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ABSTRACT

In decision under risk participants' choices are based on probability values systematically
different from those that are objectively correct. Similar systematic distortions are found in
tasks involving relative frequency judgments. These distortions limit performance in a wide
variety of tasks and an evident question is, why do we systematically fail in our use of
probability and relative frequency information? We propose a Bounded Log-Odds Model
(BLO) of probability and relative frequency distortion based on three assumptions. The key
assumption is that the dynamic range of representation of probability and relative frequency is
limited. We tested the model experimentally and found that BLO accounts for individual
participants’ data better than all previous models in the literature. We also show that subject to
the dynamic range limitation, participants’ choice of distortion serves to maximize the mutual

information between objective and internal values, a form of bounded rationality.

Keywords: probability distortion; frequency judgment; decision under risk; efficient coding;

mutual information
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In making decisions, we choose among actions whose outcomes are typically uncertain; we
can model such choices as choices among lotteries. To specify a lottery L we list all of its
possible outcomes O1,...,On and the corresponding probabilities of occurrence p,,---,p, that a

specific lottery assigns to each outcome. If we knew all the relevant probabilities, we would

be engaged in decision under risk '. If we can also assign a numerical measure of utility

U (O,.) to each outcome O,, we could assign an expected utility to each lottery,

EU(L)=§pI,U(Oi) , (1)

and a decision maker maximizing expected utility #* would select the lottery with the highest
expected utility among those offered. The probabilities serve to weight the contribution of the
utility of each outcome. The Expected Utility Theory (EUT) model is simple, but has a wide
range of applications, not just in economic decisions but also in perception *° and planning of
movement & 78910,

For more than two centuries EUT was treated as an adequate description of human
choice behavior in decision under risk until challenged by Allais ''. In an elegant series of
experiments he showed that human decision makers did not weight utilities by the
corresponding probabilities of occurrence in choosing among lotteries. In Prospect Theory,

Kahneman and Tversky '? resolved the Allais paradoxes and other shortcomings of EUT by

assuming that decision makers use a transformation of probability ﬂ(p)—a probability weight
or decision weight—in place of probability p in the computation of expected utility. The

distortion function in decision under risk ﬂ(p) was originally inferred from human choices in

experiments and it is often—but not always—an inverted-S-shaped function of p '3 1°,

Wu, Delgado, and Maloney '"® compared performance in a “classical” decision under

risk task with performance in a mathematically equivalent motor decision task. Each
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participant completed both tasks and while the fitted probability distortion functions for the
classical task were—as expected—inverted-S-shaped, those based on the motor task tended

to be better fit by S-shaped functions. The same participant could have both the inverted-S-

shaped and S-shaped forms of the distortion function n(p) in different decision tasks.

Ungemach, Stewart and Chater '" found a similar tendency to underweight small

18, 19, 20

probabilities in decisions and overweight large Probability distortion in the form of

inverted-S-shaped and S-shaped weighting functions is also found in monkeys’ choice
behavior #' and is supported by human neuroimaging evidence % %,

Zhang and Maloney  reported that both the inverted-S-shaped or S-shaped distortion
functions are found in relative frequency and confidence tasks other than decision-making
under risk. For convenience, we will use the term "probability" to include relative frequency
and confidence. The same participants had different inverted-S-shaped or S-shaped
probability distortion functions in different experimental conditions even though the trials for
the different conditions were randomly interleaved. They concluded that the probability

distortion function is not fixed for a participant but dynamic, changing systematically with task.

There is increasing evidence that dynamic remapping of representational range occurs

25, 26, 27, 28, 29 30, 31

along more abstract dimensions, such as value , humerosity , relative
frequency *?, and variance **.
Zhang and Maloney ** found that probability distortions could be well fit by linear

transformations:
AL (p)]=rA(p)+(1-7)A(py) , (2)

where 2(p) =Iog1L is the log-odds * or logit function * and y >0 and 0<p, <1 are

free parameters. See Figure 1a for examples and Zhang and Maloney 2* for further examples,

which include 20 datasets taken from 12 studies involving probability, relative frequency and
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confidence, all the studies for which we could recover and analyze data. We caution that

these Linear in Log-Odds (LLO) fits to data represent empirical regularities unmotivated by

any theory.
Tversky & Tanner, Swets,
a Kahneman At:r;zgve & Green b
(1992) (1953) (1956)
1 0.2 1 Probability Scale
# 05 0.1 05 0 1
I\
] ,
% 05 1 % 0.1 0.2 % 05 1 AY ‘VA e A*
6 2 4 0 \ \,‘l Log-Odds Scale/ 7 +oo
° S ~ s
; S
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Figure 1. Motivations and intuitions for the bounded log-odds model (BLO). a. Observed
probability distortions (top row) can be well captured by a linear fit on the log-odds scale (bottom
row). The l[p] and l[fz] respectively denote the log-odds of the objective and subjective

probabilities, , and. Circles denote data. Thick curves or lines denote the LLO fits. Tversky and

Kahneman (1992): Subjective probability (decision weight) versus objective probability in decision
under risk. Attneave (1953): Estimated relative frequency of letters in written English versus actual
relative frequency. Tanner, Swets, & Green (1956), c.f. Green and Swets (1966/1974): Estimated
probability of signal present versus objective probability in a signal detection task. Adapted from

Zhang & Maloney (2012). b. Encoding on the Thurstone scale. A selected range of [A‘, A*] is

encoded on the Thurstone scale with limited resolution. The smaller the range, the smaller the
encoding variance.

Over the course of this article we will replace Eq. 2 by a new model, Bounded Log-
Odds (BLO) based on theoretical considerations. We propose that probability distortion in both
decision under risk and in judgment of relative frequency is fundamentally a consequence of a
specific limitation on the dynamic range of the neural representation of probability which we

identify. As a consequence of this limitation, human performance in a wide variety of tasks
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(e.g. the Allais Paradoxes ') is necessarily sub-optimal by whatever measure is appropriate to
each task.

