bioRxiv preprint doi: https://doi.org/10.1101/661769; this version posted October 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

aCC-BY-NC-ND 4.0 International license.

The genomic architecture of blood metabolites based on a decade of genome-wide analyses

I*2, Jenny van Dongen’?, Harmen H.M. Draisma’, Jouke Jan Hottenga®,

Fiona A. Hagenbeek’, René Poo
Gonneke Willemsen®, Abdel Abdellaoui?, Iryna O. Fedko®, Anouk den Braber™**, Pieter Jelle Visser*>, Eco
J.C.N. de Geus"**, Ko Willems van Dijk®, Aswin Verhoeven’, H. Eka Suchiman®, Marian Beekman®, P. Eline
Slagboom®, Cornelia M. van Duijn®, BBMRI Metabolomics Consortium®®, Amy C. Harms'!, Thomas

Hankemeierll, Meike Bartelsl'“, Michel G. Nivard**** and Dorret I. Boomsma™***

'Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

“Amsterdam Public Health research institute, Amsterdam, the Netherlands.

*Alzheimer Center Amsterdam, Department of Neurology, VU Amsterdam, Amsterdam UMC,

Amsterdam, The Netherlands.

*Amsterdam Neuroscience, Amsterdam, the Netherlands.

®Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Alzheimer

Center Limburg, Maastricht University, Maastricht, The Netherlands.

®Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden,
The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The
Netherlands; Department of Internal Medicine division Endocrinology, Leiden University Medical Center,

Leiden, The Netherlands

’Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands


https://doi.org/10.1101/661769
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/661769; this version posted October 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

aCC-BY-NC-ND 4.0 International license.

®Department of Biomedical Data Sciences, section of Molecular Epidemiology, Leiden University Medical

Center, Leiden, The Netherlands

’Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.

19 Members of the BBMRI Metabolomics Consortium are listed before the references.

“Dbjvision of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University,

Leiden, the Netherlands; The Netherlands Metabolomics Centre, Leiden, The Netherlands.

*These authors contributed equally.

*Correspondence to: Fiona A. Hagenbeek, Dorret |. Boomsma or Michel G. Nivard, Department of
Biological Psychology, Vrije Universiteit Amsterdam, Van der Boechorststraat 7-10, 1081 BT Amsterdam,

The Netherlands. E-mail: f.a.hagenbeek@vu.nl; di.booomsma@vu.nl; m.g.nivard@vu.nl

Word count:

Abstract: 147; Main text: 3,520; Methods: 3,001;

References incl. methods: 79; Tables: 4; Figures: 3

Supplementary Material:

Supplementary Notes: 4; Supplementary Figures: 6; Supplementary Tables: 19; Supplementary Data: 1


https://doi.org/10.1101/661769
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/661769; this version posted October 11, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

38

39

40

41

42

43

44

45

46

47

48

49

aCC-BY-NC-ND 4.0 International license.

Abstract

Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of
total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates
differ across metabolite classes and lipid species. We performed a review of all genetic association
studies, and identified > 800 class-specific metabolite loci that influence metabolite levels. In a twin-
family cohort (N = 5,117), these metabolite loci were leveraged to simultaneously estimate total
heritability (P o1ar), and the proportion of heritability captured by known metabolite loci (h vietabolite-hits)
for 309 lipids and 52 organic acids. Our study revealed significant differences in h’yetasoite-nits IMONE
different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of
unsaturation had higher h’vetasoiite-nits €stimates than phosphatidylcholines with a low degree of
unsaturation. This study highlights the importance of common genetic variants for metabolite levels,

and elucidates the genetic architecture of metabolite classes and lipid species.
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The metabolome is defined as the collection of metabolites, i.e., small molecules involved in cellular
metabolism, which are produced in cells' and consist of many classes*™. The overall aim of
metabolomics is to provide a holistic overview of the metabolome?, and its role in biological
mechanisms and metabolic disturbances in diseases. Elucidating this role may offer new therapeutic
targets or new biomarkers for disease diagnosis®. Variation in metabolite levels can arise due to gender’,
and age®, as well as physiologic effects, behavior, and lifestyle factors, such as diet’. Genetic differences
may be a source of direct variation in metabolomics profiles, or an indirect source of variation through

genetic influences on physiology, behavior, and (or) lifestyle.

Genome- and metabolome-wide analysis of common genetic variants in human metabolism
have successfully identified genetically influenced metabolites™. In 2008, the first genome-wide
association study (GWAS; N = 284 participants) identified four genetic variants associated with
metabolite levels''. Thereafter, GWAS with increasing sample sizes, and in diverse populations,
identified hundreds of Single Nucleotide Polymorphism (SNP) associations with metabolites from a wide
range of metabolite classes™®. Additional metabolite loci have been identified by leveraging
low-frequency and rare-variant analyses using (exome-) sequencing. We conducted a comprehensive
review of all quantitative trait locus (QTL) discovery for metabolites and supply the complete reference

list in Supplementary Note 1.

Twin and family studies have established that the heritability (h%; proportion of phenotypic
variance due to genetic factors) of metabolite levels is 50% on average, with a range from h’ = 0% to h” =
80%>*°. Several studies reported differences in heritability estimates among different classes of lipid
species'®*® or lipoprotein subclasses'’. For example, Rhee et al. (2013) reported higher heritability
estimates for amino acids than for lipids*>. Essential amino acids, which cannot be synthesized by an

organism de novo®, had lower heritability than non-essential amino acids™®, that are synthesized within
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the body®. Several techniques are available to estimate the contribution of measured SNPs to trait
heritability*!, and, given SNP data in family members, to simultaneously estimate SNP-associated (h’syp)
and pedigree-associated genetic variance (hz,,ed)zz. Together the SNP- and pedigree-associated genetic
effects account for the narrow-sense heritability. However, when including data of family members, the
variance explained by genetic effects (h’w:) Mmay be biased upwards by shared environmental factors

and/or non-additive genetic effects %

An improved understanding of the genetic architecture of metabolites will benefit our
understanding of the aetiology of diseases and traits, such as cardiometabolic diseases**, migraine®>,
psychiatric disorders®, and cognition®’. Here we aim to further our understanding of the contribution of
genetic factors to variation in fasting blood metabolic measures (henceforth referred to as metabolites
for brevity) by the analysis of data from multiple metabolomics platforms in a large cohort of twins and
family members (N =5,117). Specifically, we aim to estimate the total genetic variance of metabolite
levels (h’tar), and to elucidate the contribution to metabolite levels of known metabolite class-specific
and metabolite class-unspecific 10ci (h2yetabolite-nits), ON the basis of the results of a decade of GWA and
(exome-) sequencing studies (Supplementary Data 1). To this end, we characterized all published
metabolite-SNP associations by metabolite classification, and used linear-mixed models to estimate the
W eota Wosnp aNd W petavorite-nies Simultaneously for 369 metabolites (Figure 1). In these models, the
W \etabolite-its CONSists of two variance components, a component attributable to metabolite loci
associated with metabolites of a specific superclass (h” ggss.nits) and a component attributable other
metabolite 10¢i (hnotciass.nits; Figure 1). We further expand on the current knowledge of the genetic
aetiology of metabolite classes by employing mixed-effect meta-regression models to test differences in

heritability estimates among metabolite classes and among lipid species.
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95 Intriguingly, phosphatidylcholines™ and triglycerides (TGs)* show increasing heritability with
96 increasing number of carbon atoms and/or double bonds in their fatty acyl side chains. Draisma et. al
97  speculated this might be attributable to differences in the number of metabolic conversion rounds for
98 phosphatidylcholines or TGs with a variable number of carbon atoms**. To distinguish between the

