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ABSTRACT

Structural rules underlying functional properties of cortical circuits are poorly understood. To explore
these rules systematically, we integrated information from extensive literature curation and large-scale
experimental surveys into data-driven, biologically realistic models of the mouse primary visual cortex.
The models were constructed at two levels of granularity, using either biophysically-detailed or point-
neuron models, with identical network connectivity. Both models were compared to each other and to
experimental recordings of neural activity during presentation of visual stimuli to awake mice. Three
specific predictions emerge from model construction and simulations: about connectivity between
excitatory and parvalbumin-negative inhibitory neurons, functional specialization of connections between
excitatory neurons, and the impact of the cortical retinotopic map on structure-function relationships.
Finally, despite their vastly different neuronal levels of granularity, both models perform similarly at the
level of firing rate distributions. All data and models are freely available as a resource for the community.

INTRODUCTION

Mechanisms connecting structural properties of cortical circuits to patterns of neural activity are poorly
understood. Elucidation of such mechanisms requires systematic data collection, sophisticated analyses, and
modeling efforts to “understand” this data. Such an understanding is always relative to a particular domain
of interest — be it modeling the physics of highly excitable brain tissue composed of a myriad of
heterogeneous neurons (Koch, 1999), mimicking the computations that lead to a particular set of firing rates
(Yamins and DiCarlo, 2016), or diagnosing and ultimately curing psychiatric and neurological brain diseases.
The first option — biologically realistic modeling — appears necessary to disentangle the extreme biological
complexity of the cortex (Harris and Mrsic-Flogel, 2013; Harris and Shepherd, 2015; Amunts et al., 2016;
Koch and Jones, 2016; Martin and Chun, 2016; Chevée and Brown, 2018).

Simulating cortical circuits has a long history (e.g. (Wehmeier et al., 1989; Zemel and Sejnowski, 1998;
Troyer et al., 1998; Krukowski and Miller, 2001; Traub et al., 2005; Zhu, Shelley and Shapley, 2009; Potjans
and Diesmann, 2014; Markram et al., 2015; Arkhipov et al., 2018; Joglekar et al., 2018; Schmidt et al., 2018;
Antolik et al., 2019)), with models incrementally building upon their predecessors. The simulations described
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here are a further instance of this evolution toward digital simulacra that predict new experiments, are
insightful, and ever more faithful to the vast complexity of cortical tissue, in particular its heterogeneous

neuronal cell classes, connections, and in vivo activity.

We developed data-driven models of the mouse primary visual cortex (area V1) for in silico visual physiology
studies with arbitrary visual stimuli (Fig. 1A). The models, constrained by experimental measurements and
reproducing multiple observations from in-house Neuropixels high-density electrical recordings in vivo (Jun
et al.,, 2017), have the same network graph of ~230,000 nodes of two different levels of granularity:
biophysically detailed compartmental models of 17 different cells types (Gouwens et al., 2018) and
Generalized Leaky Integrate and Fire (GLIF) point-neuron models of these 17 types (Teeter et al., 2018).
Otherwise, the two V1 models are identical at the connectivity level.

While building and testing the models, we derived three specific predictions. The first concerns like-to-like
connectivity of excitatory and non-parvalbumin expressing interneurons. The second involves the
dependence of synaptic weights on similarity of preferred direction of motion of two connected neurons
(while connection probability is orientation dependent (Ko et al., 2011)) and a bias for the strongest cortical
inputs to derive from a stripe perpendicular to the preferred direction-of-motion of target neurons. The
third is a consequence of the dependency of cortical magnification on elevation and azimuth (Schuett,
Bonhoeffer and Hiibener, 2002; Kalatsky and Stryker, 2003) that leads to an asymmetry between neurons
preferring vertical- vs. horizontal- direction. We predict that this is compensated for by respective
asymmetric specializations of the circuit architecture.

Our models use the Brain Modeling ToolKit (BMTK, github.com/AllenInstitute/bmtk) (Gratiy et al., 2018) that
facilitates building large-scale network and parallel simulations with NEURON (Hines and Carnevale, 1997)

and NEST (Gewaltig and Diesmann, 2007). The architecture and outputs are saved using the standardized
SONATA format (github.com/Alleninstitute/sonata, (Dai et al., 2019)). All models, code, and meta-data
resources are publicly available via the Allen Institute for Brain Science’s web portal (brain-

map.org/explore/models/mvi-all-layers). As an open public resource, these models will be useful for making

direct predictions as well as complementing other experimental and modeling endeavors. The in vivo
extracellular recordings used for comparison are recorded from a standardized pipeline and will be freely
available in October with the next Allen Institute data release.

RESULTS

POPULATING DIVERSE CORTICAL CELL CLASSES WITH NEURONAL MODELS

Our biophysical and GLIF models of V1 use the same connectivity graph (i.e., each neuron of ~230,000 nodes
in one model has an exact counterpart in the other, with the same coordinates, presynaptic sources, and
postsynaptic targets). The first step in building this network is to instantiate and distribute neurons in a data
driven manner. The models span a 845 um radius of mouse V1 (Fig 1B). For the biophysically detailed model,

the “core” (400 um radius) is composed of spatially extended neurons, surrounded by an annulus of leaky-
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integrate-and-fire neurons, to avoid boundary artifacts (as described previously, (Arkhipov et al., 2018)). In
both the GLIF and biophysical models, the focus of our analysis is on the network within this central core.

Neuron models are reconstructed from slice electrophysiology and are publicly available from the Allen Cell
Types Database (Gouwens, Berg, et al., 2018; Teeter et al., 2018, celltypes.brain-map.org). Although the

most recent transcriptomic and electrophysiological/morphological in vitro surveys suggest ~50-100
neuronal classes in V1 (Tasic et al., 2018; Gouwens et al., 2019), the currently available neuronal models,
connectivity data, and in vivo recordings offer lower cell class resolution. Thus, we adopted a coarser
classification, which, however, still reflects a substantial diversity of neuronal classes (Fig. 1A, C).

Specifically, we draw inhibitory neurons in layer 1 (L1) from one inhibitory class of Htr3a neurons and in
layers 2/3 to 6 from three classes of interneurons - Paravalbumin- (Pvalb), Somatostatin- (Sst), and
Serotonin- (Htr3a) positive cells (Lee et al.,, 2010; Tremblay, Lee and Rudy, 2016). We note that the
commonly studied Vasoactive Intestinal Polypeptide (VIP) interneurons are a subclass of Htr3a in L2/3 to L6
(Tremblay, Lee and Rudy, 2016). Since VIP is the subclass most extensively characterized experimentally
within the Htr3a class, we resorted to using VIP studies to constrain the Htr3a class in our models (see
below).

Excitatory neurons in L2/3, L4, L5, and L6 are represented by one class per layer. For L4 and L5, more specific
sub-classes are used to draw models for neurons reconstructed from the Scnnla, Nr5al, and Rorb Cre-lines,
as well as unlabeled neurons for L4 and Rbp4 Cre-line and unlabeled neurons for L5. Cells from these lines
exhibit some differences in their morphologies (Gouwens et al., 2019), but it is not known whether they
differ in connectivity. Furthermore, they do not appear to show substantially distinct patterns of activity in
vivo (de Vries et al., 2018). Therefore, for all subsequent steps and analyses, we lump excitatory neurons
into a single class per layer (E2/3, E4, E5, E6).

In total, the two V1 networks contain 17 cell classes, represented by 112 unique individual neuron models
for the biophysical and 111 for the GLIF network, copied and distributed in layers according to the best data
available (see Methods). Cell densities (including inhibitory subclasses) across layers are estimated from
anatomical data (Schiz and Palm, 1989; Lee et al., 2010), with an 85%:15% fraction for excitatory and
inhibitory neurons. The final network contains 230,924 cells, of which 51,978 are in the core (see Methods).

We determined synaptic connectivity using three design iterations. In the first, discussed immediately
below, we determined the feed-forward geniculate input into each isolated V1 cell. In the second iteration,
we introduced massive synaptic recurrency that depended on the difference in preferred orientation among
pairs of V1 cells. In the third and final step, we refined the connectivity by adding dependencies on the
phase and on the difference of the preferred direction of motion among connected cells.
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Figure 1: Overview of the V1 models. A: The models consist of one excitatory class and three inhibitory
classes (Pvalb, Sst, Htr3a) in each of four layers - L2/3, L4, L5 and L6; L1 has a single Htr3a inhibitory class.
Visual stimuli are conveyed by thalamocortical projections (from the LGN; see Figs. 2 and 3). B: Image of the
mouse posterior cortex (from the Allen Brain Explorer), illustrating V1 and higher visual cortical areas, and
the region covered by the models (400 pm radius for the core; 845 um radius with surrounding annulus). C:
Visualization of the biophysically detailed network (1% of neurons shown). For each class, the total number
of neurons is indicated and one exemplary dendritic morphology is displayed.

THALAMOCORTICAL INPUT TO THE V1 MODELS

The Lateral Geniculate Nucleus (LGN) of the thalamus mediates retinal input to V1. We created an LGN
module that generates action potentials for arbitrary visual stimuli, as described below.

CREATING LGN UNITS


https://doi.org/10.1101/662189
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/662189; this version posted June 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The LGN module is composed of spatio-temporally separable filter units (released publicly via the Brain
Modeling ToolKit, github.com/AllenInstitute/bmtk) fitted to electrophysiology recordings from mouse LGN

(Durand et al., 2016). In a substantial elaboration over our previous work (Arkhipov et al., 2018), we
developed filters for four classes of experimentally observed functional responses (Piscopo et al., 2013;
Durand et al., 2016): sustained ON, sustained OFF, transient OFF, and ON/OFF (the latter is related to the
DS/0S class of (Piscopo et al., 2013)). These four filter groups are further subdivided according to their
maximal response to drifting gratings of different temporal frequencies (TF) (Fig. 2A). We average the
experimentally recorded responses for each class to create linear-nonlinear filter models that process any
spatio-temporal input and compute a firing rate output (see Methods, example in Fig. 2B). These filters are
distributed in visual space according to occurrence ratios of the LGN cell classes (Durand et al., 2016),
translating any visual stimulus into firing rates. The firing rate output is converted, via a Poisson process,

into spike times (see Methods).

DIRECTION SELECTIVE INPUT INTO V1 CELLS

Direction selectivity is a prominent characteristic of V1 neurons (Niell and Stryker, 2008; Durand et al.,
2016). How it is generated is a central question in the field. We seek here to recapitulate physiological levels
of direction selectivity (see below). Although some direction-selective neurons are observed in the LGN
(Marshel et al., 2012; Piscopo et al., 2013; Scholl et al., 2013; Zhao et al., 2013; Sun et al., 2016), recent work
indicates that direction selectivity is produced de novo in V1 from convergence of spatio-temporally
asymmetric LGN inputs (Lien and Scanziani, 2018). Based on this, we assume that LGN innervation into V1
neurons has two subfields, one with slow (sustained) and the other with fast (transient) kinetics (Fig. 2C).
These produce an asymmetry in responses to opposite directions of motion (Fig. 2D). A simplified theoretical
framework demonstrates (see Methods, Fig. S1) that sufficiently high orientation and direction selectivity
indices (OSI and DSI) can be achieved with such input subfields (Lien and Scanziani, 2013, 2018).
Interestingly, this analytic treatment predicts reversal of preferred direction as the spatial frequency of a
grating increases, which we confirmed experimentally to be a ubiquitous phenomenon in the mouse visual
system (Billeh et. al/ 2019). This mechanism has analogy to aliasing found in the fly (Hassenstein and
Reichardt, 1956; Barlow and Levick, 1965; Van Santen and Sperling, 1984; Borst and Egelhaaf, 1989) and
parallels the OFF pathway motion detection system in fly T5 neurons (Serbe et al., 2016; Arenz et al., 2017).
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Figure 2: LGN filter models. A: LGN classes fit from electrophysiological recordings (Durand et al., 2016)
using spatiotemporally separable filters. Every major class has sub-classes that respond maximally to a
specific temporal frequency (TF). The numbers in parentheses indicate the rate of occurrence in our model.
B: Example filter for the sON-TF8 class. Top: the spatial and temporal components of the filter. Bottom: plots
of the FO (cycle averaged mean rate response) and F1 components (modulation of the response at the input
stimulus frequency) of the data and the model fit (see Methods) in response to drifting gratings (mean *
s.e.m). C: Schematic of thalamocortical architecture for a candidate pool of LGN cells projecting to a V1 cell
with matching retinotopic positions. The putative LGN units are separated into sustained and transient
subfields. D: Schematic illustrating the direction selectivity mechanism. When a bar moves from left to right
(the preferred direction), the responses from the sustained and transient components overlap and exceed a

threshold, while movement in the opposite, null, direction prevents overlapping responses.

CREATING AND TESTING THALAMOCORTICAL CONNECTIVITY

We instantiated individual filters to represent the diverse LGN responses (Fig. 2A), placing 17,400 LGN units
in visual space. LGN axons project to all layers of V1 (Kloc and Maffei, 2014; Morgenstern, Bourg and
Petreanu, 2016), selectively innervating excitatory neurons and Pvalb interneurons in L2/3-L6, as well as



non-Pvalb interneurons in L1 (Ji et al., 2015). We targeted LGN inputs to V1 neuron classes accordingly and
then established connections to individual neurons using the following three-step procedure (see Methods).

The first step selects the LGN units projecting to a particular V1 neuron, leveraging the fact that
spatiotemporally asymmetric architecture yields direction and orientation selectivity (Lien and Scanziani,
2013, 2018). For each V1 neuron, we determined the visual center, size, and directionality (a pre-assigned
preferred angle of stimulus motion) of elliptical subfields from which LGN filters will be sampled, according
to the neuron’s class and position in the cortical plane (Fig. 3A). We then identified LGN receptive fields (RFs,
parameterized during filter construction) that overlap with these elliptical subfields of the V1 neuron. One
subfield always samples from transient OFF LGN filters and the other from sustained ON or OFF (see
Methods).

