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ABSTRACT 

In decision under risk participants' choices are based on probability values systematically 

different from those that are objectively correct. Similar systematic distortions are found in 

tasks involving relative frequency judgments. These distortions limit performance in a wide 

variety of tasks and an evident question is, why do we systematically fail in our use of 

probability and relative frequency information? We propose a Bounded Log-Odds Model 

(BLO) of probability and relative frequency distortion based on three assumptions. The key 

assumption is that the dynamic range of representation of probability and relative frequency is 

limited. We tested the model experimentally and found that  BLO accounts for individual 

participants’ data better than all previous models in the literature. We also show that subject to 

the dynamic range limitation, participants’ choice of distortion serves to maximize the mutual 

information between objective and internal values, a form of bounded rationality.   

 
 
 
Keywords: probability distortion; frequency judgment; decision under risk; efficient coding; 

mutual information  
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In making decisions, we choose among actions whose outcomes are typically uncertain; we 

can model such choices as choices among lotteries. To specify a lottery  we list all of its 

possible outcomes  and the corresponding probabilities of occurrence  that a 

specific lottery assigns to each outcome.  If we knew all the relevant probabilities, we would 

be engaged in decision under risk 1. If we can also assign a numerical measure of utility 

 to each outcome ,  we could assign an expected utility to each lottery, 

  , (1) 

 and a decision maker maximizing expected utility 2, 3 would select the lottery with the highest 

expected utility among those offered. The probabilities serve to weight the contribution of the 

utility of each outcome. The Expected Utility Theory (EUT) model is simple, but has a wide 

range of applications, not just in economic decisions but also in perception 4, 5 and planning of 

movement 6, 7, 8, 9, 10. 

 For more than two centuries EUT was treated as an adequate description of human 

choice behavior in decision under risk until challenged by Allais 11.  In an elegant series of 

experiments he showed that human decision makers did not weight utilities by the 

corresponding probabilities of occurrence in choosing among lotteries. In Prospect Theory, 

Kahneman and Tversky 12 resolved the Allais paradoxes and other shortcomings of EUT by 

assuming that decision makers use a transformation of probability —a probability weight 

or decision weight—in place of probability  in the computation of expected utility. The 

distortion function in decision under risk  was originally inferred from human choices in 

experiments and it is often—but not always—an inverted-S-shaped function of  13, 14, 15.  

Wu, Delgado, and Maloney 16 compared performance in a “classical” decision under 

risk task with performance in a mathematically equivalent motor decision task. Each 

 L

  O1,...,On    p1,!,pn

 U Oi( )  Oi

		
EU L( ) = piU Oi( )

i=1

n

∑

 π p( )
p

 π p( )
p
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participant completed both tasks and while the fitted probability distortion functions for the 

classical task were—as expected—inverted-S-shaped, those based on the motor task tended 

to be better fit by S-shaped functions. The same participant could have both the inverted-S-

shaped and S-shaped forms of the distortion function  in different decision tasks. 

 Ungemach, Stewart and Chater 17 found a similar tendency to underweight small 

probabilities in decisions and overweight large 18, 19, 20.  Probability distortion in the form of 

inverted-S-shaped and S-shaped weighting functions is also found in monkeys’ choice 

behavior 21 and is supported by human neuroimaging evidence 22, 23.  

Zhang and Maloney 24 reported that both the inverted-S-shaped or S-shaped distortion 

functions are found in relative frequency and confidence tasks other than decision-making 

under risk. For convenience, we will use the term "probability" to include relative frequency 

and confidence. The same participants had different inverted-S-shaped or S-shaped 

probability distortion functions in different experimental conditions even though the trials for 

the different conditions were randomly interleaved. They concluded that the probability 

distortion function is not fixed for a participant but dynamic, changing systematically with task.  

There is increasing evidence that dynamic remapping of representational range occurs 

along more abstract dimensions, such as value 25, 26, 27, 28, 29, numerosity 30, 31, relative 

frequency 32, and variance 33. 

Zhang and Maloney 24 found that probability distortions could be well fit by  linear 

transformations: 

  ,  (2) 

where   is the log-odds 34 or logit function 35 and   and   are 

free parameters.  See Figure 1a for examples and Zhang and Maloney 24 for further examples, 

which include 20 datasets taken from 12 studies involving probability, relative frequency and 

 π p( )

λ π p( )⎡⎣ ⎤⎦ = γ  λ p( )+ 1− γ( )λ p0( )

  
λ p( ) = log

p
1− p  γ > 0   0 < p0 <1
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confidence, all the studies for which we could recover and analyze data. We caution that 

these Linear in Log-Odds (LLO) fits to data represent empirical regularities unmotivated by 

any theory.  

 

 

Figure 1. Motivations and intuitions for the bounded log-odds model (BLO). a. Observed 
probability distortions (top row) can be well captured by a linear fit on the log-odds scale (bottom 
row). The  and  respectively denote the log-odds of the objective  and subjective 
probabilities,  and. Circles denote data. Thick curves or lines denote the LLO fits. Tversky and 
Kahneman (1992): Subjective probability (decision weight) versus objective probability in decision 
under risk. Attneave (1953): Estimated relative frequency of letters in written English versus actual 
relative frequency. Tanner, Swets, & Green (1956), c.f. Green and Swets (1966/1974): Estimated 
probability of signal present versus objective probability in a signal detection task. Adapted from 
Zhang & Maloney (2012). b. Encoding on the Thurstone scale. A selected range of  is 

encoded on the Thurstone scale with limited resolution. The smaller the range, the smaller the 
encoding variance. 
 

 Over the course of this article we will replace Eq. 2 by a new model, Bounded Log-

Odds (BLO) based on theoretical considerations. We propose that probability distortion in both 

decision under risk and in judgment of relative frequency is fundamentally a consequence of a 

specific limitation on the dynamic range of the neural representation of probability which we 

identify.  As a consequence of this limitation, human performance in a wide variety of tasks 

λ p[ ] λ π̂[ ]
p

Δ−, Δ+⎡⎣ ⎤⎦
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(e.g. the Allais Paradoxes 11) is necessarily sub-optimal by whatever measure is appropriate to 

each task.  