However, the variation of probability distortion with task hints that—subject to "bounds"
on probability representation—individuals might adaptively select the specific form of
probability distortion that allows them to perform as well as possible in the task, a form of
bounded rationality in Herbert Simon’s sense 3. What counts as "as well as possible" varies
with task and for the tasks considered here we will identify the appropriate decision variables.

BLO is based on three assumptions:

1. log-odds representation

2. representation on a bounded Thurstone scale

3. variance compensation
We will use factorial model comparison % to separately test each of the three assumptions
against plausible alternatives including LLO. We will then compare the performance of BLO to
all previous models of decision under risk currently in the literature. The data used in all model
comparisons are taken from a new experiment we report here and data from a previous article

by Gonzalez and Wu ™.

Last, we will separately test the Maximum Mutual Information
hypothesis that BLO serves to maximize the mutual Shannon information between objective

decision variables and their internal representation, a form of bounded rationality.
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Results

Assumptions of BLO

Assumption 1: log-odds representation.

In the BLO model probability, p, is internally represented as a linear transformation of log-

odds,

Ap)=log . 3)

a one-to-one, increasing transformation of probability. A similar log-odds scale has been
introduced by Erev and colleagues ** *° to explain the probability distortion in confidence

ratings. Such noise-perturbed psychological scales date back to Thurstone “°.

Assumption 2: representation on a bounded Thurstone scale.

Thurstone *° proposed several alternative models for representing subjective scales
and methods for fitting a wide variety of data to such models. We are not concerned with
methods for fitting data to Thurstone scales or their use in constructing attitude scales; we are
only interested in Thurstone scales as convenient mathematical structures. We can think of
the bounded Thurstone scale “° as an imperfect neural device capable of storing magnitudes
within a fixed range. We can encode a magnitude signal s anywhere in this range and later

retrieve it. The retrieved value s, however, is perturbed by Gaussian noise with mean 0 and

variance o”: we might store 0.5 and retrieve 0.63 or 0.48. The schematic Gaussian
distributions in Figure 1b capture this representational uncertainty. For simplicity we assume
that Gaussian error is independent, identically-distributed across the scale (Thurstone’s Case
V).

We can pick any interval on the log-odds scale and map it linearly to the Thurstone

device. In Figure 1b we illustrate two choices. One represents a small range of the log-odds
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scale using the full range of the Thurstone device, the other represents a larger range also
mapped to the full range of the Thurstone device. The row of Gaussians on the two intervals
of the log-odds scale symbolize the encoding-decoding uncertainty induced by the Thurstone
scale.

The greater the log-odds range that needs to be encoded, the greater the density of
the magnitudes along the Thurstone scale, and the greater the chances of confusion of
nearby codes and vice versa. The challenge is to choose a transformation that is most
beneficial to the organism.

Our concern is with the representation of probability, specifically in the form of log-
odds. In mathematical notation we select an interval on the log-odds scale to be mapped to
the full range of the Thurstone scale and in effect we confine the representation of log-odds

A to this interval:

A, A<A
[[A]=4 A, A <A<A* . (4)
AT, A>AT

The value A~ will be mapped to the minimum on the Thurstone scale, the value A* to the

maximum. The smaller the half-range A:(A*—A‘)/z the smaller the uncertainty of the

encoded and decoded values (Figure 1b) relative to the log-odds scale. We refer to

A(p)= F(/l[p]) as "truncated log-odds".

Assumption 3: variance compensation.

Besides the random error on the representational scale, there could be an additional
uncertainty (variance) associated with the encoding of probability as when estimates of
probability are used in place of exact probabilities (see Supplements S1 & S2). Less reliable

estimates are in effect allotted less space on the representational scale.
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The resulting variance compensation is a non-linear contraction or expansion around a

fixed point A, on the log-odds scale. For any values of probability p ,
A“’(p)z r[ pr(p)+(1—wp)Ao ] ; (5)
where A(p) is, as before, truncated log-odds, w, is a measure of the reliability of probability

that can vary with p, and the scaling factor 7 adjusts the bounded interval to the fixed

Thurstone scale. This transformation is an example of efficient encoding: the transformation
maximizes the information encoded by the scale. There is experimental evidence for variance

compensation analogous to efficient coding in perception *' 42 43.44

and its recent applications
to value and probability 2" 2* 4% See especially the review by Simoncelli and Olshausen **. The
key idea is that a more precise coding of one stimulus at one point in a scale may come at the

cost of a coarser coding of another stimulus at another point.

Overview of the experimental tests of BLO

To test BLO, we first performed a new experiment where each participant completed both a
decision-making under risk (DMR) task and a judgment of relative frequency (JRF) tasks. We
also re-analyzed the data of Gonzalez and Wu's " DMR experiment. Objective probabilities
in these two representative tasks can be readily manipulated and subjective probabilities
precisely estimated.

In Gonzalez and Wu ™, 10 participants were tested on 165 two-outcome lotteries, a
factorial combination of 15 value sets by 11 probabilities (see Methods). Participants chose
between lotteries and sure rewards so that their certainty equivalent (CE)—the value of sure
reward that is equally preferred—to each lottery was measured. We refer to Gonzalez and
Wu's ' dataset as GW99, the set of lotteries included in which is large and rich enough to

allow for reliable modeling on the individual level—as demonstrated in Gonzalez and Wu .
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The decision variables for such a task are the certainty equivalents. To the extent that the
participant can correctly order certainty equivalents, she can maximize expected utility.

We refer to the new experiment as Experiment JD (see Methods). In the experiment,
each of 75 participants completed a DMR task whose procedure and design (Figure S1a)
followed that of Gonzalez and Wu (1999) as well as a JRF task (Figure S1b) where
participants reported the relative frequency of black or white dots among an array of black and
white dots. The same 11 probabilities were used in the two tasks. The decision variables for
such a task are the relative frequencies themselves.

By comparing the performance of individuals in two different tasks that involved the
same set of probabilities, we hoped to identify the possible common representation of
probability and how it may vary with task.

