 
showed that its estimations on SV class, size and 
zygosity were reliable. 
One major advantage of 3GS over 2GS SV calling 
approaches is the amount of raw sequencing data 
consumed. In our study, we showed that 12 Gb of 3GS 
data (4X coverage) produced a more comprehensive SV 
detection outcome than 160 Gb of 2GS data (50X 
coverage) when comparing analysis done by NanoVar 
and 2GS SV callers (Fig. 2c). The considerable reduction 
in sequencing data requirements could speed up SV 
analysis and reduce computational resources. 3GS 
approaches may be used in large-scale SV-association 
studies or routine sequencing-based clinical 
investigations to analyze and store massive amounts of 
sequencing FASTQ/FASTA files more efficiently5,7. 
Despite NanoVar’s high accuracy, many of its 
characterized SVs might be SV polymorphisms 
commonly found in the human population. We observed 
that most of the validated SVs found in our AML patients 
also existed with mixed zygosities in normal HSC 
samples and other cell lines, suggesting that they might 
be benign polymorphic SVs. As SV polymorphisms are 
widespread in the human genome27–32, it is important to 
annotate these SVs by cross-referencing to collective 
polymorphic-SV databases to facilitate the discovery of 
disease-associated SVs. Alternatively, the GRCH38 
human reference genome could be improved to 
encompass polymorphic sequence variations where 
polymorphic SVs could be readily identified33. The use of 
low-depth Nanopore sequencing for accurate and 
routine SV characterization could supply a steady flow of 

knowledge to the construction of such cohort reference 
genome and inclusive SV databases. 
 
Material and methods 
The NanoVar pipeline 
NanoVar takes as input a WGS long-read 
FASTQ/FASTA file (at least 12 gigabases) and a 
reference genome and outputs two variant calling 
format (VCF) files (Total SV and filtered SV) and an 
HTML summary report. The NanoVar workflow 
comprises of three main stages: 1) long-read sequence 
mapping, 2) SV characterization with read-depth 
calculation and 3) artificial neural network (ANN) 
inferencing from a simulation-trained model.  
 
Stage 1: Long-read sequence mapping 
The first stage aligns long-read sequences to a user-
provided reference genome using the tool HS-
BLASTN22 (version 0.0.5+). HS-BLASTN is an 
accelerated sequence alignment search tool that uses 
the MegaBLAST algorithm. We selected HS-BLASTN 
over other long-read aligner tools because of its faster 
computational speed and accurate read alignment, 
based on our evaluation. Before running HS-BLASTN, 
tools from NCBI-BLAST+ are used to build a blast 
database (makeblastdb34, version 2.6.0+) and mask 
highly repetitive sequences (windowmasker34,35, version 
2.6.0+). HS-BLASTN is run with the following 
parameters: “-reward 2 -penalty -3 -gapopen 0 -
gapextend 4 -max_target_seqs 3 -outfmt 6”. The output 
is a BLAST-like tabular file containing alignment 
information of each read. Due to overlapping alignments 
within some reads, a Python script is used to trim the 
overlapped regions or select the best alignment based 
on alignment bitscore.  
 
Stage 2: SV characterization and read-depth calculation 
The alignment anchor sequences and divergent 
sequences/gaps of each read are analyzed by Python 
scripts to detect reads containing novel adjacencies 
(reads possessing split-read or hard-clipped alignments) 
and subsequently characterizes their SV class. A novel 
adjacency is defined as two adjacent genomic 
coordinates in a sample genome that are not found to be 
adjacent in the reference genome. A novel adjacency is 
represented as two genomic coordinates in the reference 
genome, each known as a breakend. We use an 
algorithm of conditional control statements for novel 
adjacency detection and SV characterization, described 
in Supplementary Figure 1. Any read that is found to 
possess a novel adjacency is labeled as an SV-
associated read, otherwise, labeled as a normal read. 
Next, the read-depth was calculated at each breakend 
for SV-associated reads and normal reads separately. 
This gives us the number of breakend-supporting reads 
𝐵  and breakend-opposing reads 𝑂  at each breakend. 
Due to repetitive sequences in the genome, artificial 
breakends with unusually high 𝐵  may be falsely 
detected. In order to filter-out these untrue breakends, 
we define the upper limit of 𝐵 as 𝑈, where breakends 
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with 𝐵  > 𝑈  are considered outliers and removed. 𝑈  is 
calculated by 

