

1 **Title**

2 **Genome improvement and genetic map construction for *Aethionema arabicum*,**
3 **the first divergent branch in the Brassicaceae family**

4 **Authors**

5 Thu-Phuong Nguyen¹, Cornelia Mühlich², Setareh Mohammadin¹, Erik van den Bergh¹,
6 [‡], Adrian E. Platts³, Fabian B. Haas², Stefan A. Rensing^{2, *}, M. Eric Schranz^{1, *}

7 ¹ Biosystematics Group, Wageningen University, Droevedaalsesteeg 1, 6708 PB
8 Wageningen, The Netherlands

9 ² Faculty of Biology, Plant Cell Biology, University of Marburg, Karl-von-Frisch-Str. 8,
10 35043 Marburg, Germany

11 ³ Center for Genomics and Systems Biology, Department of Biology, New York
12 University, New York, USA

13 [‡] Current address: EMBL-EBI, Wellcome Genome Campus, Hinxton, CB10 1SD,
14 United Kingdom

15 ^{*} Corresponding authors

16 T-P.N.: phuong.nguyen@wur.nl

17 C.M.: cornelia.muehlich@biologie.uni-marburg.de

18 S.M.: setareh.mohammadin@wur.nl

19 E.vd.B.: evdbergh@ebi.ac.uk

20 A.E.P.: aplatts@nyu.edu

21 F.B.H: fabian.haas@biologie.uni-marburg.de

22 S.A.R.: stefan.rensing@biologie.uni-marburg.de

23 M.E.S: eric.schranz@wur.nl

24

25 **Abstract**

26 **Background**

27 The genus *Aethionema* is a sister-group to the core-group of the Brassicaceae family
28 that includes *Arabidopsis thaliana* and the Brassica crops. Thus, *Aethionema* is
29 phylogenetically well-placed for the investigation and understanding of genome and
30 trait evolution across the family. We aimed to improve the quality of the reference
31 genome draft version of the annual species *Aethionema arabicum*. Secondly, we
32 constructed the first *Ae. arabicum* genetic map. The improved reference genome and
33 genetic map enabled the development of each other.

34 **Results**

35 We started with the initially published genome (version 2.5). PacBio and MinION
36 sequencing together with genetic map v2.5 were incorporated to produce the new
37 reference genome v3.0. The improved genome contains 203 MB of sequence, with
38 approximately 94% of the assembly made up of called bases, assembled into 2,883
39 scaffolds. The N_{50} (10.3 MB) represents an 80-fold over the initial genome release.
40 We generated a Recombinant Inbred Line (RIL) population that was derived from two
41 ecotypes: Cyprus and Turkey (the reference genotype. Using a Genotyping by
42 Sequencing (GBS) approach, we generated a high-density genetic map with 749 (v2.5)
43 and then 632 SNPs (v3.0) was generated. The genetic map and reference genome
44 were integrated, thus greatly improving the scaffolding of the reference genome into
45 11 linkage groups.

46 **Conclusions**

47 We show that long-read sequencing data and genetics are complementary, resulting
48 in an improved genome assembly in *Ae. arabicum*. They will facilitate comparative

49 genetic mapping work for the Brassicaceae family and are also valuable resources to
50 investigate wide range of life history traits in *Aethionema*.

51 **Keywords**

52 *Aethionema arabicum*, Brassicaceae, genome improvement, genetic map, PacBio,
53 MinION, Genotyping by Sequencing.

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73 **Background**

74 The genus *Aethionema* belongs to the important plant family Brassicaceae. The
75 crucifers contain many species of interest, such as the *Brassica* crop plants (e.g. *B.*
76 *rapa*, *B. oleracea* and *B. napus*), ornamental plants (such as the genera *Aubrieta*,
77 *Iberis*, *Lunaria* and *Draba*) and research model plant species (including *Arabidopsis*
78 *thaliana*, *A. lyrata*, *Capsella rubella* and *Arabis alpina*). Phylogenetic studies have
79 established *Aethionema* as the sister-group of the core-group in the family [1]. Thus,
80 *Aethionema* holds an essential phylogenetic position for studies on genome and trait
81 evolution across the Brassicaceae family.

82 The monogeneric tribe *Aethionemeae* consists of 57 species and is distributed mainly
83 in the Irano-Turanian region, a hot spot for species radiation and speciation [2-4]. This
84 tribe displays various interesting morphological and ecological characteristics,
85 especially fruit and seed heteromorphism. Heteromorphism is defined as the
86 production of two or more distinct fruit or seed morphs on the same individual [5], which
87 includes morphological size, shape and color; physiological dormancy and germination
88 of fruits and seeds. *Aethionema arabicum* is one of the seven reported heteromorphic
89 species of *Aethionema* [6, 7]. *Aethionema arabicum* is a small diploid annual, with a
90 short life cycle starting from seed germination to the end of the vegetative development
91 in spring, followed by reproduction and the end of life cycle in summer [8]. Both annual
92 life history and heteromorphism probably evolved as adaptive responses to
93 unpredictable environments, especially dry arid habitats, indicating a wide range of
94 natural variation for ecologically adaptive traits in *Ae. arabicum*.

95 Owing to its unique phylogenetic position and interesting characteristics, *Ae. arabicum*
96 is an ideal sister-group model for research. Therefore, *Aethionema* genome and
97 genetic resources are desirable. The initially published *Ae. arabicum* draft genome

98 (v1.0) contains 59,101 scaffolds with an N50 of 115,195 bp while the genome was
99 predicted to be 320 Mbp in size with n=11 [9]. Here we first aimed to (i) improve the
100 quality of the reference genome and (ii) to construct the first *Ae. arabicum* genetic map.
101 A higher quality version of the genome assembled by the VEGI consortium was later
102 released as version 2.5, which is used as the starting point of our analyses.
103 High throughput sequencing using Pacific Biosciences (PacBio) and Oxford Nanopore
104 MinION (MinION) technology followed and resolved many uncalled gaps in the v2.5
105 genome and supported further super-scaffolding, which resulted in genome v3.0.
106 The genetic map was constructed using Genotyping by Sequencing (GBS) on a
107 Recombinant Inbred Line (RIL) population. The 216 RILs were derived from a cross
108 between Turkey (reference ecotype) and Cyprus ecotypes. The first version of genetic
109 map v2.5 was obtained based on genome v2.5 with 746 Single Nucleotide
110 Polymorphism (SNP) markers. The later genetic map v3.0 was built with 626 SNPs
111 generated based on genome v3.0.
112 Here we show that the long-read genome assembly and the genetic map of *Ae.*
113 *arabicum* supported the development of each other. They will serve as a substantial
114 resource for further research on *Aethionema* as well as the Brassicaceae family.
115
116
117
118
119

120 **Data description and Methods**

121 **Overview of the workflow**

122 An overview of the improvements of the genome of *Aethionema arabicum* and the
123 generation and improvement of its genetic map are depicted in Figure1. The genome
124 draft version 1.0 was first improved by Ray [10] and AllPathsLGs [11] and led to the
125 release of genome v2.5 (available on genomevolution.org). Genome v2.5 was used as
126 a basis for SNP calling after GBS of the RILs. This generated SNP markers used to
127 construct the genetic map v2.5. Scaffolds were ordered with AllMaps [12] based on the
128 maximum co-linearity to genome v2.5 and genetic map v2.5. This resulted in genome
129 vAM. Gap filling and super-scaffolding improvement for genome vAM was obtained by
130 PacBio sequencing leading to genome v2.6. PBjelly2 [13] run using the MinION reads
131 further improved genome v2.6 to v3.0. We revisited the genetic map v2.5 by recalling
132 SNPs according to genome v3.0 and constructed a genetic map v3.0 with the newly
133 called SNP markers. Below we describe the workflow in detail in the three following
134 sections: (i) the initial genome assembly, (ii) genetic map construction and (iii) genome
135 improvement.

136 **(i) The intial genome (v2.5): The starting point**

137 *Genome re-assembly using AllPathsLG*

138 The version 1.0 assembly generated by the Ray assembler [10] was fragmented *in*
139 *silico* into a set of artificial overlapping reads, combined with paired end and mate pair
140 data (described in [9]), and re-assembled using the AllPathsLG assembler [11]. Gap
141 closing was then performed using GapCloser, part of the SOAPdenovo2 package [14].
142 Gene annotations were lifted over from assembly version 1.0 to version 2.5 using the
143 LiftOver tool from the UCSC Genome Browser tools package [15].