99  effects of the number of carbon atoms or number of double bonds in the fatty acyl side chains of

100  phosphatidylcholines and TGs, we conducted additional univariate follow-up analyses.

101  Results

102 Metabolite classification

103 In the period of November 2008 to October 2018, 40 GWA and (exome-) sequencing studies identified
104 242,580 metabolite-SNP or metabolite ratio-SNP associations (see Supplementary Note 1). All 242,580

105  associations may be found at: http://bbmri.researchlumc.nl/atlas/#data,which lists the significant SNP-

106 metabolite associations by study. These associations included 1,804 unique metabolites or ratios, and
107 49,231 unique SNPs (43,830 after converting all SNPs to NCBI build 37; Supplementary Data 1). The

108 Human Metabolome Database (HMDB)>™ identifiers of each metabolite were retrieved in order to

109  extract information concerning the metabolite’s hydrophobicity and chemical classification (see

110  Methods). Excluding the ratios and unidentified metabolites, we classified 953 metabolites into 12

111 ‘super classes’ (Table 1), 43 ‘classes’, or 77 ‘subclasses’ based on the HMDB classification

112 (Supplementary Data 1). The majority of the metabolites were classified into the super classes lipids or
113  organic acids. The lipids could be subdivided into 8 classes, with 1 to 95,795 metabolite-SNP associations
114 per class (mean =17,589; SD = 32,553), and in 32 subclasses, with the number of subclass metabolites-
115  SNP associations ranging from 1 to 40,440 (mean = 4,673; SD = 9,124). The organic acids and derivatives

116  were divided in 9 classes, with the number of metabolite-SNP associations ranging from 1 to 26,832
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(mean =3,374; SD =8,832). The organic acids and derivatives were also divided into 17 organic acid
subclasses, with the number of subclass metabolite-SNP associations ranging from 1 to 26,448 (mean =
1,786; SD = 6,371; Supplementary Data 1). Across all four platforms 427 metabolites were assessed.
After excluding the ratios (17) and the metabolites of super classes not included in the curated
metabolite-SNP association list (8), data were available for 402 metabolites. The full list of metabolites,
with their classifications and the quartile values of the untransformed levels, are included in
Supplementary Table 1. The 402 metabolites were classified as 336 lipids, 53 organic acids, 9 organic
oxygen compounds, 3 proteins and one organic nitrogen compound, these super classes were consisted
of 12 classes (Supplementary Table 2). In this paper we mainly focus on the first two super classes. After

quality control (QC), 369 metabolites from these two super classes were retained for analysis.

Characterization of the heritable influences on lipid and organic acid levels

Data of 5,117 participants were available from the following four metabolomics platforms: the
Nightingale Health "H-NMR platform, a UPLC-MS Lipidomics platform, the Leiden *H-NMR platform, and
the Biocrates Absolute-IDQ™ p150 platform. The participants were registered with the Netherlands
Twin Register (NTR)*® and were clustered in 2,445 nuclear families. Metabolomics and SNP data were
available for all participants. Background and demographic characteristics for the sample can be found

in Table 2.

We aimed to assess the variance explained by previously identified metabolite GWA and
(exome-) sequencing genetic variants in our (independent) sample. Clearly, our results are conditional
on the power of past the studies, as the list of metabolite genetic variants is based on previous GWA and
(exome-) sequencing studies, which vary in power. We present the sample size of each past study in

Supplementary Note 1, and the sample size per metabolite-SNP association in Supplementary data 1.
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Linear-mixed models including all loci for genetic variants associated with metabolites in a single
genetic relatedness matrix (GRM) will contain SNPs that are associated with some metabolites, but not
with others, or include many SNPs that are not associated with a given metabolite. We therefore
created two GRMs for the loci associated with metabolite hits (see Methods): one class-specific and one
non-class specific (i.e. GRMs including metabolite loci for all metabolites, except for the target
metabolite class). We explored models for the 12 class-specific and the corresponding not-class specific
GRMs (Supplementary Note 2). These models displayed high degrees of non-convergence (37.9% total),
with models including small class-specific GRMs displaying more non-convergence (Supplementary
Table 2). Therefore, the results in the remainder of this paper were based on the metabolite super

classes, i.e. lipids and organic acids.

For the 369 lipids and organic acids, we carried out unconstrained four-variance component
analyses (Figure 1). In genome-wide complex trait analysis (GCTA)*' we specified a model in which we
partition the metabolite variation into SNP-associated (h’syp), pedigree-associated (thed), class-specific
metabolite-loci-associated (h’qass.sis), and not-class metabolite-loci-associated (h?potcass.hits) genetic
variation (Figure 1). We report the total heritability (P +ota)), the proportion attributable to metabolite
superclass-specific 10ci (h? gass.sits), the proportion of variance attributable to non-superclass metabolite
loCi (W voteiassnies) @nd the contribution of known metabolite loci to metabolite levels (hyetabolite-nits)- The
analyses were performed separately for lipids and organic acids, with class-specific and corresponding

non-class GRMs (created using the LDAK program?®>°

) in both sets of analyses. The lipid analyses
employed a class-specific GRM of 479 lipid loci and a corresponding non-class GRM of 596 loci
(Supplementary Figure 1). The organic acid analyses included a class-specific GRM of 397 loci and a non-

class GRM of 683 loci (Supplementary Figure 1). Before the analyses, the metabolite data were

normalized (log-normal or inverse rank; see Methods). All models included age at blood draw, sex, the
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first 10 principal components (PCs) from SNP genotype data, genotyping chip and metabolomics

measurement batch as covariates.