Based on the measured CEs (for DMR) or estimated relative frequencies (for JRF), we
performed a non-parametric estimate and model fits for the probability distortion of each
participant and each task (see Methods). Similar to previous studies of DMR ' and JRF 2446,
we found inverted-S-shaped probability distortions for most participants but also marked
individual differences in both tasks (Figure 2abc). The DMR results of GW99 (Figure 2a) and
Experiment JD (Figure 2b) were similar and were collapsed in further analysis whenever
possible.

We used the non-parametric estimates to assess participants’ probability distortions
and we compared model fits with them. For an average participant (the last panels in Figure
2abc), the LLO and BLO models provided almost equally good fits. However, an examination
of individual participants’ probability distortions revealed that, compared to the LLO fit, the
BLO fit captured observed individual differences considerably better. This observation can be

quantified using the mean absolute deviations of the model fits from the non-parametric

estimates (Figure 2de), which was significantly smaller for BLO than for LLO at p=0.25 for
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DMR (paired t-test, #(84) = 2.40, P = 0.019) and for all 11 p’s for JRF (paired t-tests, all {(74) >

2.87, p < 0.006).

Decision-Making under Risk (DMR)

Y GRS Sl

= BLO

" L) PSS — s
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Figure 2. Comparison of model fits to non-parametric estimates of probability distortions. a.
Reanalysis of DMR data from Wu & Gonzalez (1999). In the first 10 panels the data .7 ( ») for
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each participant is plotted versus p as black circles. The LLO fit to the participant’s data is drawn

as a blue contour, the BLO fit as a red contour. The last panel is the mean across participants. b.
DMR data from our experiment. The format is identical with data and model fits for 75
participants. The last panel is the mean across participants. c¢. JRF data from our experiment.

For each of the 75 participants we plot the residuals ﬁ'(p)—p versus p to illustrate the small but

patterned probability distortions found. We also plot the fits of LLO (blue) and BLO (red) to the
residuals. Corresponding panels in b and ¢ are for the same participant. Compared to the LLO fits
(blue curves), the BLO fits (red curves) were overall in better agreement with the non-parametric
estimates of probability distortions. d. e. Mean absolute deviations of the model fits from the non-
parametric estimates are plotted against p, separately for DMR (d) and JRF (e). Shadings denote

SE.

Factorial model comparisons

BLO is built on three assumptions: log-odds representation, boundedness, and variance

37 and

compensation. To test these assumptions, we used factorial model comparison
constructed 12 models whose assumptions differ in the following three “dimensions” (see
Methods for details).
D1: scale of transformation. The scale of transformation can be the log-odds scale,
the Prelec scale *’, or the linear scale based on the neo-additive family 8 49:50.51.52.53,
54, 55.
D2: bounded versus bounds-free.

D3: variance compensation. The variance to be compensated can be the encoding

variance (denoted V(p)) or constant (denoted V = const ).

The models we considered are not all nested (see below) nor does factorial model
comparison ¥’ require nested models. Both BLO and LLO are special cases of the 12 models,
respectively corresponding to [log-odds, bounded, V(p) ] and [log-odds, bounds-free,
V = const ].

For each participant, we fit each of the 12 models to the participant’s CEs (for DMR) or

estimated relative frequencies (for JRF) using maximum likelihood estimation (see
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Supplement S3 for details). The Akaike information criterion with a correction for sample

56, 57

sizes, AlCc , was used for model selection. For a specific model, the A AICc was

computed for each participant and each task as the difference of AICc between the model and
the minimum AICc among the 12 models. A higher value of A AlCc indicates a worse model
fit.

For both DMR and JRF, BLO was the model of the lowest summed AAICc across
participants (Figure 3ab). The results were similar for participants in different experiments
(Figure S3). To see how well each of BLO’s assumptions behaves compared to its
alternatives, we divided the 12 models into model families by their assumptions on D1, D2, or
D3 (e.g. the bounded family and the bounds-free family). We first calculated for each model

the number of participants best fit by the model (lowest A AICc) and the exceedance

probability from the group-level Bayesian model selection 8, which is an omnibus measure of
the probability that the model is the best model among the 12 models. The summed number
of best-fit participants is then plotted for each model family in Figure 3cd. For both DMR and
JRF, the assumptions of BLO outperformed the alternative assumptions on each of the three
dimensions, with the summed exceedance probability approaching 1.

We also performed model comparisons separately for participants with inverted S-
shaped and participants with S-shaped distortions (Figure S4), and tested a range of
additional models of decision under risk outside the framework of Cumulative Prospect Theory
(CPT) we currently used (Figure S5). Again, the BLO model outperformed all alternative

models (see Supplement S4 for details).
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Figure 3. Results of factorial model comparison. We compared 12 models that differ on three
dimensions (“factors”) of assumptions: scale of transformation (log-odds, Prelec, or linear),
boundedness (bounded or bounds-free) and variance compensation (V(p) or V =const ). BLO

corresponds to [log-odds, bounded, V(p) ]. LLO corresponds to [log-odds, bounds-free,

V =const]. The summed AAICc across participants is plotted for each model, separately for
DMR (a. 85 participants) and JRF (b. 75 participants). Lower values of AAICc are better. BLO
outperformed the alternative models in both tasks. ¢, d. Each assumption of BLO (log-odds,

bounded, and V(p) ) also outperformed the alternative assumptions on its dimension. Each panel
is for comparisons across one dimension, separately for DMR (¢) and JRF (d). For a family of
models with a specific assumption, shaded bars denote the number of participants best accounted

by the model family. The Pexc above the highest bar denotes the summed exceedance probability
of the corresponding model family.
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Invariances across time and tasks

The scaling parameter T maps the bounded range of [A‘,N] to the Thurstone scale of

fixed length. An exploration of the estimated parameters of BLO (Supplement S5) shows that
the product of 7 and A was indeed close to a constant across participants, whose median
estimate was 2.03 for DMR and 3.89 for JRF (Figure 4a). We call ¥ = 7A the Thurstone
invariant, the observed invariance of which suggests that the length of the Thurstone scale is
similar for different individuals.