The second step, only applicable to the biophysical model, determines the number and placement of
synapses on V1 neurons, using data on LGN axonal density in V1 (Morgenstern, Bourg and Petreanu, 2016)
and estimates of synapse numbers per neuron (Schoonover et al., 2014; Bopp et al., 2017). In the third and
final step, the strength of synapses is established, constrained by experimental current measurements (Lien
and Scanziani, 2013; Ji et al., 2015). The synapse strengths are scaled to match the target mean current (Fig.
3B, C) in response to a drifting grating (see Methods). Layer 4 is the main primary input target of the LGN,
and therefore the current amplitudes are largest in this layer (Fig. 3B, C).

To test the outcome of this procedure, we carried out simulations of the entire V1 network without
recurrent connections using drifting grating stimuli. Individual neurons are direction selective (Fig. 3D),
consistent with experimental measurements of LGN input currents (Lien and Scanziani, 2013, 2018). At the
network level (example raster in Fig. 3E), the average firing rates, DSI, and OSI due to LGN-only input are
calculated (Figs 3F, 3G, and S2 respectively). For reference, data from in vivo extracellular electrophysiology
recordings from awake mice (a fully recurrent biological network) are included in Fig. 3F. These experiments
are performed with Neuropixel probes (Jun et al., 2017) from a standardized pipeline (data release by the
Allen Institute in October 2019) and are used throughout the manuscript as a benchmark for the models
(examples in Fig. S3). Note that experimental data are robustly classified into the regular-spiking (RS) and
fast-spiking groups (FS), roughly corresponding to excitatory and Pvalb inhibitory neurons (although small
contributions from non-Pvalb inhibitory neurons are likely present in both groups). Hence here, and
throughout the Results section, we compare model excitatory and Pvalb neurons with experimental RS and
FS, respectively. Finally we define a similarity score, S, between distributions to compare the population of
excitatory and Pvalb neurons in experiments and models (one minus the Kolmogorov—Smirnov distance, see
Methods). If the distribution in the simulated population is close to the experimental one, the similarity
measure will be close to unity; S close to zero indicates quite different distributions (Fig. S4). As expected, in
the absence of intra-cortical amplification, S is low for firing rates, (E-biophysical = 0.15, E-GLIF = 0.17, Pvalb-
biophysical = 0.60, Pvalb-GLIF = 0.35) orientation selectivity (E-biophysical = 0.24, E-GLIF = 0.24, Pvalb-
biophysical = 0.49, Pvalb-GLIF = 0.58) and for direction selectivity (E-biophysical 0.23, E-GLIF = 0.24, Pvalb-
biophysical = 0.59, Pvalb-GLIF = 0.63). We also note that the two model resolutions compare well to one
another (for example S values: E-rates = 0.96, E-OSI = 0.95, E-DSI = 0.96).
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Figure 3: LGN inputs to the V1 models. A: LGN filters connecting to four different V1 neurons. Black triangles
and colored circles indicate the centers of the receptive fields of the V1 neuron and those of presynaptic
LGN neurons, respectively. Gray circles indicate all other LGN filters. The elliptical subfields used to select
the projecting LGN filters are shown. B-G: Responses of the biophysical V1 model to LGN input without any
intracortical connections nor background activity. B: Postsynaptic currents in V1 neurons responding to 500



ms of gray screen followed by a drifting grating. The mean current is matched to experimental
measurements and is largest for layer 4 neurons. C: Boxplots of postsynaptic currents for every neuron class
(for preferred drifting grating), after matching to target values (boxes span 25" till 75™ percentile and
whiskers extend a maximum of 1.5 the interquartile range). D: Example tuning curve of an E4 neuron (mean
+ s.e.m). E: Example raster plot, same stimulus as in B. Neuron classes with large EPSC current values
(boxplots in C), show significant spiking activity. F: Boxplots characterizing firing rates of neuronal classes.
For reference, experimental data from in vivo extracellular electrophysiology recordings from awake mice
(i.e., fully connected cortical circuit) are shown. G: Characterization of DSI from responsive neurons (see
Methods). Some DSI values are high as these simulations are purely feedforward and thus exhibited low
firing rates that bias the DSI metric.

Finally, a background pool, mimicking the influence of the rest of the brain on V1, provides inputs from a
single Poisson source firing at a constant rate of 1000 Hz to all V1 cells. The final weights of this background
were adjusted with the recurrent connectivity in place, to ensure that the baseline firing rates of all neurons
match experiments (see below). While more sophisticated models of background can be implemented (e.g.,
Arkhipov et al., 2018) depending on the question of interest (e.g., state transitions), these questions were

not the focus of our current study. Therefore, we chose a simple background approximation.

CREATING THE RECURRENT CONNECTIVITY IN THE V1 NETWORK

We now turn to the considerably more complex problem of determining cortico-cortical synaptic
connections.

V1 circuits feature extensive recurrent connections which amplify LGN inputs and shape V1 computations
(Douglas, Martin and Whitteridge, 1989; Douglas et al., 1995; Douglas and Martin, 2007; Lien and Scanziani,
2013; Arkhipov et al., 2018). Despite many studies (e.g., (Cauli et al., 1997; Dantzker and Callaway, 2000;
Beierlein and Connors, 2002; Thomson et al., 2002; Beierlein, Gibson and Connors, 2003; Mercer et al.,
2005; Song et al., 2005; West et al., 2005; Yoshimura, Dantzker and Callaway, 2005; Lefort et al., 2009; Hofer
et al., 2011; Ko et al., 2011; Levy and Reyes, 2012; Olsen et al., 2012; Pfeffer et al., 2013; Vélez-Fort et al.,
2014; Bortone, Olsen and Scanziani, 2014; Cossell et al., 2015; Jiang et al., 2015)), data on the exact patterns
and magnitude of V1 recurrent connectivity remains sparse, and no resource exists that comprehensively
characterizes all connections under standardized conditions. We set out to construct recurrent connections
in a data-driven manner via extensive curation of the literature supplemented by Allen Institute data
(Seeman et al., 2018) when available. This resulted in four key resources (Fig. 4) containing estimates of (1)
connection probability, (2) synaptic amplitude or strengths, (3) axonal delays, and (4) dendritic targeting of
synapses. These resources are provided to the community (brain-map.org/explore/models/mv1-all-layers)

with every estimate and assumption documented in interactive files. Our V1 network contains specific
instantiations of these connectivity rules. Unfortunately, data do not exist for many connection classes in
mouse V1; therefore we used other data in the following order of preference as a guiding principle: mouse
visual cortex, followed by mouse non-visual or rat visual cortex, then rat non-visual cortical measurements.
Additional entries were filled using assumptions of similarity and/or the rat somatosensory cortex model



(Markram et al., 2015; Reimann et al., 2015). 89 out of the total 289 entries remained undetermined (empty
cells in Fig. 4A, B) and were set to zero due to lack of data (see Methods).

Fig. 4A reports connection probability values at 75 um planar intersomatic distance, used as parameters for
Gaussian distance-dependent connectivity rules for different source-target class pairs (Fig. 4C). Excitatory-
to-excitatory (E-to-E) connections in L2/3 of mouse V1 also exhibit “like-to-like” preferences (Ko et al., 2011;
Cossell et al., 2015; Wertz et al.,, 2015; Lee et al., 2016) — that is, cells preferring similar stimuli are
preferentially connected. We here assume that such like-to-like rules are ubiquitous among all E-to-E
connections, both within and across layers. These rules are illustrated in Fig. 4D (see Methods), based on the
preferred direction of motion angle assigned to each neuron. No such rules were applied for E-to-l, I-to-E,
and I-to-l connection probabilities, following experimental observations (Bock et al., 2011; Fino and Yuste,
2011; Packer and Yuste, 2011; Znamenskiy et al., 2018).

Recent experiments indicate that, besides connection probability, the amplitude (strength) of E-to-E
synaptic connections in L2/3 also exhibit a like-to-like dependence (Cossell et al., 2015; Lee et al., 2016). In
earlier work, we found these to be even more important for response tuning than connection probability
rules (Schaub et al., 2015; Arkhipov et al., 2018). A similar like-to-like rule for synaptic strength (but not
connection probability) has been reported for I-to-E connections (Znamenskiy et al., 2018). Thus, we assume
that all synaptic strength classes (Fig. 4B) are modulated by such a rule (Fig. 4D). At this point, all like-to-like
connection probability and synaptic strength profiles were symmetric with respect to the opposite preferred
directions (i.e., orientation-dependent but not direction-dependent).

Notably, some of the first predictions from our models came from this data-driven building stage. One
important rationale for imposing the like-to-like synaptic weights rule for all connection classes is that the
Sst and Htr3a classes receive little to no LGN input (Fig. 3; (Ji et al., 2015)), yet exhibit orientation and
direction tuning (Liu et al., 2009; Kerlin et al., 2010; Ma et al., 2010). We assumed that these classes become
tuned due to like-to-like inputs from excitatory neurons, and, indeed, our simulations implementing these
rules exhibit substantial orientation and direction selectivity for these interneuron classes (see below).

The third resource contains synaptic delays between different neuronal classes. Given that measurements of
these properties were particularly sparse, our final table is of coarser resolution (Fig. 4E). The fourth
resource, applicable to the biophysical model only, is a set of dendritic targeting rules for each connection
class (examples illustrated in Fig. 4F). Experimental data for this (typically, from electron microscopy) are
only available for a relatively small number of scenarios, and we used what was available from internal data
and the literature (see Methods).
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Figure 4: Summary of recurrent connectivity rules used in both models. A: Probability of connection at an
intersomatic distance of 75 um. B: Strength of connections (somatic unitary post-synaptic potential (PSP)).
C: The distance-dependent connection probability profiles used for different classes of connections. D: The
functional rules for connection probability (applied only to E-to-E connections) and synaptic strengths
(applied to all connection classes) as a function of the difference in preferred angle between the source and
target neurons. E: Axonal delays for connections between classes. F: Example schematics of dendritic
targeting rules. For detailed descriptions, see Methods.

OPTIMIZATION OF SYNAPTIC WEIGHTS

Although our data-driven approach systematically integrates a large body of available data, these data are
still incomplete and are obtained under disparate conditions. It is therefore not surprising that after
construction, our models need to be tuned to obtain physiologically realistic spiking patterns and avoid run-
away excitation or epileptic-like activity. While efficient optimization methods for recurrent spiking
networks have been described (e.g., (Sussillo and Abbott, 2009; Nicola and Clopath, 2017)), their
performance has not yet achieved the level required for optimization of the computationally expensive and
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highly heterogeneous networks we constructed. We therefore use a heuristic optimization approach with
identical criteria applied to the biophysical and GLIF models.

Following (Arkhipov et al., 2018), we used three criteria: (i) spontaneous firing rates should match
experimental values, (ii) peak firing rates in response to a single trial of a drifting grating (0.5 s long) should
match experiments, and (iii) the models should not exhibit epileptic activity. The optimization applied to
synaptic weights only, via grid searches along weights of connections between neuronal classes, using
uniform scaling of the selected weight class. The LGN-to-L4 weights were fixed as they were matched
directly to experimental recordings in vivo (Lien and Scanziani, 2013) (Fig. 3), whereas the net current inputs
from LGN to other layers could vary (within strict bounds) since the corresponding experimental data were
obtained in vitro (Ji et al., 2015). Optimizing a full recurrent network at once was very challenging; instead,
we followed a stepwise, layer-by-layer procedure. We first optimized the recurrent weights within L4, with
all recurrent connections outside L4 removed. Then we added L2/3 recurrent connections and optimized the
weights in both L4 and L2/3. This approach was repeated by adding L5, then L6, and finally L1 (see Methods
for details).

After optimization, a typical response to a drifting grating exhibits irregular activity, with the strongest
spiking among neurons tuned to that particular grating (Fig. 5A). The firing rates for both V1 models across
all neuronal classes are similar to those measured in vivo (Fig. 5B, S values: E-biophysical = 0.73, E-GLIF =
0.72, Pvalb-biophysical = 0.84, Pvalb-GLIF = 0.83). Excitatory neurons show improved, relative to LGN only
simulations (Fig. 3G), yet unsatisfactory orientation tuning (Fig. S5, S values: E-biophysical = 0.49, E-GLIF =
0.56, Pvalb-biophysical = 0.27, Pvalb-GLIF = 0.42). Similarly, the direction selectivity match is also poor,
particularly for Pvalb interneuons (Figs. 5C, 5D, S values: E-biophysical 0.54, E-GLIF = 0.55, Pvalb-biophysical
= 0.29, Pvalb-GLIF = 0.32). We therefore further explored the functional rules of recurrent connections,
aiming to improve the DSI levels while keeping firing rates close to experimental values. Finally, we once
again observed strong similarity between both model resolutions (see Discussion; S values: E-rates = 0.90, E-
0SI =0.89, E-DSI = 0.95).
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Figure 5: Initial simulation results from the biophysical and GLIF recurrent V1 models. A: Raster plot in
response to a drifting grating (biophysical model). Within each cell class, the cell IDs are sorted according to
the cells’ preferred angles. B: Peak firing rate boxplots for both V1 models and in vivo extracellular
electrophysiology recordings. C: Example tuning curves (mean * s.e.m) for both the biophysical recurrent
model and LGN-only model (same neuron as Fig. 3D). D: DSI boxplots for both V1 models and in vivo

measurements.