144 Genome version 2.5 contains 3,166 scaffolds, has an N50 of 564,741 bp and was
145 published as version 2.5 on <https://genomevolution.org/coge/>.

146

147 **(ii) Genetic map construction**

148 **Plant material**

149 Two *Aethionema arabicum* ecotypes were used, Turkey (TUR) and Cyprus (CYP). The
150 TUR accession comes from the living plant collections at the Botanical Garden in Jena,
151 Germany (Botanischer Garten Jena). The seeds for this genotype were derived from
152 a plant in the Botanical Garden in Nancy, France. The CYP ecotype was collected in
153 2010 near Kato Moni (coordinates UTM WGS 84: 508374 - 3879403) at an altitude
154 410 m on pillow lava by Charalambos S Christodoulou [16].

155 These two ecotypes were used as parents for the development of the recombinant
156 inbred line population, where TUR was the father and CYP the mother. Seeds from
157 initial F₁ plants were used to generate an initial F₂ population. For each of the 216
158 segregating F₂ plants, a single seed was randomly chosen to further grow and
159 reproduce the next generation. The procedure was repeated until F₈, when the
160 experiment was performed with 216 RILs.

161 To grow the plants for the GBS, F₈ seeds of 216 RILs were placed on filter paper,
162 wetted with distilled water, in petri dishes. Imbibed seeds were incubated at 4°C in dark
163 for 3 days, followed by germination in the light at 20°C for 2 days. Seedlings were
164 transferred to soil pots (10.5 cm diameter 10 cm height) in November 2014. Plants
165 were grown in greenhouse (Wageningen University and Research, the Netherlands)
166 in partially controlled conditions, long day (16 h light and 8 h dark) and at 20°C.

167 **Genotyping By Sequencing (GBS)**

168 *DNA isolation*

169 Young tissues from leaves and flower buds were collected from each F9 plant for DNA
170 isolation. The DNA isolation was done according to a modified CTAB protocol [17]. In
171 brief, plant material was frozen with liquid nitrogen and ground into powder. Each
172 sample was incubated with 500 μ l of CTAB buffer at 65°C in the water bath for 30 min.
173 After 30 min cooling at room temperature, equal volume (500 μ l) of
174 chloroform:isoamylalcohol (24:1 v/v) was added, and vigorously hand-mixed for a min.
175 400 μ l of supernatant was recovered after centrifuging at maximum speed for 5 min.
176 The supernatant was cleaned again with a chloroform:isoamylalcohol step. DNA
177 precipitation was performed by adding an equal volume of cold isopropanol with 30
178 min incubation on ice and centrifugation at maximum speed for 15 min. The DNA pellet
179 was cleaned twice with 1 ml of 70% ethanol and centrifugation at maximum speed for
180 5 min. Dry DNA pellet was dissolved in Milli-Q water.

181 *Constructing GBS libraries*

182 DNA was treated with RNase overnight at 37°C with RNase one by Promega. Quality
183 was checked on a 1% agarose gel and DNA quantity was checked with Pico Green.
184 Based on this, DNA was diluted down to 20 ng/ μ l with MQ water and used in further
185 analysis. GBS was performed in general by following the procedure described in [18].
186 Oligonucleotides for creation of common as well as 96 barcoded ApeKI adapters were
187 obtained from Integrated DNA Technologies and diluted to 200 μ M. For each barcoded
188 and common adapter, top and bottom strand oligos were combined to a 50 μ M
189 annealing molarity in TE to 100 μ l total volume. Adapter annealing was carried out in
190 a thermocycler (Applied Biosystems) at 95°C for 2 min, ramp to 25°C by 0.1 degree
191 per second, hold at 25°C for 30 min and 4°C forever. Annealed adapters were further
192 diluted to a 0.6 ng/ μ l concentrated working stock of combined barcoded and common
193 adapter in 96 well microtiter plate and dried using a vacuum oven. For each genomic

194 DNA sample 100 ng (10 ng/μl) was used and added to lyophilized adapter mix and
195 dried down again using a vacuum oven.

196 Adapter DNA mixtures were digested using 2.5 Units ApeKI (New England Biolabs) for
197 2 hours at 75°C in a 20 μl volume. Digested DNA and Adapters were used in
198 subsequent ligation by 1.6 μl (400 Units/μl) T4DNA Ligase in a 50 μl reaction volume
199 at 22°C for one hour followed by heat inactivation at 65°C for 30 min. Sets of 96
200 digested DNA samples, each with a different barcode adapter, were combined (10μl
201 each) and purified using a Qiaquick PCR Purification columns (Qiagen). Purified
202 pooled DNA samples were eluted in a final volume of 10μl. DNA Fragments were
203 amplified in 50 μl volume reactions containing 2 μl pooled DNA, 25 μl KAPA HiFi
204 HotStart Master Mix (Kapa Biosystems), and 2 μl of both PCR primers (12.5 μM). PCR
205 cycling consisted of 98°C for 30 seconds, followed by 18 cycles of 98°C for 30 seconds,
206 65°C for 30 seconds, 72°C for 30 seconds with a final extension for 5 minutes and kept
207 at 4°C. Amplified libraries were purified as above but eluted in 30 μl. Of the amplified
208 libraries 1 μl was loaded onto a Bioanalyzer High Sensitivity DNA Chip (Agilent
209 technologies) for evaluation of fragment sizes and 1 μl was used for quantification
210 using Qubit (Life Technologies). Amplified library products were used for extra size
211 selection using 2% agarose gel cassette on a blue pippin system (Sage Science) to
212 remove fragments smaller than 300 bp. Eluted size selected libraries were purified by
213 AmpureXP beads (Agencourt). Final libraries were used for clustering on five lanes of
214 an illumina Paired End flowcell using a cBot. Sequencing used an illumina HiSeq2000
215 instrument using 2*100 nt Paired End reads.

216 *Sequencing and processing raw GBS data*

217 Raw sequencing data was processed using the TASSEL software package [19]
218 version 5.2.37 using the GBSv2 pipeline. For quality filtering and barcode trimming,

219 the GBSSeqToTagDBPlugin was run with the following parameters: kmerLength: 64,
220 minKmerL: 20, mnQs: 20, mxKmerNum 100000000. Tags were dumped from the
221 produced database using TagExportToFastqPlugin and mapped to the reference
222 genome using the bwa software package [20] in single-ended mode (samse).
223 Positional information from aligned SAM files was stored in the TASSEL database
224 using the SAMToGBSdbPlugin. The DiscoverySNPCallerPlugin was run using the
225 following parameters: mnLCov: 0.1, mnMAF: 0.01. Found SNPs were scored for
226 quality using SNPQualityProfilerPlugin and the Average taxon read depth at SNP was
227 used as a quality score for filtering in the next step (minPosQS parameter), these
228 scores were written to the TASSEL database using UpdateSNPPositionQualityPlugin.
229 Finally, the ProductionSNPCallerPluginV2 was run with the following parameters: Avg
230 Seq Error Rate: 0.002, minPosQS: 10, mnQS: 20.

231 *Genetic map calculation*

232 We used JoinMap v4.1 for the genetic map construction [21, 22]. The genetic map v2.5
233 was built with 749 SNPs generated by GBS based on genome v2.5 (unprocessed and
234 processed data available as S1 and S2). A set of 632 SNPs called according to
235 genome 3.0 was used for the genetic map v3.0 (unprocessed and processed data
236 available as S3 and S4). Regression and Maximum likelihood mapping were used to
237 calculate these maps (the linkage group information for both 2.5 and 3.0 genetic maps
238 are available as S5).

239 **(iii) Genome improvement**

240 **Genome version vAM: AllMaps**

241 We ran AllMaps [12] with default setting to combine genetic map v2.5 and physical
242 map genome v2.5. This step resulted in genome vAM, in which scaffolds were ordered
243 and oriented to reconstruct chromosomes.

244 **Contamination removal**

245 The *Ae. arabicum* scaffolds v2.5 were checked for contaminations. The genome
246 scaffolds were split into 197,702 1 kbp fragments and blasted against the NCBI nt
247 database [23] using Tera-BLAST (TimeLogic® Tera-BLAST™ algorithm, Active Motif
248 Inc., Carlsbad, CA). The output was then analyzed by MEGAN 6 [24]. All scaffolds for
249 which more than 50% of their entire length was found in bacteria and with no hit in
250 Viridiplantae were marked as putatively contaminated. A hit was counted with a
251 minimum bit score of 50. Additionally, Bisulfite sequencing (BS-seq) CpG and
252 Chromatin ImmunoPrecipitation DNA-Sequencing (ChIP-seq) H3 data were checked
253 to identify contaminants (Aethionema_contamination.xlsx). We ensured that these
254 scaffolds were not combined with another scaffold by PBjelly2. After screening, three
255 v2.5 scaffolds were removed: Scaffold_2406, Scaffold_2454 and Scaffold_2594. They
256 had a total length of 1,758 bp without any annotated genes. A summary of the
257 contamination screen is available as S6.