One might question whether the invariance of TA might be a consequence of model
redundancy, that is, whether the apparent two parameters are effectively a single parameter
and the variation observed is random. Instead, if Thurstone invariant ¥ is a personal
signature, we should expect it to vary slightly from individual to individual but be positively
correlated for the same individual across time and tasks.

Among the 75 participants of Experiment JD, 51 participants completed two sessions
on two different days, which allowed us to evaluate the consistency of Thurstone invariant
across time. As expected, we found significant positive correlation between Session 1’s and
Session 2's ¥ (Figure S6) for both DMR (rs = 0.57, one-tailed P < 0.001) and JRF (rs = 0.80,
one-tailed P < 0.001).

We also found a modest but significant positive correlation between a participant’s ‘¥
in JRF and the participant's ¥ in DMR (Figure 4b): rs = 0.21, one-tailed P = 0.039. Given that
the two tasks involve entirely different responses and processing of probability information,
such across-task correlation is surprising and suggests a common constraint underlying the

probability representations in different tasks. This constraint is probably tighter in tasks that
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demand more working memory, corresponding to a smaller ¥ for DMR (when value as well

as probability needs to be represented) than that for JRF.
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O ExptJD
a DMR JRF b
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o
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Figure 4. The Thurstone invariant ¥ . Each circle is for one participant. a. The product of 7 and

A —the Thurstone invariant ¥ —was nearly invariant across participants. The black curve
denotes ¥ =7A =C, where C was the median value across participants. (11/85 data points are

outside the plot range of the DMR panel.) b. The estimated ¥ was positively correlated across
tasks, for participants who completed both the JRF and DMR tasks. (5/75 data points are outside
the plot range.) The r, on the plot refers to Spearman’s correlation coefficient, which is robust to
outliers, and P is right-tailed.

Maximizing mutual information
Participants had a bounded log-odds representation [A‘,A*] that corresponds to a
probability range far narrower than the range of objective probabilities ([0.01,0.99] ). As we

will see below, this choice of [A‘,A+] conforms with the Maximum Mutual Information

hypothesis.
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For our purposes, the efficiency of coding can be quantified by the mutual information

between stimuli s,,---,S, and responses 1, -,/ :

n

I :;P(Si’n)|092W)3’()’ (6)

where P(s[) denotes the probability of occurrence of a specific stimulus ., , P(r,) denotes

the probability of occurrence of a specific response 7;, and P(y,,r,.) denotes the conjoint

probability of the co-occurrence of the two. Stimuli and responses refer to objective and
subjective relative frequencies in JRF and refer to expected values and certainty equivalents
in DMR. For a specific task and BLO parameters, we could use the BLO model to generate
simulated responses and computed expected mutual information using a Monte Carlo method
(see Methods).

For a virtual participant endowed with median parameters, we evaluated how the
expected mutual information in DMR or JRF varied with A™ and A™, given the invariance of

Y . We found that the expected mutual information varied non-monotonically with the values
of A" and A™ (Figure 5a) and there is evidently a unique maximum over the range

considered. For both DMR and JRF, the observed median values of A" and A~ (marked by

solid red circles) were close to the values maximizing the expected mutual information: the

mutual information associated with the observed A" and A™ were lower than maximum only

by 0.14% for DMR and 0.53% for JRF. In contrast, if no bounds had been imposed on the
probability range of [0.01,0.99] (i.e. A" =—-4.6, A" =4.6), the mutual information would be
6.23% and 14.1% lower than maximum, respectively for DMR and JRF.

The observed A" and A~ of individual participants were highly symmetric around 0
(i.e. symmetric around 0.5 on the probability scale) in the JRF task but more variant in the

DMR task. As Figure 5b shows, this difference may also be driven by mutual information
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maximization: To achieve no less than 95% of maximum mutual information, A” and A~

could tolerate a much larger deviation from symmetry in DMR than in JRF.

a DMR JRF

O Gw99

O ExptJD

95% I, contour

A+

c d
31r,=094 31r,=087 31r=033
. P <0.001 P <0.001 P=0002 o°
3 3
~ ~ [
o
8 2 ©o 2 & » 21 © 0029 8 0®
c ° x oo
o o ° s 5} gf o
[ o 0© a)
e o [}
o 1 1 1 LA AR
() ° o ©
1 2 3 1 2 3 1 2 3
Maximum 1, Maximum 1, JRF's [

Figure 5. Choice of A™ and A" as mutual information maximization. a. Expected mutual

information between stimuli and responses (in bits) is plotted against —A~ and A" as contour
map, separately for DMR and JRF. Higher values are coded as more reddish and lower values as

more bluish. For both tasks, the observed median value of (—A‘,A*) (marked by the red circle)

was close to maximizing the expected mutual information. b. Observed A" versus —A~ for
individual participants, compared to the contour of 95% maximum mutual information (green

curve). The observed (—A’,A+) had a more pronounced deviation from symmetry in DMR than in
JRF. c. Observed mutual information was positively correlated with maximum mutual information
(6/85 data points are outside the range of the DMR plot.) The values are clustered just below the
identity lines in both plots. d. Observed mutual information was positively correlated across tasks.
(3/75 data points are outside the plot range.) The r, on the plot refers to Spearman’s correlation

coefficient and P is right-tailed.
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We further computed the maximum mutual information for each participant based on

the participant's BLO parameters, given that A® and A™ are allowed to vary. The maximum
mutual information was positively correlated with the observed mutual information for both
DMR (rs = 0.94, one-tailed P < 0.001) and JRF (rs = 0.87, one-tailed P < 0.001), consistent
with the mutual information maximization hypothesis (Figure 5c). The diagonal lines in both
plots of Figure 5c are bounds on possible performance and the data in both plots are
clustered below them.