REFINED SYNAPTIC FUNCTIONAL CONNECTIONS AMPLIFY DIRECTION SELECTIVITY

Up to this point, all like-to-like connectivity rules in our models were “orientation-based”, i.e., the
probability and weights were symmetric with respect to AB=90°, where AB is the difference between the
preferred angles of the two neurons (Fig. 4D). This must be contrasted with “direction-based” asymmetric
rules, where a pair of neurons preferring opposite directions of motion is treated differently from a pair
preferring the same direction (Fig. 6A). We reasoned that low levels of direction selectivity in our V1 models
are due to the absence of such direction-based rules, since the orientation-based rules enhance neurons’
responses to their anti-preferred direction due to inputs from the oppositely tuned neurons. However, the
models are also grounded in data, which show symmetric, orientation-based like-to-like rules for probability
of E-to-E connections and no like-to-like rules for I-to-E connections (Fino and Yuste, 2011; Ko et al., 2011;
Packer and Yuste, 2011; Lee et al., 2016; Znamenskiy et al., 2018) (although the data is mostly limited to
connection classes in L2/3). In the absence of data to the contrary, we assumed that E-to-E connection
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probabilities obey the orientation-based rule and other connection probability classes do not follow like-to-
like rules at all. Therefore, the only remaining flexibility is in the functional rules specifying synaptic weights

of any connections formed.

Less is known about functional rules for synaptic strength. Available data from L2/3 (Cossell et al., 2015;
Znamenskiy et al., 2018) indicate that synaptic amplitude correlates with similarity of responses, for both E-
to-E and I-to-E connected pairs. However, similarity of preferred direction alone is a poor predictor of
synaptic strength for E-to-E connections, whereas similarity of receptive fields (ON-OFF overlap) is a better
predictor (Cossell et al.,, 2015). Furthermore, in vivo patch-clamp measurements in L4 indicate that
excitatory neurons responding in phase with each other to a drifting grating are preferentially connected
(Lien and Scanziani, 2013). Motivated by these observations, we introduce two modifications to the synaptic
strength rules: (1) a direction-of-motion-based like-to-like Gaussian profile applied to all connection classes
(Fig. 6A) and (2), for the E-to-E classes only, a decrease of the synaptic strength with distance in retinotopic
visual space between the source and target neurons, projected on the target neuron’s preferred direction
(Fig. 6B). Rule (2) confines the sources of sufficiently strong connections to a stripe perpendicular to the
target neuron’s preferred direction, biasing the inputs to come primarily from neurons that respond in
phase with the target neuron when stimulated by a drifting grating or a moving edge (Fig. 6B). These
assumptions are consistent with theory based on optimal Bayesian synaptic connectivity for integrating
visual stimuli (lyer and Mihalas, 2017).

We tested 8 specific choices of rules (1) and (2), sampling multiple selections of parameters for each choice
(over 100 variants in total), primarily employing the GLIF V1 model for this purpose (Fig. S6), before
converging on a final set (Fig. 6A). With a sufficiently narrow Gaussian curve characterizing the direction-
based dependence on AB (Fig. 6A), substantial improvement in the levels of DSI are obtained across all
layers (Fig. S7). This allows us to predict that like-to-like rules (1) and (2) above may apply across all layers in
the mouse V1, potentially with cell-class specific parameters — in fact, in our models we use relatively
narrow rule (1) profiles for E-to-E connections, since excitatory populations typically exhibit high DSls, and
wider profiles for other connections (Fig. 6A). Given that multiple different values of parameters for rules (1)
and (2) result in networks with robust levels of direction selectivity, we cannot reliably choose a single
“optimal” parameter set. The set (Fig. 6A) we use for subsequent simulations should be considered a
representative example among possible solutions. In the absence of direct experimental measurements, we
simply note that application of rules (1) and (2) with sufficiently narrow profiles (e.g., a Gaussian with
standard deviation of 30° for rule (1) in E-to-E connections) enables amplification of direction selectivity by
the recurrent connections, consistent with available data.

In testing the connectivity, we notice that rules (1) and (2) are not sufficient by themselves as they introduce
a firing rate bias depending on the neuron’s preferred direction of motion. Vertical-preferring neurons
exhibit higher peak firing rates than do horizontal-preferring neurons, but such a bias is not present in
experimental data (Fig. 6C). The root cause of this is the experimentally observed asymmetric retinotopic
magnification mapping in cortex (Schuett, Bonhoeffer and Hiibener, 2002; Kalatsky and Stryker, 2003),
which is implemented in our models (see Methods). Specifically, moving along the horizontal direction in the
cortical retinotopic map (azimuth) by 100 um corresponds to ~7° in the visual space, whereas along the

vertical direction (elevation) 100 um corresponds to ~4°. Consequently, the stripe from rule (2) (Fig. 6B) is
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wider in cortical space for vertical than for horizontal preferring neurons, thus providing stronger net inputs
from presynaptic V1 neurons (Fig. S8). Since such a firing rate bias is not empirically observed (Fig. 6C), some
mechanisms must adjust for the horizontal-vertical mismatch of translating retinotopy to connectivity.
Multiple mechanisms are plausible, including, e.g., different distance dependence of connectivity rules for
vertical- vs. horizontal-preferring neurons, different strengths of LGN inputs, or different strengths of
recurrent connections. We implement the latter, in a simple linear fashion where horizontal-preferring
target neurons receive synapses scaled by 0.5x(7+4)/4=1.38 and vertical neurons scaled by
0.5%(7+4)/7=0.79, with a linear interpolation in-between (see Methods). This approach fixes the firing rate
bias and synaptic weight bias (Figs. 6C, S8).

In the finalized model, horizontal- and vertical-preferring cells receive, on average, equal amounts of
excitatory synaptic input, sourced from the same size of strips in retinotopic space, but different sizes in
physical, cortical space (the strip for horizontal-preferring cells is almost half the width of the strip for
vertical-preferring cells; Fig. 6D). A consequence of this (Fig. 6E) is that the distribution of incoming
excitatory weights has a heavier tail for horizontal- than vertical-preferring neurons, an observation that
could be tested in future experimental datasets as an indication of the mechanism we implement here.
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Figure 6: Refined synaptic functional connections. A: The original orientation-based (dotted black, “Sym”;
Fig. 4D) and the refined, direction-based (colors) synaptic strength profiles as a function of the difference
between the preferred angles in two connected neurons. The like-to-like rule for E-to-E connection
probabilities remains orientation-based (Fig. 4D) and no like-to-like rules are applied to other connection
probabilities. B: The phase-based rule for synaptic strengths of E-to-E connections. Left: Schematic example
of neurons preferring 0° direction, as they respond to a 0° drifting grating (background shows phase
alignment with the drifting grating). Arrow lengths indicate magnitude of response. Neurons aligned
vertically with the center neuron have a matching phase. Right: stronger weights are assigned to phase-
matched than phase-unmatched neurons (the heat-map illustrates the scaling factor applied in the models).
C: Log firing rates of excitatory neurons in response to their preferred grating direction (median * s.e.m), for
the biophysical model. Applying the rules from (A) and (B) results in a firing rate bias for vertical- vs.
horizontal-preferring neurons due to differential cortical magnification (magenta); the bias is not observed
experimentally (grey). The bias disappears after additional direction-dependent scaling is applied to synaptic
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weights according to the target neuron’s assigned preferred angle (black). D: Net synaptic inputs for
horizontal- and vertical-preferring E4 biophysical neurons (rules in (A) and (B) and the additional direction-
dependent scaling), in retinotopic (left) and cortical (right) coordinates (averages over 100 neurons with
after aligning their centers). E: Histogram of incoming synaptic weights onto E4 neurons based on their
preferred orientation. Horizontal-preferring neurons have a heavier tail than vertical-preferring neurons.

With the third, and final, rule set, we carry out simulations to test the models’ responses to drifting gratings
(Fig. 7A, B; S scores for firing rate: E-biophysical = 0.71, E-GLIF = 0.69, Pvalb-biophysical = 0.80, Pvalb-GLIF =
0.75). Note the emergence of horizontal patches of excitatory neurons in the raster plot (Fig. 7A) due to
pronounced direction-selectivity not previously present (Fig. 5A). For excitatory cells, the OSI distributions
approximately match experimental recordings (Fig. S9; S scores: E-biophysical = 0.87, E-GLIF = 0.71, Pvalb-
biophysical = 0.42, Pvalb-GLIF = 0.44), indicating that the new direction- and phase-based rules are not
detrimental to their orientation selectivity. Most importantly, the match of DSI to experimental values (Fig.
7C, D; S scores: E-biophysical = 0.89, E-GLIF = 0.88, Pvalb-biophysical = 0.82, Pvalb-GLIF = 0.83) is much
improved for all cell classes, compared to the models with purely orientation-based rules (Fig. 5C, D). The Sst
and Htr3a interneurons showed near-zero DSI in Fig. 5D, but now exhibit DSIs equal or higher than those of
Pvalb interneurons, consistent with published observations (Kerlin et al., 2010; Ma et al., 2010). Thus, the
new rules at the synaptic strength level successfully enable direction selectivity in distinct populations of
neurons, while obeying diverse constraints from experimental data. Furthermore, we note that both model
resolutions still maintain strong similarity with one another (see Discussion; S values: E-rates = 0.96, E-OSI =
0.76, E-DSI = 0.80; Table S1).
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Figure 7: Simulated responses to drifting gratings for the final V1 connectivity rules (from Fig. 6). A: Raster
plot in response to a drifting grating (note the horizontal stripes corresponding to strong responses of the
cells that prefer the direction of the grating; neuron IDs are sorted within each class by the preferred angle).
B: Peak firing rate boxplots compared to in vivo recordings. C: Example tuning curves (mean % s.e.m) for an
E4 neuron for the final rules, in comparison to purely orientation-based rules (Fig. 5C), and no recurrent
connections (LGN only of Fig. 3D). D: DSI boxplots for the final V1 models and in vivo recordings.

V1 MODEL RESPONSES TO NATURAL AND GLOBAL LUMINANCE-ALTERING
STIMULI

With this final synaptic design in place, and having observed good model performance for drifting gratings
(Fig. 7), we model responses to drastically different stimuli — flashes and natural movies (Fig. 8).

A full-field luminance change is one of the strongest stimuli to test the stability of the network. Our models
remain stable in each of 10 trials with ON and OFF-flashes (Fig. 8A). The time-to-peak values are comparable
to Neuropixels experimental recordings (Fig. 8B), an important indication that the dynamics of initial
transformation of the visual signal is well captured. The network, however, shows less variability in time-to-
peak compared to the experiments. The full-field flash stimulus affects all points of visual space equally and

18



simultaneously; to quantify the degree to which neurons follow the same time course in response to this
global stimulus, we compute the signal correlations (see Methods) between neurons. Despite the highly
correlated structure of the input, neurons tend to have low correlations with each other (Fig. 8C). The signal
correlations in the models are slightly higher than, but otherwise overlap closely with the experimental
ones; the Pvalb-Pvalb correlations deviate the most from experimental measurements, but are still well
below 1. As seen for DSI (Fig. 7C), agreement with the experiment is somewhat better for the biophysical
than GLIF model, for both correlations and time-to-peak.

In comparison with artificial stimuli like gratings or flashes, natural stimuli exhibit distinct statistical features
and evoke highly heterogenous responses. We test our models on a clip from one movie shown to mice in
the Allen Brain Observatory, which used Ca®* imaging to quantify responses of many neuronal populations
across most layers of visual cortex (de Vries et al., 2018). An example raster plot (Fig. 8D) highlights more
irregular and sparser response patterns than responses to flashes (Fig. 8A) or gratings (Figs. 7A). Following
(de Vries et al., 2018), we compute the correlation between the signal correlations and noise correlations for
spiking responses of neuron pairs from our models and in vivo electrophysiology recordings (for direct
comparison) and find similar, almost all positive, values between the models and experiment (Fig. 8E).
Another major characteristic of responses to natural stimuli is the high lifetime and population sparsity of
neurons (Vinje and Gallant, 2000; de Vries et al., 2018). This finding is also reproduced by our models (Figs.
8F, 510; see Methods), albeit with higher values than our electrophysiology data. Interestingly, in the Allen
Brain Observatory, the VIP (subclass of Htr3a) neurons in L2/3 and L4 exhibit reduced sparsity compared to
excitatory and SST classes (that survey did not include Pvalb). Htr3a (or VIP) neurons are not readily
identifiable in electrophysiological recordings and are arguably less well parameterized in the models (due
to lower data availability) than excitatory and Pvalb classes. Nevertheless, in the biophysical model the
Htr3a class does exhibit reduced sparsity in L2/3 and L4. The model shows high sparsity for Htr3a in L5 and
L6 (mostly non-VIP in these layers), an observation that has not been yet tested experimentally.
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Figure 8: Responses of V1 models to full-field flashes and a natural movie. A: Raster plot in response to full
field flashes (ON and OFF) of 250ms duration. B: Time-to-peak for excitatory and Pvalb neurons in models
and Neuropixels experiments in response to flashes. C: Signal correlations of responses to flashes. D: Raster
plot in response to a natural movie. E: Correlation between signal and noise correlations (see Methods) for
responses to a natural movie in models and experiments. F: Lifetime sparsity, averaged over trials, for
responses to a natural movie.

DISCUSSION

We here present two closely related network models of mouse V1. Both have the identical network graph,
i.e., connectivity, with ~230,000 nodes of two different flavors, either biophysically-elaborate or highly
simplified ones. The models were constrained by a plethora of experimental data: the representation of the
individual cells and their firing behavior in response to somatic current injections, LGN filters,
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thalamocortical connectivity, recurrent connectivity, and activity patterns observed in vivo. This work
continues the trend of developing increasingly more sophisticated models of cortical circuits in general (e.g.,
Traub et al., 2005; Zhu, Shelley and Shapley, 2009; Potjans and Diesmann, 2014; Markram et al., 2015;
Joglekar et al., 2018; Schmidt et al., 2018) and visual cortex in particular (Wehmeier et al., 1989; Troyer et
al., 1998; Zemel and Sejnowski, 1998; Krukowski and Miller, 2001; Arkhipov et al., 2018; Antolik et al., 2019).
Our main goal was to integrate existing and, especially, emerging multi-modal experimental datasets
describing the structure and in vivo activity of cortical circuits into biologically realistic network models.