258 **Long read generation for genome improvement**

259 *PacBio reads*

260 Genomic DNA (gDNA) for *Ae. arabicum* was obtained from leaves of the Cyprus and
261 Turkey ecotypes. DNA was extracted using a modified protocol [25] based on [26]. For
262 the Turkey ecotype 35.70 µg and for the Cyprus ecotype 21.45 µg high molecular
263 weight DNA were sent to the Max Planck-Genome-Centre, Cologne, and sequenced
264 using the PacBio RS II machine (library insert size was 10-15 kbp gDNA). Four flow
265 cells for Cyprus and six for Turkey were sequenced. Table 1 summarizes the statistics
266 of the reads. The CG content of the pooled reads was 38%.

267 **Table 1: Overview of the *Aethionema arabicum* PacBio reads**

	Total reads	Cyprus	Turkey

Number of reads	381,069	152,415	228,654
Length variation	11 - 57,910	11 - 55,919	11 - 57,910
Average length	5,845.12	5,794.88	5,878.8
Average quality	10.48	10.13	10.72

268 The lengths are given in nucleotides and the quality as phred score.

269 *MinION reads*

270 To obtain MinION reads, gDNA was extracted from the Turkey ecotype (four leaf
271 samples, 100 mg each) as outlined above. After pooling the samples, the gDNA
272 concentration was measured using Hoechst 33258 DNA dye and resulted in 73.85
273 ng/µl. The library preparation was done using the Oxford Nanopore SQK-NSK007
274 protocol and R9.4 chemistry to design a 8 kbp 2D library. The sequencing run was
275 carried out using Oxford Nanopores MinION technology. The flow cell sequenced
276 30,935 reads (122,362,072 nt) at -205 mV and 24 hours of runtime. After base calling
277 with the MinKNOW 1.6 software (Oxford Nanopore Technologies Ltd.) the read length
278 ranged from 5 to 63,441 nt with an average length of 3,955 nt. The average phred
279 quality score was 11 and the GC content 41%, reads were not filtered or trimmed. The
280 initial sequence format FAST5 was converted to FASTQ format by using the R package
281 poRe version 0.21 [27]. Because the MinION flow cell had previously been used for
282 *Physcomitrella patens* DNA in the same run, the 30,935 reads were filtered for putative
283 *P. patens* contamination. The reads were mapped with the long read mapper GMAP
284 version 2017-08-15 [28] against the *P. patens* genome V3 [29]. All settings were kept
285 at default. 1,447 reads were characterized as putative *P. patens* reads and therefore
286 removed.

287 **Genome improvement using long reads**

288 To perform super-scaffolding and gap filling, the program PBjelly 2 version 15.8.24 was
289 used [13]. It internally uses BLASR v5.1 [30] for mapping reads to a reference. The
290 BLASR parameters internally used for mapping were: “-minMatch 12 -bestn 1 -
291 noSplitSubreads“.

292 **Genome version 2.6: PacBio sequencing incorporation**

293 We ran PBjelly2 with 381,022 (152,398 CYP, 228,624 TUR) PacBio reads which where
294 head-cropped with 20 (due to suspicious per base sequence content suggestion
295 presence of adapters) using Trimmomatic version 0.36 [31].

296 PBjelly2 was used to improve genome v2.5 and vAM. Comparing the results, we found
297 some scaffold connections which were made by PBjelly2 (v2.5) were no longer
298 possible for vAM (these scaffolds were already connected). Five connections formed
299 for v2.5 scaffolds were already introduced by the genetic map approach (see above).
300 Twelve connections which could be established in v2.5 were not formed in the PBjelly2
301 output for improving vAM, because the scaffolds were already connected with other
302 scaffolds. Since PBjelly2 only fills gaps with reads and is not able to place whole
303 scaffolds in gaps, it was necessary to split the vAM genome at certain points to be able
304 to obtain the twelve connections which were not present in the PBjelly2 output for vAM
305 (visualized in Figure 2). Split scaffolds were reconnected again after running PBjelly2,
306 using N-stretches of length 100 to keep all improvements introduced in vAM if they
307 were not formed by PBjelly2 (scaffolds in the vAM genome were combined using
308 stretches of 100 Ns to denote a gap of unknown length). Since it is possible that
309 PBjelly2 only fills a gap partially, we had to identify the positions of the gaps introduced
310 by AllMaps in the new genome version and checked if they were filled completely or

311 not. If the gap length was reduced, it was extended to have a length of 100 again. This
312 approach produced genome v2.6.

313 **Genome version 3.0: MinION sequencing incorporation**

314 After improving the genome to v2.6 using the PacBio reads, the same approach was
315 applied for 30,935 MinION TUR reads to obtain the *Ae. arabicum* genome v3.0. The
316 MinION reads were also checked for contamination. The genome version 3.0 is
317 available at <https://genomevolution.org/coge/GenomeView.pl?gid=36061>.

318

319 **Name convention of *Ae. arabicum* v3.0 genome scaffolds**

320 Scaffolds of genome v3.0 were named and ordered according to their length from long
321 to short. The longest eleven scaffolds were named linkage group (LG) based on the
322 genetic map. Scaffolds which were combined are named csc for concatenated scaffold
323 and the other ones are named sc (scaffold). The v3.0 scaffold names therefore follow
324 the scheme type-number_v2.5 scaffold[v2.5 scaffold...]. I.e., the scaffold type (LG,
325 CSC, SC), followed by a minus and the number of the scaffold, separated by a blank,
326 followed a list of scaffolds denoting the v2.5 scaffolds or the v3.0 scaffolds. This naming
327 system resulted in a shift in LG order between v2.5 and v3.0 (Supplementary file
328 linkage_group_map.xlsx).

329 **Migration of proteins to new genome version**

330 To perform the lift over of the gene models from v2.5 to v3.0, a combination of Gene
331 Model Mapper (GeMoMa) v1.4 [32] and flo (flo - same species annotations lift over
332 pipeline, <https://github.com/wurmlab/flo>) were used. The results of both programs were
333 concatenated. flo results were preferred over GeMoMa results if the results of the two
334 programs differed, because flo works with alignments on nucleotide level while
335 GeMoMa works with blasting proteins on amino acid level. If a protein could not be
336 lifted completely, it is marked as partial in the resulting GFF (v3.0). A total of 34 genes

337 had to be lifted manually, because they were either not lifted at all or only partially. If
338 an intron could not be lifted, it was added by hand. If an exon or CDS could not be
339 lifted, the new location was deriving from neighboring features which could be migrated
340 to the new genome version. The location was then used to extract the nucleotide
341 sequence from the genome using samtools v1.4 [33]. Only if the sequence was
342 identical to the original sequence extracted from v2.5, the feature was migrated. This
343 check was performed with ClustalW v2.1 [34]. After the migration step, the GFF file
344 was checked and corrected. Genes which did not contain a start or a stop, contained
345 internal stops or whose CDS sequence had a length not dividable by 3 were marked
346 as potential pseudogenes with “pseudo=true”. To check if a gene contains internal
347 stops each of its CDS features was checked individually for having at least one frame
348 which results in no stop codons. Genes which were identical to other genes (start and
349 stop position are equal) or were contained in other genes were removed. If the 3' CDS
350 of a gene did not contain a stop codon but could be added by extending the CDS by
351 three nucleotides, the CDS was corrected. The lifted genes were classified as shown
352 in Table 2.

353 **Table 2: Overview of gene liftover: GFF migration statistics**

Lifted only by flo	4,346
Lifted only by GeMoMa	36
Lifted with both programs	18,177
Manually lifted	34
Partially lifted	14
Number of corrected CDS	10,259
Marked as pseudo	3,230

354 Most genes could be lifted by flo and GeMoMa. The reason why flo was able to lift
355 more proteins is that GeMoMa works with protein sequences and the program was not
356 able to generate proteins for 20,056 CDS features, either because a gene did not
357 possess a CDS or because of faulty CDS sequences.

