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Abstract 38 

Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of 39 

total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates 40 

differ across metabolite classes and lipid species. We performed a review of all genetic association 41 

studies, and identified > 800 class-specific metabolite loci that influence metabolite levels. In a twin-42 

family cohort (N = 5,117), these metabolite loci were leveraged to simultaneously estimate total 43 

heritability (h
2

total), and the proportion of heritability captured by known metabolite loci (h
2

Metabolite-hits) 44 

for 309 lipids and 52 organic acids. Our study revealed significant differences in h
2

Metabolite-hits among 45 

different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of 46 

unsaturation had higher h
2

Metabolite-hits estimates than phosphatidylcholines with a low degree of 47 

unsaturation. This study highlights the importance of common genetic variants for metabolite levels, 48 

and elucidates the genetic architecture of metabolite classes and lipid species.  49 
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The metabolome is defined as the collection of metabolites, i.e., small molecules involved in cellular 50 

metabolism, which are produced in cells
1
 and consist of many classes

2–5
. The overall aim of 51 

metabolomics is to provide a holistic overview of the metabolome
1
, and its role in biological 52 

mechanisms and metabolic disturbances in diseases. Elucidating this role may offer new therapeutic 53 

targets or new biomarkers for disease diagnosis
6
. Variation in metabolite levels can arise due to gender

7
, 54 

and age
8
, as well as physiologic effects, behavior, and lifestyle factors, such as diet

9
. Genetic differences 55 

may be a source of direct variation in metabolomics profiles, or an indirect source of variation through 56 

genetic influences on physiology, behavior, and (or) lifestyle.  57 

Genome- and metabolome-wide analysis of common genetic variants in human metabolism 58 

have successfully identified genetically influenced metabolites
10

. In 2008, the first genome-wide 59 

association study (GWAS; N = 284 participants) identified four genetic variants associated with 60 

metabolite levels
11

. Thereafter, GWAS with increasing sample sizes, and in diverse populations, 61 

identified hundreds of Single Nucleotide Polymorphism (SNP) associations with metabolites from a wide 62 

range of metabolite classes
10

. Additional metabolite loci have been identified by leveraging 63 

low-frequency and rare-variant analyses using (exome-) sequencing. We conducted a comprehensive 64 

review of all quantitative trait locus (QTL) discovery for metabolites and supply the complete reference 65 

list in Supplementary Note 1.  66 

Twin and family studies have established that the heritability (h
2
; proportion of phenotypic 67 

variance due to genetic factors) of metabolite levels is 50% on average, with a range from h
2
 = 0% to h

2
 = 68 

80%
9,12–19

. Several studies reported differences in heritability estimates among different classes of lipid 69 

species
16,18

 or lipoprotein subclasses
17

. For example, Rhee et al. (2013) reported higher heritability 70 

estimates for amino acids than for lipids
15

. Essential amino acids, which cannot be synthesized by an 71 

organism de novo
20

, had lower heritability than non-essential amino acids
15

, that are synthesized within 72 
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the body
20

. Several  techniques are available to estimate the contribution of measured SNPs to trait 73 

heritability
21

, and, given SNP data in family members, to simultaneously estimate SNP-associated (h
2

SNP) 74 

and pedigree-associated genetic variance (h
2

ped)
22

. Together the SNP- and pedigree-associated genetic 75 

effects account for the narrow-sense heritability. However, when including data of family members, the 76 

variance explained by genetic effects (h
2

total) may be biased upwards by shared environmental factors 77 

and/or non-additive genetic effects 
22,23

. 78 

An improved understanding of the genetic architecture of metabolites will benefit our 79 

understanding of the aetiology of diseases and traits, such as cardiometabolic diseases
24

, migraine
25

, 80 

psychiatric disorders
26

, and cognition
27

. Here we aim to further our understanding of the contribution of 81 

genetic factors to variation in fasting blood metabolic measures (henceforth referred to as metabolites 82 

for brevity) by the analysis of data from multiple metabolomics platforms in a large cohort of twins and 83 

family members (N = 5,117). Specifically, we aim to estimate the total genetic variance of metabolite 84 

levels (h
2

total), and to elucidate the contribution to metabolite levels of known metabolite class-specific 85 

and metabolite class-unspecific loci (h
2

Metabolite-hits), on the basis of the results of a decade of GWA and 86 

(exome-) sequencing studies (Supplementary Data 1). To this end, we characterized all published 87 

metabolite-SNP associations by metabolite classification, and used linear-mixed models to estimate the 88 

h
2

total, h
2

SNP and h
2

Metabolite-hits simultaneously for 369 metabolites (Figure 1). In these models, the 89 

h
2

Metabolite-hits consists of two variance components, a component attributable to metabolite loci 90 