Individual participants’ mutual information was positively correlated across time (Figure
S7, DMR: rs = 0.53, one-tailed P < 0.001; JRF: rs = 0.53, one-tailed P < 0.001) and across
tasks (Figure 5d, rs = 0.33, one-tailed P = 0.002). Since there was little across-task correlation
in noise variance (rs = 0.066, one-tailed P = 0.29), the across-task correlation in mutual
information could not be due to correlated levels of response noises. Instead, it implies a

common information processing capacity for different tasks.
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Discussion

We presented a model (Bounded Log-Odds) of probability and relative frequency distortion
and tested it experimentally in an experiment with two conditions. In one condition participants
made judgments of relative frequency (JRF) and, in the other, decisions under risk (DMR).
Each participant completed both conditions, allowing us to compare performance in the two
tasks within participant. We also reported a reanalysis of a data set from a DMR experiment
carried out by Gonzalez and Wu ™.

The BLO Model is intended to model performance in both tasks and it is the first model
that attempts to do so. It is based on three assumptions: log-odds representation,
boundedness, and variance compensation. We independently tested each of these
assumptions using factorial model comparison to verify that they are all essential to fitting
human data. If we replace any assumption by the alternatives we considered, the resulting
model is strictly inferior to BLO. We then compared BLO with all of the other models in the
literature intended to account for probability distortion. BLO outperformed all these models in
accounting for our experimental results as well as the data of Gonzalez and Wu ™.

We further show that human performance comes close to maximizing the mutual
information between decision variables in a task and their imperfect internal representations.
The decision variables in the DMR task are certainty equivalents (CEs). To the extent that the
participant can correctly order the distorted CEs, she will maximize expected value. The
decision variables in the JRF task are the relative frequencies themselves.

In the four experiments we report, participants chose probability distortions consistent
with BLO and also with maximizing mutual information. Two recent articles use the same
criterion (maximum mutual information) to model human encoding of value ? or to re-interpret
the context effects of decision under risk *°. These articles taken together are consistent with a

claim, supported by considerable experimental data, that many observed failures in DMR can
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be viewed as attempts to compensate for immutable limits in cognitive processing in order to
preserve Shannon information, a form of bounded rationality .

There are many theoretical models intended to account for inverted-S- or S-shaped
probability distortion: the power model of proportion judgment 5% the support theory model
of probability judgment ' 2, the calibration model &, the stochastic model of confidence rating
38.39 and the adaptive probability theory model of decision under risk ®. However, almost all
these models were proposed for one specific type of task and are not intended as general
explanations for observed distortion of probability and relative frequency. Neither do they
explain why participants exhibit different probability distortions in different tasks and task
conditions. There was even a belief, at least in decision under risk, that the parameters of
distortion should be specific to each participant but constant across all tasks °°.

In contrast, BLO models a common mechanism underlying all probability distortion,
where we identified two constraints—boundedness and compensation for representational
uncertainty (variance)—that are pervasive in models of cognitive and perceptual tasks 374+
67 We found that BLO can be used to estimate an individual’s probability distortion in one task
and to some extent predict the same individual's performance in another task. BLO also

accounts for variation in the "slope" of the distortion function with task or different settings of

the same task. We next describe some of the implications of BLO.

Discontinuities atp=0and p =1
BLO and any model based on the boundedness assumption predict that 7r(0)>0 and

71'(1)<1, that is, probability distortion with discontinuites at p=0 and p=1. Such

discontinuities are also found in the neo-additive family of weighting functions **, but are not

found in other, widely accepted families of probability distortion such as LLO ' 2* and Prelec’s
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family . Kahneman and Tversky’s original Prospect theory '? included similar discontinuities
in probability weighting functions (see their Figure 4).

The bounded ranges of probability represented on the Thurstone scale according to
the BLO model fits are fairly limited, approximately [0.15, 0.85]. Given that the occurrence of
probabilities as extreme as 0.05 and 0.95—or even 0.01 and 0.99—is not uncommon in
laboratory tasks or real life, bounding is likely to exert detectable influences on probability
representation and performance under many circumstances. Indeed, there are clues
indicating boundedness in previous studies. For example, Yang and Shadlen ° studied
monkeys’ probabilistic inference and found that the strength of a specific evidence perceived
by the monkey was, in general, proportional to the objective log-odds of the evidence. But for
“sure evidence” that corresponded to minus or plus infinity in log-odds, the subjective log-odds
were bounded, equivalent to [0.15, 0.81] and [0.30, 0.64] in probability for the two tested
monkeys.

For the DMR task, where probability is explicitly defined and no explicit sampling

process seems to be involved, we still found that the slope of probability distortion relies on a
p(1—p) term, varying with p. It is as if people are compensating for the variation of a virtual
sampling process ®°, or for the variation caused by Gaussian noise on the Thurstonian log-
odds scale Supplement S1, see also "°. Lebreton et al. " show that a generalized form of

p(1-p) is correlated with the confidence of value or probability perception and is

automatically encoded in the ventromedial prefrontal cortex (vmPFC) of the human brain.
Under certain circumstances, such variance compensation may result in counterintuitive non-

monotonic probability distortion that is indeed empirically observed (see Supplement S6).

The Thurstone invariant
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According to BLO, a bounded range [A‘,A*] of the log-odds scale is mapped to a Thurstone

scale of fixed length by a scaling factor 7. Indeed, for both JRF and DMR, we found 7A,
which corresponds to the half length of the Thurstone scale, was almost invariant across
participants. We defined W = 7A and termed it the Thurstone invariant.

Though individual differences in ¥ are small, an individual's ¥ at one time point is
positively correlated with the individual's ¥ at another time point. The individual's ¥ is also
positively correlated across tasks. Thus the Thurstone invariant proves to be a personal
signature that imposes a common constraint on the representation of probability distortion in

different tasks.

Predicting the slope of probability distortion

The invariance of the Thurstone invariant ¥ implies that when the encoded range A is
narrower, the scaling parameter 7 would be greater, leading to a greater slope of probability
distortion. Meanwhile, mutual information maximization requires A to scale with the range of
probabilities in the stimuli. Thus BLO predicts that the narrower the probability range of the
stimuli, the greater the slope of distortion.