However, the variation of probability distortion with task hints that—subject to "bounds" 

on probability representation—individuals might adaptively select the specific form of 

probability distortion that allows them to perform as well as possible in the task, a form of 

bounded rationality in Herbert Simon’s sense 36.  What counts as "as well as possible" varies 

with task and for the tasks considered here we will identify the appropriate decision variables. 

 BLO is based on three assumptions: 
 

1. log-odds representation 

2. representation on a bounded Thurstone scale 

3. variance compensation 

We will use factorial model comparison 37 to separately test each of the three assumptions 

against plausible alternatives including LLO. We will then compare the performance of BLO to 

all previous models of decision under risk currently in the literature. The data used in all model 

comparisons are taken from a new experiment we report here and data from a previous article 

by Gonzalez and Wu 14.  Last, we will separately test the Maximum Mutual Information 

hypothesis that BLO serves to maximize the mutual Shannon information between objective 

decision variables and their internal representation, a form of bounded rationality.   
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Results 

Assumptions of BLO 
Assumption 1: log-odds representation.  

In the BLO model probability, , is internally represented as a linear transformation of log-

odds, 

  , (3) 

a one-to-one, increasing transformation of probability. A similar log-odds scale has been 

introduced by Erev and colleagues 38, 39 to explain the probability distortion in confidence 

ratings. Such noise-perturbed psychological scales date back to Thurstone 40.  

 

Assumption 2: representation on a bounded Thurstone scale. 

Thurstone 40 proposed several alternative models for representing subjective scales 

and methods for fitting a wide variety of data to such models. We are not concerned with 

methods for fitting data to Thurstone scales or their use in constructing attitude scales; we are 

only interested in Thurstone scales as convenient mathematical structures. We can think of 

the bounded Thurstone scale 40 as an imperfect neural device capable of storing magnitudes 

within a fixed range. We can encode a magnitude signal  anywhere in this range and later 

retrieve it. The retrieved value , however, is perturbed by Gaussian noise with mean 0 and 

variance : we might store 0.5 and retrieve 0.63 or 0.48. The schematic Gaussian 

distributions in Figure 1b capture this representational uncertainty. For simplicity we assume 

that Gaussian error is independent, identically-distributed across the scale (Thurstone’s Case 

V).   

 We can pick any interval on the log-odds scale and map it linearly to the Thurstone 

device. In Figure 1b we illustrate two choices. One represents a small range of the log-odds 

 p

λ p( ) = log p
1− p

s

s

 σ
2
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scale using the full range of the Thurstone device, the other represents a larger range also 

mapped to the full range of the Thurstone device. The row of Gaussians on the two intervals 

of the log-odds scale symbolize the encoding-decoding uncertainty induced by the Thurstone 

scale. 

 The greater the log-odds range that needs to be encoded, the greater the density of 

the magnitudes along the Thurstone scale, and the greater the chances of confusion of 

nearby codes and vice versa. The challenge is to choose a transformation that is most 

beneficial to the organism. 

 Our concern is with the representation of probability, specifically in the form of log-

odds. In mathematical notation we select an interval on the log-odds scale to be mapped to 

the full range of the Thurstone scale and in effect we confine the representation of log-odds 

 to this interval:  

  . (4) 

The value  will be mapped to the minimum on the Thurstone scale, the value  to the 

maximum. The smaller the half-range   the smaller the uncertainty of the 

encoded and decoded values (Figure 1b) relative to the log-odds scale.  We refer to 

 as "truncated log-odds". 

 

Assumption 3: variance compensation. 

Besides the random error on the representational scale, there could be an additional 

uncertainty (variance) associated with the encoding of probability as when estimates of 

probability are used in place of exact probabilities  (see Supplements S1 & S2). Less reliable 

estimates are in effect allotted less space on the representational scale.   

λ

Γ λ[ ]=
Δ− , λ < Δ−

λ, Δ− ≤ λ ≤ Δ+

Δ+ , λ > Δ+

⎧

⎨
⎪⎪

⎩
⎪
⎪

Δ− Δ+

Δ = Δ+ − Δ−( ) 2

 
Λ p( ) = Γ λ p⎡⎣ ⎤⎦( )
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 The resulting variance compensation is a non-linear contraction or expansion around a 

fixed point  on the log-odds scale. For any values of probability  ,  

  , (5) 

where  is, as before, truncated log-odds,  is a measure of the reliability of probability 

that can vary with , and the scaling factor  adjusts the bounded interval to the fixed 

Thurstone scale. This transformation is an example of efficient encoding: the transformation 

maximizes the information encoded by the scale. There is experimental evidence for variance 

compensation analogous to efficient coding in perception 41, 42, 43, 44 and its recent applications 

to value and probability 27, 29, 45. See especially the review by Simoncelli and Olshausen 43. The 

key idea is that a more precise coding of one stimulus at one point in a scale may come at the 

cost of a coarser coding of another stimulus at another point.   

 

Overview of the experimental tests of BLO 
To test BLO, we first performed a new experiment where each participant completed both a 

decision-making under risk (DMR) task and a judgment of relative frequency (JRF) tasks. We 

also re-analyzed the data of Gonzalez and Wu’s 14 DMR experiment.  Objective probabilities 

in these two representative tasks can be readily manipulated and subjective probabilities 

precisely estimated. 

In Gonzalez and Wu 14, 10 participants were tested on 165 two-outcome lotteries, a 

factorial combination of 15 value sets by 11 probabilities (see Methods). Participants chose 

between lotteries and sure rewards so that their certainty equivalent (CE)—the value of sure 

reward that is equally preferred—to each lottery was measured. We refer to Gonzalez and 

Wu’s 14 dataset as GW99, the set of lotteries included in which is large and rich enough to 

allow for reliable modeling on the individual level—as demonstrated in Gonzalez and Wu 14. 