associated with metabolites of a specific superclass (h
2 

Class-hits) and a component attributable other 91 

metabolite loci (h
2

Notclass-hits; Figure 1). We further expand on the current knowledge of the genetic 92 

aetiology of metabolite classes by employing mixed-effect meta-regression models to test differences in 93 

heritability estimates among metabolite classes and among lipid species.  94 
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Intriguingly, phosphatidylcholines
14

 and triglycerides (TGs)
19

 show increasing heritability with 95 

increasing number of carbon atoms and/or double bonds in their fatty acyl side chains. Draisma et. al 96 

speculated this might be attributable to differences in the number of metabolic conversion rounds for 97 

phosphatidylcholines or TGs with a variable number of carbon atoms
14

. To distinguish between the 98 

effects of the number of carbon atoms or number of double bonds in the fatty acyl side chains of 99 

phosphatidylcholines and TGs, we conducted additional univariate follow-up analyses.  100 

Results 101 

Metabolite classification 102 

In the period of November 2008 to October 2018, 40 GWA and (exome-) sequencing studies identified 103 

242,580 metabolite-SNP or metabolite ratio-SNP associations (see Supplementary Note 1). All 242,580 104 

associations may be found at: http://bbmri.researchlumc.nl/atlas/#data,which lists the significant SNP-105 

metabolite associations by study. These associations included 1,804 unique metabolites or ratios, and 106 

49,231 unique SNPs (43,830 after converting all SNPs to NCBI build 37; Supplementary Data 1). The 107 

Human Metabolome Database (HMDB)
2–5

 identifiers of each metabolite were retrieved in order to 108 

extract information concerning the metabolite’s hydrophobicity and chemical classification (see 109 

Methods). Excluding the ratios and unidentified metabolites, we classified 953 metabolites into 12 110 

‘super classes’ (Table 1), 43 ‘classes’, or 77 ‘subclasses’ based on the HMDB classification 111 

(Supplementary Data 1). The majority of the metabolites were classified into the super classes lipids or 112 

organic acids. The lipids could be subdivided into 8 classes, with 1 to 95,795 metabolite-SNP associations 113 

per class (mean = 17,589; SD = 32,553), and in 32 subclasses, with the number of subclass metabolites-114 

SNP associations ranging from 1 to 40,440 (mean = 4,673; SD = 9,124). The organic acids and derivatives 115 

were divided in 9 classes, with the number of metabolite-SNP associations ranging from 1 to 26,832 116 
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(mean = 3,374; SD = 8,832). The organic acids and derivatives were also divided into 17 organic acid 117 

subclasses, with the number of subclass metabolite-SNP associations ranging from 1 to 26,448 (mean = 118 

1,786; SD = 6,371; Supplementary Data 1). Across all four platforms 427 metabolites were assessed. 119 

After excluding the ratios (17) and the metabolites of super classes not included in the curated 120 

metabolite-SNP association list (8), data were available for 402 metabolites. The full list of metabolites, 121 

with their classifications and the quartile values of the untransformed levels, are included in 122 

Supplementary Table 1. The 402 metabolites were classified as 336 lipids, 53 organic acids, 9 organic 123 

oxygen compounds, 3 proteins and one organic nitrogen compound, these super classes were consisted 124 

of 12 classes (Supplementary Table 2). In this paper we mainly focus on the first two super classes. After 125 

quality control (QC), 369 metabolites from these two super classes were retained for analysis.  126 

Characterization of the heritable influences on lipid and organic acid levels 127 

Data of 5,117 participants were available from the following four metabolomics platforms: the 128 

Nightingale Health 
1
H-NMR platform, a UPLC-MS Lipidomics platform, the Leiden 

1
H-NMR platform, and 129 

the Biocrates Absolute-IDQ
TM

 p150 platform. The participants were registered with the Netherlands 130 

Twin Register (NTR)
28

 and were clustered in 2,445 nuclear families. Metabolomics and SNP data were 131 

available for all participants. Background and demographic characteristics for the sample can be found 132 

in Table 2.  133 

We aimed to assess the variance explained by previously identified metabolite GWA and 134 

(exome-) sequencing genetic variants in our (independent) sample. Clearly, our results are conditional 135 

on the power of past the studies, as the list of metabolite genetic variants is based on previous GWA and 136 

(exome-) sequencing studies, which vary in power. We present the sample size of each past study in 137 

