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Abstract 

Unhealthy dietary habits are leading risk factors for life-altering diseases and mortality. Large-

scale biobanks now enable genetic analysis of traits with modest heritability, such as diet. We 

performed genomewide association on 85 single food intake and 85 principal component-

derived dietary patterns from food frequency questionnaires in UK Biobank. We identified 814 

associated loci, including olfactory receptor associations with fruit and tea intake; 136 

associations were only identified using dietary patterns. Mendelian randomization suggests a 

Western vs. prudent dietary pattern is causally influenced by factors correlated with education 

but is not strongly causal for coronary artery disease or type 2 diabetes. 
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Unhealthy diet is thought to be the leading risk factor for mortality both globally1 and in 

the US.2 Overall, incidence rates of these dietary risk factors and their related diseases, like 

obesity and type 2 diabetes (T2D) are rising in parallel worldwide,3,4 causing global epidemics 

that require our urgent attention. Describing a biological basis for unhealthy dietary preferences 

could guide more effective dietary recommendations. 

There is a clear, albeit modest, genetic component to diet, such as traditional measures 

of macronutrient intake (i.e. proportion of carbohydrate, fat, and protein to total energy intake), 

as demonstrated by significant heritability and individual genetic associations.5-9 Five 

genomewide association studies (GWAS) of macronutrient intake have been conducted to date; 

the most recent multi-trait analysis identified 96 independent genetic loci by combining summary 

statistics of individual macronutrient GWAS from 24-hour diet recall questionnaires in 283K 

individuals in UK Biobank (UKB).6-10 In addition, the Neale Lab conducted GWAS 

(http://www.nealelab.is/uk-biobank/) across thousands of mostly binary traits analyzed 

primarily as dichotomous outcomes (i.e. wholemeal bread vs. all others) in 361K unrelated 

individuals in UKB. The recent GeneAtlas11 improved power by using linear mixed models in 

450K individuals in UKB, but analyzed a smaller set of dietary variables. 

Additional measures of dietary intake, including both curated measures of single food 

intake and multivariate dietary patterns such as those described by principal component (PC) 

analysis, have also shown significant associations with health outcomes in both epidemiological 

studies12,13 and clinical trials.14 Thus, with the recent advent of large biobank-sized population 

cohorts with dietary data, we can now perform GWAS with multiple complementary phenotyping 

approaches to examine a wide array of dietary habits, including previously unstudied single food 

comparisons (i.e. wholemeal vs. white bread) and dietary patterns. Here, we report heritability 

and GWAS analysis (using linear mixed models) of both single food intake, analyzed as curated 

single food intake quantitative traits (FI-QTs), and of PC-derived dietary patterns (PC-DPs) 

using food frequency questionnaire (FFQ) data in up to 449,210 Europeans from UKB; we 
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highlight association at biologically interesting loci (olfactory receptor loci associated with tea 

and fruit consumption) and use Mendelian randomization (MR) analyses to elucidate causal 

relationships pertaining to specific dietary habits. 

 

Results 

Dietary habits have strong phenotypic correlation and most are heritable 

We derived 85 curated single FI-QTs from FFQ administered in UKB, using 35 nested 

and complementary questions (Supplementary Table 1; see Methods). As expected given the 

nested nature of these questions, many pairs of the 85 FI-QTs were significantly correlated (P < 

0.05/85 =5.88×10-4; Supplementary Figure 1 and Supplementary Table 2).  We therefore also 

conducted PC analysis of these FI-QTs to generate 85 PC-DPs that capture correlation 

structure among intake of single foods and represent independent components of real-world 

dietary habits. The top 20 PC-DPs have eigenvalues greater than one, and explain 66.6% of the 

total variance in the 85 FI-QTs (Supplementary Figure 2).  

Overall, 84.1% of dietary habits analyzed (143 of the 170 FI-QTs and PC-DPs) were 

significantly heritable (as assessed by ��
� P < 0.05 / 170=2.9×10-4; see Methods, Table 1, 

Supplementary Table 1, and Supplementary Figure 3) and displayed extensive genetic 

correlation (rg; Supplementary Table 3). The relationships between the 83 FI-QTs and the 60 

PC-DPs that have significant heritability are illustrated in Supplementary Figure 4. The most 

heritable FI-QTs fall into a handful of dietary food groups related to milk consumption, alcohol 

intake, and butter/spread consumption. The first PC-DP (hereafter referred to as PC1) is among 

the most heritable dietary patterns (PC1 ��
�=13.6%, Table 1), and is more heritable than all of its 

individual contributing FI-QTs.  

PC1, which explains 8.63% (Supplementary Figure 2) of the total phenotypic variance in 

FI-QTs, captures previously described “Western” and “prudent” dietary factors15 and is primarily 
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defined by the type of bread consumed (wholegrain/wholemeal vs. white bread). Overall, the FI-

QTs that have high positive loadings for PC1 include wholemeal/wholegrain bread consumption, 

increased fruit and vegetable intake, increased oily fish intake, and increased water intake. The 

FI-QTs that have high negative loadings include white bread consumption, butter and oil spread 

consumption, increased processed meat intake, and consumption of milk with higher fat content 

(Figure 1).  
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Table 1: SNP Heritability Estimates (���� and Number of Significant GWAS Loci for the Most Heritable 20 
Dietary Habits. 