 Λ0  p

Λω p( ) = τ ω pΛ p( ) + 1−ω p( )Λ0
⎡
⎣

⎤
⎦

 Λ p( ) ω p

 p τ
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The decision variables for such a task are the certainty equivalents. To the extent that the 

participant can correctly order certainty equivalents, she can maximize expected utility. 

We refer to the new experiment as Experiment JD (see Methods). In the experiment, 

each of 75 participants completed a DMR task whose procedure and design (Figure S1a) 

followed that of Gonzalez and Wu (1999) as well as a JRF task (Figure S1b) where 

participants reported the relative frequency of black or white dots among an array of black and 

white dots. The same 11 probabilities were used in the two tasks. The decision variables for 

such a task are the relative frequencies themselves.  

By comparing the performance of individuals in two different tasks that involved the 

same set of probabilities, we hoped to identify the possible common representation of 

probability and how it may vary with task.  

Based on the measured CEs (for DMR) or estimated relative frequencies (for JRF), we 

performed a non-parametric estimate and model fits for the probability distortion of each 

participant and each task (see Methods). Similar to previous studies of DMR 14 and JRF 24, 46, 

we found inverted-S-shaped probability distortions for most participants but also marked 

individual differences in both tasks (Figure 2abc). The DMR results of GW99 (Figure 2a) and 

Experiment JD (Figure 2b) were similar and were collapsed in further analysis whenever 

possible.  

We used the non-parametric estimates to assess participants’ probability distortions 

and we compared model fits with them. For an average participant (the last panels in Figure 

2abc), the LLO and BLO models provided almost equally good fits. However, an examination 

of individual participants’ probability distortions revealed that, compared to the LLO fit, the 

BLO fit captured observed individual differences considerably better. This observation can be 

quantified using the mean absolute deviations of the model fits from the non-parametric 

estimates (Figure 2de), which was significantly smaller for BLO than for LLO at  for p = 0.25
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DMR (paired t-test, t(84) = 2.40, P = 0.019) and for all 11 p’s for JRF (paired t-tests, all t(74) > 

2.87, p < 0.006). 

 

Figure 2. Comparison of model fits to non-parametric estimates of probability distortions. a. 
Reanalysis of DMR data from Wu & Gonzalez (1999). In the first 10 panels the data  for π̂ p( )
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each participant is plotted versus  as black circles. The LLO fit to the participant’s data is drawn 
as a blue contour, the BLO fit as a red contour. The last panel is the mean across participants. b.  
DMR data from our experiment. The format is identical with data and model fits for 75 
participants. The last panel is the mean across participants.   c. JRF data from our experiment.  
For each of the 75 participants we plot the residuals  versus  to illustrate the small but 
patterned probability distortions found. We also plot the fits of LLO (blue) and BLO (red) to the 
residuals. Corresponding panels in b and c are for the same participant. Compared to the LLO fits 
(blue curves), the BLO fits (red curves) were overall in better agreement with the non-parametric 
estimates of probability distortions. d. e. Mean absolute deviations of the model fits from the non-
parametric estimates are plotted against , separately for DMR (d) and JRF (e). Shadings denote 
SE.   
 

 
Factorial model comparisons 
BLO is built on three assumptions: log-odds representation, boundedness, and variance 

compensation. To test these assumptions, we used factorial model comparison 37 and 

constructed 12 models whose assumptions differ in the following three “dimensions” (see 

Methods for details).  

D1: scale of transformation. The scale of transformation can be the log-odds scale, 

the Prelec scale 47,  or the linear scale based on the neo-additive family 48, 49, 50, 51, 52, 53, 

54, 55.  

D2: bounded versus bounds-free.  

D3: variance compensation. The variance to be compensated can be the encoding 

variance (denoted ) or constant (denoted ).  

 The models we considered are not all nested (see below) nor does factorial model 

comparison 37 require nested models. Both BLO and LLO are special cases of the 12 models, 

respectively corresponding to [log-odds, bounded, ] and [log-odds, bounds-free, 

].  

 For each participant, we fit each of the 12 models to the participant’s CEs (for DMR) or 

estimated relative frequencies (for JRF) using maximum likelihood estimation (see 

p

π̂ p( )− p p

p

V p( ) V = const

V p( )

V = const
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Supplement S3 for details). The Akaike information criterion with a correction for sample 

sizes, AICc 56, 57, was used for model selection. For a specific model, the ΔAICc was 

computed for each participant and each task as the difference of AICc between the model and 

the minimum AICc among the 12 models. A higher value of ΔAICc indicates a worse model 

fit.  

For both DMR and JRF, BLO was the model of the lowest summed ΔAICc across 

participants (Figure 3ab). The results were similar for participants in different experiments 

(Figure S3). To see how well each of BLO’s assumptions behaves compared to its 

alternatives, we divided the 12 models into model families by their assumptions on D1, D2, or 

D3 (e.g. the bounded family and the bounds-free family). We first calculated for each model 

the number of participants best fit by the model (lowest ΔAICc) and the exceedance 

probability from the group-level Bayesian model selection 58, which is an omnibus measure of 

the probability that the model is the best model among the 12 models. The summed number 

of best-fit participants is then plotted for each model family in Figure 3cd.  For both DMR and 

JRF, the assumptions of BLO outperformed the alternative assumptions on each of the three 

dimensions, with the summed exceedance probability approaching 1.   