Supplementary Note 1, and the sample size per metabolite-SNP association in Supplementary data 1.  138 
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Linear-mixed models including all loci for genetic variants associated with metabolites in a single 139 

genetic relatedness matrix (GRM) will contain SNPs that are associated with some metabolites, but not 140 

with others, or include many SNPs that are not associated with a given metabolite. We therefore 141 

created two GRMs for the loci associated with metabolite hits (see Methods): one class-specific and one 142 

non-class specific (i.e. GRMs including metabolite loci for all metabolites, except for the target 143 

metabolite class). We explored models for the 12 class-specific and the corresponding not-class specific 144 

GRMs (Supplementary Note 2). These models displayed high degrees of non-convergence (37.9% total), 145 

with models including small class-specific GRMs displaying more non-convergence (Supplementary 146 

Table 2). Therefore, the results in the remainder of this paper were based on the metabolite super 147 

classes, i.e. lipids and organic acids.  148 

For the 369 lipids and organic acids, we carried out unconstrained four-variance component 149 

analyses (Figure 1). In genome-wide complex trait analysis (GCTA)
21

 we specified a model in which we 150 

partition the metabolite variation into SNP-associated (h
2

SNP), pedigree-associated (h
2

ped), class-specific 151 

metabolite-loci-associated (h
2

class-hits), and not-class metabolite-loci-associated (h
2

notclass-hits) genetic 152 

variation (Figure 1). We report the total heritability (h
2

total), the proportion attributable to metabolite 153 

superclass-specific loci (h
2 

Class-hits), the proportion of variance attributable to non-superclass metabolite 154 

loci (h
2

Notclass-hits) and the contribution of known metabolite loci to metabolite levels (h
2

Metabolite-hits). The 155 

analyses were performed separately for lipids and organic acids, with class-specific and corresponding 156 

non-class GRMs (created using the LDAK program
29,30

) in both sets of analyses. The lipid analyses 157 

employed a class-specific GRM of 479 lipid loci and a corresponding non-class GRM of 596 loci 158 

(Supplementary Figure 1). The organic acid analyses included a class-specific GRM of 397 loci and a non-159 

class GRM of 683 loci (Supplementary Figure 1). Before the analyses, the metabolite data were 160 

normalized (log-normal or inverse rank; see Methods). All models included age at blood draw, sex, the 161 
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first 10 principal components (PCs) from SNP genotype data, genotyping chip and metabolomics 162 

measurement batch as covariates. 163 

Supplementary Table 3 includes the estimates from the four-variance genetic component 164 

models for all 369 metabolites. The genomic relatedness matrix residual maximum likelihood (GREML) 165 

algorithm converged for 361 (97.8%) of the 53 organic acids and 316 lipids (Supplementary Table 4). 166 

Non-convergence of the GREML algorithm was observed for 6 metabolites (1.6%). The analyses of 2 167 

metabolites (0.5%) were not completed due to non-invertible variance-covariance matrices. The 168 

estimates for h
2

total of the 309 lipids ranged from 0.11 to 0.66 (mean = 0.47; mean s.e. = 0.04). The 169 

estimates for h
2

Metabolite-hits ranged from -0.05 to 0.16 (mean = 0.06; mean s.e. = 0.03; Table 3). The 52 170 

organic acids had h
2

total estimates ranging from 0.14 to 0.72 (mean = 0.41; mean s.e. = 0.04). The 171 

estimates for h
2

Metabolite-hits ranged from -0.08 to 0.11 (mean = 0.01; mean s.e. = 0.02; Table 3). On 172 

average, for both lipids and organic acids the h
2

class was higher than the h
2

Notclass, with h
2

Class-hits ranging 173 

from -0.02 to 0.16 (0.06; mean s.e. = 0.02) for lipids and from -0.04 to 0.14 for organic acids (mean = 174 

0.01; mean s.e. = 0.02). For both lipids and organic acids h
2

Notclass-hits was zero (mean s.e. = 0.02), ranging 175 

from -0.06 to 0.12 for lipids and from -0.06 to 0.05 for organic acids (Table 3).  176 

Including multiple metabolomics platforms allowed for a comparison of metabolites as 177 

measured on multiple platforms. An earlier study showed that 29 out of 43 metabolites present on two 178 

platforms to exhibit moderate heritability on both platforms
31

. In the current study, 61 metabolites were 179 

measured on multiple platforms (phenotypic correlations provided in Supplementary Table 5), with 180 

moderate h
2

total on each of the platforms and on average a positive correlation of 0.36 between the 181 

h
2

total of the same metabolite assessed on different platforms (Supplementary Table 5).  182 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2019. ; https://doi.org/10.1101/661769doi: bioRxiv preprint 

https://doi.org/10.1101/661769
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