Our models are represented with a standardized data format SONATA (Dai et. al 2019,
github.com/AllenInstitute/sonata) via the Brain Modeling ToolKit (BMTK, github.com/Alleninstitute/bmtk;
(Gratiy et al., 2018)) and the open source software NEURON (Hines and Carnevale, 1997) and NEST
(Gewaltig and Diesmann, 2007). The SONATA format is also supported by other modeling tools including

Blue Brain’s Brion (github.com/BlueBrain/Brion), RTNeuron (Hernando et al., 2013), NeuroML (Gleeson,
Steuber and Silver, 2007), PyNN (Davison et al., 2009), and NetPyNE (Dura-Bernal et al., 2019).

Recent studies (Rossert et al., 2016; Arkhipov et al., 2018) demonstrated that the conversion of a biophysical
network model to a GLIF counterpart could result in good qualitative and quantitative agreement in spiking
output. We here likewise observed an overall agreement between the biophysical and GLIF models of
V1. Although both graphs are identical, the input-output functions of every neuron are different; yet, to
judge by their firing rate distributions, the two models are very similar at the population level. This reveals,
yet again, the perhaps unreasonable effectiveness of point neuron models given their vastly reduced
degrees of freedom (Koch 1999). This is true for both passive (Arkhipov et al., 2018) as well as active
dendritic models (Rossert et al., 2016). A potential reason for this effectiveness at system level simulations
originates from their effectiveness at single-cell simulation of input/output transformations. In particular,
the GLIF (Teeter et al., 2018) and biophysical models (Gouwens et al., 2018) we use here, show similar levels
of explained variance when mapping a noisy current injection at the somato an output spike train.
These results support broad applicability of the computationally less expensive GLIF network models (here
approximately 5000 times less expensive) although ultimately the level of resolution to use should be based
on the scientific question under investigation. For instance, computing the extracellular field potential
requires spatially extended neurons (Rall and Shepherd, 1968; Lindén et al., 2011; Einevoll et al., 2013;
Reimann et al., 2013; Hagen et al., 2019). On the other hand, for robust in-silico perturbation studies, the
GLIF network allows for many more rapid iterations and tests. Developing our models at two levels of
resolution enables a larger spectrum of possible studies.

In the process of building and testing the models, we made three major predictions about structure-function
relationships in V1 circuits. The first addresses observations that non-Pvalb interneurons (Htr3a/VIP and Sst)
show direction and orientation tuning (Liu et al., 2009; Kerlin et al., 2010; Ma et al., 2010), but receive
connections from other V1 neurons that are distributed uniformly rather than in a like-to-like fashion (Fino
and Yuste, 2011), and little to no LGN input (Ji et al., 2015). We thus implemented like-to-like rules for
synaptic strengths between excitatory and non-Pvalb inhibitory neurons, which resulted in robust tuning of
Htr3a and Sst classes in our models.
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Our second prediction extends from experimental work investigating functional connections between
excitatory neurons (Bock et al., 2011; Ko et al., 2011; Cossell et al., 2015; Wertz et al., 2015; Lee et al., 2016),
thus far primarily in L2/3. Our results suggest that synaptic weights follow rules that are different from the
rules that allow two neurons to connect in the first place: whereas the latter are organized in a like-to-like
orientation-dependent manner (Ko et al., 2011), the former follow direction-dependent rules (Fig. 6A) with
phase dependence (Fig. 6B, E). In our models, these weight rules were implemented among excitatory and
inhibitory populations within and across layers (Figs. 6A) to enable realistic levels of orientation and
direction tuning (Figs. 7C, D, S9). How can this be reconciled with the report (Cossell et al., 2015) that
similarity of preferred direction is not a good predictor of synaptic strength (in L2/3)? Because our models
employ additional phase-dependent rules (Fig. 6B, E), where incoming connection weights are close to zero
outside of a stripe perpendicular to the target neuron’s preferred direction, many presynaptic neurons that
share the target neuron’s direction preference connect very weakly to it (if they are outside of the stripe).
Therefore, direction similarity by itself is not a strong determinant of weights in our models either, whereas
combined with the phase-related geometric constraints it does determine the weights. Interestingly, as we
were finalizing this report, a new experimental study (Rossi, Harris and Carandini, 2019) appeared, showing
(in L2/3) the preferential location of presynaptic neurons to be within a stripe, as in our connectivity
implementation (Fig. 6B, E), thus supporting our prediction (although the new data suggest this architecture
may be realized in connection probabilities rather than in synaptic weights).

Our third prediction concerns the asymmetry in cortical retinotopic mapping between the horizontal and
vertical axes (Schuett, Bonhoeffer and Hiibener, 2002; Kalatsky and Stryker, 2003). This results in higher
firing rates for vertical- than for horizontal-preferring neurons, which is not observed experimentally (Fig.
6C). We thus infer the existence of one or more compensatory mechanisms, which may occur at many
levels, including connection probability, LGN projections, etc. Our models addressed this at the synaptic
strength level (Figs. 6E, F).

These three predictions concern important relationships between the circuit structure and in vivo function.
The first prediction is significant because mechanisms of tuning of Sst and Htr3a/VIP interneurons are likely
to be critical in enabling diverse Sst- and Htr3a-mediated functions (see, e.g., (Liu et al., 2009; Kerlin et al.,
2010; Ma et al., 2010; Adesnik et al., 2012; Pfeffer et al., 2013; Fu et al., 2014; Tremblay, Lee and Rudy,
2016; Munoz et al., 2017)). The second prediction suggests a set of general mechanisms that apply across
layers and neuronal classes to shape the essential computations in the visual cortex of orientation and
direction selectivity. The third prediction illuminates the potentially widespread wiring and/or homeostatic
mechanisms that equalize firing rates between vertical- and horizontal-preferring neurons. All three
predictions are amenable to experimental investigation (Bock et al., 2011; Hofer et al., 2011; Ko et al., 2011;
Cossell et al., 2015; Wertz et al., 2015; Lee et al., 2016; Znamenskiy et al., 2018; Rossi, Harris and Carandini,
2019).

These predictions are a starting point for further elaborations of predictions. The GLIF V1 model, in
particular, minimizes the entry barrier to biologically realistic modeling for researchers, due to the low
computational demands. Our models, together with all meta-data and code, are freely accessible via the
Allen Institute for Brain Science’s web portal at brain-map.org/explore/models/mv1-all-layers. We hope that
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the community will exploit these resources to investigate more biologically refined models of cortex, the
most complex piece of active matter in the known universe.
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METHODS

INSTANTIATING THE NETWORK

The V1 neurons were instantiated and distributed through every layer with raw number estimates available
in the supplemental document V1_structure.xlsx. We considered the estimated cell densities measured in
every layer based on nuclear stains (Schiz and Palm, 1989) with the assumption of an 85% and 15%
fractions for excitatory and inhibitory neurons, respectively. The fractions used for the interneuron
subclasses were based on expression levels in double in-situ hybridization experiments (Lee et al., 2010).
The layer thicknesses were taken from the Allen Mouse Brain Atlas (see Cortical Layer Thickness
Measurements). Our model incorporated inhibitory neurons in layers L2/3 through to L6 from three broad
classes, Paravalbumin- (Pvalb), Somatostatin- (Sst), and Htr3a-prositive; and excitatory neurons in each layer
were comprised of one or more cell classes corresponding to major Cre lines labeling these layers (Figure 1A,
C). Layer 1 (L1) had only a single inhibitory class of Htr3a neurons (Lee et al., 2010; Tremblay, Lee and Rudy,
2016). L2/3 excitatory neurons (class E2/3) were reconstructed from the Cux2 Cre-line, which is almost pan-
excitatory in this layer. L4 excitatory cells were represented by four sub-classes — the Scnnla, Nr5al, and
Rorb Cre-lines, as well as reconstructions where the Cre-line was not known (“L4 other-exc”) due to
reconstructions from non-Cre-animals. L5 contained two excitatory sub-classes — the cells labeled by the
Rbp4 Cre-line and unlabeled neurons (“L5 other-exc”). As described in the Main Text, due to uncertainties
regarding distinct properties of subclasses in L4 and L5 in terms of connectivity and in vivo activity, for all
effective purposes we combined the L4 and L5 excitatory sub-classes into a single class per layer (E4 and E5).
L6 contained one excitatory class (E6), with neurons from Ntsrl Cre-lines only (due to availability at the time
of creating the models). Altogether, we used 112 unique neuron models for the biophysical and 111 for the
GLIF networks. At time of model building, there were no Htr3a reconstructions for L6 neurons and therefore
we re-used the two deepest L5 Htr3a models to populate this cell class in L6. Although the Allen Cell Types
Database had more cell models, not all models could fit geometrically in the V1 volume without protruding
beyond the pia. This was due to Cre-lines not labeling specific layers exclusively, resulting in cases where
cells from certain Cre-lines resided in adjacent layers (see Somatic Coordinates).

The neuron models were fit to in-vitro measurements (Gouwens et al., 2018; Teeter et al., 2018) and
publically available via the Allen Cell Types Database (celltypes.brain-map.org/). All our biophysical models

used passive dendrites although the Allen Cell Types Database includes neuron models with active dendritic
conductances. This was due to active-dendritic models being too computationally expensive models
(prohibitively) for the extent of our work. Further, the somatic spike output from the active-dendrite models
do not show much better performance than the models with active conductances restricted to the soma
(celltypes.brain-map.org/). Therefore, we used the less computationally expensive neuron models.

CORTICAL LAYER THICKNESS MIEASUREMENTS

Layer thicknesses for the model were taken from the Allen Mouse Brain Atlas (Oh et al., 2014 - atlas.brain-
map.org/). They were calculated from a mouse common coordinate framework in which voxels were
annotated with cortical areas and layers. In this framework, streamlines were calculated that connected pia
to white matter using the shortest paths (Oh et al., 2014 - Documentation in atlas.brain-map.org/). For each
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voxel on the surface of V1, the thickness of each layer was calculated along the associated streamline, and
the median values across all of V1 were used to construct the model.

SOMATIC COORDINATES

With the number of neurons identified (V1_structure.xlsx), we needed to assign somatic coordinates for
every cell and select appropriate neuron models. For the biophysically detailed neurons we also had to
assign to a neuron a rotation about the depth axis (white-matter to pia). This is due to our V1 model using a
fixed number of reconstructed neuron models relative to the total number of neurons simulated and hence
when reusing a model, we randomly rotated the individual neurons between 0 and 2mt around the depth
axis. For the somatic coordinates, cells for each population were uniformly distributed within a cylindrical
domain and within the specified layer depth. For the biophysical models, the depth of a neuron would affect
which neuron model was assigned to it. The first condition was that a model would not be assigned to a
particular cell if that model's morphology significantly extended out of the Pia when placed at the cell's
somatic location (with a tolerance of 100 pm). Once all putative cell models that pass this criterion were
identified, we randomly selected a model based on a Gaussian probability density function (with standard
deviation of 20 pm).

VISUAL COORDINATES

Neurons’ positions are defined in the physical space, whereas visual stimuli (see Visual Stimuli) supplied to
the models, as well as the LGN filters converting these stimuli to spike trains impinging on V1 neurons, are
defined in the visual space. Thus, a mapping between the two spaces needs to be defined. The cortical
plane (plane perpendicular to the depth axis) was mapped to the visual space, with the geometrical center
of the model corresponding to the center of the visual space. Retinotopic mapping experiments in the
mouse V1 identified how much displacement in visual cortex corresponded to displacements in visual space
(Schuett, Bonhoeffer and Hibener, 2002; Kalatsky and Stryker, 2003). Using these results (Figure 3 from
(Schuett, Bonhoeffer and Hibener, 2002) and Figure 4 from (Kalatsky and Stryker, 2003)), we approximated
that the visual degrees traversed per mm of cortex are 70 degrees/mm in the azimuth and 40 degrees/mm
in elevation. Note the asymmetry between the two directions. From this we can convert any translation of
azimuth and elevation in cortex to a translation in visual space. For example, consider moving 845 pm in the
azimuth (radius of the V1 model): the movement in visual space is then estimated to be 0.845 mm * 70
degrees/mm = 59.15 degrees. The somatic position of every neuron was used, via such translations, to
establish the assigned neuron’s position in the visual space, which was then used in algorithms establishing
connectivity from the LGN to V1 (see below).

THALAMOCORTICAL CONNECTIVITY

DisTRIBUTING LGN UNITS

We sought to create an LGN model that roughly captures the entire LGN with an estimated 18,000 neurons
in the mouse. In our model, we do not explicitly model the shell and core of the LGN and simply distribute
the LGN units on a 2D plane in visual space to model 240 degrees (horizontal) by 120 degrees (vertical). We
imposed a lattice structure on the 2D plane by dividing it into girds (15 blocks horizontally by 10 blocks
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vertically of size 16x12 degrees). Each block had a total of 116 LGN units (Table 1) distributed uniformly
within the block to give a total of 17,400 LGN units that can process arbitrary visual stimuli.

Each LGN unit are represented by a spatio-temporally separable filter, which operated on the movies in the
visual space as inputs, and returned a time series of the instantaneous firing rate as output (this rate was
then converted to spikes in each individual trial using a Poisson process). The spatial components of the LGN
filters are spatially symmetric two-dimensional Gaussian kernels and the temporal components are a sum of
weighted raised-cosine bump basis functions (Pillow et al., 2005). The temporal kernel was designed to have
a bi-phasic impulse response:

Df(‘[) = Wlb(‘[; tll dl) + Wzb(‘[; tz, dz),

cos(log(t+7)—d)+1
2

b(t;t,d) =

where there are six parameters: i) two time constants (t;, t;) for the basis functions, ii) two weights
(wq, wy) used to linearly sum the functions and iii) offsets (d, ,d4). All data and code are available through
the BMTK (github.com/Alleninstitute/bmtk). The spatial and temporal filters are combined to form a 3D

spatiotemporal kernel to respond to input signals that are grayscale, represented on a -1 to 1 scale (from
black to white), with a time step of 1 ms.