We also performed model comparisons separately for participants with inverted S-

shaped and participants with S-shaped distortions (Figure S4), and tested a range of 

additional models of decision under risk outside the framework of Cumulative Prospect Theory 

(CPT) we currently used (Figure S5). Again, the BLO model outperformed all alternative 

models (see Supplement S4 for details).    
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Figure 3. Results of factorial model comparison. We compared 12 models that differ on three 
dimensions (“factors”) of assumptions: scale of transformation (log-odds, Prelec, or linear), 
boundedness (bounded or bounds-free) and variance compensation (  or ). BLO 

corresponds to [log-odds, bounded, ]. LLO corresponds to [log-odds, bounds-free, 
].  The summed ΔAICc across participants is plotted for each model, separately for 

DMR (a. 85 participants) and JRF (b. 75 participants). Lower values of ΔAICc are better. BLO 
outperformed the alternative models in both tasks. c, d. Each assumption of BLO (log-odds, 
bounded, and ) also outperformed the alternative assumptions on its dimension. Each panel 
is for comparisons across one dimension, separately for DMR (c) and JRF (d). For a family of 
models with a specific assumption, shaded bars denote the number of participants best accounted 
by the model family. The Pexc above the highest bar denotes the summed exceedance probability 
of the corresponding model family.  
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Invariances across time and tasks 

The scaling parameter  maps the bounded range of  to the Thurstone scale of 

fixed length. An exploration of the estimated parameters of BLO (Supplement S5) shows that 

the product of  and  was indeed close to a constant across participants, whose median 

estimate was 2.03 for DMR and 3.89 for JRF (Figure 4a). We call  the Thurstone 

invariant, the observed invariance of which suggests that the length of the Thurstone scale is 

similar for different individuals.  

One might question whether the invariance of  might be a consequence of model 

redundancy, that is, whether the apparent two parameters are effectively a single parameter 

and the variation observed is random. Instead, if Thurstone invariant  is a personal 

signature, we should expect it to vary slightly from individual to individual but be positively 

correlated for the same individual across time and tasks.  

Among the 75 participants of Experiment JD, 51 participants completed two sessions 

on two different days, which allowed us to evaluate the consistency of Thurstone invariant 

across time. As expected, we found significant positive correlation between Session 1’s and 

Session 2’s  (Figure S6) for both DMR (rs = 0.57, one-tailed P < 0.001) and JRF (rs = 0.80, 

one-tailed P < 0.001).  

We also found a modest but significant positive correlation between a participant’s  

in JRF and the participant’s  in DMR (Figure 4b): rs = 0.21, one-tailed P = 0.039. Given that 

the two tasks involve entirely different responses and processing of probability information, 

such across-task correlation is surprising and suggests a common constraint underlying the 

probability representations in different tasks. This constraint is probably tighter in tasks that 

τ Δ− ,Δ+⎡⎣ ⎤⎦

τ Δ

Ψ ≡ τΔ

τΔ

Ψ

Ψ

Ψ

Ψ
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demand more working memory, corresponding to a smaller  for DMR (when value as well 

as probability needs to be represented) than that for JRF.  

 

 

Figure 4. The Thurstone invariant . Each circle is for one participant. a. The product of  and 
—the Thurstone invariant —was nearly invariant across participants. The black curve 

denotes , where C was the median value across participants. (11/85 data points are 
outside the plot range of the DMR panel.) b. The estimated  was positively correlated across 
tasks, for participants who completed both the JRF and DMR tasks. (5/75 data points are outside 
the plot range.) The  on the plot refers to Spearman’s correlation coefficient, which is robust to 
outliers, and  is right-tailed. 
 

 

Maximizing mutual information 

Participants had a bounded log-odds representation  that corresponds to a 

probability range far narrower than the range of objective probabilities ( ). As we 

will see below, this choice of  conforms with the Maximum Mutual Information 

hypothesis. 
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 For our purposes, the efficiency of coding can be quantified by the mutual information 

between stimuli  and responses : 

 , (6) 

where   denotes the probability of occurrence of a specific stimulus ,  denotes 

the probability of occurrence of a specific response , and  denotes the conjoint 

probability of the co-occurrence of the two. Stimuli and responses refer to objective and 

subjective relative frequencies in JRF and refer to expected values and certainty equivalents 

in DMR. For a specific task and BLO parameters, we could use the BLO model to generate 

simulated responses and computed expected mutual information using a Monte Carlo method 

(see Methods).  

 For a virtual participant endowed with median parameters, we evaluated how the 

expected mutual information in DMR or JRF varied with  and , given the invariance of 

. We found that the expected mutual information varied non-monotonically with the values 

of  and  (Figure 5a) and there is evidently a unique maximum over the range 

considered.  For both DMR and JRF, the observed median values of  and  (marked by 

solid red circles) were close to the values maximizing the expected mutual information: the 

mutual information associated with the observed  and  were lower than maximum only 

by 0.14% for DMR and 0.53% for JRF. In contrast, if no bounds had been imposed on the 

probability range of  (i.e. , ), the mutual information would be 

6.23% and 14.1% lower than maximum, respectively for DMR and JRF. 

The observed  and  of individual participants were highly symmetric around 0 

(i.e. symmetric around 0.5 on the probability scale) in the JRF task but more variant in the 

DMR task. As Figure 5b shows, this difference may also be driven by mutual information 
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maximization: To achieve no less than 95% of maximum mutual information,  and  

could tolerate a much larger deviation from symmetry in DMR than in JRF. 

 
Figure 5. Choice of  and  as mutual information maximization. a. Expected mutual 
information between stimuli and responses (in bits) is plotted against  and  as contour 
map, separately for DMR and JRF. Higher values are coded as more reddish and lower values as 
more bluish. For both tasks, the observed median value of   (marked by the red circle) 

was close to maximizing the expected mutual information. b. Observed  versus  for 
individual participants, compared to the contour of 95% maximum mutual information (green 
curve). The observed  had a more pronounced deviation from symmetry in DMR than in 

JRF. c. Observed mutual information was positively correlated with maximum mutual information 
(6/85 data points are outside the range of the DMR plot.) The values are clustered just below the 
identity lines in both plots.  d. Observed mutual information was positively correlated across tasks. 
(3/75 data points are outside the plot range.) The  on the plot refers to Spearman’s correlation 
coefficient and  is right-tailed. 
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We further computed the maximum mutual information for each participant based on 

the participant’s BLO parameters, given that  and   are allowed to vary. The maximum 

mutual information was positively correlated with the observed mutual information for both 

DMR (rs = 0.94, one-tailed P < 0.001) and JRF (rs = 0.87, one-tailed P < 0.001), consistent 

with the mutual information maximization hypothesis (Figure 5c). The diagonal lines in both 

plots of Figure 5c are bounds on possible performance and the data in both plots are 

clustered below them. 