Supplementary Table 3 includes the estimates from the four-variance genetic component
models for all 369 metabolites. The genomic relatedness matrix residual maximum likelihood (GREML)
algorithm converged for 361 (97.8%) of the 53 organic acids and 316 lipids (Supplementary Table 4).
Non-convergence of the GREML algorithm was observed for 6 metabolites (1.6%). The analyses of 2
metabolites (0.5%) were not completed due to non-invertible variance-covariance matrices. The
estimates for h.qy Of the 309 lipids ranged from 0.11 to 0.66 (mean = 0.47; mean s.e. = 0.04). The
estimates for h’ yetavorite-nits ranged from -0.05 to 0.16 (mean = 0.06; mean s.e. = 0.03; Table 3). The 52
organic acids had h .. estimates ranging from 0.14 to 0.72 (mean = 0.41; mean s.e. = 0.04). The
estimates for h yetapolite-pits ranged from -0.08 to 0.11 (mean = 0.01; mean s.e. = 0.02; Table 3). On
average, for both lipids and organic acids the h’.4s was higher than the h’yowassy With h’gassnits ranging
from -0.02 to 0.16 (0.06; mean s.e. = 0.02) for lipids and from -0.04 to 0.14 for organic acids (mean =
0.01; mean s.e. = 0.02). For both lipids and organic acids A yotcass.hits Was zero (mean s.e. = 0.02), ranging

from -0.06 to 0.12 for lipids and from -0.06 to 0.05 for organic acids (Table 3).

Including multiple metabolomics platforms allowed for a comparison of metabolites as
measured on multiple platforms. An earlier study showed that 29 out of 43 metabolites present on two
platforms to exhibit moderate heritability on both platforms>". In the current study, 61 metabolites were
measured on multiple platforms {(phenotypic correlations provided in Supplementary Table 5), with
moderate h’e 0N each of the platforms and on average a positive correlation of 0.36 between the

h?.tal Of the same metabolite assessed on different platforms (Supplementary Table 5).
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Differential heritability among metabolite classes and lipid-species

Figure 2 shows variation in median heritability among the following classes of organic acids: keto acids,
hydroxy acids and carboxylic acids (see Supplementary Table 1 for metabolites per class). Keto acids,
followed by carboxylic acids, had the highest median h’wea, and hgass.sies estimates (Figure 2). While
hydroxy acids had the highest median h’yotciass-hits aNA A’ yietavorite-nits €stimates, the lowest median h’ioas
and h’gassnits €Stimates were observed for these metabolites (Figure 2). To investigate whether
heritability differs significantly among classes of organic acids, we applied multivariate mixed-effect
meta-regression, corrected for metabolite platform effects (see Methods). The multivariate mixed-
effect meta-regression models showed that h% i and A’ gess.ries fOr the organic acid classes did not differ
significantly. However, significant differences among the organic acid classes, though, were observed
with respect to the hyetasolite-nis €stimates (F(4, 47) = 3.44, FDR-adjusted p-value = 0.03), and the hyotciass.

nies €stimates (F(4,47) = 19.95, FDR-adjusted p-value = 1.25x10°; Supplementary Table 6).

The multivariate mixed-effect meta-regressions were also applied to assess the significance of
heritability differences among essential and non-essential amino acids (subdivision of carboxylic acids;
see Supplementary Table 7) and among lipid classes (see Supplementary Table 1 for metabolites per
lipid class). The meta-regression analyses revealed no significant mean differences among essential and
non-essential amino acids (Table 4; Supplementary Table 8). Small but significant median heritability
differences were observed among the different classes of lipids (Figure 3). For lipid classes the h’yetapoite-
nits €Stimates differed significantly (F(8, 300) = 8.47; FDR-adjusted p-value = 0.004; Supplementary Table

6).

Finally, we explored whether heritability of phosphatidylcholines and TGs increases with a larger
number of carbon atoms and/or double bonds in their fatty acyl side chains. To this end we employed

both uni- and multivariate mixed-effect meta-regression models separately for the TGs, diacyl

10
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206 phosphatidylcholines (PCaa) and acyl-alkyl phosphatidylcholines (PCae; see Methods). The platform
207  specific heritability estimates for each of these lipid species are depicted in Supplementary Figure 2.
208  Variation in the number of carbon atoms and double bonds was significantly associated with h’yetaporie-
209 nits €stimates for PCaa’s (F(3, 52) = 7.05; FDR-adjusted p-value = 0.009) and PCae’s (F(3, 45) = 3.41; FDR-
210  adjusted p-value = 0.05; Supplementary Table 6). Phosphatidylcholines with a larger number of carbon
211 atoms showed lower heritability estimates and phosphatidylcholines with a larger number of double
212 bonds had higher heritability estimates (Supplementary Table 6). The differences among the

213 phosphatidylcholines with a variable number of carbon atoms and/or double bonds may have

214 contributed to differential h’.s estimates. Univariate models confirmed the results for the number of
215  double bonds in PCaa’s and PCae, though they were not significant after correction for multiple testing

216  (Supplementary Table 8).

217 Discussion

218 We carried out a comprehensive assessment of GWA-metabolomics studies, and created a repository of
219 all studies reporting on associations of SNPs and blood metabolites in European ancestry samples. We

220  curated 241,965 genome-wide metabolite associations and we classified the associated metabolites into
221 super classes, classes and sub-classes. The complete overview of all blood metabolite-SNP associations is

222 provided in Supplementary Data 1 (http://bbmri.researchlumc.nl/atlas/#data), with the complete list of

223 references in Supplementary Note 1. The information from the repository was used to construct GRMs,

224 which served to identify genetic variance components in the analysis of 369 metabolites. The metabolite
225 data in our study came from a large cohort of twin-families (N = 5,117 clustered in 2,445 families)

226 measured on four metabolomics platforms. We focused on two metabolite super classes. By mapping all
227 metabolites to the Human Metabolome Database (HMDB)*™ we were able to classify both the

228 measured metabolites and all previously published metabolites as either lipids or organic acids. In the

11
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current study, we sought to elucidate the contribution of known metabolite loci, based on a decade of
GWA and (exome-) sequencing studies, to metabolite levels (A’ vetaoiite-nits)- A unique feature of our study
was the ability to disentangle the role of class-specific (h” ciassnits) and non-class (h? otciassnits) Metabolite

loci on heritability differences among metabolite classes and lipid species.