Dietary habit N ��
� SE P-value Number of 

Significant 
Loci 

milk type: soy milk vs. never 31,889 0.282 0.010 5.8 x 10-175 1 

milk type: full cream vs. never 43,995 0.243 0.007 4.8 x 10-264 1 

spread type: tub margarine vs. never 77,738 0.182 0.004 < 1.00 x 10-300 5 

among current drinkers, drinks usually with meals:  
yes vs. no 

235,312 0.160 0.001 < 1.00 x 10-300 30 

PC1 449,210 0.136 0.001 < 1.00 x 10-300 140 

spread type: flora + benecol vs. never 86,823 0.133 0.004 2 x 10-242 2 

milk type: other milk vs. never 20,557 0.128 0.015 1.42 x 10-17 0 

overall alcohol intake 448,623 0.121 0.001 < 1.00 x 10-300 98 

PC3 449,210 0.118 0.001 < 1.00 x 10-300 82 

glasses of water per day 445,965 0.116 0.001 < 1.00 x 10-300 78 

total drinks of alcohol per month 449,210 0.113 0.001 < 1.00 x 10-300 104 

spread type: low fat spread vs. never 72,017 0.110 0.004 1.8 x 10-166 0 

coffee type: decaffeinated vs. any other 353,710 0.108 0.001 < 1.00 x 10-300 36 

pieces of fresh fruit per day 447,401 0.108 0.001 < 1.00 x 10-300 99 

overall cheese intake 438,453 0.108 0.001 < 1.00 x 10-300 60 

spread type: butter vs. never 213,549 0.102 0.001 < 1.00 x 10-300 15 

frequency of adding salt to food 448,890 0.102 0.001 < 1.00 x 10-300 82 

among current drinkers, drinks usually with meals:  
yes/, it varies, no 

357,136 0.101 0.001 < 1.00 x 10-300 29 

bread type: white vs. wholemeal/wholegrain + brown 416,312 0.100 0.001 < 1.00 x 10-300 46 

milk type: skimmed vs. never 
 

108,035 
 

0.098 
 

0.003 
 

< 1.00 x 10-300 1 
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Figure 1: Relationships between PC1 and its 19 Significantly Contributing Single Food 

Intake QT. The heat map depicts the phenotypic (upper triangle) and genetic (lower triangle) 

correlation between the 19 significantly contributing single FI-QTs with each other and PC1. All 

correlations with nonsignificant P-values (P>0.05/85) were set to 0. Percent contribution of each 

of the 19 traits to PC1 is depicted in the correlation matrix bar plot annotation on the right, 

colored by loading direction.  
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Dietary habit GWAS in UKB identifies 814 independent loci 

GWAS on the 143 significantly heritable dietary habits, using linear mixed models in up 

to 449,210 individuals, identified 814 independent loci (defined as >500 kb apart) surpassing 

genome-wide significance (P<5.0×10-8).  Of these, 309 also surpass a more conservative 

Bonferroni corrected study-wide significance threshold (P<5.0×10-8/143 traits=2.9×10-10; 

Supplementary Table 4). Across the 143 dietary traits, there was a clear positive correlation of 

heritability estimates (��
�) with the number of significant loci and the variance explained by these 

loci (Figure 2), with outliers often explained by smaller sample size (Supplementary Figure 5). 

Notably, there is a mix of FI-QTs and PC-DPs among the most successful GWAS traits, with the 

Western vs. prudent PC1 GWAS identifying the most significant loci (M=140) that together 

explain the largest amount of variance of any dietary habit analyzed (6.65%). 

Of the 814 index SNPs, 767 (94%) are common with minor allele frequencies greater 

than or equal to 5%; similar to previous GWAS findings,16 the vast majority are either intronic or 

intergenic (82.2%). Credible set analysis found that more than one-third of our lead signals 

(289/814) were driven by 10 or fewer SNPs, 124 had 2-5 credible set SNPs and 54 had a single 

95% credible set SNP (see Methods). Of the credible sets with single SNPs, 65.2% are intronic 

or intergenic, while 13.0% are missense variants and the remainder largely regulatory (by 

comparison, only 1.9% of index SNPs from multi-SNP credible sets are missense). We 

investigated whether any of our loci were previously reported at genome-wide significance for 

any trait in either the GWAS catalog17 or the comprehensive Neale Lab GWAS 

(http://www.nealelab.is/uk-biobank/) of 4,358 traits in 361,194 unrelated individuals in UKB. 

Of the 814 dietary habit GWAS loci, 205 have never been previously reported. This can largely 

be explained by our use of previously unstudied curated FI-QTs and PC-DPs and/or statistical 

power gained from linear mixed models in nearly 450K individuals.  
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Figure 2: Relationship between SNP Heritability and GWAS Success. A) Scatter plots of the 

number of genome-wide significant loci or B) variance explained by genome-wide significant 

SNPs vs. SNP heritability×sample size for all 143 significantly heritable traits. Points are colored 

by the largest effect size and sized by the smallest P-value of their significant index SNPs.  
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Several olfactory receptor loci are associated with intake of specific foods 

Among the lead loci are several regions containing clusters of olfactory receptor genes. 