Individual participants’ mutual information was positively correlated across time (Figure 

S7, DMR: rs = 0.53, one-tailed P < 0.001; JRF: rs = 0.53, one-tailed P < 0.001) and across 

tasks (Figure 5d, rs = 0.33, one-tailed P = 0.002). Since there was little across-task correlation 

in noise variance (rs = 0.066, one-tailed P = 0.29), the across-task correlation in mutual 

information could not be due to correlated levels of response noises. Instead, it implies a 

common information processing capacity for different tasks. 

  

  

Δ+ Δ−
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Discussion 

We presented a model (Bounded Log-Odds) of probability and relative frequency distortion 

and tested it experimentally in an experiment with two conditions. In one condition participants 

made judgments of relative frequency (JRF) and, in the other, decisions under risk (DMR). 

Each participant completed both conditions, allowing us to compare performance in the two 

tasks within participant. We also reported a reanalysis of a data set from a DMR experiment 

carried out by Gonzalez and Wu 14. 

The BLO Model is intended to model performance in both tasks and it is the first model 

that attempts to do so. It is based on three assumptions: log-odds representation, 

boundedness, and variance compensation. We independently tested each of these 

assumptions using factorial model comparison to verify that they are all essential to fitting 

human data. If we replace any assumption by the alternatives we considered, the resulting 

model is strictly inferior to BLO. We then compared BLO with all of the other models in the 

literature intended to account for probability distortion. BLO outperformed all these models in 

accounting for our experimental results as well as the data of Gonzalez and Wu 14. 

We further show that human performance comes close to maximizing the mutual 

information between decision variables in a task and their imperfect internal representations. 

The decision variables in the DMR task are certainty equivalents (CEs). To the extent that the 

participant can correctly order the distorted CEs, she will maximize expected value. The 

decision variables in the JRF task are the relative frequencies themselves. 

In the four experiments we report, participants chose probability distortions consistent 

with BLO and also with maximizing mutual information. Two recent articles use the same 

criterion (maximum mutual information) to model human encoding of value 29 or to re-interpret 

the context effects of decision under risk 45. These articles taken together are consistent with a 

claim, supported by considerable experimental data, that many observed failures in DMR can 
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be viewed as attempts to compensate for immutable limits in cognitive processing in order to 

preserve Shannon information, a form of bounded rationality 36. 

There are many theoretical models intended to account for inverted-S- or S-shaped 

probability distortion: the power model of proportion judgment 59, 60, the support theory model 

of probability judgment 61, 62, the calibration model 63, the stochastic model of confidence rating 

38, 39, and the adaptive probability theory model of decision under risk 64. However, almost all 

these models were proposed for one specific type of task and are not intended as general 

explanations for observed distortion of probability and relative frequency. Neither do they 

explain why participants exhibit different probability distortions in different tasks and task 

conditions. There was even a belief, at least in decision under risk, that the parameters of 

distortion should be specific to each participant but constant across all tasks 65. 

In contrast, BLO models a common mechanism underlying all probability distortion, 

where we identified two constraints—boundedness and compensation for representational 

uncertainty (variance)—that are pervasive in models of cognitive and perceptual tasks 37, 44, 66, 

67. We found that BLO can be used to estimate an individual’s probability distortion in one task 

and to some extent predict the same individual’s performance in another task. BLO also 

accounts for variation in the "slope" of the distortion function with task or different settings of 

the same task. We next describe some of the implications of BLO. 

 

Discontinuities at p = 0 and p = 1 

BLO and any model based on the boundedness assumption predict that  and 

, that is, probability distortion with discontinuities at  and . Such 

discontinuities are also found in the neo-additive family of weighting functions 54, but are not 

found in other, widely accepted families of probability distortion such as LLO 14, 24 and Prelec’s 

π 0( ) > 0

π 1( ) <1   p = 0   p = 1



22 
 

 

family 47. Kahneman and Tversky’s original Prospect theory 12 included similar discontinuities 

in probability weighting functions (see their Figure 4). 

 The bounded ranges of probability represented on the Thurstone scale according to 

the BLO model fits are fairly limited, approximately [0.15, 0.85]. Given that the occurrence of 

probabilities as extreme as 0.05 and 0.95—or even 0.01 and 0.99—is not uncommon in 

laboratory tasks or real life, bounding is likely to exert detectable influences on probability 

representation and performance under many circumstances. Indeed, there are clues 

indicating boundedness in previous studies. For example, Yang and Shadlen 68 studied 

monkeys’ probabilistic inference and found that the strength of a specific evidence perceived 

by the monkey was, in general, proportional to the objective log-odds of the evidence. But for 

“sure evidence” that corresponded to minus or plus infinity in log-odds, the subjective log-odds 

were bounded, equivalent to [0.15, 0.81] and [0.30, 0.64] in probability for the two tested 

monkeys.   

For the DMR task, where probability is explicitly defined and no explicit sampling 

process seems to be involved, we still found that the slope of probability distortion relies on a 

 term, varying with . It is as if people are compensating for the variation of a virtual 

sampling process 69,  or for the variation caused by Gaussian noise on the Thurstonian log-

odds scale Supplement S1, see also 70. Lebreton et al. 70 show that a generalized form of 

 is correlated with the confidence of value or probability perception and is 

automatically encoded in the ventromedial prefrontal cortex (vmPFC) of the human brain. 

Under certain circumstances, such variance compensation may result in counterintuitive non-

monotonic probability distortion that is indeed empirically observed (see Supplement S6). 

 

The Thurstone invariant 

  p 1− p( )  p

  p 1− p( )



23 
 

 

According to BLO, a bounded range  of the log-odds scale is mapped to a Thurstone 

scale of fixed length by a scaling factor . Indeed, for both JRF and DMR, we found , 

which corresponds to the half length of the Thurstone scale, was almost invariant across 

participants. We defined  and termed it the Thurstone invariant.  

 Though individual differences in  are small, an individual’s  at one time point is 

positively correlated with the individual’s  at another time point. The individual’s  is also 

positively correlated across tasks. Thus the Thurstone invariant proves to be a personal 

signature that imposes a common constraint on the representation of probability distortion in 

different tasks. 