To evaluate differences among metabolite classes and lipid species in the estimates for W iotal, WE
applied multivariate mixed-effect meta-regression models to the estimates of h’yetapoiite-nitss N class-hits» AN
W voterass.hits: We observed no significant differences in h%.: estimates among the metabolite classes.
Consistent with a previous twin-family study*®, none of the heritability estimates differed significantly
among essential and non-essential amino acids. We observed significant h’yetasoiite-nits differences among
the different classes of organic acids. Keto acids had significantly lower h’yetapoiite-nits €Stimates as
compared with carboxylic acids. Class-specific metabolite loci heritability estimates for fatty acyls,
lipoproteins and steroids were significantly higher. Similarly, significant heterogeneity in lipid class
heritability, with lower h%.: and h’sye for phospholipids than for sphingolipids or glycerolipids has been

16,1832
d

reporte . Lastly, we assessed whether heritability increases with added complexity in lipid

4,19 . . 2 . .
1419 We found that this was the case with respect to h” yetapoiite-nits €Stimates in more complex

species
diacyl and acyl-alkyl phosphatidylcholines, but not for more complex TGs. Previous research reported
significant higher h%y» estimates in polyunsaturated fatty acid containing lipids*®. Furthermore, loci
associated with traditional lipid measures explained 2% to 21% of the variance in lipid levels*®. Together

these results suggest that higher heritability in phosphatidylcholines is driven by a lower number of

carbon atoms and higher number of double bonds, e.g., a larger degree of unsaturation.

Evaluating the mean heritability differences among lipids and organic acids, it appears that lipids
have higher W totaty N’ class-hits AND W vetabolite-nits €Stimates than organic acids (Table 3). Previous twin-family

studies indicates that the heritability difference among lipids and organic acid is rarely investigated™.

12
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This is possibly because most metabolomics platforms focus mainly on either lipids or organic acids.
Lipid metabolite classes tend to be very well represented on metabolomics platforms, whereas organic
acids are unrepresented, and as a consequence, the analysis to obtain h’gassnits and A yietaborite-its

estimates of the organic acids will be underpowered due to this imbalance.

Limitations

The current study has several limitations. First, the extent to which our findings generalize to
populations of non-European ancestry is unknown. Loci of common human metabolism pathways are
most likely to replicate over ethnicities®®. Second, estimates of the total variance explained may show
upward bias when based on data from closely related individuals (e.g., first cousins or closer)’>**. This
bias is caused by the influence of shared environmental influences, epistatic interactions, or

2223 \While the results of the current study may suffer of such biases by the inclusion of twins,

dominance
siblings and parents, the sample also includes many unrelated individuals which will reduce the possible

bias (Supplementary Figure 3).

Kettunen et al. (2012) investigated 217 metabolites of the Nightingale Health *H-NMR platform
in a classical twin design and reported dominance effects for 6.45% of the metabolites**. Tsepsilov et al.
(2015) performed GWA study targeting non-additive genetic effects and concluded that most genetic
effects on metabolite levels and ratios were in fact additive®. Together, these studies suggested that the

bias due to dominance effects on metabolite levels will be minor.

Relatively few twin-family studies explicitly investigated the role of shared environmental
influences on metabolite levels. Overall, shared environmental influences are reported for a small
number of metabolites (e.g., 14.3% of all Nightingale Health *H-NMR metabolites**) and the influence of
the shared environment is small-to-moderate (platform and metabolite class-dependent averages range

from 0.03 to 0.45>'%%°® with larger estimates deriving from small studies). For studies including parents

13
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and offspring, or adult twin and siblings pairs the question arises which effects are captured by the
shared environment. Are these the lasting influences of the environment offspring shared with their
parents and with each other before they started living independently? Additional research is necessary

to elucidate the role of the shared environment on metabolite levels®.

Third, standard errors of h%» estimates were high. While we have included all h%» estimates in the
supplements, we stress that the primary goal of our paper was to investigate the contribution of known

metabolite loci in an independent sample rather than obtaining the h’sy, estimates for metabolites.

Finally, the estimates for h’ petasoiitenits are based on SNPs of 40 different studies from a decade of
GWA and (exome-) sequencing studies. The sample size, and therefore the power, of these studies vary,
with some studies conducted with as few as 211 individuals while others included over 24,000
individuals (Supplementary Note 1). For underrepresented metabolites the low power may result in
downward biased heritability estimates. However, leveraging information from a decade of research in
40 studies and extracting loci for metabolite classes across multiple studies, the number of such

323941 and future studies will increase the number of variants identified as

metabolites is not large. New
metabolite loci. The investment in UK Biobank® is expected to dramatically increase sample sizes for

large-scale genomic investigations of the human metabolome and subsequently the number of

metabolite loci.

Future directives and conclusions

Mendelian Randomization may benefit from the comprehensive overview of metabolite loci that we
identified. The identified loci can serve as instruments in metabolome-wide Mendelian Randomization
studies of complex traits. In addition, our work offers valuable insights into the role of common genetic
variants in class specific heritability differences among metabolite classes and lipids species. Further

research is required to elucidate the contribution of rare genetic variants to metabolite levels, and
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differences in the contribution of rare genetic variants among metabolite classes. A reasonable
approach would be to carry out a similar study in a large sample of whole-genome sequencing (WGS)
data. Such an approach, using MAF- and LD-stratified GREML analysis®®, identified additional variance

due to rare variants for height and BMI*,

In conclusion, we contributed to our understanding of the genetic architecture of fasting blood
metabolite levels, and of differences in the genetic architecture among metabolite classes. Extending
the GREML framework with the inclusion of known metabolite loci allowed us to simultaneously
estimate hiora, aNd A petaporite-nits (Which consists of h’gasesits aNd A yotarass-hies) for 361 metabolites.
Significant differences in A’ yetasorite-nits €stimates were observed among different classes of lipids and
organic acids and for more complex diacyl and acyl-alkyl phosphatidylcholines. Future studies should
address the proportion of metabolite variation influenced by heritable and non-heritable lifestyle
factors, as this will facilitate the development of personalized disease prevention and treatment of

complex disorders.

Methods

Participants

At the Netherlands Twin Register (NTR)**> metabolomics data for twins and family members as measured
in blood samples were available for 6,011 individuals of whom 5,667 were genotyped. The blood
samples for the four metabolomics experiments described in this study were mainly collected in

*84¢ Blood samples were collected after a minimum of two hours

participants of the NTR biobank project
of fasting (1.3%), with the majority of the samples collected after overnight fasting (98.7%). Fertile

women were bled in their pill-free week or on day 2-4 of their menstrual cycle. For the current paper,

we excluded participants who were not of European ancestry, who were on lipid-lowering medication at

15
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the time of blood draw, and who failed to adhere to the fasting protocol. The exact number of
exclusions per dataset is listed in Supplementary Table 9. After completing the preprocessing of the
metabolomics data, the separate subsets (e.g., different collection and measurement waves; see
Supplementary Table 9) of each platform were merged into a single per platform dataset, retaining a
single (randomly chosen) observation per platform when multiple observations were available.
Supplementary Table 10 gives an overview of the overlap in participants among the different platforms,
with the overlap among each metabolite that survived quality control (QC) for all four platforms
available in Supplementary Table 11. The final number of participants included in the study was 5,117,
with platform specific sample size ranging from 1,448 to 4,227 individuals clustered in 946 to 2,179
families. Characteristics for the individuals can be found in Table 2. Supplementary Figure 3 depicts the
distribution of the relatedness in the sample. Informed consent was obtained from all participants.
Projects were approved by the Central Ethics Committee on Research Involving Human Subjects of the
VU University Medical Centre, Amsterdam, an Institutional Review Board certified by the U.S. Office of
Human Research Protections (IRB number IRB0O0002991 under Federal-wide Assurance- FWA00017598;

IRB/institute codes, NTR 03-180 and EMIF-AD 2014.210).