358 **Name convention of v3.0 genes**

359 Old gene IDs were kept in the note attribute of the genes in the GFF and the linkage
360 group numbers of the genetic map are also noted. The names of the genes were
361 changed into Aa3typeNumberGenenumber: Aa for *Aethionema arabicum*, indicator
362 genome version 3, followed by the type of scaffold, its number and the number of the
363 gene (starting with 1 at the 5' end), e.g. Aa3LG1G2 or Aa3SC2601G1). For transcript
364 isoforms (splice variants) this locus nomenclature can be extended by the number of
365 the isoform (.X). Version 3.0 of the genome and all gene models are available at
366 <https://genomevolution.org/coge/GenomeView.pl?gid=36061>.

367 **Data Availability Statement**

368 The genome version 2.5 is available at:

369 <https://genomevolution.org/coge/GenomeInfo.pl?gid=23428>.

370 The genome version 3.0 is available at:

371 <https://genomevolution.org/coge/GenomeView.pl?gid=36061>.

372 **For Review: the data (as mapped BAM files) have been made available in CoGe.**

373 **Account: agr_reviewer Password: GoCoGe!**

374 <https://auth.iplantcollaborative.org/cas4/login?service=https://genomevolution.org/coge/index.pl>

375 <https://genomevolution.org/coge/GenomeInfo.pl?gid=36061>

376 The GBS unprocessed and processed reads for genome mapping 2.5 and 3.0 are
377 available as supplemental files S1-S4. The linkage group information for both 2.5 and
378 3.0 genetic maps are available as S5. A summary of the contamination screen is
379 available as S6.

380

381

382

383 **Results and Discussion**

384 **Reference genome improvement**

385 The published draft version of the *Ae. arabicum* genome utilized the Ray assembler
386 and contained 59,101 scaffolds with an N₅₀ of 115,195bp [9]. Reassembly using the
387 the AllPathsLG assembler and gap-closing using the SOAPdenovo GapCloser tool
388 were used as a starting point for super-scaffolding. This resulted in a reassembly with
389 3,166 scaffolds, and a scaffold N₅₀ of 564,741bp labeled and published as version 2.5
390 on <https://genomevolution.org/coge/>. The subsequent genome versions (vAM, v2.6
391 and v3.0) were obtained using linkage map and long read correction. The quality
392 improvement of the genome is presented as the increase in total number of bases,
393 reduced number of scaffolds and number of gaps, as well as bigger N₅₀ and smaller
394 L₅₀ parameters (Table 3). In comparison with the starting genome v2.5, the final
395 genome v3.0 has 9% less scaffolds (from 3,166 to 2,883). The overall length of
396 genome v3.0 was extended from 196,005,095 to 203,449,326 bases (17% more) and
397 the number of uncalled based was reduced from 25,768,296 to 13,790,434 (from
398 13.2% to 6.8%) (Table 3).

399 **Table 3:** Statistic overview of *Aethionema arabicum* genome versions

Genome version	Draft	v2.5	vAM	v2.6	v3.0
# Bases		196,005,095	196,022,695	203,150,143	203,449,326
# Scaffolds	59,101	3,166	2,990	2,895	2,883
# Scaffolds containing Ns		1,910	1,734	1,542	1,539
# Ns		25,768,296	25,785,896	13,946,922	13,790,434

N50	115,195	564,741	10,141,718	10,328,388	10,328,388
L50		56	9	9	9

400

401 **Genome improvement using long reads**

402 *Read mapping efficiency*

403 The results of the mapping of the reads to the genome using PBjelly2 are summarized
404 in Table 4. Almost the same number of PBjelly2 reads were mapped to genome v2.5
405 and vAM. However, it was important to apply PBjelly2 on both genomes in order to find
406 scaffold connections which were not possible due to a combination of certain scaffolds

407 in vAM (see supplementary file
408 combination_comparison_pbjelly_for_v2.5_vs_pbjelly_for_vGM.ods for details). The
409 genome v2.6 resulted by improving the split vAM genome using PBjelly2, reconnecting
410 scaffolds and resizing gaps if needed. We also compared the results for improving v2.5
411 with vAM, but there were no new scaffold connections which were missed by improving
412 the v2.6 version, so we did not perform a split step for improving the genome using the
413 MinION reads. The mapping efficiency for the MinION reads is lower than for the
414 PacBio reads due to a contamination of the reads (see Methods for details). There are
415 5.9% more MinION reads which were mapped to v2.6 than v2.5, demonstrating that
416 the changes done to the genome are supported by the very long reads.

417 **Table 4: Mapping efficiency of PBjelly2's mapping step.**

418 The percentages in brackets give the percentage of the total number of reads (CYP,
419 TUR or CYP + TUR). The line "# covered scaffolds" gives the number of scaffolds in
420 which at least one read was mapped. Here, the number in brackets gives the
421 percentage of the total number of scaffolds.

422

Setup	PacBio vs. v2.5	PacBio vs. vAM	MinION vs. v2.5	MinION vs. v2.6
# mapped TUR reads	198,675 (86.9%)	198,629 (86.9%)	14,098 (45.6%)	15,886 (51.4%)
# mapped CYP reads	131,976 (86.6%)	131,942 (86.6%)	-	-
# total reads mapped	330,651 (86.8%)	330,571 (86.8%)	14,098 (45.6%)	15,886 (51.4%)
# unmapped reads	50,371 (13.2%)	50,451 (13.2%)	16,837 (54.4%)	15,049 (48.6%)
# scaffolds input genome	3,166	2,990	3,166	2,895
# covered scaffolds	2,971 (93.8%)	2,804 (93.8%)	1.689 (53.3%)	1.429 (49.4%)

423 *The effect of PBjelly2 runs applied to the different assembly versions*

424 Most scaffolds were combined in the vAM which resulted in the L_{50} value lowered from
425 56 to 9 and the N_{50} value almost doubled. PBjelly2 was not as good as using the
426 genetic map in combining scaffolds. The increase of the N_{50} value in case of the
427 PBjelly2 result (using the PacBio reads for improving scaffolds) results from more
428 improvements of the shorter scaffolds. Comparing the PBjelly2 result for applying the
429 PacBio reads to v2.5 and vAM shows that the reduction of scaffold number and
430 increase of number of bases in the genome is similar (Table 5). MinION reads could
431 also be used for v2.5 assembly improvement, however the results were not as good
432 as for using PacBio reads, due to a much smaller number of reads. Improving the
433 genome v2.6 with the MinION reads is also possible, but the improvement is not as

434 good as for v2.5. This demonstrates that connections done using the PacBio reads are
435 also supported by MinION reads.

436 **Table 5: Overview of the PBjelly2 result statistics for the different setups.**

Setup	v2.5	PacBio vs. v2.5	MinION vs. v2.5
# scaffolds	3,166	3,066	3,123
# bases	196,005,095	203,024,676	196,600,700
N50	564,741	542,490	564,741
L50	56	58	56
Setup	vAM	PacBio vs. vAM	
# scaffolds	2,990	2,905	
# bases	196,022,695	203,137,854	
N50	10,141,718	10,314,234	
L50	9	9	
Setup	v2.6		MinION vs. v2.6
# scaffolds	2,895		2,886
# bases	203,150,143		203,450,934
N50	10,328,388		10,323,234
L50	9		9

437 Comparison of values for the different genome versions with the values for the PBjelly2
438 output is shown. The PBjelly2 outputs are denoted in the form “read type” vs. “genome
439 version” to show which reads were used to improve which version of the genome. The
440 result for PacBio vs. vAM was the basis for v2.6 and MinION vs. v2.6 was the basis for
441 v3.0.

442 While PBjelly2 does not do as good a job as the genetic map approach in connecting
443 scaffolds, its power is revealed by the gap filling. In genome v2.5 a total of 1,910
444 scaffolds contained uncalled bases. This number was reduced to 1,711 scaffolds (by

445 7.3%; Table 6) using PBjelly2 with PacBio reads. The exact number of uncalled bases
446 in the v2.5 *A. arabicum* genome was 25,768,296 (Table 6). In the PBjelly2 result only
447 13,940,203 Ns (Table 6) are left, a reduction by 45.9%. Comparing this with the
448 PBjelly2 result for the improvement of the vAM genome using PacBio reads (Table 6),
449 more gaps were removed from the connected genome. The number of scaffolds
450 containing Ns was reduced by 10.8% and the overall number of Ns was reduced by
451 50.0%, while the overall percentage of Ns in the genome remained the same in the
452 two results. Due to the small number of MinION reads, the improvement of the
453 assembly is less pronounced.