 

Predicting the slope of probability distortion  

The invariance of the Thurstone invariant  implies that when the encoded range  is 

narrower, the scaling parameter  would be greater, leading to a greater slope of probability 

distortion. Meanwhile, mutual information maximization requires  to scale with the range of 

probabilities in the stimuli. Thus BLO predicts that the narrower the probability range of the 

stimuli, the greater the slope of distortion.  

 We performed the following meta-analysis on previous DMR studies to test this 

prediction. Fox and Poldrack 71, Table A.3 summarized the results of a number of decision-making 

studies that were modeled in the framework of Prospect Theory. In Fox and Poldrack’s list, we 

identified the studies where the gamble set was explicitly defined and each gamble consisted 

of two outcomes that could be denoted  (see Supplemental Table S3 for the 12 

studies included). Though different functional forms—LLO, Prelec’s 47 one-parameter and two-

parameter functions, and Tversky and Kahneman’s 13 weighting function—had been assumed 

in different studies, all had a parameter for the slope of probability distortion that is roughly 

Δ− ,Δ+⎡⎣ ⎤⎦
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equivalent to the  in LLO. For each study, we computed the standard deviation of ’s 

distribution as a measure of the probability range of stimuli. Consistent with the BLO 

prediction, we found this measure was significantly negatively correlated with the slope of 

probability distortion (Figure 6), rs = –0.65, one-tailed P = 0.010. 

 
Figure 6. Meta-analysis of previous studies supporting BLO’s prediction on the slope of 
probability distortion in decision under risk. The estimated slope of probability distortion ( ) is 

plotted against the standard deviation of the objective log-odds ( ) of the gamble set, where 

 denotes the probability for the higher outcome of a two-outcome gamble, .  
Each data point is for one published study. The red line denotes the regression line. The 
correlation is negative and significant.  We describe the selection of studies in the text. See Table 
S3 for a full list of the studies. That the slope of distortion decreases with the standard deviation of 

 is consistent with the prediction of BLO. 

 

The crossover point  

A puzzle we did not address earlier concerns the crossover point of probability distortion (i.e. 

the point on the distortion curve where overestimation changes into underestimation or the 

reverse). It has been frequently observed that the crossover point is near 0.5 for the JRF task 

24 but approximately 0.37 for the DMR task 47. That is, the probability distortion is symmetric 

around 0.5 in the former but asymmetric in the latter. There are plausible reasons to have 
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symmetry, but why asymmetry? Here we conjecture that the asymmetry is also driven by the 

maximization of mutual information, which, for the DMR task, means to have the CEs of 

different gambles as discriminable as possible. Following conventions 14, 71 and for parsimony, 

we had assumed a uniform Gaussian noise on the CE scale. However, larger CEs may tend 

to be associated with higher variances, according to Weber’s law 72. To compensate for this, 

more of the representational scale should be devoted to larger probabilities and thus to the 

larger CEs associated with them. Indeed, adopting a smaller crossover point (i.e. less than 

0.5) would map larger probabilities to a longer range of subjective probabilities and effectively 

implement such a strategy of probability representation. 

 

Open questions and future directions 

The judgment of relative frequency and decision under risk are the only two tasks where BLO 

and its assumptions have been tested, but these two tasks together represent a vast body of 

previous research. The model may be applied to a wider range of tasks involving frequency 

and probability. It will likely shed light on the common and distinctive mechanisms of 

probability distortion in different tasks.    

 What determine the slope and crossover point of probability distortion in a specific task? 

Why may the parameters of probability distortion change from task to task and from individual 

to individual? In the present study we have provided a tentative answer: they change because 

the brain actively compensates for its own fixed limitations.   

 Important questions for future research also include: How may probability distortion 

change from trial to trial? We conjecture that the human representation of probability can 

adapt to the environment, in the spirit of efficient coding 41, 42, 43. The current version of BLO is 

a stationary model, whose prediction will not change with time or experience. In contrast, non-
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stationarity has been identified in probability distortion for both the judgment of relative 

frequency 24 and decision under risk 73.  

 Can the BLO model apply to decisions among complex gambles with more than two 

non-zero outcomes? In theory, BLO just specifies the probability weighting function in 

Cumulative Prospect Theory 13 and can apply to any circumstances where Prospect Theory 

applies. But it is still an empirical question whether probability distortion for gambles with more 

than two non-zero outcomes can be predicted by BLO.  

We chose not to test “decision from experience” 20—another important form of 

decision-making—because the decision from experience task does not require that the 

decision maker estimate the frequency of items 19, 74. The decision maker may estimate the 

multinomial distribution of rewards in a card deck—or she may simply register reward and 

punishment and base her decision on a form of reward averaging or reinforcement learning. 

The results of the comprehensive model competition of Erev, Ert 75 are consistent with this 

claim. More recently, there has been neuroimaging evidence that human decisions from 

experience may be based on the retrieval of individual samples from past experience 76, 77. If 

the decision maker does not estimate relative frequency then BLO does not apply.  

A final note: Kahneman and Tversky’s original Prospect Theory contained the 

assumption that decision makers would first interpret (“edit”) available information 12. In this 

initial editing stage they might, for example, convert the probability 0.31317 to the more 

tractable 1/3. Only then would they assign prospect values to lotteries in the second, 

evaluation stage.  In presenting the BLO Model we focus on evaluation. Still, nothing about 

the theory would preclude adding an editing phase or discretizing the representation of 

probability if justified by empirical results. 
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Methods 
 
Experiment 
 
Experiment JD was approved by the Institutional Review Board of School of Psychological 

and Cognitive Sciences at Peking University. All participants gave written informed consent in 

accordance with the Declaration of Helsinki. Each participant performed two tasks: Decision-

Making under Risk (DMR) and Judgment of Relative Frequency (JRF).  