Although our dietary habit GWAS loci are not enriched for olfactory receptor genes (P=0.419), 

the association of olfactory receptors with specific FI-QTs supports the well-known link between 

smell and taste. The top signal associated with “pieces of fresh fruit eaten per day” is a region 

on chromosome 7q35 (lead SNP rs10249294 P=5.7×10-65; Supplementary Figure 6). All 44 

SNPs within the 95% credible set cover a 27 kb region containing olfactory receptor gene 

OR6B1 (Supplementary Figure 7). Another locus specific to fruit intake, on chromosome 14q 

(Supplementary Figure 6) is associated with both “pieces of fresh fruit per day” (rs34162196 

P=5.1×10-24) and “pieces of dried fruit per day” (rs35260863 P=6.4×10-18). The only two SNPs 

contained in both 95% credible sets cover a 5.8 kb region (chr14: 22038125-22043949) 

containing olfactory receptor gene OR10G3 (Supplementary Figure 7).  

Five additional loci have 95% credible sets that overlap olfactory receptor genes and are 

strongly associated with a single FFQ question. Notably, “cups of tea per day” is associated with 

a region on chr11q12 (lead SNP rs1453548 P=3.1×10-9) that contains six different olfactory 

receptor genes including OR5AN1, OR5A2, OR5A1, OR4D6, OR4D10, and OR4D11 

(Supplementary Figure 7). The 95% credible set contains SNP rs7943953 (chr11:59224144) 

previously reported for being associated with odor perception, and specifically that of β-ionone 

(floral) sensitivity, an aroma compound found in high quantities in tea.18-20 By contrast, “cups of 

coffee per day” is associated with a nearby yet distinct region on chr11q12 (lead SNP rs643017 

P=1.1×10-8) in a dense cluster of olfactory receptor genes containing OR8U8 and OR5M3 

(Supplementary Figure 7). Other associations with olfactory receptor gene regions include 

regions containing OR52J3 and OR52E2 with three dietary habits measuring butter 

consumption (rs2445249 with “spread type: butter vs. any other” P=9.1×10-15), OR4K17 with 

“tablespoons of raw vegetables per day” (rs10140123, P=4.1×10-10), and OR10A3 and OR10A6 

with “overall cheese intake” (rs757969034, P=2.4×10-8; Supplementary Figure 7). 
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GWAS of dietary pattern PC1: relationship to individual food intake traits and non-dietary 

phenotypes 

Of the PC-DPs, the “Western vs. prudent” PC1 dietary pattern has the highest heritability 

and most genome-wide significant loci, and similar dietary patterns have been associated with 

disease.21,22 Although PC1 is both phenotypically and genetically correlated with its 19 

contributing FI-QTs (absolute rp= 0.25-0.81; absolute rg =0.29-0.93), the GWAS results provide 

distinct sets of significant associations. Together, PC1 and its 19 contributing traits are 

associated with a total of 387 independent genome-wide significant loci, falling into one of four 

categories (Figure 3): 55 loci significant for PC1 only (dark blue), 282 loci significant for one or 

more of the 19 contributing FI-QTs only (dark red), 37 loci more significant for PC1 (light blue), 

and 13 loci more significant for one or more of the 19 QTs (light red). The 55 loci significantly 

associated with PC1 but not FI-QTs still trend toward association with one or more of the 19 

contributing FI-QTs, whereas the reciprocal is not always the case: some FI-QT-associated 

SNPs display no association with PC1 at all. This observation indicates that the use of PCs can 

increase power to detect some associations, while others are only detectable through 

association with specific foods, supporting the use of both of these complementary phenotyping 

approaches to more effectively define the genetic architecture of dietary intake.  

 

Figure 3: Manhattan Plot of PC1 and its 19 significantly contributing single food intake 

QT. A) Schematic depiction of 4 groups of significant loci (and corresponding B-C Manhattan 

plot colors) for various combinations of PC1 and its 19 contributing traits. 55 loci significant for 

PC1 only (dark blue), 282 loci significant for one or more of the 19 contributing FI-QTs only 

(dark red), 37 loci more significant for PC1 (light blue), and 13 loci more significant for one or 

more of the 19 FI-QTs (light red). B) Combined Manhattan plot of the minimum p-value across 

the 19 FI-QTs that significantly contribute to PC1. C) Manhattan plot of PC1 only. D) Combined 

Manhattan plot of the minimum P-value across PC1 and the 19 FI-QTs. 
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In addition to being correlated with its contributing FI-QTs, PC1 displays significant 

genetic correlation with 248 non-diet related traits, including traits relating to physical activity, 

educational attainment, socioeconomic status, smoking status, medication codes, and urine 

biomarkers (Supplementary Table 5). The lead PC1 SNP, rs66495454, is a common indel 

(MAF=38%) located at chr1:72748567 in the promoter of neuronal growth factor 1 (NEGR1; 

Supplementary Figure 7). SNP rs66495454’s deletion allele (-/TCCT) is associated with a 

decrease in prudent eating (beta=-0.017, P=2.80×10-48) and has been previously reported as 

associated with a decrease in intelligence, educational attainment and, perhaps surprisingly, 

BMI.23-25 We were struck by the observation that 122 PC1-associated loci were already present 

in the GWAS catalog17 or Neale Lab GWAS (http://www.nealelab.is/uk-biobank/), and of 

these, 83 were associated with intelligence or cognitive ability, educational attainment, or 

obesity-related anthropometric traits, including rs1421085 in FTO and rs429358 in APOE 

(Supplementary Table 4). Of these 83, 24 were associated with intelligence or educational 

attainment and not obesity-related traits; 38 were associated with obesity-related traits and not 

intelligence or educational attainment. DEPICT pathway analysis of PC1 identified enrichment 

of 2 gene sets, including axonogenesis, and 22 tissues, of which 21 were brain-related (FDR < 

0.05; Supplementary Table 6). The large and broad overlap in both the significant loci and the 

overall genetic make-up of our dietary habits with other traits, many of which do not have well-

established biological links with diet, emphasizes a need for exploring correlation vs. causation.   