454 **Table6: Gap/N analysis of different genome versions.**

Setup	v2.5	PacBio vs. v2.5	MinION vs. v2.5
# scaffolds containing Ns	1,910 (60.3%)	1,711 (56.0%)	1,901 (60.0%)
# Ns	25,768,296 (13.2%)	13,940,203 (7.1%)	25,142,571 (12.8%)
Setup	vAM	PacBio vs. vAM	
# scaffolds containing Ns	1,734 (58.0%)	1,546 (51.7%)	
# Ns	25,785,896 (13.2%)	13,942,094 (7.1%)	
Setup	v2.6		MinION vs. v2.6
# scaffolds containing Ns	1,542 (53.3%)		1,539 (53.2%)
# Ns	13,946,922 (6.9%)		13,790,284 (6.8%)

455 This table gives an overview of the number of Ns in the different genome versions and
456 the PBjelly2 results.. For the number of scaffolds containing Ns, the percentage is
457 given relative to the total number of scaffolds is given in brackets. For the number of
458 Ns, the percentage is relative to the total number of bases in the respective assembly.

459

460 **Migration of proteins to new genome version**

461 The genome v2.5 harbors 23,594 annotated protein coding genes. Eight of them could
462 not be lifted because they were located next to a gap in the genome. Since it is possible
463 that PBjelly2 changes the sequences around gaps, the sequences of the genes were
464 not identical anymore and the programs were therefore not able to migrate some genes
465 from one assembly version to another. We checked the expression of the genes which
466 could not be lifted using Illumina RNA-seq data representing several developmental
467 stages (data not shown) and found that all of them had almost no expression, as a
468 result they were not lifted manually. In addition to some unlifted genes, there were 17
469 genes which could be lifted only partially due to the same reason. All the other 23,569
470 genes could be lifted. A set of 579 genes were removed due to being identical with
471 other genes, and 140 genes were removed because they were located completely in
472 another gene. A total of 1,202 genes have no starting methionine, 2,055 have no stop,
473 132 genes contain internal stops and for 1,019 genes the length of the CDSs is not
474 dividable by three. In the end 19,363 genes were lifted which were not marked as
475 potential pseudogene or partial.

476 We find that that start point (assembly version) for improvement is not relevant.
477 PBjelly2 is able to make more improvements using the PacBio data than with the
478 MinION data due to the higher number of PacBio reads. The number of added bases
479 per read is higher for PacBio than MinION reads (18.71 vs. 9.67) and also the number
480 of removed Ns is higher (31.07 vs. 5.06) while the MinION reads lead to more scaffold
481 connections per read (2.49×10^{-4} vs. 3.88×10^{-4} connected scaffolds). Using the
482 MinION reads for improvement makes only a few changes, but they show that they
483 support the changes which were made to the genome using the PacBio data. Since
484 the *Ae. arabicum* genome was almost not contaminated at all, only three small

485 scaffolds had to be removed. Gene models were filtered for multiple genes and genes
486 contained in other genes. If a problem with a gene was found, it was marked in the
487 resulting GFF file. We note that there are gene models which are probably not correct
488 and need to be fixed in future studies.

489 The combination of genetic mapping and long reads significantly improved the
490 structure of the assembly, reducing the total scaffold number and decreasing the
491 number of gaps.

492 **Genetic map of *Aethionema arabicum***

493 **Genetic map v2.5:**

494 ***SNP calling***

495 A GBS approach [35] was used to generate genetic variation data for genetic mapping.
496 Illumina sequencing of the parental lines and the RILs resulted in 442,101,405 raw
497 reads after quality filtering. Using the TASSEL package [19] to match sequence tags
498 to markers, 160,379 SNPs could be called based on genome v2.5. SNPs identified
499 through the GBS method often take the form of many SNP 'islands', where a multitude
500 of SNPs is present over only a few kbp of sequence with the same states across
501 individuals. This makes genetic mapping difficult as it results in a very large number of
502 markers that are mostly redundant. We reduced this SNP amount using a sliding
503 window approach collapsing a group of SNPs that all have the same states across
504 individuals into one single marker over windows of 10 kbp, thus the bigger the scaffold
505 the more selected SNPs. This, together with filtering non-informative SNPs (missing
506 data in more than 30% many individuals) resulted in a core group of markers of 5,428
507 SNPs.

508 ***Genetic map calculation***

509 We used JoinMap 4.1 to calculate the genetic linkage map for the *Ae. arabicum* RIL
510 population. For map v2.5, we first checked the marker similarity among the initial set
511 of 5,428 SNPs that were obtained from GBS based on genome v2.5 by a pairwise
512 comparison. SNPs that were highly similar (higher than 90%) were represented by one
513 marker, which refined the number of markers to 1,818. Grouping was selected at a
514 LOD threshold of 9.0, which led to the grouping of the expected 11 Linkage Groups
515 (LGs) (Figure 3). We further optimized each LG to avoid inflation of the map distance
516 due to saturating SNPs using a Maximum likelihood model. Markers that were not more
517 than 0.1 cM away were also eliminated. As a result, a final set of 746 SNP markers
518 was used on 11LGs. Out of 11 LGs, there are three LGs (4, 7 and 11) containing cluster
519 of segregation distorted SNPs (more than 50% of SNPs, supplemental file
520 linkage_group_map.xlsx).

521 The *Ae. arabicum* genetic map v2.5 consists of 11 LGs with average distance size of
522 162.5 cM, covered by 746 SNP markers with average of 67 markers per LG. The
523 average marker spacing was 2.4 cM, equivalent to approximately 169 kbp. The
524 centromere is suggested by the high density of SNP markers within a small genetic
525 distance (e.g. a low recombination frequency). These markers typically belong to
526 relatively small scaffolds, consistent with a high-repetitive DNA content, where only a
527 few SNPs were called. LG4 centromere is located at the end of the linkage, suggesting
528 an assembly problem or that LG4 is a telocentric chromosome.

529 Overall the markers are distributed relatively dense and even in v2.5, with the biggest
530 gap smaller than 18 cM. SNPs that reside in the same scaffold were in agreement
531 among each other on the direction of their scaffold.

532 Genetic map v3.0

533 The procedure to build genetic map v3.0 was similar to v2.5. SNP calling was
534 performed based on genome v3.0 instead of v2.5 resulting in a raw set of 141,914
535 SNPs. After similar quality control strategy as for v2.5, we construct v3.0 with a core
536 set of 632 SNPs (Figure 4). The 11 LGs were maintained with the total size of~ 1945
537 cM, average marker distance of 3.1 cM. This inflation of genetic distance in genetic
538 map v3.0 compared with v2.5 can be explain by the newly retrieved SNPs due to
539 resolved Ns in the genome. These new SNPs are mainly located in the centromeric
540 regions. In general, SNP order and orientation in LGs are in agreement with map v2.5
541 (Figure 5). We have made adjusted linkage group order in map v3.0 compared with
542 map v2.5 (linkage_group_map.xlsx). Based on the size of the group, the biggest one
543 is LG 1, and the smallest is LG 11 (Figure 4).

544 However, there is a significant difference between v3.0 and v2.5 at three LGs that
545 harbor clusters of segregation distorted SNPs, LG 5, 6, and 9 (equivalent LG 4, 11 and
546 7 in v2.5, respectively): the reduced number of markers as well as the increased
547 marker distance (Figure 3 and 4). In order to maintain 11 LGs and certain degree of
548 newly called SNP incorporation, we had to reduced number of distorted markers in
549 those LGs in v3.0, as a result the dearth of markers was observed (see supplemental
550 file. linkage_group_map.xlsx)

551

552

553 **Conclusions and potential implications**

554 *Aethionema* is becoming an outgroup model for the Brassicaceae core. Studies on its
555 genome, relevant life-history traits and their evolution rely on genome and genetic map
556 resources. Thus, this work helps pave the way for future research of the Brassicaceae
557 family. We have provided an advanced version of the *Aethionema arabicum* genome

558 and its first genetic map, which allows for pseudochromosome construction needed for
559 analysis of genome evolution. Finally, quantitative trait loci (QTL) mapping for the wide
560 range of traits in *Aethionema* (e.g. flowering time, plant fitness, chemical defense and
561 heteromorphism) will be greatly enabled by this genetic map.