𝑈 = 4 ·
𝑘
𝑛
)|𝑥, −𝑚(𝑋)|
2

,34

+ 	𝑚(𝑋) 

where 𝑛 is the total number of genomic locations chosen, 
𝑥,  is the read-depth at genomic location 𝑖, 𝑚(𝑋) is the 
median read-depth of all chosen genomic locations, and 
𝑘 is the constant scale factor 1.4826. The value of 𝑈 is 
defined as four times the mean absolute deviation 
around the median (MAD) from the median in the 
distribution of a breakend read-depth assessment. This 
outlier detection method is an adaptation from Leys et al. 
where they proposed that the median absolute deviation 
is a more robust measure of dispersion than the standard 
deviation36. In our method, we use the MAD instead of 
the median absolution deviation to reduce fluctuations 
caused by discontinuous median integers. The breakend 
read-depth assessment is a sampling procedure to 
approximate the read-depth of SV throughout the 
genome. It is performed by randomly choosing n number 
of genomic locations and calculating the number of reads 
covering each location after adjusting for 𝐺 . This 
produces a distribution similar to a gamma distribution 
and the median 𝑚(𝑋)  and MAD can be computed. 
According to our simulations, we empirically defined 𝑈, 
the deviation of more than four times the MAD from the 
median 𝑚(𝑋), to be an outlier threshold, in the context of 
the human genome. Hence, any breakend which has 𝐵 
greater than 𝑈  will be omitted and the remaining 
breakends will proceed to the next stage of ANN 
inferencing. 
 
Stage 3: ANN inference 
A trained ANN model is employed to improve SV 
characterization accuracy by evaluating read alignment 
characteristics and breakend read-depth information. 
For each novel adjacency, 23 scaled features are 
inferred by the ANN model which produces an inference 
value 𝑃  ranging from 0 to 1. Next, 𝑃  is exponentially 
scaled inversely according to the value of 𝐵 and the final 
predicted score 𝑆 is expressed logarithmically related to 
its error rate. S is described as 
 

𝑆 = −10 log4@A1 − (tanh(0.4𝐵) · 𝑃)G 
 
where 𝐵 is the number of breakend-supporting reads at 
a novel adjacency and 𝑃 is the ANN inference value of 
a novel adjacency. The hyperbolic tangent function is 
used to decrease the value of 𝑃 non-linearly when 𝐵 is 
low (𝐵 = [1, 2, 3]), as a low 𝐵 confers low confidence. 
The value of 𝑆 is proportional to the confidence level of 
a novel adjacency and is used to filter confident novel 
adjacencies from the total VCF output file to create the 
filtered VCF output file. A HTML summary report is also 
generated at the end of each run. 
 
 
 
 

Artificial neural network model and training 
The features used by the ANN are described below 
(number in parentheses represent the number of 
neurons): 
• Aligned/unaligned percentages flanking the novel 

adjacency (5) 
• Alignment E-values flanking the novel adjacency (2) 
• Relative alignment bit scores flanking the novel 

adjacency (2) 
• Alignment identities flanking the novel adjacency (2) 
• The fraction of mismatches in alignments flanking the 

novel adjacency (2) 
• A fraction of gaps in alignments flanking the novel 

adjacency (2) 
• SV complexity - number of coexisting SV found at the 

novel adjacency (1) 
• Total number of alignments found on read (1) 
• Total number of SV that seemed to be captured by 

read (1) 
• Number of different chromosomes the read aligns (1) 
• The fraction of alignments less than 5% of read 

length (1) 
• Number of breakend-supporting reads B (1) 
• A fraction of breakend-supporting reads B over total 

read depth B+O (1) 
• If SV is an insertion/deletion, the size of the 

inserted/deleted segment (1) 
 