Therefore, we sought to understand the cause-and-effect relationships between PC1 

and educational attainment, fluid intelligence scores, and BMI. We performed additional GWAS 

of educational attainment, fluid intelligence scores, and BMI in UKB and applied bidirectional 

MR with these phenotypes and PC1 (see Methods).  Both inverse-variance weighted (IVW) 

random-effects and Weighted Median (WM) MR provided significant evidence of causal effects 

of educational attainment and fluid intelligence on PC1 (educational attainment WM beta=0.823, 

95% Confidence Intervals [CI]: 0.751-0.894, P=6.59×10-113; intelligence WM beta=0.261, 95% 
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CI: 0.190-0.332, P=7.71×10-13; Table 2 and Supplementary Figure 8). Egger regression 

intercepts for both intelligence and educational attainment were not significantly different than 0 

(Table 2) and causal effect estimates were essentially unchanged after different approaches to 

variant filtering (See Methods, Table 2). For each 1 standard deviation increase in educational 

attainment and intelligence, these data estimate that PC1 shifts from Western towards prudent 

eating by 0.823 and 0.261 standard deviations, respectively. To rule out weak instrument bias in 

overlapping samples, we validated our educational attainment results in two ways with high 

congruence. An externally derived educational attainment genetic instrument25 had an effect 

estimate on PC1 equal to 0.708 (95% CI: 0.576-0.840 P=6.23×10-26), and splitting UKB into 

training and testing datasets also yielded similar and significant effect estimates (Supplementary 

Table 7). 

The reverse analysis shows significant but smaller estimates of causal influences of PC1 

on educational attainment and fluid intelligence (educational attainment WM beta=0.199, 95% 

CI: 0.175-0.224, P=7.44×10-56; intelligence WM beta=0.074, 95% CI: 0.045-0.104, P=8.04×10-7). 

The smaller effects suggest that while there could be pleiotropy undetected by the Egger and 

WM approaches, or true bidirectional effects, the causal influences are more likely to be in the 

direction of educational attainment to prudent dietary patterns. Importantly, because the 

instrumental variables used for educational attainment are not mechanistically linked directly to 

educational attainment/intelligence, it remains possible that causal influences on PC1 could be 

due to unmeasured heritable factor(s) that are themselves causal for educational 

attainment/intelligence.  In contrast to the educational attainment analyses, we were unable to 

provide robust evidence of a causal relationship in either direction between BMI and PC1 due to 

significant heterogeneous pleiotropic effects leading to inconsistent causal effect estimates 

(Table 2, Supplementary Figure 8) 
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Table 2. Bi-directional Mendelian Randomization results for PC1 as both an exposure and outcome with educational attainment (ED), fluid intelligence scores (INT), and 
BMI.  

Pre-SNP filtering  

 Inverse Variance Weighted MR Egger Weighted Median 

Exposure Outcome Number 
of SNPs 

Est. CI 
Lower 

CI 
Upper 

P-value Est. CI 
Lower 

CI 
Upper 

P-value Intercept Int. P-value Est. CI 
Lower 

CI 
Upper 

P-value 

ED PC1 309 0.836 0.765 0.906 1.69 x 10-118 0.970 0.681 1.259 4.88 x 10-11 -0.002 0.347 0.823 0.751 0.894 6.59 x 10-113 

PC1 ED 140 0.203 0.173 0.232 2.20 x 10-41 0.182 0.068 0.296 1.70 x 10-3 0.001 0.715 0.199 0.175 0.224 7.44 x 10-56 

INT PC1 184 0.264 0.183 0.345 1.82 x 10-10 0.080 -0.260 0.420 0.644 0.004 0.276 0.261 0.190 0.332 7.71 x 10-13 

PC1 INT 140 0.105 0.071 0.138 8.23 x 10-10 0.100 -0.029 0.229 0.129 0.000 0.941 0.074 0.045 0.104 8.04 x 10-7 

BMI PC1 1165 0.000 -0.034 0.035 0.993 0.319 0.223 0.415 6.97 x 10-11 -0.007 3.30 x 10-12 0.014 -0.019 0.047 0.403 

PC1 BMI 140 0.089 0.012 0.166 2.34 x 10-2 0.432 0.140 0.724 3.78 x 10-3 -0.012 0.017 0.007 -0.019 0.033 0.614 

Post-SNP filtering 

  Inverse Variance Weighted MR Egger Weighted Median 

Exposure Outcome Number 
of SNPs 

Est. CI 
Lower 

CI 
Upper 

P-value Est. CI 
Lower 

CI 
Upper 

P-value Intercept Int. P-value Est. CI 
Lower 

CI 
Upper 

P-value 

ED PC1 288 0.829 0.765 0.893 7.80 x 10-142 1.066 0.776 1.356 5.46 x 10-13 -0.004 0.100 0.835 0.763 0.907 2.79 x 10-114 