562

563 **Declarations**

564 None of the authors have any competing interests in the manuscript.

565

566 List of abbreviations

BAC	Bacterial Artificial Chromosome
BS-seq	Bisulfite sequencing
ChIP-seq	Chromatin ImmunoPrecipitation DNA-Sequencing
CYP	Cyprus ecotype
FPC	Finger Printed Contigs
GFF	Generic/General Feature Format
LG	Linkage group
MinION	Oxford Nanopore MinION
PacBio	Pacific Biosciences
QTL	Quantitative trait loci
RIL	Recombinant Inbred Line
SNP	Single Nucleotide Polymorphism
TUR	Turkey ecotype
WGP	Whole Genome Profiling

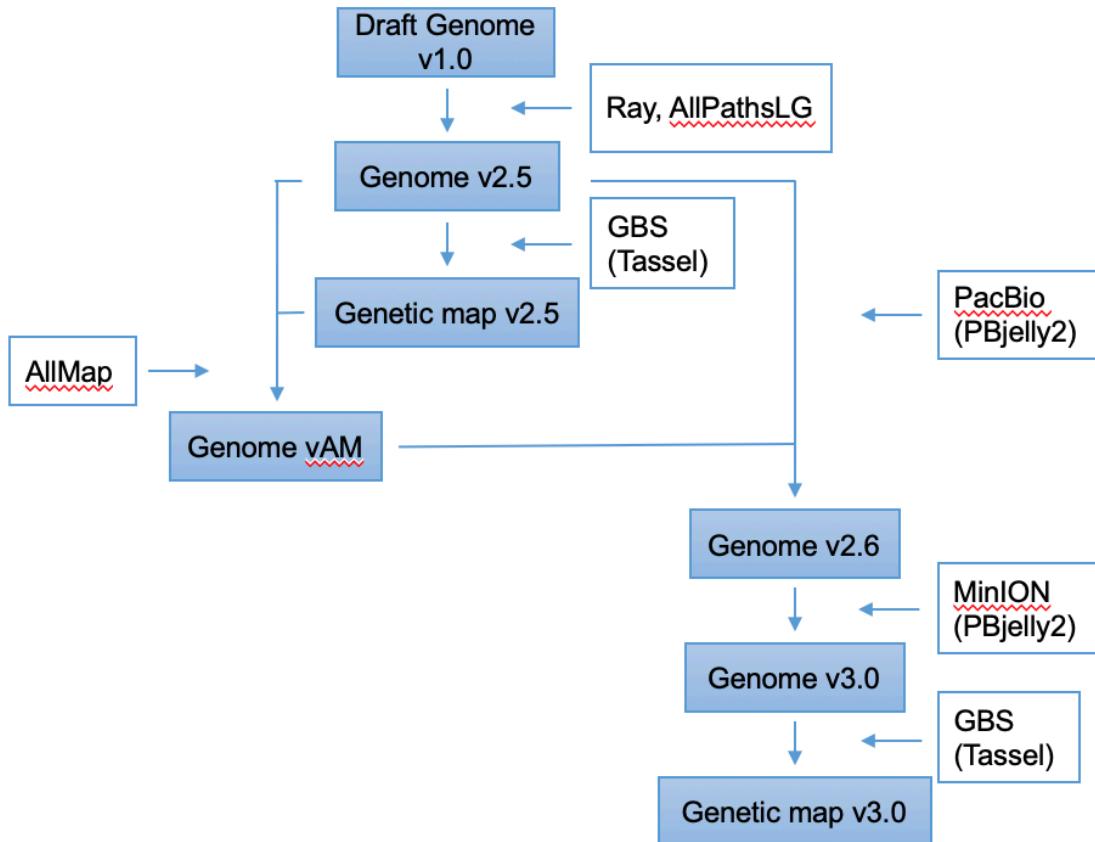
567

568

569 **Funding**

570 This work was supported by the Netherlands Organization for Scientific Research
571 (NWO) to M.E.S. (849.13.004) and by the German Research Foundation (DFG) to
572 S.A.R. (RE 1697/8-1) as part of the ERA-CAPS “SeedAdapt” consortium project
573 (www.seedadapt.eu).

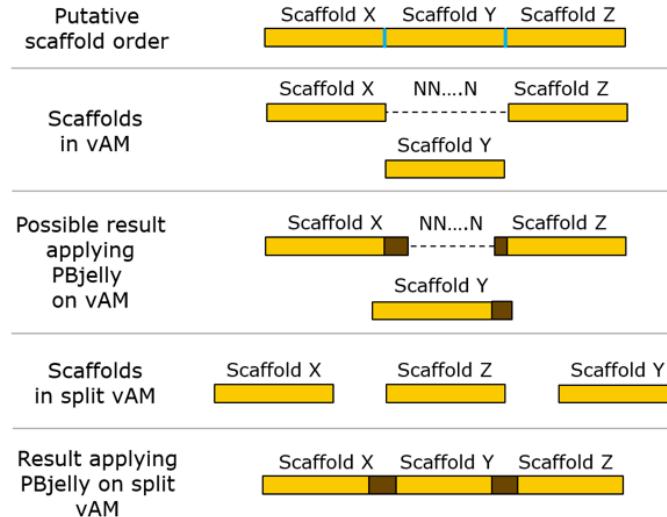
574 **Authors' contributions**


575 TPN and ES designed the GBS experiment and performed the genetic map analyses.
576 SM contributed to the development of the RIL population. AP did the initial genome
577 assemblies. CM analysed the PacBio data, used the long-read data for super-
578 scaffolding and carried out the liftover of gene models to v3.0. FBH analysed the
579 MinION data and carried out the contamination check. SAR supervised the work done
580 by CM and FBH and conceived of this part of the work. EvdB performed GBS SNP
581 calling. TPN, CM, SAR and ES wrote the manuscript with contributions by all authors.

582

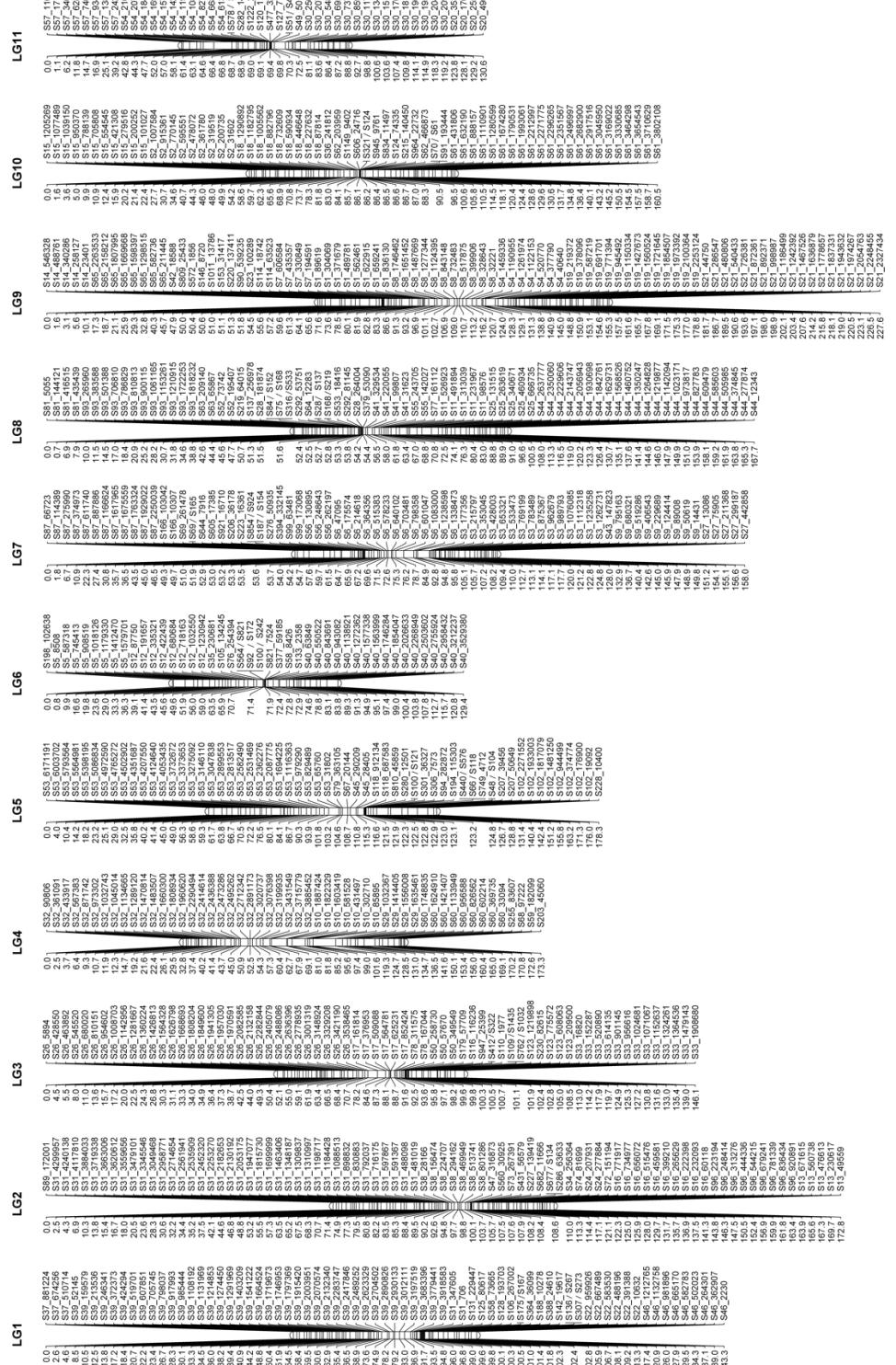
583 **Acknowledgements**

584 We thank Dr. Elio Schijlen for technical support on Genotyping by Sequencing
585 technology, Dr. Lidija Berke for her help on running AllMaps and Marco Göttig, Rabea
586 Meyberg, Christopher Grosche and Manuel Hiss for their help with long read
587 sequencing. We also thank the other members of the SeedAdapt Consortium and Dr.
588 Laurie Grandont for fruitful discussions about the work.