Metabolite profiling

Nightingale Health *H-NMR platform

Metabolic biomarkers were quantified from plasma samples using high-throughput proton nuclear
magnetic resonance spectroscopy (‘H-NMR) metabolomics (Nightingale Health Ltd, Helsinki, Finland;
formerly Brainshake Ltd.). This method provides simultaneous quantification of routine lipids,
lipoprotein subclass profiling with lipid concentrations within 14 subclasses, fatty acid composition, and

various low-molecular weight metabolites including amino acids, ketone bodies and glycolysis-related
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metabolites in molar concentration units. Details of the experimentation and epidemiological

applications of the NMR metabolomics platform have been reviewed previously*”*®,

UPLC-MS lipidomics platform

Plasma lipid profiling was performed at the division of Analytical Biosciences at the Leiden Academic
Center for Drug Research at Leiden University/Netherlands Metabolomics Centre. The lipids were
analyzed with an Ultra-High-Performance Liquid Chromatograph directly coupled to an Electrospray
lonization Quadruple Time-of-Flight high resolution mass spectrometer (UPLC-ESI-Q-TOF; Agilent 6530,
San Jose, CA, USA) that uses reference mass correction. For liquid chromatographic separation a
ACQUITY UPLC HSS T3 column (1.8um, 2.1 * 100mm) was used with a flow of 0.4 ml/min over a 16
minute gradient. Lipid detection was done using a full scan in the positive ion mode. The raw MS data
were pre-processed using Agilent MassHunter Quantitative Analysis software (Agilent, Version B.04.00).

Detailed descriptions of lipid profiling and quantification have been described previously*>>°.

Leiden ‘H-NMR platform (for small metabolites)
The Leiden *H-NMR spectroscopy experiment of EDTA-plasma samples used a 600 MHz Bruker Advance
Il spectrometer (Bruker BioSpin, Karlsruhe, Germany). The peak deconvolution method used for this

platform has been previously described™".

Biocrates Absolute-IDQ™ p150 platform

The Biocrates Absolute-IDQ™ p150 (Biocrates Life Sciences AG, Innsbruck, Austria) metabolomics
platform on serum samples was analyzed at the Metabolomics Facility of the Genome Analysis Centre at
the Helmholtz Centre in Munich, Germany. This platform utilizes flow injection analysis coupled to

tandem mass spectrometry (MS/MS) and has been described in detail elsewhere’*,
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Metabolomics data preprocessing

Preprocessing of the metabolomics data was done separately for each of the platforms and each
measurement batch. Metabolites were excluded from analysis when the mean coefficient of variation
exceeded 25% and the missing rate exceeded 5%. Metabolite measurements were set to missing if they
were below the lower limit of detection or quantification or could be classified as an outlier (five
standard deviations greater or smaller than the mean). Metabolite measurements, which were set to
missing because they fell below the limit of detection/quantification were imputed with half of the value
of this limit, or when this limit was unknown with half of the lowest observed level for this metabolite.
All remaining missing values were imputed using multivariate imputation by chained equations
(‘mice’)>*. On average, 9 values were imputed for each metabolite (SD = 12; range: 1-151). Data for each
metabolite on both 'H-NMR platforms were normalized by inverse normal rank transformation®>>,
while the imputed values of the Biocrates metabolomics platform and the UPLC-MS lipidomics platform
were normalized by natural logarithm transformation***°, conform previous normalization strategies
applied to the data obtained using these platforms. The complete lists with full names of all detected

metabolites that survived QC and preprocessing for all platforms can be found in Supplementary Table

1, these tables also include the quartile values of the untransformed metabolites.

Genotyping, imputation and ancestry outlier detection

Genotype information was available for 21,001 NTR participants from 6 different genotyping arrays
(Affymetrix 6.0 [N = 8,640], Perlegen-Affymetrix [N = 1,238], Illumina Human Quad Bead 660 [N = 1,439],
Affymetrix Axiom [N = 3,144], lllumnia GSA [N =5,938] and lllumina Omni Express 1M [N =238]), as well as
sequence data from the Netherlands reference genome project GONL (BGlI full sequence at 12x (N = 364)°’.
For each genotyping array samples were removed if they had a genotype call rate above 90%, gender-

mismatch occurred or if heterozygosity (Plink F statistic) fell outside the range of -0.10 —0.10. SNPs were
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removed if they were palindromic AT/GC SNPs with a minor allele frequency (MAF) range between 0.4 and
0.5, if the MAF was below 0.01, if Hardy Weinberg Equilibrium (HWE) had p < 10, and if the number of
Mendelian errors was greater than 20 and the genotype call rate was < 0.95. After QC the six genotyping
arrays were aligned to the GONL reference set (V4) and SNPs were removed if the alleles mismatched with
this reference panel or the allele frequency different more than 0.10 between the genotyping array and this
reference set.

The data from the six genotyping chips were subsequently merged into a single dataset (1,781,526
SNPs). Identity-by-decent (IBD) was estimated with PLINK>® and KING™® for all individual pairs based on the
~10.6K SNPs in common across the arrays. Next IBD was compared to expected family relations and
individuals were removed in the event of a mismatch. Prior to imputation to the GONL reference data®®* the
duplicate monozygotic pairs (N = 3,032) or trios (N = 7) and NTR GONL samples (N = 364) were removed and
the data was cross-array phased using MACH-ADMIX®. Post-imputation the NTR GONL samples and the
duplicated MZ pairs and trios were re-turned to the dataset. Filtering of the imputed dataset included the
removal of SNPs that were significantly associated with a single genotyping chip (p < 10™), had HWE p < 107,
the Mendelian error rate > mean + 3 SD, or imputation quality (R*) below 0.90. The final cross-platform
imputed dataset included 1,314,639 SNPs, including 20,792 SNPs on the X-chromosome.

The cross-platform imputed data was aligned with PERL based "HRC or 1000G Imputation preparation
and checking" tool (version 4.2.5; https://www.well.ox.ac.uk/~wrayner/tools). The remaining 1,302481 SNPs
were phased with EAGLE®® for the autosomes, and SHAPEIT®* for chromosome X and then imputed to 1000
Genomes Phase 3 (1000GP3 version 5)°> on the Michigan Imputation server using Minimac3 following the
standard imputation procedures of the server®. Principal Component Analysis (PCA) was used to project the
first 10 PCs of the 1000 genomes references set population on the NTR cross-platform imputed data using

SMARTPCA®’. Ancestry outliers (non-Dutch ancestry; N = 1,823) were defined as individuals with PC values
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409 outside the European/British population range®®. After ancestry outlier removal the first 10 PCs were

410 recalculated.