The value of each feature is scaled to the range of [0, 1] 
by min-max normalization. The Python library Keras37 
was used to build and infer the ANN model. The 
backend engine used with Keras is TensorFlow38. The 
neural network model is a feed-forward network 
consisting of a 23 neurons input layer, two hidden layers 
of 12 and 5 neurons sequentially, and a single neuron 
output layer. The Rectified Linear Unit (ReLU) activation 
function is used for the two hidden layers, while the 
Sigmoid activation function is used for the output layer. 
Dropout regularizations were implemented after each 
hidden layer with probabilities of 0.4 and 0.3 
sequentially. If 𝑦N,, denotes the value of the i-th neuron 
in the k-layer, we have that 

𝑦N,, = 𝐹	 P)𝑊R,,N	𝑦NS4,R
R

T 

 
where F(x) = max(x,0) denotes the ReLU non-
linearity and 𝑊R,,N is the neural weight between the j-
th neuron of the (k-1)-th layer and the i-th neuron of 
the k-th layer.  
In silico 3GS reads from a simulated genome 
consisting of 61,316 mixed zygosity SV was used to 
train a binary classifier ANN model through supervised 
learning. The training dataset consist of 933,124 true 
and 62,902 false examples of novel adjacencies. 
Another simulated dataset with a different SV profile 
was used as the test dataset. Binary cross entropy was 
used as the loss function and stochastic gradient 
descent (SGD) was used as the optimizer algorithm 
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with their default parameters. The classification 
accuracy is collected and reported as the metric to 
assess the performance of the model. One hundred 
epochs were performed for the model training, with 
each epoch having 12,000 true and 12,000 false 
randomly selected examples and a batch size of 400 
examples per iteration.  
 
SV genome simulation for test datasets 
The template genome used for genome simulation 
consisted of the main nuclear chromosomes 
(Chromosome 1 to Y) in the GRCh38 human reference 
genome assembly with their gap regions (N regions) 
replaced by tandemly repeated sequences. Telomeric 
(TTAGGG)n39 sequence replaced the gap regions at 
chromosome ends, and consensus centromeric alpha 
DNA40,41 replaced the centromeric and remaining gap 
regions. The removal of gap regions will allow 
uniformity in read simulation and a proper simulation of 
a real sequencing library. The R Bioconductor package, 
RSVSim42, was used to introduce novel adjacencies 
systematically in a reference genome to create different 
classes of SV. Five classes of SV were introduced into 
the template genome at varying amounts: 650 
deletions, 200 inversions, 100 tandem duplications with 
single duplication each, 150 human genomic sequence 
insertions and 50 viral sequence insertions (serving as 
novel sequence insertions). Viral sequences used for 
viral insertions were part of 54 viral genomes taken 
from GenBank43 (Supplementary Table 7). The virus 
selection was based on their ability to integrate into the 
host genome. The amounts for each SV were based 
approximately on SV occurrence statistics of clinical 
cancer genomes by Hillmer et al.44. To simulate SV 
sequence variability, each novel adjacency has a 20 bp 
flanking region where bases had a 25% chance of 
single nucleotide polymorphism (SNP) and a 50% 
chance of introducing indels with a maximum indel 
length of 5 bp. The location of each SV was randomly 
generated throughout the whole genome by RSVSim. 
The sizes and quantity for each class of SV are 
recorded in Supplementary Figure 2a. A total of three 
genomes were simulated and their FASTA files can be 
downloaded from doi:10.5281/zenodo.2599376 or 
http://dx.doi.org/10.5281/zenodo.2599376. 
 