The procedures and designs of the DMR task were the same as those of Gonzalez 

and Wu 14, except that payoffs in the gambles were in RMB instead of in USD. On each trial 

(Figure S1a), participants were presented with a two-outcome gamble  and 

tables of sure amounts of rewards. They were asked to check on each row of the tables 

whether they preferred the gamble or the sure amount. The range of the sure amounts started 

with , and was narrowed down in the second table so that we could estimate 

participants’ certainty equivalent (CE) for the gamble. There were 15 possible outcome pairs 

 : (25, 0), (50, 0), (75, 0), (100, 0), (150, 0), (200, 0), (400, 0), (800, 0), (50, 25), (75, 

50), (100, 50), (150, 50), (150, 100), (200, 100), (200, 150). There were 11 possible 

probabilities: 0.01, 0.05, 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9, 0.95, 0.99. A full combination of 

them resulted in 165 different gambles used in the experiment.  

 The stimuli and procedures of the JRF task followed Zhang and Maloney (2012). On 

each trial (Figure S1b), participants were presented with an array of black and white dots and 

reported their estimate of the relative-frequency of black or white dots by clicking on a 

horizontal bar with tick marks from 0 to 100%. Each participant was randomly assigned to 

report the relative frequency either for the black or for the white dots. The objective relative 

frequency of JRF was chosen from the same 11 possible values as its counterpart in DMR. 

The total number of dots (numerosity) in a trial was varied across trials, which could be 200, 

x1, p;x2,1− p( )

x2, x1[ ]

x1, x2( )
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300, 400, 500, or 600. The dots in each display were distributed within a circular area of 12° 

diameter or a square area of 17°×17° diameter.   

 Experiment JD (a total of 75 participants) consisted of two sub-experiments, JDA (51 

participants, 20 male, aged 18 to 29) and JDB (24 participants, 10 male, aged 18 to 27). Six 

additional participants failed to complete the experiment for technical or personal reasons. 

Each session had 11 (probability) × 15 (outcome pair) = 165 DMR trials and 11 (probability) × 

5 (numerosity) × 6 = 330 JRF trials, which took approximately two hours. In Experiment JDA, 

each participant completed two sessions on two different days, so that we could evaluate the 

consistency of their performance. Trials from the two tasks were randomly interleaved. In 

Experiment JDB, each participant completed only one session, during which one task 

preceded the other, with DMR first for half of the participants and JRF first for the other half. 

Similar patterns of probability distortions (Figure 2bc, first 51 panels for Experiment JDA and 

last 24 panels for Experiment JDB) and results of model comparisons (Figure S3) were found 

for participants in the two sub-experiments. Thus we collapsed the two sub-experiments in our 

analysis whenever applicable.  

 
 
The relationship between BLO and LLO 

We compare LLO (Eq. 2)  

 

to BLO rewritten: 

  . (7) 

λ π p( )⎡⎣ ⎤⎦ = γ  λ p( )+ 1− γ( )λ p0( )

Λω p( ) = τ ω pΛ p( ) + 1−ω p( )Λ0
⎡
⎣

⎤
⎦

= τω pΛ p( ) + 1− τω p( )τ 1−ω p( )
1− τω p

Λ0
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Over the range  truncated log-odds coincides with log-odds:  . 

Comparing the equations above, over the range   	replaces and  

replaces	 . In LLO, both  and  are fixed but in BLO, however, the reliability 

parameter  may vary with the value of  depending on the model of variance appropriate 

to a given task.  If a specific dataset is generated by BLO but fitted by LLO, we would expect 

that the estimates of  and  would change with experimental conditions as predicted by 

BLO. Consequently, we can fit LLO to data and look for the pattern of deviations in the fitted 

coefficients predicted by BLO, a test of the BLO Model (e.g. Figure 6).  

 
Applying BLO to JRF 

We need additional assumptions when applying BLO to the JRF experiments. One of the key 

assumptions of BLO is variance compensation and, to apply BLO, we need to specify a model 

of the participant's sampling process and the variance of the resulting estimates.  First, we 

assume that humans may not have access to all the tokens presented briefly in a display or in 

a sequence, due to perceptual and cognitive limits 78, 79. Instead, they take samples from the 

population and are thus subject to the randomness associated with sampling. Within BLO, 

probability distortion arises in part from a compensation for the sampling noise captured in our 

model by the reliability parameter . 

Denote the total number of dots in a display as   and the relative frequency of black 

dots as . Suppose a sample of   dots is randomly drawn from the display. We assume 

that the sampling is without replacement. That is, the same dot will not be drawn twice during 

one sampling, which is reasonable in our case. As a result, the variance of  requires a 

correction for finite population 80 (see Supplement S2 for the derivation): 

Δ−,Δ+⎡⎣ ⎤⎦  Λ p( ) = λ p( )

Δ−,Δ+⎡⎣ ⎤⎦  τω p γ
  

τ 1−ω p( )
1−τω p
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  λ p0( ) γ p0

 ω p
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   (8) 

The finite population correction is intuitive: the larger the sample size relative to the 

population, the smaller the variance. When , i.e. when the whole population is included 

in the sample, we should have  for each sample and thus  . At the other 

extreme, when , sampling without replacement is equivalent to sampling with 

replacement, the familiar . The BLO variance correction is a weighted mixture of an 

estimate based on the sample and an "anchor"  which may also be stochastic, with its own 

variance  . The optimal weight for combining the two is  

  . (9) 

Denote  , the anchor precision parameter. This equation can be rewritten as  

  . (10)  

Finally, we assume that encoded values  are perturbed by additive Gaussian 

error (Thurstone, 1927), updating Eq. 5 to 

 ,     (11) 

where  is Gaussian error on the log-odds scale with mean 0 and variance .  

 

Applying BLO to DMR 

 To model , BLO’s assumptions for different tasks are the same, except that 

encoding variance is task-specific. Probability is described explicitly in DMR and there need 

be no uncertainty about its value. Participants’ choices suggested, however, that they were 
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still compensating for some kind of encoding uncertainty that varies with the value of 

probability. Gaussian encoding noise on the log-odds scale, when transformed back to the 

probability scale, results in variance that is approximately proportional to  (see 

Supplement S1 for proof). The reliability parameter in Eq. 5 is thus: 

 , (12) 

where  is a free parameter. This same equation can be reached if, alternatively, we assume 

that participants were compensating for a virtual sampling process (the  term in Eq. 