The LGN filters were sampled from 14 classes (Table 1) that approximated the diversity observed in
experimental recordings in vivo (Durand et al., 2016) (see Main Text and Fig. 2A). The LGN filter parameters
used for every class were obtained by fitting filter responses to the mean experimental responses for every
class (resulting parameter values are available in the BMTK). A £2.5% jitter was added for every parameter
when instantiating individual LGN filters. We observed that receptive field sizes of cells from most of the
LGN classes in the experimental recordings (Durand et al., 2016) spanned a large range within class. We thus
assigned every LGN unit a randomly generated spatial size within the recorded ranges drawn from a
triangular distribution defined as follows: zero at lower bound, peak at the lower bound plus 1 degree, and
then zero again at the upper bound (to approximate the experimental distributions).

LGN Class | Units per block | Spatial size range (degrees)
SON-TF1 7 [2, 9]
SON-TF2 5 [2, 9]
SON-TF4 7 [2, 9]
SON-TF8 15 [2, 9]
SOFF-TF1 8 [2, 9]
SOFF-TF2 8 [2, 9]
SOFF-TF4 15 [2, 9]
SOFF-TF8 8 [2, 9]
SOFF-TF15 7 [2, 9]
tOFF-TF4 10 [2, 9]
tOFF-TF8 5 [2, 9]
tOFF-TF15 8 [2, 9]
SONsOFF 8 6
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| SONtOFF | 5 \ 9
Table 1: Distribution of LGN unit numbers in every block and the receptive field sizes per class.

THALAMOCORTICAL ARCHITECTURE IMPACT ON DIRECTION SELECTIVITY

The major guiding purpose for creating thalamocortical connections in our V1 models was to enable
direction selectivity, which was proposed to arise due to integration of sustained and transient LGN inputs
by V1 cells (Lien and Scanziani, 2018). Before instantiating such rules for the full-scale model, we performed
a simplified theoretical analysis to investigate how combinations of transient and sustained pools of LGN
inputs, using biologically realistic parameters, would create direction-selective responses in target V1 cells.
For this analysis we approximated the LGN input to a V1 cell using a sustained ON and a transient OFF
subfields.

For the thalamocortical projections to a V1 neuron in our full models (see Forming Thalamocortical
Connections), we would first identify all suitable LGN filters that have overlapping retinotopic positions with
the V1 cell. This pool of filters was then split into a sustained subfield ellipse in one half of the receptive field
and a transient subfield ellipse in the other half (Figure 2C). The orientation of the ellipses would depend on
the assigned preferred angle of the V1 neuron. The ellipses’ major axis would be perpendicular to the
preferred orientation of the V1 neuron and the sustained subfield would be positioned such that it is
activated first in the case of a bar moving in the preferred direction of the V1 neuron (Fig. 2D). We would
then randomly select filters from within these ellipses from the population of sustained or transient LGN
filters (Figs. 2C, 3A). For the simplified theoretical analysis here, we consider the sustained ON and transient
OFF subfields, represented by a single elliptical filter each, approximating contributions from all LGN cells
within a subfield.

The synaptic input current from one of the subfields (labeled as F = ON or F = OFF) to the V1 cell in
response to a stimulus is then described by

IF(t) = T ReLU (r;; + LF(t)),

where A is the constant determining the magnitude of the current (assumed to be the same for both
subfields), rS’;, is a baseline (spontaneous) firing rate, and ReLU(x) is a rectified linear unit function that is
zero below a threshold (here set at zero) and linear above the threshold. The response is dependent on the
stimulus S(x, y, t):

LF(t) = f d‘cf dx dy RF (x,y,t)S(x,y,t — 1),
0

We consider the case where the two subfields are offset along the x-axis, so that each subfield is described
as:

RF(x:y; t) = Ds(x - lF;}’)Df(t)
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The assumption used here is that each kernel is spatio-temporally separable.

The temporal kernel used here is a sum of weighted raised-cosine bump basis functions as used above
(Pillow et al., 2005; see Distributing LGN units). The spatial kernel is described by an elliptical Gaussian

profile:

1 x2 yZ
Di(x,y) = p— exp -— .

210,y 20% 202

with the standard deviations ay, g, respectively. We will study a special case of subfields separated by a

distance d along the x-axis using [V = d/2 and [°FF = —d/2:

d
ROVGe,y,0) = Dy (x = 5,7) DOV (o),

d
ROFF (x,y,t) = Dy (x +E,y> DPFE(t)

Let us examine the response of a cell to moving grating stimuli having maximum luminance Sy, and a
contrast c:

1
S(x,y,t) = ESmax(l +c Cos(kxx +kyy — a)t))

where k = (ky, k) defines the direction of the grating wave front: k, = kcos(8), k = 2nSF, w = 2nTF
and SF (cpd) and TF (Hz) are the spatial and temporal frequencies of a grating, respectively.

It is more convenient to work in the complex space:
1 1 —i(kxx+kyy—w(t—
S(0Y,8) = 5 Smax + 7 CSmaxRefe ™ (e Hyyme T}

The input current from each subfield is I¥ = T ReLU(rS’; + LF(t)) where rS’; is independent of stimulus and

LF(t) = LE + L is a stimulus dependent response:
LE(t) = S;Re {f d‘cf dx dy RF (x,y, 1)e " kax tkyy-0(t=1))
0

L5 =Sof drfdxdyRF(x,y,T)
0

. 1 1
Here we use a short hand notation §; = Ecsmax and Sy = ESmax.

Substituting RF (x, y, t) we find:
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i) = SlRe{ i“’tf dre~TDF (1) f dx dy e kX +kyY) p_(x — IF | y)
0

Since the temporal kernel D’TT(T) = 0 when 7 < 0, we can simply extend the integration to negative infinity

overT.

The temporal integral in Lli(t) is the Fourier transforms over time:

Df(w) = f dre="*DF (1)

—00

that could be expressed using the magnitude |D (w)| and phase ¥ (w):
Df (@) = ID{ (w)lexp(iy© (w))
The spatial integral in Li(t) is the spatial Fourier transform:
D3 (kx, ky, 1) = f dx dy e 6o Do (x — 1F, y)
Thus, we can express L5 (t) as
L5 (t) = S;Re{e'* D (w)DE (ky, ky, 1)}
Thus, the response to grating with temporal angular frequency w is determined by the Fourier component

at that frequency only. We can compute the temporal components (raised cosine bumps) Fourier
transforms numerically.

We can compute the spatial transform analytically to find:
DE (ky, ky, IF) = exp(—ik, 1 )exp(— (k202 + kZ02)/2)
which has an amplitude:

|D§(kx'ky)| = exp(—(k,zco;? + ka,af)/Z).

so that:

. ke lF
Li(®) = Slng(kx' ky)lRe {elwtlDI;(w)lel(_ 2 +¢F(“’))}

The total input current to a cell is the sum from the two subfields:

35



I(t) =T (ReLU (rg”" + LON(t)) + ReLU (r(?FF + LOFF(t))>

Using these equations, we can estimate both the direction selectivity index (DSI) and the orientation
selectivity index (OSI) of the FO and F1 components for a variety of filter parameters: subfield separation d,
ellipse aspect ratio or width (determined by oy, 0,), and temporal parameters. The FO response is a
commonly used metric that calculates the cycle average mean of the response to a drifting grating while the
F1 component computes the modulation response at the input temporal frequency (Movshon, Thompson
and Tolhurst, 1978).

We used filter parameters from sON-TF8 and tOFF-TF8 as well all other default values: d = 5 degrees (Lien
and Scanziani, 2013), SF = 0.025cpd, TF = 8Hz, ellipse aspect ratio = 3.0, ellipse minor axis = 4.0 degrees. For
a set of fixed stimulus (drifting grating), we changed one parameter at a time and observed the impact on
OSl and DSI. For the distance between the elliptical sustained and transient subfields (d; Fig. S1A), we note
that the F1 component switches direction preference (i.e., its DSI changes sign) as d grows, due to a shifting
phase difference between the subfields. The DSI of the FO component is always zero as the net input
remains constant for the preferred and null directions, consistent with experimental recordings (Lien and
Scanziani, 2013, 2018). On the other hand, the OSI of the FO component is constant but non-zero due to the
elliptical structure of the subfields that biases the net input per grating cycle for specific orientations (but
not directions). The OSI of the F1 component is positive even when d = 0 due to the elliptical shape of the
subfields (and temporal properties). Second, by varying the sustained time-to-peak parameter (starting
from the transient subfield’s time-to-peak of 30ms, Fig. S1A), we observe, as expected, that asymmetry in
the temporal properties of the subfields is essential for producing direction selectivity. There is no direction
selectivity in the F1 component when both filters are identical temporally; but as the time-to-peak of the
sustained subfield increases, there is a quick rise in F1 DSI. This is followed by a reversal in the direction
preference for very high (non-biological) time-to-peak values. The F1 OSI shows a sharp monotonic decrease
with the sustained time-to-peak while the FO OSI is non-monotonic but roughly constant. Other changes
investigated in the subfield parameters were the aspect ratio of the ellipses and the size of the ellipses that
both showed relatively constant F1 DSI as both ellipse sizes were altered together (Fig. S1A). On the other
hand, the OSI values showed a monotonic increase with both illustrating the contribution of the elongated
structure for endowing orientation selectivity. An aspect ratio of one still showed some orientation
selectivity due to the temporal offsets of the filters giving slight orientation selectivity (our OSI metric is

based on circular variance, see Orientation Selective Index below).

We next investigate the effect of changing the spatial frequency of the drifting grating (Fig. S1B). As before,
the FO DSI always remains zero. As the spatial frequency increases, we again observe a reversal in the
preferred direction for the F1 component as observed experimentally in mouse cortex (Billeh et. al 2019).
For orientation selectivity, the F1 OSI shows a sigmoidal increase as spatial frequency increased while the FO
0S| shows a peak with a fast decay due to reduced responsiveness of the LGN ellipses to high spatial
frequencies. On the other hand, the F1 OSI is relatively flat while the FO OSI shows a peak response as a
function of temporal frequency, albeit with a slower decay, again due to the reduced responsiveness of the
LGN subfields to high temporal frequencies (Fig S1B). For our choice of subfield parameters, the F1 DSI does
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not switch sign as we varied temporal frequency, but such switching can occur as observed experimentally
and with different filter properties and time constants (Billeh et. al, 2019).

In summary, these simplified calculations confirm that the overarching model of the integration of sustained
and transient LGN responses (Lien and Scanziani, 2018) indeed enables directionally selective input currents
into V1 cells when biologically realistic parameters are used. Given this reassuring result, the next step was
to create a similar architecture of connections to the V1 model from the thousands of filters representing
LGN cells in the visual space.

FORMING THALAMOCORTICAL CONNECTIONS

The connections from the LGN to V1 neurons followed an approach similar to previous work (Arkhipov et al.,
2018). The first step was to establish shared retinotopy between the V1 neurons and the LGN units. The
coordinates of the LGN units were in visual space (degrees) while the V1 neurons’ coordinates were in
regular 3D space mapped to the cortical surface and white-matter-to-pia depth (see Somatic Coordinates).
By imposing that the center of the V1 model mapped to the center of the visual space, the location of each
V1 neuron was converted to visual space using the cortical magnification factor, as described in section
Visual Coordinates. This procedure assigned each V1 neuron a position in visual space, which may be
expected to correspond approximately to the center of that neuron’s RF in the complete model. We then
identified which LGN units would project to every V1 neuron (from the classes to receive LGN inputs; see
Main Text and Table 2), as follows.

Given the directionally selective architecture to be imposed, every V1 neuron was assigned a preferred
angle of stimulus motion to determine the placement of the elliptical subfields from which LGN units would
be sampled (Figs. 2C, 2D, 3A). There was always a transient OFF subfield and a sustained subfield that was
either ON or OFF (this choice was made based on the relative abundance of the different classes of LGN cells
in our experimental recordings (Durand et al., 2016), as summarized in Fig. 2A). The two subfields were
identically oriented and offset by certain distance; the offset and the short axes of both ellipses were co-
aligned with the assigned preferred direction of the target V1 neuron. The position of the target neuron was
at the middle of the line connecting the centers of the two subfields (Fig. 3A). The subfields were positioned
along the vector of the preferred direction of the target neuron in such a way that the vector pointed from
the sustained subfield to the transient one (Figs. 2C, 2D). Note that the assigned angle was also used for the
recurrent connectivity (see below) and was set such that every V1 neuron class represented every angle in
the range [0, 360°) with even spacing. The dimensions of the subfields and their separation varied based on
the V1 neuron’s class (Table 2); these choices were made according to estimates of the expected metrics —
such as the OSlIs and DSIs — for the class, based on experimental reports (see details and references in
V1 _parameter_estimate.pptx). The subfield parameters for the E4 target population were informed by our
previous model of L4 (Arkhipov et. al, 2018), and parameters for the other populations were chosen
following the assumption that V1 cell classes with stronger orientation/direction selectivity would utilize
smaller and more elongated LGN subfields. Importantly, we chose these subfield parameters once and did
not vary them to tune the model for target OSI/DSI values. The good agreement with the experiment
observed for the final model (Fig. 7) suggests that our initial choice of these subfield parameters was
appropriate (and, to the best of our knowledge, it is consistent with available experimental observations);
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however, it is possible that the agreement could be further improved by tuning the subfield parameters.

As reported previously, a linear angle approximation was used (Arkhipov et. al, 2018). Further, every V1
neuron was assigned a preferred temporal frequency drawn from a Poisson distribution with a mean as
measured experimentally (Table 2, (Niell and Stryker, 2008; Durand et al., 2016)). This determined the
probability of selecting LGN units preferring particular temporal frequencies. Given that there was a discrete
number of LGN filters for every class (sON, sOFF, tOFF), the probability of selecting a particular subclass (i.e.
a particular TF) was based on the distance of the V1 neuron’s temporal frequency from the LGN unit’s
preferred temporal frequency, divided by the total possible distance for that class.