411  Curation of metabolite loci

412 In October 2018 PubMed and Google Scholar were searched to identify published GWA and (exome-)
413 sequencing studies on metabolomics or fatty acid metabolism in blood samples using *H-NMR, mass
414  spectrometry or gas chromatography-based methods. In the period of November 2008 to October 2018
415 40 GWA or (exome-) sequencing studies on blood metabolomics in European samples were published
416  (Supplementary Note 1). The genome-wide significant (p < 5x10°%) metabolite-SNP associations of all
417 studies were extracted, including only those observations for autosomal SNPs and reporting SNP effect
418  sizes and p-values based on the summary statistics excluding NTR samples®>>°. In the 40 studies, 242,580
419 metabolite-SNP or metabolite ratio-SNP associations were reported. These associations included 1,804
420 unique metabolites or ratios and 49,231 unique SNPs (Supplementary Data 1). For all metabolites their
421  Human Metabolome Database (HMDB)*, PubChem®, Chemical Entities of Biological Interest (ChEBI)”
422 and International Chemical Identifier (InChiKey)” identifiers were retrieved. Information with regards to
423  the ‘super class’, ‘class’ and ‘subclass’ of metabolites was extracted from HMDB. If no HMDB identifier
424  was available and categorization information could not be extracted, ‘super class’, ‘class’ and ‘subclass’
425  were provided based on expert opinion. Excluding the ratios and unidentified metabolites, 953

426 metabolites were classified into 12 ‘super classes’, 43 “classes’ or 77 ‘subclasses’ (Supplementary Data
427 1). Based on the metabolite identifiers we also extracted the log(S) value for each metabolite to assess
428  the hydrophobicity of the metabolites. The log(S) value represents the log of the partition coefficient
429  between 1-octanol and water, two fluids that hardly mix. The partition coefficient is the ratio of

430  concentrations in water and in octanol when a substance is added to an octanol-water mixture and

431 hence indicates the hydrophobicity of a compound. Thus, we classified a metabolite as hydrophobic if it
432 is more hydrophobic than 1-octanol, and as hydrophilic otherwise (Supplementary Data 1).
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The rsIDs or chromosome-base pair positions of the 49,231 unique SNPs were reported by
different genome builds or dbSNP maps’?, therefore we lifted all SNPs to HG19 build 3773, after which
43,830 unique SNPs remained (Supplementary Figure 1; Supplementary Data 1). All bi-allelic metabolite
SNPs were extracted from our 1000GP3 data, which excluded 295 tri-allelic SNPs, and 4,256 SNPs that
could not be retrieved from 1000GP3. Next, MAF > 1% (2,067 SNPs removed), R*> > 0.70 (2,002 SNPs) and
HWE P < 10™* (72 SNPs) filtering was performed, resulting in 35,138 metabolite SNPs for NTR participants
(Supplementary Figure 1). Next, we created two ‘super class’-specific lists of metabolite loci and two
‘not-superclass’ lists of metabolite loci. To create a list of loci associated with the 652 unique
metabolites classified as ‘lipids and lipid-like molecules’ (e.g., lipids), we clumped (PLINK version 1.9) all
112,760 lipid-SNP associations using an LD-threshold (r*) of 0.10 in a 500kb radius in 2,500 unrelated
individuals (Supplementary Figure 1). Clumping identified 482 lead SNPs, or loci for lipids. An additional
12,169 SNPs were identified as LD-proxies for the lipid-loci (Supplementary Figure 1). To obtain the ‘not-
superclass’ list of lipid loci the 12,651 lipid loci and proxies were removed from the list of all metabolite-
SNP associations and the resulting list was clumped to obtain the 598 ‘non-superclass’ loci
(Supplementary Figure 1). The same clumping procedure was applied to the 26,352 organic acid-SNP
associations, identifying 398 organic acids loci, 10,781 organic acid LD-proxies and 687 ‘non-superclass’

loci (Supplementary Figure 1).

Construction of genetic relationship matrices

In total six weighted genetic relationship matrixes (GRMs) were constructed, which were corrected for

uneven and long-range LD between the SNPs (LDAK version 4.9

). In Supplementary Note 3 the use of
weighted versus unweighted GRMs is compared using simulations. Two of the GRMs used the cross-platform
imputed dataset as backbone and the other four GRMs were based on SNPs extracted from the 1000GP3

imputed data. Before calculating the first GRM, the autosomal SNPs of the cross-platform imputed dataset

were filtered on MAF (<1%) and all lipid and organic acid loci, their LD-proxies and 50kb surrounding both
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types of SNPs were removed (see curation of metabolite loci; Supplementary Figure 1). The LDAK GRM was
created after removal of the 50kb surrounding the lipid and organic acid loci and their LD-proxies (as obtained
by the clumping procedure as described above) and included 434,216 SNPs (Supplementary Figure 1). The
V(G1) variance component in the genomic relatedness matrix residual maximum likelihood (GREML) analyses
is based on this GRM (see heritability analyses; Figure 1). The V(G2) variance component in the GREML
analyses is based on the LDAK GRM including all autosomal SNPs with a MAF greater than 1% included on the
cross-platform imputed dataset (447,794 SNPs), where ancestry outliers were removed, and genome sharing
was set to zero for all individual pairs sharing less than 0.05 of their genome®” (Figure 1). Depending on the
metabolite the V(G3) variance component in the GREML analyses was either based on an LDAK GRM of the
1000GP3 extracted lipid loci (479 SNPs) or the organic acid loci (397 SNPs), as obtained after the clumping
procedure as described above (Supplementary Figure 1; Figure 1). Finally, depending on the metabolite
either the ‘not-lipid’ LDAK GRM (596 SNPs) or the ‘not-organic acid’ LDAK GRM (683 SNPs) provided the V(G4)
variance component in the GREML analyses (Supplementary Figure 1; Figure 1). The not-class metabolite loci
on which the LDAK GRMs were build were obtained by the clumping procedure as described above
(Supplementary Figure 1). Supplementary Data 1 indicates for each listed SNP if it was included in any of the

class-specific or not-class LDAK GRMs.

Statistical analyses

Heritability analyses

Mixed linear models®, implemented in the genome-wide complex trait analysis (GCTA) software
package (version 1.91.7)*, were applied to compare three models including a variable number of
covariates. Supplementary Table 12 gives the three different models, full descriptions of the covariates
and model comparison have been given in Supplementary Note 4. The most parsimonious model was

chosen for further analyses (full results in Supplementary Table 13). This final model included the first
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480 10 genetic PCs for the Dutch population, genotyping chip, sex and age at blood draw as covariates. For
481  metabolites of the Nightingale Health 'H-NMR and Biocrates platform, measurement batch was included

482 as covariate.