We performed the following meta-analysis on previous DMR studies to test this

prediction. Fox and Poldrack " Tebe A3

summarized the results of a number of decision-making
studies that were modeled in the framework of Prospect Theory. In Fox and Poldrack’s list, we

identified the studies where the gamble set was explicitly defined and each gamble consisted
of two outcomes that could be denoted (x1 DXy, 1— p) (see Supplemental Table S3 for the 12

studies included). Though different functional forms—LLO, Prelec’s * one-parameter and two-
parameter functions, and Tversky and Kahneman'’s ' weighting function—had been assumed

in different studies, all had a parameter for the slope of probability distortion that is roughly
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equivalent to the ¥ in LLO. For each study, we computed the standard deviation of l(p)’s

distribution as a measure of the probability range of stimuli. Consistent with the BLO
prediction, we found this measure was significantly negatively correlated with the slope of

probability distortion (Figure 6), rs = —0.65, one-tailed P = 0.010.

r,=—0.65
o P=0010

Slope of distortion

0:8 1:4 2 2:6
SD of A[p]

Figure 6. Meta-analysis of previous studies supporting BLO’s prediction on the slope of

probability distortion in decision under risk. The estimated slope of probability distortion (7 ) is
plotted against the standard deviation of the objective log-odds (l(p)) of the gamble set, where

p denotes the probability for the higher outcome of a two-outcome gamble, (xl,p;xz,l—p).

Each data point is for one published study. The red line denotes the regression line. The
correlation is negative and significant. We describe the selection of studies in the text. See Table
S3 for a full list of the studies. That the slope of distortion decreases with the standard deviation of

l(p) is consistent with the prediction of BLO.

The crossover point

A puzzle we did not address earlier concerns the crossover point of probability distortion (i.e.
the point on the distortion curve where overestimation changes into underestimation or the
reverse). It has been frequently observed that the crossover point is near 0.5 for the JRF task
24 put approximately 0.37 for the DMR task *’. That is, the probability distortion is symmetric

around 0.5 in the former but asymmetric in the latter. There are plausible reasons to have
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symmetry, but why asymmetry? Here we conjecture that the asymmetry is also driven by the
maximization of mutual information, which, for the DMR task, means to have the CEs of

different gambles as discriminable as possible. Following conventions ™ 7’

and for parsimony,
we had assumed a uniform Gaussian noise on the CE scale. However, larger CEs may tend
to be associated with higher variances, according to Weber's law 2. To compensate for this,
more of the representational scale should be devoted to larger probabilities and thus to the
larger CEs associated with them. Indeed, adopting a smaller crossover point (i.e. less than

0.5) would map larger probabilities to a longer range of subjective probabilities and effectively

implement such a strategy of probability representation.

Open questions and future directions

The judgment of relative frequency and decision under risk are the only two tasks where BLO
and its assumptions have been tested, but these two tasks together represent a vast body of
previous research. The model may be applied to a wider range of tasks involving frequency
and probability. It will likely shed light on the common and distinctive mechanisms of
probability distortion in different tasks.
What determine the slope and crossover point of probability distortion in a specific task?
Why may the parameters of probability distortion change from task to task and from individual
to individual? In the present study we have provided a tentative answer: they change because
the brain actively compensates for its own fixed limitations.
Important questions for future research also include: How may probability distortion
change from trial to trial? We conjecture that the human representation of probability can
adapt to the environment, in the spirit of efficient coding *! > 4%, The current version of BLO is

a stationary model, whose prediction will not change with time or experience. In contrast, non-
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stationarity has been identified in probability distortion for both the judgment of relative
frequency ?* and decision under risk 3.

Can the BLO model apply to decisions among complex gambles with more than two
non-zero outcomes? In theory, BLO just specifies the probability weighting function in
Cumulative Prospect Theory ' and can apply to any circumstances where Prospect Theory
applies. But it is still an empirical question whether probability distortion for gambles with more
than two non-zero outcomes can be predicted by BLO.

” 2_another important form of

We chose not to test “decision from experience
decision-making—because the decision from experience task does not require that the
decision maker estimate the frequency of items ' 7. The decision maker may estimate the
multinomial distribution of rewards in a card deck—or she may simply register reward and
punishment and base her decision on a form of reward averaging or reinforcement learning.
The results of the comprehensive model competition of Erev, Ert 7 are consistent with this
claim. More recently, there has been neuroimaging evidence that human decisions from
experience may be based on the retrieval of individual samples from past experience "® 7. If
the decision maker does not estimate relative frequency then BLO does not apply.

A final note: Kahneman and Tversky’'s original Prospect Theory contained the
assumption that decision makers would first interpret (“edit’) available information '2. In this
initial editing stage they might, for example, convert the probability 0.31317 to the more
tractable 1/3. Only then would they assign prospect values to lotteries in the second,
evaluation stage. In presenting the BLO Model we focus on evaluation. Still, nothing about

the theory would preclude adding an editing phase or discretizing the representation of

probability if justified by empirical results.
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Methods

Experiment
Experiment JD was approved by the Institutional Review Board of School of Psychological
and Cognitive Sciences at Peking University. All participants gave written informed consent in
accordance with the Declaration of Helsinki. Each participant performed two tasks: Decision-
Making under Risk (DMR) and Judgment of Relative Frequency (JRF).

The procedures and designs of the DMR task were the same as those of Gonzalez

and Wu ", except that payoffs in the gambles were in RMB instead of in USD. On each trial
(Figure S1a), participants were presented with a two-outcome gamble (x,,p;x,,1— p) and

tables of sure amounts of rewards. They were asked to check on each row of the tables
whether they preferred the gamble or the sure amount. The range of the sure amounts started

with [x,,.r;], and was narrowed down in the second table so that we could estimate

participants’ certainty equivalent (CE) for the gamble. There were 15 possible outcome pairs

(x,.x,) : (25, 0), (50, 0), (75, 0), (100, 0), (150, 0), (200, 0), (400, 0), (800, 0), (50, 25), (75,

50), (100, 50), (150, 50), (150, 100), (200, 100), (200, 150). There were 11 possible
probabilities: 0.01, 0.05, 0.1, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9, 0.95, 0.99. A full combination of
them resulted in 165 different gambles used in the experiment.