Once the subfields were established, the LGN units to be connected to the target cell were selected among
the units that had the centers of their spatial kernels within the subfields (and of the LGN class matching to
each subfield, see Fig. 3A). From this total pool, LGN units were connected randomly based on the
probability of connections (given their temporal frequency as mentioned above). Thus, not every LGN unit in
the subfield formed a connection with the target V1 cell (Figs. 2C, 3A). Finally, for the ON/OFF filters, a
restriction was set that required the axis of the ON/OFF subfield to be within 15-degrees relative to the
assigned orientation preference angle of the V1 neuron (Arkhipov et. al, 2018). With all these choices, the
suitable LGN units were selected probabilistically to project to each target V1 cell. Based on these rules, the
average number of LGN units connecting to a V1 cell for excitatory neurons is: 19.3 * 6.0 (mean  SD),
median = 19, min = 2, max = 47. For inhibitory neurons: 15.0 + 4.4 (mean * SD), median = 15, min = 2, max =
32. The mean number of LGN projecting units to V1 neurons is below the recently reported estimates (Lien
and Scanziani, 2018); although the authors themselves acknowledge their measurements are likely
overestimates. Nevertheless, the most important parameter is the total synaptic current that every
population receives (see Thalamocortical Synaptic Weights) which was matched to experimental
measurements (Lien and Scanziani, 2013, 2018) and could compensate for the differences we have in this
version of the model.

V1 Neuron |Connection Mean LGN V1 TF . Separation Width Aspect Ratio Number of
- Son Ratio
Class Probability | current (pA) | (Hz) Range (degs) | Range (degs) Range Synapses

i1Htr 0.588 29.0 2.0 0.75 [6, 10] [8.5, 11] [2.2,2.4] 10
E2/3 0.789 20.3 1.5 0.90 (4, 6] [7.5, 9.5] [3.4,3.6] 15
i2/3Pvalb 0.824 50.8 2.0 0.75 [6, 10] [10, 13] [1.6,1.8] 15
E4 1.000 46.0 2.0 0.90 (4, 6] [7.5, 9.5] [3.4,3.6] 80
i4Pvalb 1.000 119.8 2.0 0.75 [6, 10] [10, 13] [1.6,1.8] 75
E5 1.000 20.3 1.5 0.50 [8, 12] [12, 16] [1.6,1.8] 15
i5Pvalb 1.000 63.7 2.0 0.50 [6, 10] [10, 13] [1.6,1.8] 20
E6 0.778 17.1 1.5 0.90 [3, 4] [9, 11] [3.4,3.6] 15
i6Pvalb 0.818 44.1 2.0 0.75 [6, 10] [10, 13] [1.6,1.8] 10

Table 2: Properties of the subfields in the visual space used to select LGN neurons projecting to V1 neurons
(for every cell class receiving LGN inputs; the remaining classes are assumed to receive no LGN input (Ji et
al., 2015)). The connection probability refers to probability a neuron receives input from the LGN (Ji et al.,
2015). The mean LGN input current corresponds to the mean excitatory LGN current the neuron class
receives (Lien and Scanziani, 2013; Ji et al., 2015) when voltage clamped at the inhibitory synapse reversal
potential (see Thalamocortical Synaptic Weights). The V1 TF column represents the preferred temporal
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frequency of the V1 neuron class (Niell and Stryker, 2008; Durand et al., 2016). The Soy Ratio refers to the
probability the sustained component will be ON instead of OFF (Lien and Scanziani, 2013) — the transient
component was always OFF. The Separation Range refers to the distance between the sustained and
transient subfield ellipses — E4 estimated from Lien and Scanziani, 2013. The Width Range refers to the
minor-axis width of the ellipses (diameter). The Aspect Ratio refers to the length of the major-axis relative to
the minor-axis. Note the aspect ratio is relative to neurons’ visual space center and once sizes of LGN
receptive fields are incorporated, the results match experimental measures (Lien and Scanziani, 2013) more
accurately as shown previously (Arkhipov et al., 2018). The final column refers to the number of synapses
an LGN neuron makes to a V1 neuron if a connection exists. This was extrapolated from experimental work
(Morgenstern, Bourg and Petreanu, 2016) as discussed in Thalamocortical Synapse Estimate.

THALAMOCORTICAL SYNAPSE ESTIMATE

For the biophysical model we estimated the number of synapses impinging on different V1 neurons. The
exact numbers of synapses are only estimates as the more critical step was ensuring the total excitatory
current received from the LGN matched experimental measurements (see below). Should the number of
synapses be incorrectly estimated, this was compensated for by the final synaptic weights.

Our calculation and formalism for the number of thalamocortical synapses per neuron is described below;
we also provide a supplementary document (Num_TC_synapses.xlsx) where all the calculations were done.
As the field advances, in particular with electron-microscopy technology, we would need fewer assumptions
and simply use the available data. In the model, synapses were placed along the dendrites up to 150 um
away from the soma but excluding the soma, as done in a previous model of the layer 4 of V1 based on
experimental reports (Schoonover et al., 2014; Arkhipov et al., 2018)

One key resource we used was the fluorescence measurements of the density of thalamocortical axons
across cortical depth (Morgenstern, Bourg and Petreanu, 2016). We used this work to determine the
fraction of fluorescence across cortical layers as an estimate of the fraction of LGN projections to different
layers. The full calculation is in the accompanying supplemental document (Num_TC_synapses.xlsx) and
here we explain our technique and assumptions. In particular we assume the Fluorescence Signal (FS) is a
function of the following factors:

1) Number of cells in a layer (Schiiz and Palm, 1989)

2) Percentage of cells that actually get innervated in a layer from the LGN (Ji et al., 2015)

3) At a specific depth (layer), the proportion of dendrites from cells in different layers that extend to other
layers

a. For inhibitory neurons, dendrites where assumed to stay within their layers and not extend to other
layers.

4) The fraction of LGN synapses on a stretch of dendrite is the same whether that dendrite is from an E or
Pvalb cell.

a. Assumption includes that, out of all interneurons, Pvalb cells are the only ones to receive significant
innervation except for layer 1 (Ji et al., 2015).
From here, for a specific layer, the below calculation was used to approximate the fluorescence signal
(FS) from labeled thalamocortical axons. This example is for layer 4:
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FSpy = A% {Ngq * IRgq * NTCgy x Fracg,”™*  +
Nigppas * IRiapvair * NTCiapyaip * FTraciappan 4 +
Ngs * IRgs * NTCgs * Fracgs *  +
Ngaj3 * IRg/3 ¥ NTCpp 3 * Fracgy s ** }

In the accompanying document, this is found by summing the rows for the gray matrix. The different
notations mean:

* FS;4 = Fluorescence signal in layer 4

* A = Constant factor converting fluorescence signal to biological innervation numbers. We assume
fluorescence is a linear function of axon density, and so A is constant for every layer. We will need to
solve for A (see below)

* Ng, =Number of excitatory cells in L4 (Schiiz and Palm, 1989)

* [Rg, = Innervation ratio of LGN onto L4 pyramids (Ji et. al, 2015)

* NTCgs =Number of synapses that are thalamcortical for every L4 excitatory cell — the numbers we are
seeking for every layer. From (4) above, it is assumed that NT Cispyaip = NTCispvaip-

o Fracg,"* =The fraction of excitatory cells’ dendrites in L4 that is contributed from L4 cells (from
assumption (3) above). See the light green matrix in the accompanying excel sheet.

o Note that Fracg,"* + FracEZ/3L4 + Fracgs™* = 1.

o Note that we assumed Fracge™* = 0and thus that is not included in the above example of L4.

o Note that Fracippqp™* = 1is assumed for all layers for Pvalbs (assumption (3.a) above).

We note that the document had a finer division of every layer (split in two: upper (A) and lower (B)
components) and the idea of single layers here is just used for explanation purposes.

All these assumptions can be written in a matrix form as follows:
FS = M,x NTC

Where FS is an Nx1 matrix of the fluorescence signal across layers and NTC is the Number of
thalamocortical synapses that is also Nx1. M, holds the properties described above and is a matrix of

dimensions NxN (contributions from all layers).. We can thus solve for NTC by taking the inverse:
NTC = M, xFS

Since the constant factor A is not known, the values of NTC are not the actual numbers of synapses. To
account for this, we use the experimental finding that, in the mouse visual cortex, the number of
thalamocortical synapses on L4 excitatory cells is approximately 1200-1500 (Schoonover et al., 2014;
Arkhipov et al., 2018). This gives us the scaling factor to account for A and hence allows us to estimate NTC
for all layers.
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For the supplemental document, which was divided into finer divisions, 1200 was used as the average of all
the L4 divisions (see scaling factor). The final numbers of synapses are shown in Table 2.

THALAMOCORTICAL SYNAPTIC WEIGHTS

Various studies have identified the thalamic innervation pattern into the visual cortex across laminae (Lien
and Scanziani, 2013, 2018; Kloc and Maffei, 2014; Schoonover et al., 2014; Ji et al., 2015; Morgenstern,
Bourg and Petreanu, 2016; Bopp et al., 2017). We used these results to identify the total current that
different cell classes should receive from the LGN. One study, already published during building of the
model, measured that the net current into layer 4 excitatory cells responding to drifting gratings at their
preferred angle was on average 46 pA (Lien and Scanziani, 2013). Other work using optogenetic stimulation
identified the cell classes that are innervated by the thalamus, for both the probabilities and relative
strengths (Ji et al., 2015). Assuming linear scaling to layer 4 excitatory neurons, we estimated the target
mean current for every cell class in response to a grating at a neuron’s preferred direction (Table 2).

To attain the target currents, for the biophysically detailed model, we created networks that had 100 cells
from every model, all preferring a single direction, that receive LGN innervation as described above (but no
other connections). A grating at 2Hz, full contrast, full field with a spatial frequency of 0.04 cycles per degree
(to match the experimental work precisely (Lien and Scanziani, 2013)) was shown to these networks.
Further, the neurons were clamped at the reversal potential of the inhibitory (GABA) synapses in our model
(again as performed experimentally). The net mean current during exposure was measured and the synaptic
weights iteratively adjusted until the target current was reached with 2% tolerance. For surrounding LIF
neurons, for the same stimulus, we matched the firing rates that were observed with purely LGN input in
the biophysically detailed core neurons of the same class. As mentioned in the Main Text, during
optimization of the full V1 model the weights of synapses from LGN to excitatory layer 4 cells were not
adjusted at all, given that the measurements we used as targets in the procedure described here were of
high precision and obtained in vivo (which is the condition we were aiming to match in our full model).
Weights of all other synapses from LGN were adjusted, but the adjustment was allowed to be no more than
by a factor of 2 for the mean input current (Table 2).

Finally, the GLIF V1 model used the same strategy to attain the same target mean currents using the same
grating LGN stimulus. However, as the GLIF models employed in the V1 model were using post-synaptic
current based synapses (see Synaptic Characteristics), the weights were initially set as the target currents
and no voltage clamping was required. However, the average rheobase (minimal current step amplitude to
elicit an action potential) of the GLIF models in the model are bigger than experimental measurements (Fig.
S11), except for Pvalb neurons that had smaller rheobase values. To match closely to the experimental data,
the established weights from LGN to V1 were scaled by the average ratio between average rheobase of GLIF

model and experiment data i.e., 0.81 for Pvalb population and 1.36 for other populations.

BACKGROUND CONNECTIVITY
A second source of input to the V1 models was a background to coarsely represent the “rest of the brain”.
This was modeled as a single input unit that fired at 1 kHz with a Poisson distribution. All neurons received

connections from this unit, and the weights were optimized (at the same time with the optimization of
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weights for the recurrent connectivity) to ensure the V1 spontaneous firing rates matched target
experimental rates (see below).

RECURRENT CONNECTIVITY

The cortico-cortical connection probabilities for different cell-class pairs were estimated based on an
extensive and systematic survey of the existing literature and curated into a resource that we make publicly
available (Figure 4, see details and notes regarding assumptions and the literature used in
Connection_probabilities.pptx). It is important to note that in many cases the values reported in the
literature do not take into account two effects that strongly influence connection probabilities. The first is
distance dependence: cells closer to each other typically have a higher chance of being connected than cells
further apart. The second is that connection probabilities can be affected strongly by differences or
similarities in functional preferences of cells, such as preference for orientation. Pyramidal cells in L2/3 of
mouse V1, for instance, have a higher chance of being connected with one another if they prefer similar
orientations, compared to orthogonally tuned cells (Ko et al., 2011; Cossell et al., 2015; Wertz et al., 2015;
Lee et al., 2016). Based on these two factors, the adjustments described below were made.

It is reasonable to assume, for the mouse visual cortex, that both these factors are independent (given the
“salt and pepper” arrangement of orientation tuned cells in the mouse (Harris and Mrsic-Flogel, 2013;
Seabrook et al., 2017)) and thus the total probability of connection for a cell-class pair is a product of the
distance-dependent and preferred-angle-dependent factors (functions of r and A¢, respectively):

Psrc—>trg = Pgise (1) X Pangle(Ad))

First we will discuss each of the components separately, and the final section will illustrate our approach for
combining the two.

Distance dependent adjustment:

We noted that the majority of the experimental literature reporting probability of connections tended to
consider inter-somatic distances that were within approximately 0 — 50 um to 0 — 100 pm. Since we aimed
to have a Gaussian profile for distance dependence (Levy and Reyes, 2012), the probability at the origin had
to be adjusted to account for these measurements. Since measurements were made in the approximate
range of 50 - 100 um for the upper bound, we chose to consider the mid-point of 75 um as our reference
point for such upper bound. Note the distance is only measured in a plane and is independent of cortical
depth in our calculations.