PC1 ED 121 0.178 0.152 0.204 7.07 x 10-42 0.199 0.067 0.332 3.14 x 10-3 -0.001 0.749 0.184 0.159 0.209 1.87 x 10-47 

INT PC1 172 0.265 0.189 0.340 5.41 x 10-12 0.218 -0.170 0.607 0.271 0.001 0.812 0.270 0.200 0.341 6.01 x 10-14 

PC1 INT 126 0.086 0.058 0.115 3.72 x 10-9 0.124 -0.014 0.263 0.079 -0.001 0.582 0.065 0.034 0.095 2.78 x 10-5 

BMI PC1 1081 -0.064 -0.096 -0.032 8.76 x 10-5 -0.031 -0.145 0.084 0.601 -0.001 0.552 -0.070 -0.102 -0.037 2.40 x 10-5 

PC1 BMI 110 -0.036 -0.072 0.001 0.055 -0.108 -0.319 0.102 0.314 0.002 0.492 -0.015 -0.041 0.012 0.272 
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Do dietary habits have a causal relationship with disease and related risk factors? 

To test whether the “prudent” PC1 dietary pattern is likely to causally influence disease 

risk, we repeated bidirectional MR analysis between PC1 with coronary artery disease (CAD) 

from the mostly European CARDIoGRAMplusC4D GWAS and T2D from the DIAGRAM 

consortium 2017 GWAS. 26,27 The only association that provides robust evidence of a causal 

relationship was an increased risk in CAD leading to an increase in PC1 prudent eating with a 

significant, albeit small effect (WM beta=0.0458, 95% CI: 0.016-0.076, P=0.003, Supplementary 

Table 8), suggesting reverse causation of CAD on diet. Though we found that higher 

educational attainment increases healthier eating, using our genetic instruments we did not 

identify causal evidence that eating healthier (PC1) causes a decreased risk for CAD or T2D.  

In contrast to the associations with PC1, a single SNP, rs1453548, strongly influences 

“cups of tea per day” and has a plausible biological mechanism (it is located in an olfactory 

receptor-dense region and explains >96% of the observed phenotypic variance of β-ionone 

sensitivity28). We therefore performed an MR analysis using rs1453548 on the complete set of 

traits in UKB using the Neale Lab GWAS (http://www.nealelab.is/uk-biobank/). Using a strict 

Bonferroni-corrected significance threshold (P<0.05/4358 traits =1.15×10-5), we identified a 

significant causal effect of “cups of tea per day” on smoking status, for which increases in the 

minor allele T (MAF=34%) that cause an increase in “cups of tea per day” cause a decrease in 

smoking status (Neale 20160:Ever smoked Wald ratio estimate= -0.51, 95% CI: -0.69 to -0.32, 

P=4.326×10-8; Supplementary Table 9). However, rs1453548 is directly associated with “ever 

smoked” smoking status in the Neale Lab GWAS at genome-wide significance (P=4.329×10-8), 

the 51-SNP “cups of tea per day” genetic instrument excluding rs1453548 has no significant 

causal effect on smoking status (IVW P=0.20), and beta-ionone is also found in tobacco,29 

suggesting the effects of rs1453548 on odor perception of β-ionone may have pleiotropic effects 

on both smoking status and tea drinking. Together with a lack of additional significant causal 

relationships between rs1453548 and health outcomes in UKB, our results indicate that drinking 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662239doi: bioRxiv preprint 

https://doi.org/10.1101/662239
http://creativecommons.org/licenses/by/4.0/


17 

 

more tea does not have clear effects on health outcomes in UKB, and it’s possible that some 

previous reports on the health benefits of drinking more tea are a result of confounding with 

smoking status.   

 

Discussion 

Understanding the genetic architecture of dietary habits has immense implications for 

human health, but has been a difficult task, in part due to the low heritability of many dietary 

traits.  The recent advent of large-scale datasets such as UKB, with deep phenotyping on 

hundreds of thousands of individuals, has now made genetic discovery of traits with relatively 

low heritability possible. Expansion of phenotyping to include both curated FI-QTs and PC-DPs 

together with GWAS in nearly 450K individuals allowed our study to make hundreds of new 

genetic discoveries relating to diet. Our work advances the elucidation of the genetic 

architecture of multiple correlated dietary habits and helps lay the groundwork for future 

research on nutrigenomic and other complex multifactorial multivariable datasets.  

Our work emphasizes the importance of interrogating the genetics of complementary 

phenotypes to glean a more complete picture of the genetic architecture of diet. One of the 

strongest associations we observed was between SNP rs1229984 and the FI-QT “total drinks of 

alcohol per month” (P=3.8×10-248, Supplementary Figure 6). This SNP has been previously 

associated with alcohol consumption;11,30-33 consistent with a recent meta-analysis,33 our use of 

a curated and quantitative FI-QT improved power compared with the more categorical “overall 

alcohol intake” phenotype and individual alcohol subtypes (i.e. “red wine glasses per month”; 

Supplementary Figures 6 and 9). This increase in power is consistent with the high genetic 

correlation but low phenotypic correlation between individual questions related to alcohol, 

indicating that a composite alcohol question is more suitable for genetic discovery 

(Supplementary Figure 10). Furthermore, using PC1 as an example, we demonstrate that the 
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genetic architecture of FI-QTs and PC-DPs are distinct, with hundreds of genetic associations 

more strongly associated with either PC1 or with its contributing FI-QTs. Overall, by using 

complementary phenotyping approaches, we identified 814 independent genetic associations, 

of which 205 were completely novel, 311 were uniquely associated with curated FI-QTs, and 

136 were uniquely associated with PC-DPs. 