The stimuli and procedures of the JRF task followed Zhang and Maloney (2012). On
each trial (Figure S1b), participants were presented with an array of black and white dots and
reported their estimate of the relative-frequency of black or white dots by clicking on a
horizontal bar with tick marks from 0 to 100%. Each participant was randomly assigned to
report the relative frequency either for the black or for the white dots. The objective relative
frequency of JRF was chosen from the same 11 possible values as its counterpart in DMR.

The total number of dots (numerosity) in a trial was varied across trials, which could be 200,
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300, 400, 500, or 600. The dots in each display were distributed within a circular area of 12°
diameter or a square area of 17°x17° diameter.

Experiment JD (a total of 75 participants) consisted of two sub-experiments, JDA (51
participants, 20 male, aged 18 to 29) and JDB (24 participants, 10 male, aged 18 to 27). Six
additional participants failed to complete the experiment for technical or personal reasons.
Each session had 11 (probability) x 15 (outcome pair) = 165 DMR trials and 11 (probability) x
5 (numerosity) x 6 = 330 JRF trials, which took approximately two hours. In Experiment JDA,
each participant completed two sessions on two different days, so that we could evaluate the
consistency of their performance. Trials from the two tasks were randomly interleaved. In
Experiment JDB, each participant completed only one session, during which one task
preceded the other, with DMR first for half of the participants and JRF first for the other half.
Similar patterns of probability distortions (Figure 2bc, first 51 panels for Experiment JDA and
last 24 panels for Experiment JDB) and results of model comparisons (Figure S3) were found
for participants in the two sub-experiments. Thus we collapsed the two sub-experiments in our

analysis whenever applicable.

The relationship between BLO and LLO

We compare LLO (Eq. 2)

ALn(p)]=rA(p)+(1=7)A(p))
to BLO rewritten:

A“’(p)zf[ a)pA(p)+(1—a)p A, ]
T 1—wP)A

1—Ta)p

= A(p)+ (1—ra)p)

0
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Over the range [A*,A*] truncated log-odds coincides with log-odds: A(p)=4(p)

T(1-w
Comparing the equations above, over the range | A",A* | 7w_replaces 7y and ul\
P 1

- TCOp

0

replaces ),(po). In LLO, both ¥ and p, are fixed but in BLO, however, the reliability

parameter @, may vary with the value of p depending on the model of variance appropriate

to a given task. If a specific dataset is generated by BLO but fitted by LLO, we would expect
that the estimates of ¥ and p, would change with experimental conditions as predicted by
BLO. Consequently, we can fit LLO to data and look for the pattern of deviations in the fitted

coefficients predicted by BLO, a test of the BLO Model (e.g. Figure 6).

Applying BLO to JRF

We need additional assumptions when applying BLO to the JRF experiments. One of the key
assumptions of BLO is variance compensation and, to apply BLO, we need to specify a model
of the participant's sampling process and the variance of the resulting estimates. First, we
assume that humans may not have access to all the tokens presented briefly in a display or in
a sequence, due to perceptual and cognitive limits ’® 7°. Instead, they take samples from the
population and are thus subject to the randomness associated with sampling. Within BLO,

probability distortion arises in part from a compensation for the sampling noise captured in our

model by the reliability parameter w,.

Denote the total number of dots in a display as N and the relative frequency of black
dots as p_Suppose a sample of n_ dots is randomly drawn from the display. We assume
that the sampling is without replacement. That is, the same dot will not be drawn twice during
one sampling, which is reasonable in our case. As a result, the variance of p requires a

correction for finite population & (see Supplement S2 for the derivation):
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V(p) = s (8)

The finite population correction is intuitive: the larger the sample size relative to the

population, the smaller the variance. When n, = N , i.e. when the whole population is included
in the sample, we should have p=p for each sample and thus V(5)=0. At the other
extreme, when n =1, sampling without replacement is equivalent to sampling with
replacement, the familiar p(1—p). The BLO variance correction is a weighted mixture of an
estimate based on the sample and an "anchor" A, which may also be stochastic, with its own

variance V(AO) . The optimal weight for combining the two is

o = : 9)

p n

V(p)f1 +V(A0 )71

-1
Denote K = V(Ao) , the anchor precision parameter. This equation can be rewritten as

1

T Rv(p) (10)

Finally, we assume that encoded values 71'(19) are perturbed by additive Gaussian

error (Thurstone, 1927), updating Eq. 5 to
Alz(p)] = r[ w, A(p) + (1—a)p)A0 ]“%’ (11)

where €, is Gaussian error on the log-odds scale with mean 0 and variance o;.

Applying BLO to DMR
To model (), BLO's assumptions for different tasks are the same, except that

encoding variance is task-specific. Probability is described explicitly in DMR and there need

be no uncertainty about its value. Participants’ choices suggested, however, that they were
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still compensating for some kind of encoding uncertainty that varies with the value of

probability. Gaussian encoding noise on the log-odds scale, when transformed back to the

probability scale, results in variance that is approximately proportional to p(1—p) (see

Supplement S1 for proof). The reliability parameter in Eq. 5 is thus:

o, :[1+Kp(1—p)T, (12)

where K is a free parameter. This same equation can be reached if, alternatively, we assume

S

N-1

1
that participants were compensating for a virtual sampling process (the ’y term in Eq.