589 **Figure legends**

590

591 **Figure 1: Overview of the analyses performed in this study.** In filled boxes are data
592 sets, approaches and companying tools are in open boxes.

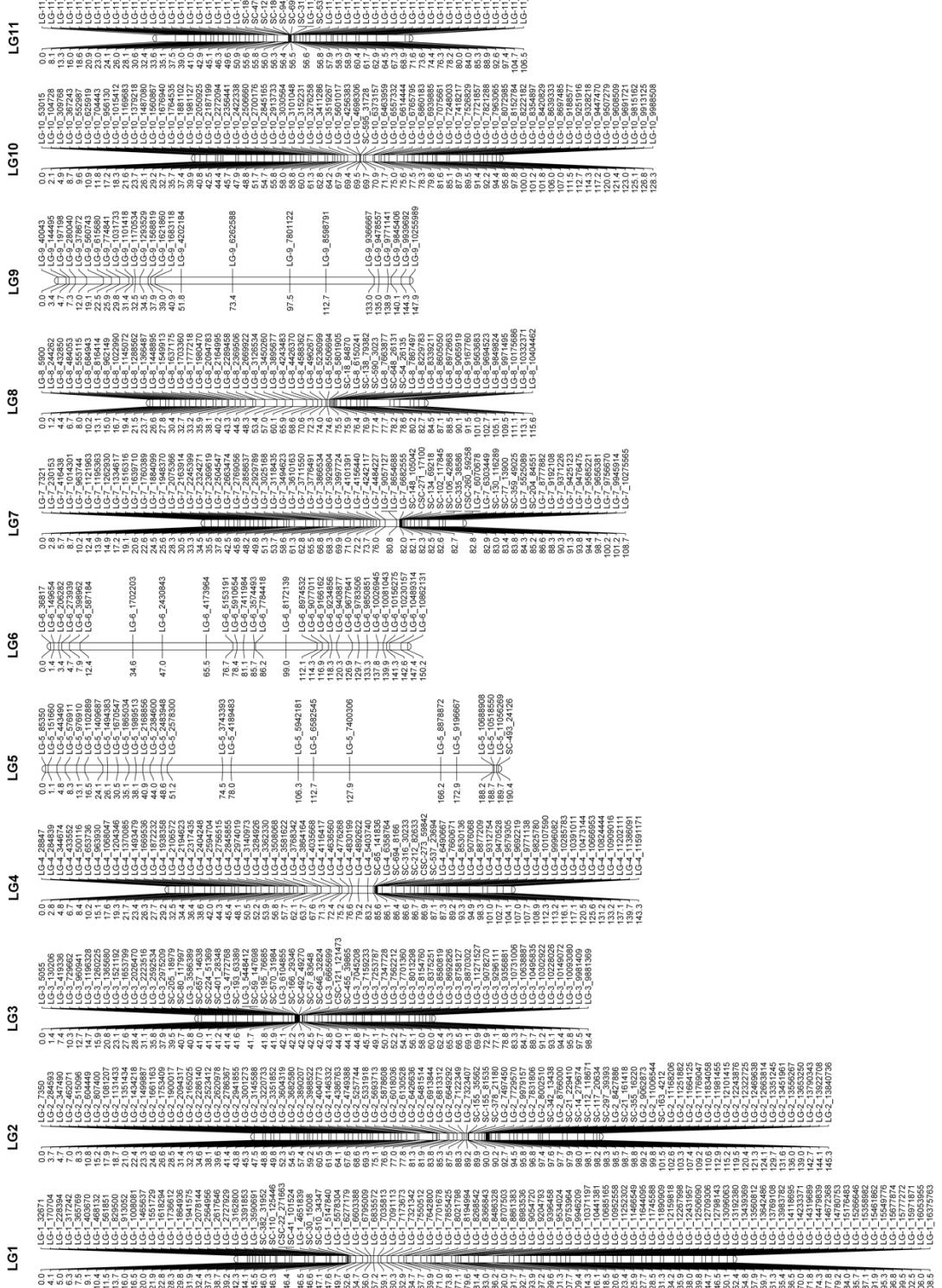

593

594

595 **Figure 2: Problem arising from applying PBjelly2 on vAM.** Scaffold borders are
596 visualized in blue and extensions of scaffolds introduced by PBjelly2 are shown in
597 brown. Assuming the true order of the scaffolds is shown on top of the figure, but
598 scaffold X and scaffold Z were already combined in the vAM assembly (second bar
599 from top) this could lead to a partial filling of the N-stretch and maybe an extension of
600 scaffold Y. However, PBjelly2 would not be able to place scaffold Y between the two
601 other scaffolds (middle bar). If the scaffolds were thus split again (second bar from
602 bottom), it is possible that the connections are made correctly applying PBjelly2 on the
603 split version (bottom bar). This only visualizes a theoretical case, in this work it
604 appeared every time that scaffold X and Y were connected by PBjelly2 and scaffold Z
605 had to be reconnected afterwards.