As an initial exploration of the implications of genetically-influenced composite dietary 

patterns, we focused on the strong genetic overlap between PC1 dietary pattern and 

phenotypes related to educational attainment.34 While bidirectional MR demonstrates some 

pleiotropic effects between educational attainment and PC1, the relative strengths of these 

causal estimates suggests that higher educational attainment and/or correlated phenotypes 

(such as socieoeconomic status or factors related to school performance) shift eating habits 

towards a healthier, more prudent diet. While previous observational studies have shown that 

Western and prudent dietary patterns are associated with CAD and T2D,12,22 our MR analysis of 

PC1 on CAD or T2D did not demonstrate a causal effect from diet to disease, but rather a small 

suggestion of a reverse causal relationship between CAD and diet, (CAD diagnosis leads to a 

more “prudent” dietary pattern).  

The conclusion that a “Western” dietary pattern does not appear to be a causal risk 

factor for disease must be viewed in the context of several potential limitations of our study. 

Genetic instruments derived from genome-wide significant variants tend to explain a small 

fraction of phenotypic variance, which can lead to lack of power to detect potentially true causal 

effects of diet on outcomes, although this is mitigated by the large sample size of the UKB 

cohort. Additionally, while the use of overlapping samples in MR could in theory lead to inflated 

causal estimates,35 UKB’s large sample size provides robust genetic instruments, and the 

strength of our causal associations, combined with our validation analysis with an independently 

ascertained set of instruments for educational attainment, suggest that our results are likely not 

influenced by weak instrument bias. Furthermore, although we did not detect evidence of 
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pleiotropy, it remains possible that pleiotropic effects of some of the variants associated with 

PC1 masked a causal effect on cardiometabolic disease risk. Finally, the aspects of a prudent 

dietary pattern reflected by PC1 (predominantly driven by wholemeal/wholegrain vs. white bread 

consumption) may not capture the causal protective features of a prudent dietary pattern. 

However, it remains possible that there is a stronger correlative than causal relationship 

between the Western dietary pattern and increased risk of cardiometabolic disease. 

We also find several interesting associations between specific FI-QTs (fruit, tea, coffee, 

vegetables, cheese, and butter) and olfactory receptors. The chr11p15 locus controlling odor 

perception of beta-ionone,28 described as smelling of cedar wood but upon dilution (e.g. in tea) 

a more floral aroma,36 has pleiotropic effects that both reduce the chances of ever smoking and 

increase tea intake. While SNPs at chr11p15 have already been shown to be associated with 

food choice with and without added β-ionone,28 we highlight here for the first time a link between 

β-ionone odor perception with smoking status, with potential significant implications for smoking-

related health problems. This result also highlights the importance of understanding the 

pleiotropic consequences of variants used as genetic instruments in Mendelian randomization. 

Of note, our dietary habits derived from a shortened FFQ were not adjusted for total 

energy intake, a measure highly correlated with physical activity and body weight;37 as such, our 

dietary habits represent potentially non-isocaloric variations in dietary intake. However, we 

found minimal phenotypic correlation between any of our FFQ-derived phenotypes and 24-hour 

recall questionnaire-derived total energy intake (maximum correlation r = 0.037). Furthermore, 

none of our lead 814 SNPs were nominally significant in the Neale Lab total energy intake 

GWAS (P>0.05/814). Nine of our phenotypes, including “slices of bread per week”, “overall 

cheese intake”, and “glasses of water per day” did show significant genetic correlations with 

total energy intake, suggesting that the genetic architecture of these traits could be shared with 

traits that reflect more global lifestyle and dietary patterns (Supplementary Table 5).  
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 Overall, we present the genetic analysis of two complementary phenotypic approaches 

for dietary habits in a well-powered sample. Our results expand the understanding of the genetic 

contributors to dietary preferences and highlight the advantages of using complementary and 

novel approaches to derive carefully curated phenotypes, both for diet and for polygenic traits 

more generally. Our results also empower investigations of how our eating habits causally relate 

to disease risk. Comprehensive and rigorous investigation into the causal consequences of 

different modifiable aspects of diet and lifestyle can potentially have enormous implications for 

public health.  
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Online Methods 

UK Biobank Genetic Data 

UKB is a large prospective cohort with both deep phenotyping and molecular data, 

including genome-wide genotyping, on over 500,000 individuals ages 40-69 living throughout 

the UK between 2006-2010.38 Genotyping, imputation, and initial quality control on the genetic 

dataset has been described previously.39,40 Additionally we removed individuals flagged for 

failing UKBiLEVE genotype quality control, heterozygosity or missingness outliers, individuals 

with putative sex chromosome aneuploidy, individuals with self-reported vs. genetically inferred 

sex mismatches, and individuals whom withdrew consent at the time of analysis. Work within 

was conducted on genetic data release version 3, with imputation to both Haplotype Reference 

Consortium and 1000 Genomes Project (1KGP)41, under UK Biobank application 11898. 