483 The final four-variance component model, including four GRMs, allows for the estimation of the
484 proportion of variation explained by superclass-specific significant metabolite loci and non-superclass
485 significant metabolite loci. The first two variance components in the 4-variance component model

486 (Figure 1), V(G1) and V(G2) allow for the estimation of the additive genetic variance effects captured by
487  genome-wide SNPs (hzg) and the additive genetic effects associated with pedigree (thed)zz’”, and V(G3)
488 and V(G4) capture the additive genetic effect associated with class-specific (h’gss-nits) and not-class

489 (W poterass.mits) Metabolite loci. Based on the 4-variance component model, three additional heritability
490 estimates can be calculated: the total variance explained by significant metabolite loci (hz,v,embo,,-te_,,,-ts)

491  consists of the sum of% and %, where Vp is the phenotypic variance, h’sy, is defined as the sum of

V(G1) V(G3) an

V(G1) V(G2) V(G3)
Vp ’ ’

d V(G4), and the total variance explained (h%o:) is defined as the sum of "

Vp Vp Vp Vp

492

493 and % (Figure 1). We note that the total variance explained by genetic factors may also include

494  influences of the shared environment, dominance and epistasis, which may result in upward bias of the

495 W ota €Stimates™?

. This bias is expected to arise by the presence of closely related participants, who
496 may share these effects, in addition to the additive genetic effects. To calculate the standard errors

497  (s.e.s) for the composite variance estimates, we have randomly sampled 10,000 new variances from the
498 parameter variance-covariance matrices of the V(G1), V(G3) and V(G4) GRMs for each metabolite.

499 Random sampling was performed in R by creating 10,000 multivariate normal distributions (mvrnorm
500  function in MASS package version 7.3-50"%) based on the original means and variance/covariance

501 matrices. The s.e.’s of the specific ratio of interest were then based on the standard deviation of the

502 ratio of interest across 10,000 samples. The four-variance component models included variance
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components that were not constrained to be positive, thus allowing for negative h2snp and W petabolite-hits
estimates. All four-variance component models applied the --reml-bendV flag where necessary to invert
the variance-covariance matrix V if V was not positive definite, which may occur when variance
components are negative’®. Finally, we calculated the log likelihood of a reduced model with either
V(G3), V(G4) or both dropped from the full model and calculated the LRT and p-value (Supplementary

Table 3).

Mixed-effect meta-regression analyses

To investigate differences in heritability estimates among metabolites of different classes we applied
mixed-effect meta-regression models as implemented in the ‘metafor’ package (version 2.0-0) in R
(version 3.5.1)””. Here we tested for the moderation of heritability estimates by metabolite class and
metabolomics platform on all 361 successfully analyzed metabolites. We included a matrix combining
the phenotypic correlations (Supplementary Table 14) and the sample overlap (Supplementary Table
11) between the metabolites as random factor to correct for dependence among the metabolites and

participants. This matrix includes the sample size of the metabolite on the diagonal, with the off-

diagonal computed by Nl'zn * 1 (Supplementary Table 15), where N, , is the sample overlap between
2

Tir*
the metabolites, n; is the sample size of metabolite one, n; is the sample size of metabolite two and r is
the phenotypic (Spearman’s rho) correlation between the metabolites. In all mixed-effect meta-
regression analyses we obtained the robust estimates based on a sandwich-type estimator, clustered by
the metabolites included in the models to correct for the sample overlap among the different
metabolites’®. First, we used multivariate mixed-effect meta-regression models to simultaneously
estimate the effect of metabolite class and metabolomics platform on the hee, hosne and the A vetasote-
nits» @S Well as the h” gasshits aNA A noterass.hits €Stimates. Subsequently, to separately assess the effect of the

number of carbon atoms or double bonds in the fatty acyls chains of phosphatidylcholines and
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triglycerides univariate models were fitted, as follow-up. To account for multiple testing the p-values
were adjusted with the with the False Discovery Rate (FDR)”® using the ‘p.adjust’ function in R. Multiple

testing correction was done separately for the univariate and the multivariate models.

Data availability

The curated list of all published metabolite-SNP associations is included in Supplementary Data 1 and is

publicly available through the BBMRI — omics atlas (http://bbmri.researchlumc.nl/atlas/#data). All

information on the metabolites in this study are in Supplementary Table 1; with full summary statistics
for the four-variance component models included in Supplementary Table 3. The Nightingale Health

metabolomics data may be requested through BBMRI-NL (https://www.bbmri.nl/Omics-metabolomics).

All (other) data may be accessed, upon approval of the data access committee, through the Netherlands
Twin Register (ntr.fgb@vu.nl). A reporting summary for this Article is available as Supplementary

Information file.
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Figures

Figure 1. Overview of the 4-variance component models, including the GRMs underlying each variant

component and all heritability estimates obtained from the models.

Overview of the SNP-filtering and GRM construction can be found in Supplementary Figure 1 and is
explained in details in the Methods. This figure describes which GRMs (black boxes) are used to
calculate which variance components (orange boxes) by drawing black arrows from the GRMs to the
variance components. The variance components give rise to the four different heritability estimates:

W pets W g B class-its AN W rorciass-his (See Methods). The orange arrows indicate how the various variance

components are summed to obtain estimates for W metabolite-itss W-snp @nd Wi (se€ Methods).

Closely-related No metabaolite
(>0.05) GRM loci (£50kb) GRM Class GRM
(447,794 SNPs) (434,216 SNPs)

V(G3) = h"coss s

YV(GL) + V(G3) + V(G4) = h%p

YV(GL) +V(G2)+ V(G3) + V(G4)
:hztoiaf
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Figure 2. Heritability of all 52 carboxylic acids and derivatives successfully analyzed across all four

metabolomics platforms by class.

Box- and dotplots of the h o, and h’vetasoritesits for all 52 successfully analyzed ‘carboxylic acids and
derivatives’ by class. The left-hand side of the figure is a close-up of the -0.08 — 0.15 part of the
heritability range, focusing on the h? gass.sits aNd h? yotciass-hits €stimates. The boxes denote the 25th and
75th percentile (bottom and top of box), and median value (horizontal band inside box). The whiskers
indicate the values observed within up to 1.5 times the interquartile range above and below the box.

Supplementary Table 3 provides the estimates for each of the individual metabolites.
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Figure 3. Heritability of all 309 lipids successfully analyzed across all four metabolomics platforms by

class.