Mix zygosity SV genome simulation for the training 
dataset 
The mix zygosity SV genome was created by three 
simulated genomes with varying number of SV from the 
same SV profile: Genome A has 61,316 SV (100%), 
Genome B has 51,099 SV (83%), and Genome C has 
30,659 SV (50%). The SVs in Genome C are a subset 
of SVs in Genome B. Different number of in silico 3GS 
reads were generated for each genome: 5 million reads 
from Genome A, 5 million reads from Genome B, and 
10 million reads from Genome C. The combination of all 
the reads produced the simulation of homozygous SV 
(50%), heterozygous SV (33%), and low-confidence SV 
(17%). A homozygous SV only has breakend-

supporting reads at their breakends while a 
heterozygous SV has both breakend-supporting and 
breakend-opposing reads at similar proportions. A low-
confidence SV simulates a false SV event and has a 
majority of its breakend reads being breakend-opposing. 
 
In silico Third-Generation sequencing (3GS) 
Nanosim45 was used to generate in silico 3GS reads 
from the simulated SV genomes. Read features, such 
as read length, SNP, and indel profile, were modeled 
according to that of real ONT MinION reads from Patient 
1 and Patient 2, which are provided as input into 
Nanosim. Two million reads were generated for each SV 
genome. Comparison for read length and indel 
proportion between real reads and in silico generated 
reads are shown in Supplementary Figures 2b and 2c. 
Statistics of reads and genome mapping can be found 
in Supplementary Table 8. 
 
In silico Second-Generation sequencing (2GS) 
DWGSIM46 was used to generate in silico 2GS reads 
from the three simulated SV genomes. The generation 
of 2GS reads followed these settings: Illumina platform, 
307 bp average insert size, 59 bp standard deviation of 
insert size, 150 bp read length, paired-end reads, 50X 
mean coverage across all regions, uniformly increasing 
per base error rate from 0.1% at start of read to 1% at 
end of read, and contains no mutations, indels, or 
random DNA reads. The insert size, read length and 
coverage follow that of real whole genome 2GS data of 
Patient 1 and Patient 2. 
Statistics of reads and genome mapping can be found 
in Supplementary Table 8. 
 
Performance evaluation in simulation datasets 
For each simulation dataset, a filtered list of ground 
truth SV genomic coordinates (BED file with ± 400 bp 
window about each breakend coordinate) was used to 
evaluate SV detection precision and recall for each tool. 
The original ground truth SV list was filtered to remove 
SVs that were not covered by any long-read or SVs 
which fell into genomic gap regions due to random 
generation. For the output SVs from each tool, we 
removed any SV entry which corresponds to 
translocation/insertion SVs at genome gap junctions 
indirectly introduced during N region replacement for 
genome simulation. The intersection between ground 
truth and query SV coordinates were carried out by 
BEDTools47. Precision and recall were computed by 
Scikit-learn48 and F1 score was calculated by the 
equation:  

𝐹1	𝑠𝑐𝑜𝑟𝑒 = Z([\]^__×ab\],c,d2)
([\]^__eab\],c,d2)

. 
 
DNA sample source 
DNA samples used in this study were acquired from 
four individuals: two patients with AML (Patient 1, 
Patient 2) and two healthy donors (Normal A, Normal 
B). Informed consent from all subjects was obtained for 
genetic profiling such as whole genomic DNA 
sequencing. Patient 1 and Patient 2 had the M5 AML 
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classification (Acute monocytic leukemia) with FLT-3 
Asp835 mutations, but the absence of recurrent SV 
based on karyotyping. Patient 1 also has a mutation in 
the NPM1 gene. All subjects are of Asian ethnicity. 
 
Cell lines 
The HCT116 and MCF10A cell lines were obtained 
from Horizon Discovery (HD PAR-007) and ATCC 
(ATCC CRL-10317TM) respectively and grown in their 
respective recommended growth culture conditions. 
 