8 can be assimilated into  for constant  and ). Compensation for virtual sampling was 

also assumed in some previous theories on probability distortion 64, 81.  

  Any lottery in GW99 or Experiment JD can be written as , which offers 

the value x1 with probability p and otherwise x2, with . For each participant, we 

modeled the certainty equivalent (CE) of each lottery using Cumulative Prospect Theory 

(CPT) 13 and assumed a Gaussian error term on the CE scale, as in Gonzalez and Wu 14:  

 , (13) 

where  denotes the utility function,  denotes the inverse of ,  denotes 

the probability distortion function, and  is a Gaussian random variable with mean 0 and 

variance .  The utility function for non-negative gains alone (none of the lotteries involved 

losses) was assumed to be a power function with parameter : 

 . (14) 

 
 
 
Non-parametric estimation of probability distortion 
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A non-parametric estimation of probability distortion is plotted in Figure 2 for each participant 

and each task. For JRF, where participants explicitly estimated their subjective relative 

frequency, the non-parametric estimation  for a specific  was simply the participant’s 

mean estimate across trials, averaged on the log-odds scale:  

 , (15) 

where  denotes the participant’s estimate of relative frequency on trial t, .  
 

For the  of DMR, we modeled participants’ CE in the framework of CPT as we 

did for BLO and LLO fits (Eq. 13) except that no functional form was assumed for the 

probability distortion function. Instead, the  for each of the 11 p’s was fitted as a free 

parameter. The same power functional form was assumed for the utility function in the non-

parametric estimation as in the model fits to minimize possible differences irrelevant to 

probability distortion. This procedure was different from the non-parametric method of 

Gonzalez and Wu 14, where no functional forms were assumed for either probability distortion 

or utility. We verified in the GW99 dataset that our non-parametric estimation of probability 

distortion led to similar results as Gonzalez and Wu 14 (Figure S2).  

 

 

Factorial model comparisons 

We used factorial model comparison 37 to separately test the assumptions of BLO, comparing 

alternative models that differ in the following three “dimensions”.   

D1: scale of transformation. We considered two alternatives to the log-odds scale: 

the “Prelec scale” and the linear scale.  

 The Prelec scale is derived from Prelec’s function 47:	 								 

π̂ NP p( ) p

π̂ NP p( ) = λ −1 1
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   (16)                                      

with  and  as free parameters. LLO and the Prelec families both are among the 

probability weighting functions that typically fit best to data 82, 83. They are difficult to 

distinguish empirically 15, 82. 

Taking logarithms and negating twice on both sides of Prelec’s function, we 

can see that Prelec’s function is equivalent to a linear transformation  

   (17) 

on the Prelec scale 

  . (18) 

The functional form of the linear scale is based on the neo-additive family 48, 49, 

50, 51, 52, 53, 54, 55 which refers to a linear transformation of probability except that it may 

have discontinuities at the extremes to ensure  is within [0,1]: 

                               (19) 

where   and   are free parameters. The linear scale is accordingly defined as 

  . (20) 

For models that use the Prelec scale, we simply replaced the log-odds and its 

reverse transformation with  and its reverse. For models that use the linear 

scale, the log-odds transformation was replaced by  but there was no inverse 

transformation, because  is not invertible, and no need for an inverse 

π p( ) = exp −β − log p( )η( )
η β
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transformation, because  corresponds to probability. The noise term 	was 

always added to the log-odds of  to maintain a fair comparison between models. 

D1 does not influence the number of free parameters of the model. 

D2: bounded or bounds-free. We assumed a bounding operation in BLO (Eq. 4), 

where probabilities outside specific boundaries are truncated to the boundaries. We 

considered alternative models that are bounds-free. Bounds-free models would not 

include the bounds parameters,   and . 

D3: variance compensation. In BLO,  is inversely related to  (Eq. 10) so 

that the encoding variance is appropriately compensated in the framework of Bayesian 

inference. Alternatively, we considered  as a constant that does not change with 

, as if the compensated variance is constant. When  is constant, the potentially non-

linear transformation of BLO (Eq. 5) is reduced to the linear transformation of LLO, as 

a re-parameterization would reveal (with one free parameter reduced). The two forms 

of variance compensation will be referred to as  and . 

The three dimensions—D1, D2, and D3—correspond to the three assumptions of BLO.  

We did not list the presence or absence of the scaling factor  as a possible dimension for 

both theoretical and practical reasons. On one hand,  is required to map the bounded 

interval to the fixed Thurstone scale. On the other hand, the absence of scaling would 

preclude a greater-than-one . There is evidence from several laboratories other than our 

own experiments that  can be greater than 1 16, 84, 85, 86.  

 The three dimensions are independent of each other, analogous to the different factors 

manipulated in an experiment with a factorial design. In total, we tested 3 (D1: log-odds, 

λ ° p( ) ελ
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Prelec, linear) × 2 (D2: bounded, bounds-free) × 2 (D3: ,  ) = 12 different 

models. LLO is among the 12 models (when D1=log-odds, D2=bounds-free, D3= ). 

 

 

Computation of mutual information 

For a specific real or virtual participant in a specific task, we used the BLO model to generate 

simulated responses for the stimuli of the experiment and then computed the expected mutual 

information between the stimuli and responses using a Monte Carlo method. When  and 

 were varied, the value of  was determined by the invariance . To obtain a 

stable estimate of the expected mutual information, we repeated the stimulus set of each task 

to produce 198,000 trials for JRF and 3,300,000 trials for DMR. The  and   in Eq. 6 refer 

to objective and subjective relative frequencies in JRF and refer to expected values and 

certainty equivalents in DMR. In the numerical computation of mutual information, continuous 

variables need to be quantized. For JRF, the objective and subjective probabilities were 

quantized by rounding to the 2nd decimal, and for DMR, the expected values and certainty 

equivalents were quantized by rounding to the closest integer. 

V p( ) V = const

V = const
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