For the Gaussian probability distribution:

r2

Pdist(r) = Ae o

Given our assumptions, the integral of this probability from 0 to Ry = 75 um, divided by the area within the
radius Ry, should be equal to the reported measured probability, B-¢p:

1 (B 72
n_R(Z, ) Ae % dxdy = P
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Converting to polar coordinates:
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This establishes the relationship between the values reported in the literature and our distance-dependent

A=

formula for connection probability.

From work in the mouse cortex (Levy and Reyes, 2012), the standard deviations were estimated to be (Fig.
4):

Og-p = 114 ym Op-sst = 103 um Osst—g = 85 um

Og>pyalp = 92 pm Opvaib—~g = 95 pm

From internal data at the Allen Institute during model building:

Opvalb—Pvalb ~ 120 um

In the absence of data for other connection classes, we assumed that connections between excitatory
neurons and Htr3a neurons follow the same dependence as between excitatory and Sst neurons
(bidirectionally). Finally, we also assumed that connections among all inhibitory classes have the same
distance dependence (i.e., same as Opyalb—Pvalb ).
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Orientation tuning adjustment for excitatory-to-excitatory connections:

For orientating tuning dependence, our system is modeled such that pairs containing cells with similar
preferred orientation angles have higher connection probabilities than pairs of orthogonally tuned cells,
when the presynaptic neuron is excitatory (like-to-like connectivity) (Ko et al., 2011; Cossell et al., 2015;
Wertz et al., 2015; Lee et al., 2016). Here we assume the dependence is linear (Figure 4D) as a function of
the orientation tuning difference (4¢):

Pangle(Ad)) = By + GAp

Since we considered orientation selective tuning for connectivity (not direction selective), the difference of
preferred angles of any two cells can be compressed to be between 0° and 90°. For this model, we can see
that the intercept occurs at (0, B1). At the other extreme of the model, we set the point to be (90, B;). The
relative strength of the dependence can be described by a ratio Q = B,/B;. As can be seen, for like-to-like,
Q <1f(ie,G<D0).

Our model is developed such that the integral of the function Pangle(Aqb), normalized by the range of 4¢,
is always equal to 1. This was implemented because this function is used as a multiplier with the distance
dependence function Py (1), and since we assume that experimentalists measuring in-vitro probability of
connections sample equally from cells preferring all possible orientation angles in vivo. This does restrict the
ratio Q one can select, based on the distance dependence and measured connection probabilities from
experimental literature. As will be discussed below, if the ratio is outside of a suitable range, we rescaled it
to reach the correct range.

Because B, = QB4,
the gradient can be expressed as:

QB —B; Bi(Q-1)
90° — 0° 90°

G =

Integral of Psrc_,trg(A(;b) (with normalization for the angle range) should be set to 1 to determine the

scaling factor:

1 90°
900f (B, + GA)dAd = 1

0°

90°

1[BA +1G(A )2l =1
90° 14¢ > ¢ . o

By +45° =1

Substitute G:
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B,(Q-1)
By +45° {——— | =1
! ( 90°
Solving for By:
2
By =——
1+Q
And thus:
2
5 _ 20
1+0Q

The value of Q for layers 2/3, 4, and 6 was set to 0.5 given the high orientation selectivity (Niell and Stryker,
2008; Durand et al., 2016). For layer 5, it was set at 0.8 for the excitatory-to-excitatory connections due to
lower orientation selectivity in this layer (Niell and Stryker, 2008; Durand et al., 2016).

Combining distance-dependent and orientation-dependent adjustments:
As can be observed from the above, the scaling can increase the measured connection probability and to
ensure our probabilities were never greater than 1, we forced the following condition:

AXB; <1

Thus, we used the following algorithm:
{
Calculate A
IfA>1,

Set A=1.0
Calculate B
If AXB; > 1

Set By pew = 1/A

Set By = By + (B1 — Bi_new)

Set By = B1 new

Calculate G = (B, — B1) / 90
# Intercept and gradient are determined and hence can apply Pgngie (A¢) formula.
}

In this formalism (pseudo-code above), if one selects a specific value of Q that happens to push the
probability values above 1, the worst-case scenario would be that Q is rescaled to 1.0 and hence there is no
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orientation tuning dependence. The trend will never reverse. And this scenario will only occur if there
already exists a very high connectivity probability between two cell classes.

With this approach, we have accounted for distance dependence and functional connectivity between the
different cell classes in our model. Our next step was to determine the dendritic targeting rules for the
biophysically detailed model.

DENDRITIC TARGETING FOR THE BIOPHYSICAL MIODEL

The location of synapses between connected neurons has been demonstrated to have different patterns
depending on the neuronal classes (Thomson and Lamy, 2007; Egger et al., 2015; Narayanan et al., 2015).
Although, unfortunately, the available information is sparse, it does delineate trends that may be
generalizable, and thus we used these data to implement the rules described below.

Excitatory-to-Excitatory Connections

All excitatory-to-excitatory connection avoided the soma and targeted the apical and basal dendrites. For
layers 2/3, and 4, the connections were within 200 um from the soma while for layers 5 and 6, the synapses
could form anywhere along the dendrites (Thomson and Lamy, 2007; Egger et al., 2015; Narayanan et al.,
2015). Note that the literature sources are mostly measurements from rat somatosensory cortex. The cortex
depth in the rat is approximately 2 mm while our model it is 0.9 mm, and hence we scaled values
accordingly.

Excitatory-to-Inhibitory Connections
For excitatory-to-inhibitory synapses, both the soma and dendrites could be targeted with no distance
limitations (Thomson and Lamy, 2007). This was implemented for all layers and the values were again
approximations from the relevant sources.

Inhibitory-to-Excitatory Connections (Inhibitory-to-Inhibitory Connections)

For inhibitory-to-excitatory connections we again depended on the data form rat cortex (Thomson and
Lamy, 2007). Synapses from the Pvalb class were placed on the soma and dendrites within 50 um from the
soma of any target neuron. Synapses from Sst neurons were placed on the dendrites, 50 um or further from
the soma. Finally, synapses from Htr3a neurons were placed on the dendrites, from 50 um to 300 pum from
the soma. These rules also considered the morphology of neurons in the mouse visual cortex from
reconstructions of axons and dendrites (Jiang et al., 2015). We assumed for these purposes that Pvalb
neurons correspond to basket cells, Sst neurons to Martinotti cells, and Htr3a neurons to Bitufted and
Bipolar cells described by (Jiang et al., 2015).

Due to the lack of information on inhibitory-to-inhibitory connections, for this class of connections we used
rules identical to the inhibitory-to-excitatory connections described above.

Layer 1

Finally, for layer 1 neurons, which are Htr3a only in our V1 model, we used the rules below that heavily
depended on data from rat neocortex (Jiang et al., 2013) and neuron morphology from mouse V1 (liang et
al., 2015), and are similar to other layers due to lack of references with explicit measurements. Our original
goal for the model was to project i1Htr3a-to-E2/3 to apical dendrites (no somatic connections) from 50 pm
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and greater (see below). This is based on distance estimates from the bottom of L1 to upper L2/3 that are
approximately 50 um. This was decided by observing the extent of axonal arbors of L1 (according to Jiang et
al., 2015, reconstructions). Similarly: i1Htr3a-to-E4 projected to apical dendrites that are 200 um away from
the soma; i1Htr3a-to-E5 projected to apical dendrites that are 300 um away from the soma and greater;
i1Htr3a-to-E6 projected to apical dendrites that are 500 um away from the soma; ilHtr3a-to-il1Htr3a
projected everywhere including soma; i1Htr3a-to-i2/3 projected to basal dendrites from 50 um and greater.
For the other inhibitory layers that project to layer 1, the same rules were used as for within-layer i-to-
Htr3a. Finally, excitatory projections to layer 1 were placed on the soma and dendrites with no distance
limitations.

Note, however, that during our post-synaptic-potential optimization (see below), we had to change the rules
of synaptic placement when L1 was the source onto excitatory cells. Our optimization methodology would
create 100 target cells of a specific cell model that receive 1 spike at 0.5 seconds and we would record the
generated postsynaptic potential (PSP). The weight would be scaled until we were within 1% of the target
PSP. We observed that the when L1 was the source impinging on excitatory cells, the targets sections were
so far away that the somatic PSP would reach a maximum and never match the target PSP regardless of how
strongly the weight was scaled. This was due to the most distal compartments reaching their maximum
membrane deviation that is equal to the reversal potential of the synaptic drive. With these distal
compartments being at their maximum, and the attenuation that occurs due to dendritic filtering (recall
dendrites in our model are passive), the soma would reach a maximum PSP that did not match our target
values.

Thus, to address this issue, we changed the synaptic placement rules for all L1-to-Excitatory neurons so that
synapses were placed on dendrites at 50 um or further from the soma. This is just a highly simplified
approximation, but, in terms of reaching closer to the soma than our original rules, it is reasonable since L1
neurogliaform cells are known to bulk release GABA into large volumes and not form well-targeted synapses
with post-synaptic cells (Szabadics, Tamas and Soltesz, 2007; Olah et al., 2009; Tremblay, Lee and Rudy,
2016). Finally note that in our optimization we always let the cells relax to their baseline. Since the resting
potential is lower than the reversal potential of the synapses, the single spike at 0.5 seconds would always
cause a depolarization. We still used this depolarization level to optimize weights for excitatory PSPs and
inhibitory PSPs.

ORIENTATION RULE FOR SYNAPTIC STRENGTH

Matching Target Post Synaptic Potentials

The first version of our V1 model (Figs. 4, 5) used an orientation-dependent like-to-like rule for synaptic
weights of all connection classes: E-to-E, E-to-l, I-to-E, and I-to-l (see Main Text). Since neurons had pre-
assigned preferred angles, the connection strength was a function of the difference between the assigned
angles of two connected neurons, defined within 90°. The synaptic strength between two cells was then
defined as:

AG)Z

W = AWe_(UW
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where 460 is the difference between the assigned angles of two neurons and gy is the standard deviation
set to 50° for all connection classes. Finally, Ay, is the weight constant that needed to be determined for
every connection class to be matched to Post Synaptic Potential (PSP) targets.

For the biophysical model the units of W are in uS (defined as the peak conductance), and for GLIF model, in
pA (see Synaptic Characteristics). Since most of the studies used to construct our PSP resource
(Connection_strengths.pptx) employed in vitro patch-clamp experiments, the data do not distinguish
neuron’s functional preferences, such as preferred angle. Therefore, we assumed the neurons were targeted
uniformly and, thus, for optimization we created 100 target cells from every model that were assigned
tuning angles with equidistant spacing in the range [0, 360°). We then created a virtual source node for
every connection class using the rules described above. The source node would emit 1 spike every 0.5
seconds. We then averaged the post-synaptic responses over all 100 target cells and iteratively updated the
weight value (the factor Ay, in the equation above) until the mean PSP was within 1% of the target value.

For scaling the weights when the target was a LIF neuron, 1000 source cells were created, each firing at 1Hz
from a Poisson distribution. These cells would first target every biophysical cell model, using the synaptic
weights that were already optimized as described above, and the resulting firing rates due to this input
would be calculated. The target firing rate for the LIF neurons were then estimated as the weighted average
rate (relative to the proportion of times a model would appear as part of a population). The same source
cells (with identical spike times) would then be connected to LIF targets and the firing rate would be
matched to within 5% of the desired firing rate.

For inhibitory connections onto the target LIFs, we used the same scaling factors as calculated for their
excitatory counterparts. Although not ideal, we chose this route after checking our previous Layer 4 model
(Arkhipov et al., 2018) and observing that indeed in that previous work the scaling ratios for LIFs for

inhibitory input were approximately equal to the scaling ratios of excitatory inputs.

Finally, for the GLIF model, the weights could be calculated analytically based on connection strengths (i.e.,
PSPs) between the source and target populations (shown in Connection_strengths.pptx) and the
mathematical model of the postsynaptic current (i.e., alpha function, see Synaptic Characteristics), together
with the GLIF model membrane potential dynamics (Teeter et al., 2018). Namely, the weights were
computed by solving the following equation that describe dynamics in the GLIF model after one spike
injection.

v (t)/dt = l(1 ) -2 —E ))
- C syn R L

where V(t) is the membrane potential, C is the capacitance of the target neuron, Isyn(t) is the alpha-
shaped post-synaptic current function with weight W ;r (definition in Synaptic Characteristics), R is the
resistance of the target neuron, and E| is the resting potential. Note that weights in the GLIF model are
current based while they are conductance based for the biophysical model. The steps for computing the
weight W r based on the above GLIF model voltage dynamics are:

1) Solving the above dynamic equation to get the analytical solution of membrane potential V (t);



2) Computing the derivative of the solution of V (t), i.e., dV (t)/dt;

3) Setting dV(t)/dt to zero and solving the equation to get the optimal time point t,,4, at which V(t)
reaches its maximum;

4) Substituting t,,4, for t and the target PSP for V(t) to the solution of V (t);

5) Solving the equation generated in 4) to get the weight W r.

The resultant solution for the weight Wg i is

1
11 ()
Tm T yn
Vtargetc <_ - erm wsyn Tm # Tsyn
WGLIF = Tm Tsyn
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with Vigrger being the target PSP, 74y, being the synapse time constant, and t,, being the membrane time

constant.