Genomic DNA extraction 
Mononuclear cells (MNCs) of all individuals were isolated 
from bone marrow. Bone marrow from the pelvic bone 
was used for Patient 1 and 2, and bone marrow from the 
femur was used for Normal A and B. For Patient 1 and 2, 
bone marrow was diluted in phosphate-buffered saline 
(PBS) containing 2% HyClone™ Fetal Bovine Serum 
(FBS) (GE Healthcare Life Sciences) and 2 mM EDTA. 
MNCs were then isolated by Ficoll-Paque layering using 
Ficoll-Paque PLUS (GE Healthcare Life Sciences) 
following the manufacturer’s protocol. For Normal A and 
B, additional processing steps were carried out due to 
the presence of liquid fats. Femoral marrow was diluted 
in PBS containing 10% FBS, 3 mM EDTA and 0.4% 
sodium citrate. Cells were strained using a 100 µm cell 
strainer and pelleted by centrifugation at 300 g for 10 min 
at room temperature (RT) without acceleration and 
brakes. Red blood cells were lysed in 40 ml ACK lysis 
buffer (0.15 M NH4Cl, 1 mM KHCO3, 0.1 mM EDTA-Na2, 
pH adjusted to 7.2 - 7.4) at RT for 5 min. Cells were 
pelleted by centrifugation again with the same settings. 
The cell pellet was resuspended in PBS containing 2% 
FBS and 2 mM EDTA, and subsequently MNC isolation 
by Ficoll-Paque layering following the manufacturer’s 
protocol. MNCs of Normal A and B were enriched for 
hematopoietic stem cells (HSCs) by CD34 cell surface 
marker selection using the CD34 MicroBead kit, human 
(Miltenyi Biotec) according to manufacturer’s 
instructions. The buffer used for CD34+ cell selection is 
PBS containing 2% FBS and 2 mM EDTA. Genomic DNA 
of MNCs and CD34+ cells were extracted using AllPrep 
DNA/RNA/miRNA universal kit (Qiagen) and genomic 
DNA of HCT116 and MCF10A cells were extracted using 
conNorventional phenol-chloroform extraction method.  
 
Nanopore whole-genome sequencing and 
basecalling 
High molecular weight genomic DNA (1-1.5 µg) was 
sheared to 6-10 kb fragments by the G-tube (Covaris). 
Library preparation was performed using ONT 1D or 2D 
Ligation Sequencing kits (SQK-LSK108, SQK-LSK208) 
following their protocol. FFPE DNA repair was not carried 
out. DNA ends were prepared using NEBNext Ultra II 
End Repair/dA-Tailing Module (New England Biolabs) 
for extended incubation time (30 min - 20°C, 30 min - 
65°C). Ligation of sequencing adapters was performed 
using Blunt/TA Ligase Master Mix (New England 
Biolabs). Libraries were sequenced using the MinION 
sequencer on either R9.4 or R9.5 flowcells for 48 h 

without local base-calling. Base-calling was carried out 
by Metrichor or Albacore. Details of sequencing runs are 
documented in Supplementary Table 3. FASTQ/FASTA 
files were extracted from FAST5 files using h5dump 
(version 1.8.16) from HDF5 tools49. For the 2D protocol, 
the FASTQ/FASTA was extracted from the template 
strand instead of the combined strand if the 
complementary strand failed in quality. 
 
Nanopore read mapping and SV calling 
For SV calling with NanoSV24 (version 1.1.6), LAST 
(version 938) was used to map reads to the reference 
genome with default parameters using 24 threads. The 
scoring parameters for LAST were generated from a 
20,000 reads subsample using last-train. NanoSV was 
run with the default configuration parameters using 24 
threads and we input our own hg38 random BED file for 
coverage depth calculations. We obtained the 
confidence score for each breakend from their QUAL 
value found in the output VCF file. We called SV with 
Picky23 (version 0.2.a) using the BASH script they 
provided with 24 threads. We used their recommended 
LAST parameters for read mapping: “-C2 -K2 -r1 -q3 -
a2 -b1 -v -v”. Picky was run with default parameters as 
in the BASH script. For SV calling with Sniffles19 (version 
1.0.8), NGMLR (version 0.2.6) was used for read 
mapping with default parameters and 24 threads. 
Sniffles was run using 24 threads with the -s 2 
parameter which allowed at least two reads as minimum 
support for an SV to be reported. All SAM file sorting, 
BAM conversion and BAM indexing were carried out by 
SAMtools50. For calculating read mapping statistics, 
BWA-0.7.1551 was used for read alignment with the 
BWA-MEM parameter “-x ont2d” and statistics were 
calculated using SAMTools50. 
 