 

UK Biobank Phenotype Derivation 

All phenotype derivation and genomic analysis was conducted on a homogenous 

population of individuals of European (EUR) ancestry (N=455,146), as determined by: 1) 

projection on to 1KGP phase 3 PCA space, 2) outlier detection to identify the largest cluster of 

individuals using Aberrant R package42, selecting the lambda in which all clustered individuals 

fell within 1KGP EUR PC1 and PC2 limits (lambda=4.5), 3) removed individuals who did not 

self-report as “British”, “Irish”, “Any other white background”, “White”, “Do not know”, or “Prefer 

not to answer”, as self-identified non-EUR ancestry could confound dietary habits. 

Prior to phenotype derivation, we removed individuals that were pregnant, had kidney 

disease as defined by ICD10 codes, or a cancer diagnosis within the last year (field 40005). The 

UKB food frequency questionnaire consists of quantitative continuous variables (i.e. field 1289, 

tablespoons of cooked vegetables per day), ordinal non-quantitative variables depending on 

overall daily/weekly frequency (i.e. field 1329, overall oily fish intake), food types (i.e. milk, 
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spread, bread, cereal, or coffee), or foods never eaten (field 6144, dairy, eggs, sugar, and 

wheat). Supplementary Table 1 provides a list of UKB fields relating to the corresponding FFQ 

question for each dietary habit, which can be looked up in the UKB Data Showcase 

(http://biobank.ndph.ox.ac.uk/showcase/). Ordinal variables were ranked and set to quantitative 

values, while food types or foods never eaten were converted into a series of binary variables. 

Variables relating to alcoholic drinks per month were derived from a conglomeration of drinks 

per month and drinks per week questions answered by different individuals depending on their 

response to overall alcohol frequency (field 1558). All 85 single food intake dietary phenotypes 

were then adjusted for age in months and sex, followed by inverse rank normal transformation. 

For individuals with repeated FFQ responses, both the dietary variable and the age in months 

covariate were averaged over all repeated measures. Principal components were then derived 

from all 85 FI-QTs after filling in missing data with the median using the prcomp base function in 

R. All phenotypes after averaging, covariate adjustment, and transformation were normally 

distributed continuous variables. FI-QTs with percent contribution (squared coordinates) greater 

than expected under a uniform distribution [1/85*100=1.18%] were included in Figure 1 and 

Supplementary Figure 4, created using ComplexHeatmap package in R.43 Phenotype 

correlation between all 170 dietary habits was estimated using Pearson pair-wise correlation on 

complete observations in R. All correlations (phenotypic and genetic) with P> 0.05/85 were set 

to 0. The significance threshold here was selected based on a Bonferroni correction for 85 total 

FI-QTs to maintain stringency for multiple testing and consistency across phenotype and 

genetic correlation analyses, while allowing for the nested and non-independent nature of the 

FFQ questions and derived FI-QTs 

 

Heritability, GWAS, and Genetic Correlation Analyses 

Measures of heritability were obtained from BOLT-lmm software (v.2.3.2)44,45 pseudo-

heritability measurement representing the fraction of phenotypic variance explained by the 
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estimated relatedness matrix.44-46 These estimates were highly correlated with ��
� estimates 

using LD score regression (LDSC)47 (r=0.988 ; Supplementary Figure 11). BOLT-lmm was 

unable to calculate ��
� for “spread type: block margarine vs. never” yielding an “invalid estimate” 

error, likely indicating no genetic component as BOLTlmm reported ��
� equal to 0 for the highly 

related “spread type: block margarine vs. any other” dietary habit with ten times the sample size.  

GWAS of all variables was conducted using BOLT-lmm software (v.2.3.2)44,45 linear mixed 

model association testing to account for relatedness. Additional covariates included in BOLT-

lmm analysis for both heritability and GWAS included genotyping array and the first 10 genetic 

PCs derived on the subset of unrelated individuals using FlashPCA2,48 followed by projection of 

related individuals on to the PC space. The number of associated loci was determined by 

clumping of signals within 500kb windows. Variance explained for each SNP was calculated 

from the effect size (beta) and effect allele frequency (f) as follows: beta2*(1-f)*2f. Pair-wise rg of 

all significantly heritable dietary habits were estimated using LDSC.49 Again, all correlations 

(phenotypic and genetic) with P> 0.05/85 were set to 0. Index SNP annotations were evaluated 

using Neale Lab UKB GWAS consequence annotations based on Ensembl’s Variant Effect 

Predictor (VEP).50 We performed DEPICT gene set and tissue enrichment analysis, which relies 

on reconstituted gene sets from publicly available gene sets and pathways and gene expression 

data to evaluate enrichment in Western vs. prudent PC1 GWAS loci.51 

Ninety-five percent credible sets were estimated for all 2,515 genome-wide significant 

associations using posterior probabilities as calculated by FINEMAP v1.352 using shotgun 

stochastic search in 500kb windows. We then used LDstore v1.153 to calculate LD and identify 

SNPs in high LD (r2≥0.80) with any of the 77,229 95% credible set SNPs. The GWAS catalog17 

(downloaded on November 13, 2018) and Neale Lab GWAS v2 conducted in up to 361,194 

unrelated individuals (August 2018 release; http://www.nealelab.is/uk-biobank/) was then 

searched for this list of 339,832 unique SNPs in either any of the 95% credible sets or in high 
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LD with any SNP in the 95% credible sets for any of the 2,515 significant GWAS signals in 814 

independent loci. We considered any locus as being previously reported if any SNP in its 95% 

credible set or in high LD (r2≥0.80) with any SNP in the 95% credible SNP was associated with 

any trait at genome-wide significance (P < 5.0×10-8). LocusZoom plots were made using the 

stand-alone package54 to include LD information from UKB as determined by LDstore and 95% 

credible sets from FINEMAP.52,53 

LDSC rg was again performed on 143 significantly heritable dietary habits with 4,336 

Neale Lab UKB GWAS traits, 3,219 of which had at least one non-missing rg estimate from 

LDSC. Using a strict Bonferroni correction threshold for all pairwise tests between 143 dietary 

habits and 3,219 highly correlated and even overlapping Neale Lab GWAS traits 

(P<0.05/460,317=1.09×10-7), we set all non-significant rg to 0. Supplementary Table 5 

represents a complete pair-wise rg matrix.  