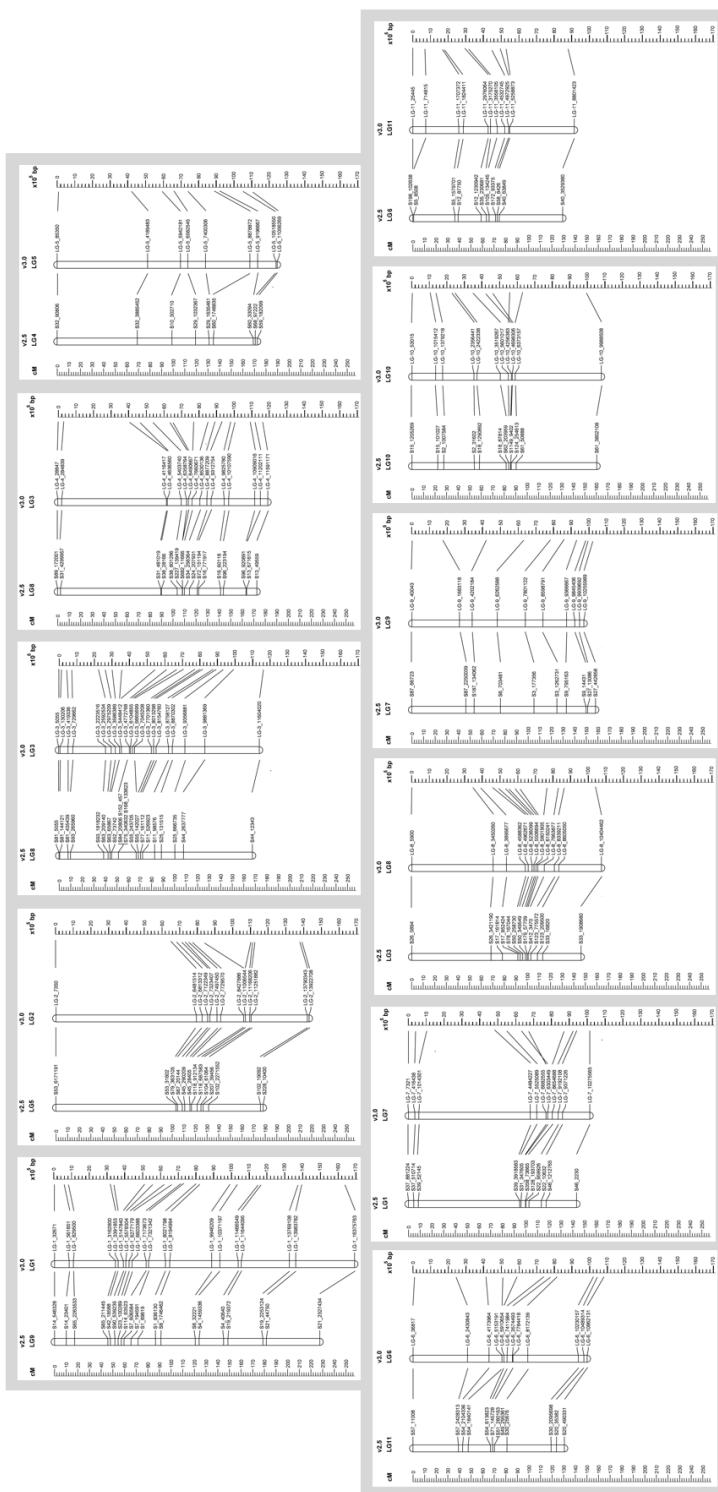
606

Figure 3: Aethionema arabicum genetic map v2.5. Genetic map version 2.5 consists of eleven linkage groups. On each linkage group, genetic distance in cM is present on the left and SNP markers on the right.


607

608

609


610

611

612

613 **Figure 4: Aethionema arabicum genetic map v3.0.** Genetic map version 3.0
 614 consists of eleven linkage groups. On each linkage group, genetic distance in cM is
 615 present on the left and SNP markers on the right.

616

617 **Figure 5: The alignment of genetic map v2.5, v3.0 and physical map.** The
618 alignment of the genetic map v2.5 and v3.0 were based on relative SNPs. The left ruler
619 indicates genetic distance in cM and the right indicates physical distance in bp
620 according to genome v3.0

621 References

622

- 623 1. Warwick SI and Al-Shehbaz IA. Brassicaceae: Chromosome number index and database on CD-Rom. Plant Syst Evol. 2006;259 2-4:237-48. doi:10.1007/s00606-006-0421-1.
- 624 2. Al-Shehbaz IA, Beilstein MA and Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol. 2006;259 2-4:89-120. doi:10.1007/s00606-006-0415-z.
- 625 3. Beilstein MA, Al-Shehbaz IA, Mathews S and Kellogg EA. Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot. 2008;95 10:1307-27. doi:10.3732/ajb.0800065.
- 626 4. Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA and Mummenhoff K. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 2011;16 2:108-16. doi:10.1016/j.tplants.2010.11.005.
- 627 5. Imbert E. Ecological consequences and ontogeny of seed heteromorphism. Perspect Plant Ecol. 2002;5 1:13-36. doi:10.1078/1433-8319-00021.
- 628 6. Lenser T, Graeber K, Cevik ZS, Adiguzel N, Donmez AA, Grosche C, et al. Developmental control and plasticity of fruit and seed dimorphism in *Aethionema arabicum*. Plant Physiol. 2016;172 3:1691-707. doi:10.1104/pp.16.00838.
- 629 7. Mohammadin S, Peterse K, van de Kerke SJ, Chatrou LW, Donmez AA, Mummenhoff K, et al. Anatolian origins and diversification of *Aethionema*, the sister lineage of the core Brassicaceae. Am J Bot. 2017; doi:10.3732/ajb.1700091.
- 630 8. Bibalani GH. Investigation on flowering phenology of Brassicaceae in the Shanjan region Shabestar district, NW Iran (usage for honeybees). Annals of Biological Research. 2012; 6: 1958 – 68.
- 631 9. Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nature genetics. 2013;45 8:891-U228. doi:10.1038/ng.2684.
- 632 10. Boisvert S, Lavoie F and Corbeil J. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. Journal of computational biology : a journal of computational molecular cell biology. 2010;17 11:1519-33. doi:10.1089/cmb.2009.0238.
- 633 11. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. P Natl Acad Sci USA. 2011;108 4:1513-8. doi:10.1073/pnas.1017351108.
- 634 12. Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, et al. ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol. 2015;16:3. doi:10.1186/s13059-014-0573-1.
- 635 13. English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. Plos One. 2012;7 11:e47768. doi:10.1371/journal.pone.0047768.
- 636 14. Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1 1:18. doi:10.1186/2047-217x-1-18.
- 637 15. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12 6:996-1006. doi:10.1101/gr.229102.
- 638 16. Mohammadin S, Wang W, Liu T, Moazzeni H, Ertugrul K, Uysal T, et al. Genome-wide nucleotide diversity and associations with geography, ploidy level and glucosinolate profiles in *Aethionema arabicum* (Brassicaceae). Plant Syst Evol. 2018;304 5:619-30. doi:10.1007/s00606-018-1494-3.
- 639 17. Doyle J. DNA Protocols for Plants. In: Hewitt GM, Johnston AWB and Young JPW, editors. Molecular Techniques in Taxonomy. Springer-Verlag Berlin Heidelberg: Springer Berlin Heidelberg; 1991. p. 283-93.
- 640 18. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. Plos One. 2011;6 5:e19379. doi:10.1371/journal.pone.0019379.
- 641 19. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. Plos One. 2014;9 2:e90346. doi:10.1371/journal.pone.0090346.
- 642 20. Li H and Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26 5:589-95. doi:10.1093/bioinformatics/btp698.
- 643 21. Stam P. Construction of Integrated Genetic-Linkage Maps by Means of a New Computer Package - Joinmap. Plant J. 1993;3 5:739-44. doi:DOI 10.1111/j.1365-313X.1993.00739.x.
- 644 22. Ooijen JWV. JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands: Kyazma B.V., 2006.
- 645 23. Coordinators NR. Database Resources of the National Center for Biotechnology Information. Nucleic acids research. 2017;45 D1:D12-D7. doi:10.1093/nar/gkw1071.
- 646 24. Huson DH, Beier S, Flade I, Gorska A, El-Hadidi M, Mitra S, et al. MEGAN community edition - Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS computational biology. 2016;12 6:e1004957. doi:10.1371/journal.pcbi.1004957.
- 647 25. Hiss M, Meyberg R, Westermann J, Haas FB, Schneider L, Schallenberg-Rudinger M, et al. Sexual reproduction, sporophyte development and molecular variation in the model moss *Physcomitrella patens*: introducing the ecotype Reute. Plant J. 2017;90 3:606-20. doi:10.1111/tpj.13501.
- 648 26. Dellaporta SL, Wood J and Hicks JB. A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter 14:19-21.

689 27. Watson M, Thomson M, Risse J, Talbot R, Santoyo-Lopez J, Gharbi K, et al. poRe: an R package for the
690 visualization and analysis of nanopore sequencing data. *Bioinformatics*. 2015;31 1:114-5.
691 doi:10.1093/bioinformatics/btu590.

692 28. Wu TD and Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads.
693 *Bioinformatics*. 2010;26 7:873-81. doi:10.1093/bioinformatics/btq057.

694 29. Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, et al. The *Physcomitrella patens* chromosome-
695 scale assembly reveals moss genome structure and evolution. *Plant J.* 2018;93 3:515-33.
696 doi:10.1111/tpj.13801.

697 30. Chaisson MJ and Tesler G. Mapping single molecule sequencing reads using basic local alignment with
698 successive refinement (BLASR): application and theory. *BMC bioinformatics*. 2012;13:238.
699 doi:10.1186/1471-2105-13-238.

700 31. Bolger AM, Lohse M and Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data.
701 *Bioinformatics*. 2014;30 15:2114-20. doi:10.1093/bioinformatics/btu170.

702 32. Keilwagen J, Wenk M, Erickson JL, Schattat MH, Grau J and Hartung F. Using intron position conservation
703 for homology-based gene prediction. *Nucleic acids research*. 2016;44 9:e89. doi:10.1093/nar/gkw092.

704 33. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format
705 and SAMtools. *Bioinformatics*. 2009;25 16:2078-9. doi:10.1093/bioinformatics/btp352.

706 34. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal
707 X version 2.0. *Bioinformatics*. 2007;23 21:2947-8. doi:10.1093/bioinformatics/btm404.

708 35. Rowan BA, Patel V, Weigel D and Schneeberger K. Rapid and inexpensive whole-genome genotyping-
709 by-sequencing for crossover localization and fine-scale genetic mapping. *G3*. 2015;5 3:385-98.
710 doi:10.1534/g3.114.016501.

711