Illumina whole-genome sequencing, mapping and 
SV calling 
Genomic DNA (1 µg) was randomly sheared to 350 bp 
fragments with Covaris cracker (Covaris) followed by 
sequencing library preparation using the Truseq Nano 
DNA HT Library Prep kit (Illumina). Sequencing 
libraries were sequenced paired-end 150 bp on the 
HiSeq X Ten sequencing platform (Illumina) with the 
HiSeq X Ten Reagent Kit v2.5 (Illumina) to a mean 
depth of coverage of about 50x. Reads were mapped 
to GRCh38 genome assembly using BWA-0.7.1751 with 
the default BWA-MEM parameters and 24 threads. 
SAM files were processed to sorted and indexed BAM 
files using SAMtools50. For SV calling with novoBreak25 
(version 1.1.3rc), sorted and indexed BAM files were 
input with default run parameters using 24 threads. A 
dummy BAM file was simulated (GRCh38) to be used 
as a matched normal control. The confidence score for 
each breakend was obtained from the QUAL scores in 
the output VCF file. For SV calling with Delly26 (version 
0.7.8), duplicated reads in the BAM files were identified 
by Picard MarkDuplicates52 before running Delly with 
the provided hg38 exclude file and its default 
parameters. 
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SV experimental validation 
Polymerase chain reaction (PCR) was carried out to 
amplify SV-containing regions in the genomes of each 
sample. We used two different PCR master mixes. 
REDiant 2X PCR Master Mix (Axil Scientific) was used 
for conventional PCR amplification, whereas LongAmp 
Taq 2X Master Mix (New England Biolabs) was used 
for longer (>1.5 kbp) or AT-rich PCR products. DMSO 
was added to a final concentration of 3% to increase 
the success rate of GC-rich product amplification. 
Primer sequences were designed using PrimerQuest 
Tool by Integrated DNA Technologies and shown in 
Supplementary Table 9. Forward and reverse primers 
were added to a final concentration of 0.4 µM each. 2 - 
5 ng of genomic DNA was used as the template in each 
25 µl PCR reaction. Standard three-step PCR settings 
were used for most PCR reactions on a thermal cycler. 
Touchdown PCR conditions may be implemented for 
some reactions to reduce unspecific products. PCR 
products were separated on 1% agarose TBE ethidium 
bromide gel by gel electrophoresis and DNA bands 
were visualized by UV light. DNA fragments were 
excised and extracted using a cotton wool gel filtration 
protocol as described in Sun et al. 2012 or QIAquick 
Gel Extraction Kit (Qiagen). DNA was subsequently 
purified using Agencourt AMPure XP beads (Beckman 
Coulter) following their protocol for PCR purification. 
Primary or nested PCR product sequences were 
validated by Sanger sequencing. 
 
CPU time and maximum memory consumption 
assessment 
GNU Time (version 1.7) was used to assess the CPU 
time and maximum memory consumption of each 
tool. We assessed each tool by executing the 
following command: ‘/usr/bin/time –verbose –
output=output.txt sh -c “Tool command”’, and the 
results are stored in the output.txt file. The CPU time 
is calculated by combining the user and system time, 
and the maximum resident set size is taken as the 
maximum memory consumption. 
 
Code availability 
NanoVar is an open-source free software available at 
GitHub (https://github.com/benoukraflab/NanoVar), 
licensed under the GNU Public License. 
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