Box- and dotplots of the h i, and hyetasoiite-nits for all 309 successfully analyzed lipids by class. The left-
hand side of the figure is a close-up of the -0.06 —0.17 part of the heritability range, focusing on the h?
Class-hits AN W2 noteiass-hits €stimates. The boxes denote the 25th and 75th percentile (bottom and top of
box), and median value (horizontal band inside box). The whiskers indicate the values observed within
up to 1.5 times the interquartile range above and below the box. Supplementary Table 3 provides the

estimates for each of the individual metabolites.
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Tables

Table 1. Overview of the number of unique metabolites, for which significant SNP-metabolite

associations have been published, per Human Metabolome Database® ‘super class’.

See Supplementary Data 1 for an overview of the exact metabolites classified per ‘super class’, ‘class’

and ‘subclass’, as well as the SNPs associated with each metabolite.

Super class Number of unique metabolites
Lipids and lipid-like molecules (e.g., lipids) 662
Organic acids and derivatives (e.g., organic acids) 182
Organoheterocyclic compounds 45
Organic oxygen compounds 19
Nucleosides, nucleotides, and analogues 12
Benzenoids 12
Organic nitrogen compounds 11
Phenylpropanoids and polyketides 4
Proteins 3
Organic compounds 1
Trichlorophenols 1
Organooxygen compounds 1
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Table 2. Participant characteristics after preprocessing per metabolomics platform.

This table gives an overview of the number of individuals (N) per platform, specifies the number of families these individuals belong to and the
percentage of females and twins in each dataset. In addition, for each platform the mean and standard deviation (SD) of the age at blood draw
in years, the body-mass-index (BMI), the cholesterol level in mmol/|, the low-density lipoprotein cholesterol (LDL) levels in mmol/l and the high-

density lipoprotein cholesterol (HDL) levels in mmol/l are given.

X N . Age” Female Twins BMI Cholesterol® LoL* HDL” :)(3
Metabolomics platform N families (mean % (%) (%) (mean % (mean + SD) (mean % (mean * &
SD) ° ) SD) - SD) SD) B

All Participants 5,117 2,445 42.1+14.2 62.8% 63.4% 248+4.1 49+1.2 30x1.0 1.7+1.0 2
Nightingale Health 'H-NMR 4,227 2,179 40.7+13.7 67.3% 69.7% 246+4.0 49+1.2 3.0+10 1.7+£1.0 E
UPLC-MS Lipidomics 2,324 1,251 39.0+129 66.6% 89.2% 244+41 5.0+1.0 3.0+09 1.4+0.4 g
Leiden "H-NMR 2,324 1,323 376+125 67.0% 89.0% 242+41 46+1.3 27110 20114 o}
Biocrates 1,448 946 45.7+153 43.8% 39.6% 25.2+3.9 46+1.5 28+1.1 23+1.7 %
* Age at blood draw in years; * levels in mmol/I. 3
=

Japun a|qejrene apew si 1| ‘Ainadiad ul Juudaid ayy Aejdsip 01 asuadl| B AixHolq pajuelb sey oym ‘1spunyioyine ayl si (mainai 1aad Aq palyined
10U sem yaiym) Juudaid siy 1oy Jspjoy 1yBuAdod syl "6TOZ ‘TT 1890100 paisod uoisian siy) :69.T99/T0TT 0T/B10"10p//:sdny :10p udaid Axygolq
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Table 3. Summary of the heritability estimates of the four-variance component models for the 309 lipids

and the 52 organic acids analyzed across all four metabolomics platforms.

The mean, median and range of the total heritability (h%:a), heritability based on the 479 significant

metabolite loci for the lipids or the 397 significant metabolite loci for the organic acids (h’gass.hits), the

596-683 significant metabolite loci not belonging to these classes (h2 Notclass-hits) and the total heritability

explained by metabolite loci (e.g., sum of h? gass.sits AN h Notcrass-nits: 1 vietaboiite-nits), as well as their

standard errors (s.e.’s), are depicted for all 361 successfully analyzed metabolites as included on all

platforms. Supplementary Table 1 denotes which metabolites belong to each class and Supplementary

Table 3 provides the estimates for each of the individual metabolites.

Lipids and lipid-like molecules

Organic acids and derivatives

estimate s.e. estimate s.e.

mean 0.47 0.04 0.41 0.04

h’otal median 0.47 0.03 0.40 0.03
range | (0.11-0.66) (0.02-0.07) | (0.14-0.72) (0.02-0.07)

mean 0.06 0.03 0.01 0.02

h®vetabolite-hits median 0.06 0.03 0.02 0.02
range | (-0.05-0.16) (0.01-0.04) | (-0.08-0.11) (0.01-0.04)

mean 0.06 0.02 0.01 0.02

h’casshits ~ median 0.06 0.02 0.01 0.02
range | (-0.02-0.16) (0.01-0.03) | (-0.04-0.14) (0.01-0.03)

mean 0.00 0.02 0.00 0.02

h’Notclasshits  median 0.01 0.02 0.00 0.02
range | (-0.06-0.12) (0.01-0.03) | (-0.06-0.05) (0.01-0.03)
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Table 4. Summary of the heritability estimates of the four-variance component models for the 17

essential and the 14 non-essential amino acids analyzed across all four metabolomics platforms.

The mean, median and range of the total heritability (h:a), and heritability based on the 397 significant
metabolite loci for the organic acids (h°gasshits), the 683 significant metabolite loci not belonging to this
class (M notciass.hits) and the total heritability explained by metabolite loci (e.g., sum of h lass.hits and

1 Notcrasshits: N metaborite-nits), @s Well as their standard errors (s.e.’s), are depicted for all 31 successfully
analyzed essential and non-essential amino acids as included on all platforms. Supplementary Table 1
denotes which metabolites belong to each class and Supplementary Table 3 provides the estimates for

each of the individual metabolites.

Essential amino acids | Non-essential amino acids

estimate s.e. estimate s.e.

mean 0.42 0.04 0.39 0.04

h?etal median 0.40 0.03 0.39 0.04
range | (0.23-0.64) (0.02-0.07)| (0.22-0.69) (0.03-0.07)

mean 0.00 0.02 0.02 0.03

hMetabolite-hits Median | 0.00 0.02 0.01 0.03
range |(-0.05 - 0.05) (0.01-0.03)|(-0.07-0.11) (0.01-0.04)

mean 0.01 0.02 0.03 0.02

W casshits  median 0.00 0.02 0.01 0.02
range |(-0.03-0.05) (0.01-0.02)|(-0.03-0.14) (0.01-0.03)

mean -0.01 0.02 0.00 0.02

hNotelasshits  mMedian | -0.01 0.02 0.00 0.02
range |(-0.06-0.04) (0.01-0.03)|(-0.04-0.03) (0.01-0.03)
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