Optimization of Full V1 Models

As described in the Main Text, running simulations after the above optimization did not yield suitable
network behaviors in either of our V1 models. Thus, we used an iterative grid search method (Arkhipov et
al., 2018), where weights were uniformly scaled for every class (e.g. scaling weights of excitatory layer 4 to
excitatory layer 5 connections all by the same amount, as one iteration). We searched in discrete increments
weight changes across connection classes and selected the best result before moving on to the next
connection class (although there was still a need to revisit connections classes during this process). The
optimization employed a small training set consisting of a two 0.5-second-long simulations: one of gray
screen, and the other of a single drifting grating. We aimed to satisfy three criteria: (i) match spontaneous
firing rates (gray screen stimulus) to experimental observations, (ii) match peak firing rates for the drifting
grating, and (iii) avoid epileptic-like activity where the network would ramp up to have large global bursts
and then enter a period of silence until the next very rapid burst. The weight adjustments were kept in a
strict range where, for example, the LGN to L4 excitatory weights were not adjusted at all given that they
were fit to direct in vivo experimental measurements (Lien and Scanziani, 2013). Other LGN connections
were restricted to be scaled only in the range [0.5, 2] from the target net input current as those were scaled
from optogenetics experiments (Ji et al., 2015). The optimization was performed starting from L4 only and
adding successive layers one by one. First, all interlayer connections were set to zero and only the intra-layer
connections in L4 were optimized. Once our criteria were met, we added L2/3 to the optimization, including
the interactions between the two layers. This procedure simplified the optimization process even though
weights optimized at one step had to be readjusted at the next step (typically minor). This process was
continued for layer 5, followed by layer 6, and finally layer 1. During our optimization, the weight scaling was
restricted in the range of [0.2, 5]. In the deeper layers (layers 5 and 6), this rule had to be expanded to reach
the net adjustment range of [0.12, 18] for the biophysical model and [0.17, 6.0] for the GLIF model. Note
that adjusting the synaptic weights in the biophysical model did not translate directly to scaling the PSP (see
the Layer 1 description in Matching Target Post Synaptic Potentials).
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OPTIMIZATION WITH THE DIRECTION-BASED RULE AND PHASE DEPENDENCE FOR SYNAPTIC STRENGTH

As described in the Main Text, the next version of our V1 models used a rule for synaptic strengths that was
asymmetric with respect to the reversal of direction and included phase dependence, such that strongest
synaptic inputs were sourced from a stripe perpendicular to the preferred direction of the target cell (Figs.
6A, 6B). Once this rule was introduced, the weights needed to be optimized further, as the balance in the
network was affected. As a first step, we scaled the recurrent synaptic weights so that the net current (area
under the curve, Fig. 6A) became the same as in the previous version of the model (Fig. 4D) for every
connection class. However, this was not sufficient, and, thus, we further performed another round of
optimization as described in the above section. It turned out that because of the scaling to match the area
under the curve, the weights were already close to the correct solution, and we found that these new
optimizations required only a few iterations before converging to meet our criteria. For the same reason,
here it was not necessary to optimize the models layer-by-layer, and instead the optimization was
performed with the full recurrent connectivity. The weight scaling was not constrained to tight limits,
however, due to the new synaptic strength profiles that deviated substantially and in a non-linear fashion
from those used before.

CORRECTING FOR BIASES BETWEEN HORIZONTAL- AND VERTICAL-PREFERRING NEURONS

After finalizing the optimization using the rules above, we noticed biased firing rates in our models, in that
vertical drifting gratings evoked higher firing rate relative to horizontal gratings (Fig. 6C). Since this was not
observed experimentally and was a result of extra excitatory synaptic drive into vertically preferring neurons
(Fig. S8), we adjusted incoming synaptic weights to maintain equal net synaptic drive. The adjustment
depends on the cortical magnification factors in the azimuth and elevation dimensions. As described in
Visual Coordinates, the physical dimensions of each V1 neuron was converted to visual space by a
conversion factor of 70 degrees/mm in the azimuth (x-dimension) and 40 degrees/mm in elevation (z-
dimension), estimated from experimental reports (Schuett, Bonhoeffer and Hiibener, 2002; Kalatsky and
Stryker, 2003). To adjust for this asymmetry, we collapsed every neuron’s preferred angle to the quadrant
6 = [0,90] and scaled synapses to neurons that preferred horizontal motion (0-degrees) by

(70 + 40)/2 55

40 4

whereas synapses to neurons preferring vertical motion (90-degrees) were scaled by:

(70 + 40)/2 55
70 B

Given these two points, we then fit a linear function to estimate the weight scaling for every intermediate

value, resulting in

55 11

Wractor = =~ Tgg0 % ¢

This weight adjustment fixed the bias (Figs. 6C, S8) and resulted in horizontal-preferring neurons having a
heavier tail of the incoming synaptic strength distribution than vertical-preferring neurons (Fig. 6E). Finally,
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due to our highly non-linear V1 models, this adjustment resulted in deviations from our target optimization
firing rates). Thus, a small amount of grid search tuning was needed again to match our target criteria.

SYNAPTIC CHARACTERISTICS

The synaptic mechanisms used for the biophysical model were as in the L4 model (Arkhipov et al., 2018).
The synapses were bi-exponential (using NEURON’s Exp2Syn mechanism) with a reversal potential of -70 mV
for inhibition and 0 mV for excitation. The weights units are in uS (peak conductance). The taul and tau2
constants for the mechanism were 2.7 ms and 15 ms for inhibitory-to-excitatory synapses, 0.2 and 8 ms for
inhibitory-to-inhibitory synapses, 0.1 ms and 0.5 ms for excitatory-to-inhibitory synapses, and 1 ms and 3 ms
for excitatory-to-excitatory connections. Note that these are not the somatic temporal characteristics, but
time constants at the synaptic location; the PSP shape at the soma depends on dendritic location of the
synapse and membrane dynamics.

For GLIF model, postsynaptic current-based synaptic mechanisms were used with dynamics described by an
alpha-function:

Ioyn(t) = elwﬂ te _Ts;n
Tsyn

Where Iy, is the postsynaptic current, 5y, is the synaptic port time constant, and Wgr is the input
connection weight. This function was normalized such that a post-synaptic current with synapse weight
Werir = 1.0 has an amplitude of 1.0 pA at the peak time point of t = 74,,. The 7y, constants for the
mechanisms were 5.5 ms for excitatory-to-excitatory synapses, 8.5 ms for inhibitory-to-excitatory synapses,
2.8 ms for excitatory-to-inhibitory synapses, and 5.8 ms for inhibitory-to-inhibitory connections, which were
extracted from LIF models in the L4 model (Fig. S2B of (Arkhipov et al., 2018)).

VISUAL STIMULI

The visual stimuli used in our simulations were identical to those used for the experiments we
compare to. Each simulation included a 500 ms interval of gray screen in the beginning, which was
then followed by a single trial of presentation of the stimulus.

Drifting Gratings

For the drifting grating stimuli, we used sinusoidal gratings with a spatial frequency of 0.04 cycles per degree
with a temporal frequency of 2Hz (for 2.5seconds after the grey-screen). All stimuli were run for 10 trials for
every direction of motion (8 sampled directions with increments of 45 degrees) at 80% contrast (for both
the experiments and the models). Although the experimental data from mice (see below) included more
temporal and spatial frequencies, we restricted our analysis to match the drifting gratings used in our
simulations.

Flashes
The flash stimuli (10 trials) consisted of: 500 ms of grey screen, followed by 250 ms of white screen (ON-
flash), returning to a grey screen for 1000 ms, then another 250 ms of black screen (OFF-flash), and a final



grey screen for 500 ms). The contrast was at 80% (to match experiments). (We also conducted simulations
with full-contrast flashes (100%), and the models were stable and produced results very similar to the 80%
contrast case.).

Natural Movies

We tested our models on a clip (10 trials) from one of the natural movies (Touch of Evil, directed by Orson
Welles) used in the Allen Brain Observatory (de Vries et al., 2018). The 2.5 seconds shown were matched
between the model and experiment.

DATA ANALYSIS

Firing Rates

The firing rates were estimated from all trials of a simulation. Since all simulations started with a 500ms
grey-screen period followed by the stimulus, the firing rate is estimated using the stimulus duration without
these first 500 ms (that is, 2500 ms for a drifting grating or a natural movie). Thus, the firing rate for a
neuron in a trial was calculated by dividing the total number of spikes after the grey screen by the stimulus
duration (2500ms). Some metrics required time-dependent firing rates that are described below. For the OSI
and DSI metrics, to avoid noise from very sparsely firing neurons that could yield spurious OSI/DSI values of
1.0, we imposed that neurons’ firing rates at their preferred drifting grating direction be greater than 0.5 Hz.

Orientation Selectivity Index (OSlI)

The OSI metric computed is also referred to as the global Orientation Selectivity Index, as it takes into
account the response of a neuron in all directions tested (not just the preferred and orthogonal). The OSlI is
calculated as:
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where Ry is the mean firing rate response to a drifting grating of angle 6.

Direction Selectivity Index (DSI)
Similar to the OSI metric, the DSI also considered responses in all directions of drifting gratings shown
(sometimes referred to as the global Direction Selectivity Index). The DSl is calculated as:
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where Ry is the mean firing rate response to a drifting grating of angle 6.

Response at Preferred Direction
The plots quantifying neurons’ response at their preferred direction report the mean firing rate values based
on the largest mean response (across trials) over all 8 directions tested.

Correlation of Signal and Noise Correlations
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To compute the correlation of signal and noise correlations, we computed the signal correlation as the
Pearson correlation coefficient between the trial-averaged spike counts for each pair of neurons (Arkhipov
et al., 2018). For natural movies, we computed the correlation for binned spike counts in non-overlapping
windows of length 50 ms. For gratings, the correlation was computed over the spike counts in 8 different
orientations. The noise correlation was computed as the Pearson correlation coefficient between single-trial
spike counts for each pair of neurons, and then averaged over stimuli conditions (8 orientations for gratings
and non-overlapping 50 ms windows for natural movies).

Lifetime and Population Sparsity
Lifetime sparsity for each neuron was computed using the following definition (Vinje and Gallant, 2000):

where N is the number of stimulus conditions andr;is the trial-averaged spike count for stimulus
condition i (de Vries et al., 2018). To compute the population sparsity, we used the same equation, but
where N is  thetotal number of neuronsin the population and r;is the average spike-count
of neuron i over all stimulus conditions (de Vries et al., 2018).

Similarity Score

A similarity score was developed to compare the distribution of all excitatory neurons in the models with all
regular spiking neurons recorded experimentally as well as for Pvalb neurons in the models with fast-spiking
neurons from the same Neuropixels recording. The metric used the D statistic from a Kolmogorov—-Smirnov
test that calculates the distance between the cumulative distributions of two samples and is bounded in the
range [0, 1]. Since we are interested in similarity in this work and matching distributions, this was converted
to a similarity score, S = 1 — D. Fig. S4 illustrates how for two different distributions S is close to 0, whereas
for two similar distributions it approaches 1.

ELECTROPHYSIOLOGICAL RECORDINGS

Animal preparation

All experimental procedures were approved by the Allen Institute for Brain Science Institutional Animal Care
and Use Committee. Five weeks prior to the experiment, mice were anesthetized with isoflurane, and a
metal headframe with a 10-mm circular opening was attached to the skull with Metabond. In the same
procedure, a 5-mm-diameter craniotomy and durotomy was drilled over left visual cortex and sealed with a
circular glass coverslip. Following a 2-week recovery period, a visual area map was obtained through intrinsic
signal imaging (Juavinett et al., 2017). Mice with well-defined visual area maps were gradually acclimated to
the experimental rig over the course of 12 habituation sessions. On the day of the experiment, the mouse
was placed under light isoflurane anesthesia for ~40 min to remove the glass window, which was replaced
with a 0.5 mm thick plastic window with laser-cut holes (Ponoko, Inc., Oakland, CA). The space beneath the
window was filled with agarose to stabilize the brain and provide a conductive path to the silver ground wire
attached to the headpost. Any exposed agarose was covered with 10,000 cSt silicone oil, to prevent drying.
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Following a 1-2 hour recovery period, the mouse was head-fixed on the experimental rig. Up to six
Neuropixels probes coated in CM-Dil were independently lowered through the holes in the plastic window
and into visual cortex at a rate of 200 um/min using a piezo-driven microstage (New Scale Technologies,
Victor, NY). When the probes reached their final depths of 2,500-3,500 um, each probe extended through
visual cortex into hippocampus and thalamus. Only data obtained from V1 was included in this study. In
total, data from 37 mice were used for the drifting gratings analysis (one experiment per mouse) and 7 mice
for the natural movie and flash analysis.

Data acquisition system

Recordings were performed in awake, head-fixed mice allowed to run freely on a rotating disk. During the
recordings, the mice passively viewed a battery of visual stimuli, including local drifting gratings (for
receptive field mapping), full-field flashes, drifting gratings, static gratings, natural images, and natural
movies, with the same parameters as those from the Allen Brain Observatory (de Vries et al., 2018). All spike
data were acquired with Neuropixels probes (Jun et al., 2017) with a 30-kHz sampling rate and recorded
with the Open Ephys GUI (Siegle et al., 2017). A 300-Hz analog high-pass filter was present in the
Neuropixels probe, and a digital 300-Hz high-pass filter (3rd-order Butterworth) was applied offline prior to
spike sorting.

Data preprocessing
Spike times and waveforms were automatically extracted from the raw data using Kilosort2
(github.com/mouseland/kilosort2). Kilosort2 is a spike-sorting algorithm developed for electrophysiological

data recorded by hundreds of channels simultaneously. It implements an integrated template matching
framework for detecting and clustering spikes, rather than clustering based on spike features, which is
commonly used by other spike-sorting techniques. After filtering out units with “noise” waveforms using a
random forest classifier trained on manually annotated data, all remaining units were packaged into
Neurodata Without Borders format (Teeters et al., 2015) for further analysis.

Neuronal Classification

Regular spiking (RS) neurons and fast spiking (FS) neurons were determined by the duration of the spike
(time between trough and peak of the waveform). The duration of the spikes showed a bimodal distribution
(Hartigan dip test, p=0.004), with a dip at 0.4 ms. We classified a neuron as RS if its duration was > 0.4 ms,
and otherwise FS (Fig. S3). In total we had 328 L6 RS neurons, 72 L6 FS neurons, 419 L5 RS neurons, 80 L5 FS
neurons, 294 L4 RS neurons, 49 L4 FS neurons, 251 L23 RS neurons, 49 L23 FS neurons, and 81 L1 neurons.
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