S

8 can be assimilated into K for constant N and n, ). Compensation for virtual sampling was

also assumed in some previous theories on probability distortion ',
Any lottery in GW99 or Experiment JD can be written as (x1,p; x2,1—p), which offers

the value x; with probability p and otherwise x., with x, >x, 20 . For each participant, we

modeled the certainty equivalent (CE) of each lottery using Cumulative Prospect Theory

(CPT) ™ and assumed a Gaussian error term on the CE scale, as in Gonzalez and Wu '*:

CE :U‘1[ n(p)U(x1)+(1—7r(p))U(x2) }+£CE, (13)
where U(.) denotes the utility function, U™'(.) denotes the inverse of U(.), 7(p) denotes
the probability distortion function, and €., is a Gaussian random variable with mean 0 and

variance GEE. The utility function for non-negative gains alone (none of the lotteries involved

losses) was assumed to be a power function with parameter o« >0 :

U(x)=x". (14)

Non-parametric estimation of probability distortion
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A non-parametric estimation of probability distortion is plotted in Figure 2 for each participant
and each task. For JRF, where participants explicitly estimated their subjective relative

frequency, the non-parametric estimation 7,, (p) for a specific p was simply the participant’s

mean estimate across trials, averaged on the log-odds scale:
N 41 T A
bulo)=4°| L3 AL0)]| 19
=1

where 7, (p) denotes the participant’s estimate of relative frequency on trial t, r =1,2,....m .
For the 7,,(p) of DMR, we modeled participants’ CE in the framework of CPT as we

did for BLO and LLO fits (Eq. 13) except that no functional form was assumed for the

probability distortion function. Instead, the 7,,(p) for each of the 11 p’s was fitted as a free

parameter. The same power functional form was assumed for the utility function in the non-
parametric estimation as in the model fits to minimize possible differences irrelevant to
probability distortion. This procedure was different from the non-parametric method of
Gonzalez and Wu ', where no functional forms were assumed for either probability distortion
or utility. We verified in the GW99 dataset that our non-parametric estimation of probability

distortion led to similar results as Gonzalez and Wu ' (Figure S2).

Factorial model comparisons
We used factorial model comparison ¥ to separately test the assumptions of BLO, comparing
alternative models that differ in the following three “dimensions”.
D1: scale of transformation. We considered two alternatives to the log-odds scale:
the “Prelec scale” and the linear scale.

The Prelec scale is derived from Prelec’s function *’:
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7(p)=exp(-B(-logp)") (16)
with 77 and B as free parameters. LLO and the Prelec families both are among the

probability weighting functions that typically fit best to data 8 8. They are difficult to

distinguish empirically '* 2,

Taking logarithms and negating twice on both sides of Prelec’s function, we

can see that Prelec’s function is equivalent to a linear transformation
X[x(p)]=nA[p]-logp (17)
on the Prelec scale
X' (p)=—log(~logp) . (18)

The functional form of the linear scale is based on the neo-additive family * *°

50, 51,52, 53, 34, 55 which refers to a linear transformation of probability except that it may

have discontinuities at the extremes to ensure ﬂ(p) is within [0,1]:

0, if p=0orkp+b<0
n(p)= 1, if p=lorkp+b>1 (19)
kp+b, otherwise

where K and b are free parameters. The linear scale is accordingly defined as

0, ifx<0
A(x)=3 1, ifx>1 . (20)

X, otherwise

For models that use the Prelec scale, we simply replaced the log-odds and its

reverse transformation with i’(p) and its reverse. For models that use the linear
scale, the log-odds transformation was replaced by /lc(p) but there was no inverse

transformation, because A'(p) is not invertible, and no need for an inverse
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transformation, because /l°(p) corresponds to probability. The noise term &, was

always added to the log-odds of n(p) to maintain a fair comparison between models.

D1 does not influence the number of free parameters of the model.
D2: bounded or bounds-free. We assumed a bounding operation in BLO (Eq. 4),
where probabilities outside specific boundaries are truncated to the boundaries. We

considered alternative models that are bounds-free. Bounds-free models would not
include the bounds parameters, A~ and A".

D3: variance compensation. In BLO, o, is inversely related to V(f)) (Eqg. 10) so
that the encoding variance is appropriately compensated in the framework of Bayesian

inference. Alternatively, we considered o, as a constant that does not change with p

, as if the compensated variance is constant. When  is constant, the potentially non-
linear transformation of BLO (Eq. 5) is reduced to the linear transformation of LLO, as
a re-parameterization would reveal (with one free parameter reduced). The two forms
of variance compensation will be referred to as V(p) and V = const .

The three dimensions—D1, D2, and D3—correspond to the three assumptions of BLO.
We did not list the presence or absence of the scaling factor T as a possible dimension for
both theoretical and practical reasons. On one hand, 7 is required to map the bounded

interval to the fixed Thurstone scale. On the other hand, the absence of scaling would

preclude a greater-than-one 7 . There is evidence from several laboratories other than our

own experiments that 7 can be greater than 1 5 848586,

The three dimensions are independent of each other, analogous to the different factors

manipulated in an experiment with a factorial design. In total, we tested 3 (D1: log-odds,
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Prelec, linear) x 2 (D2: bounded, bounds-free) x 2 (D3: V(p), V =const) = 12 different

models. LLO is among the 12 models (when D1=log-odds, D2=bounds-free, D3=V = const ).

Computation of mutual information

For a specific real or virtual participant in a specific task, we used the BLO model to generate
simulated responses for the stimuli of the experiment and then computed the expected mutual
information between the stimuli and responses using a Monte Carlo method. When A" and
A~ were varied, the value of T was determined by the invariance 7=¥/A. To obtain a
stable estimate of the expected mutual information, we repeated the stimulus set of each task

to produce 198,000 trials for JRF and 3,300,000 trials for DMR. The s, and 7; in Eq. 6 refer

to objective and subjective relative frequencies in JRF and refer to expected values and
certainty equivalents in DMR. In the numerical computation of mutual information, continuous
variables need to be quantized. For JRF, the objective and subjective probabilities were
quantized by rounding to the 2™ decimal, and for DMR, the expected values and certainty

equivalents were quantized by rounding to the closest integer.
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