Enrichment for olfactory receptor genes among dietary habits was evaluated using 1,000 

sets of null matched SNPs based on minor allele frequency, number of SNPs in LD at various 

LD thresholds, distance to nearest gene, and gene density using the SNPsnap webtool.55 We 

used fisher’s test for enrichment of olfactory receptor genes using SNPsnap’s nearest gene 

annotation for 647 dietary habit GWAS index SNPs and for 1,000 sets of null matched SNPs 

(167 of our index SNPs were excluded for being in the HLA region or had insufficient matches). 

We based the enrichment analysis contingency table on 842 annotated olfactory receptor genes 

among 48,903 genes in SNPsnap. Of the 1,000 null enrichment analyses, 419 had a fisher’s 

test estimate equal to or greater than our real data’s enrichment estimate. 

 

Mendelian Randomization 

Bidirectional Mendelian Randomization was conducted using genome-wide significant 

index SNPs clumped by 500kb windows from GWAS in UKB on PC1 (M=140), fluid intelligence 

scores (M=184), educational attainment (M=309), and BMI (M=1165). Fluid intelligence scores 
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for GWAS in EUR (N=232,601) was derived from both in person and online cognitive tests. 

Assessment center fluid intelligence scores (field 20016) were averaged for up to 3 visits and 

adjusted for average age in months, sex, and assessment center. Online fluid intelligence 

scores (field 20191) were adjusted for age in months, sex, and townsend deprivation index. The 

final fluid intelligence score was first set to average assessment center fluid intelligence score, 

and when missing was filled in with the online fluid intelligence score, for which the combination 

of these scores were then adjusted for collection method, followed by inverse normal 

transformation. Educational attainment for GWAS in EUR (N=450,884) was derived using a 

previously published method based on mapping UKB qualifications field 6138 to US years of 

schooling,56 following by adjusted for age in months, sex, and assessment center, and inverse 

normal transformation. BMI was calculated from weight (field 21002) and standing height (field 

50) and averaged from up to 3 assessment center visits. Average BMI was adjusted for average 

age in months, average age in months squared, assessment center, and average measurement 

year, followed by inverse normal transformation conducted in males and females separately. 

The combined male and female BMI Z-scores were then used together for genetic association 

testing. All GWAS were run in BOLT-lmm adjusted for 10 genetic PCs (calculation described 

above) and genotyping array.  

Genetic instruments for each of the three traits consisted of the complete set of index 

SNPs for each independent genome-wide significant GWAS locus defined by clumping signals 

in 500 kb windows. In addition to inverse-variance weighted (IVW) MR, we also conducted MR 

Egger to detect pleiotropic effects and Weighted Median (WM) MR to allow for the inclusion of 

up to 50% invalid genetic instruments. To test the robustness of any causal association, we 

repeated MR with filtered genetic instruments using Steiger filtering to remove variants likely 

influenced by reverse causation and Cook’s distance filtering to remove outlying heterogeneous 

variants.57 First-pass bidirectional MR included all genome-wide significant SNPs using IVW, 

MR Egger, and WM using the MendelianRandomization R package.58 MR sensitivity analysis 
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was conducted by first Steiger Filtering to remove variants that explained more variance in the 

outcome than the exposure as determined by the get_r_from_pn command in TwoSampleMR R 

package57,59 and then by filtering out Cook’s distance outliers using base R functions. IVW, MR 

Egger, and WM were then repeated on the filtered genetic instruments. Validation of 

educational attainment MR results were conducted in two ways. First, a completely external 

GWAS dataset was used for which 74 discovery stage (not including UKB) genome-wide 

significant index SNP summary statistics were published online.25 After removing missing and 

ambiguous SNPs, the external genetic instrument contained 66 variants. Second, we split the 

UKB sample into two subsets and conducted GWAS for PC1 and educational attainment as 

described above in each subset: 1/3 (Npc1= 149,212 and Ned= 150,884) of the EUR sample was 

used for genetic instrument variable identification and 2/3 (N=300,000) of the EUR sample was 

used for testing. MR of the tea intake SNP rs1453548 was conducted using the wald ratio 

estimate as calculated by the MendelianRandomization R package58 using effect size and 

standard errors from our “cups of tea per day” GWAS and effect size and standard errors from 

4,358 traits in the Neale Lab GWAS.  

 

Data Availability 

All 170 derived dietary habits will be returned and shared through UK Biobank and all GWAS 

results for the 143 significantly heritable dietary habits will be made publically available on the 

Type 2 Diabetes Knowledge Portal (http://www.type2diabetesgenetics.org/) upon publication. 
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