Differential heritability among metabolite classes and lipid-species  183 

Figure 2 shows variation in median heritability among the following classes of organic acids: keto acids, 184 

hydroxy acids and carboxylic acids (see Supplementary Table 1 for metabolites per class). Keto acids, 185 

followed by carboxylic acids, had the highest median h
2

total, and h
2

Class-hits estimates (Figure 2). While 186 

hydroxy acids had the highest median h
2

Notclass-hits and h
2

Metabolite-hits estimates, the lowest median h
2

total, 187 

and h
2

Class-hits estimates were observed for these metabolites (Figure 2). To investigate whether 188 

heritability differs significantly among classes of organic acids, we applied multivariate mixed-effect 189 

meta-regression, corrected for metabolite platform effects (see Methods). The multivariate mixed-190 

effect meta-regression models showed that h
2

total and h
2

Class-hits for the organic acid classes did not differ 191 

significantly. However , significant differences among the organic acid classes, though, were observed 192 

with respect to the h
2

Metabolite-hits estimates (F(4, 47) = 3.44, FDR-adjusted p-value = 0.03), and the h
2

Notclass-193 

hits estimates (F(4,47) = 19.95, FDR-adjusted p-value = 1.25x10
-08

; Supplementary Table 6).  194 

The multivariate mixed-effect meta-regressions were also applied to assess the significance of 195 

heritability differences among essential and non-essential amino acids (subdivision of carboxylic acids; 196 

see Supplementary Table 7) and among lipid classes (see Supplementary Table 1 for metabolites per 197 

lipid class). The meta-regression analyses revealed no significant mean differences among essential and 198 

non-essential amino acids (Table 4; Supplementary Table 8). Small but significant median heritability 199 

differences were observed among the different classes of lipids (Figure 3). For lipid classes the h
2

Metabolite-200 

hits estimates differed significantly (F(8, 300) = 8.47; FDR-adjusted p-value = 0.004; Supplementary Table 201 

6). 202 

Finally, we explored whether heritability of phosphatidylcholines and TGs increases with a larger 203 

number of carbon atoms and/or double bonds in their fatty acyl side chains. To this end we employed 204 

both uni- and multivariate mixed-effect meta-regression models separately for the TGs, diacyl 205 
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phosphatidylcholines (PCaa) and acyl-alkyl phosphatidylcholines (PCae; see Methods). The platform 206 

specific heritability estimates for each of these lipid species are depicted in Supplementary Figure 2. 207 

Variation in the number of carbon atoms and double bonds was significantly associated with h
2

Metabolite-208 

hits estimates for PCaa’s (F(3, 52) = 7.05; FDR-adjusted p-value = 0.009) and PCae’s (F(3, 45) = 3.41; FDR-209 

adjusted p-value = 0.05; Supplementary Table 6). Phosphatidylcholines with a larger number of carbon 210 

atoms showed lower heritability estimates and phosphatidylcholines with a larger number of double 211 

bonds had higher heritability estimates (Supplementary Table 6). The differences among the 212 

phosphatidylcholines with a variable number of carbon atoms and/or double bonds may have 213 

contributed to differential h
2

Class estimates. Univariate models confirmed the results for the number of 214 

double bonds in PCaa’s and PCae, though they were not significant after correction for multiple testing 215 

(Supplementary Table 8).  216 

Discussion 217 

We carried out a comprehensive assessment of GWA-metabolomics studies, and created a repository of 218 

all studies reporting on associations of SNPs and blood metabolites in European ancestry samples. We 219 

curated 241,965 genome-wide metabolite associations and we classified the associated metabolites into 220 

super classes, classes and sub-classes. The complete overview of all blood metabolite-SNP associations is 221 

provided in Supplementary Data 1 (http://bbmri.researchlumc.nl/atlas/#data), with the complete list of 222 

references in Supplementary Note 1. The information from the repository was used to construct GRMs, 223 

which served to identify genetic variance components in the analysis of 369 metabolites. The metabolite 224 

data in our study came from a large cohort of twin-families (N = 5,117 clustered in 2,445 families) 225 

measured on four metabolomics platforms. We focused on two metabolite super classes. By mapping all 226 

metabolites to the Human Metabolome Database (HMDB)
2–5

 we were able to classify both the 227 

measured metabolites and all previously published metabolites as either lipids or organic acids. In the 228 
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current study, we sought to elucidate the contribution of known metabolite loci, based on a decade of 229 

GWA and (exome-) sequencing studies, to metabolite levels (h
2

Metabolite-hits). A unique feature of our study 230 

was the ability to disentangle the role of class-specific (h
2 

Class-hits) and non-class (h
2 

Notclass-hits) metabolite 231 

loci on heritability differences among metabolite classes and lipid species.  232 

To evaluate differences among metabolite classes and lipid species in the estimates for h
2

total, we 233 

applied multivariate mixed-effect meta-regression models to the estimates of h
2

Metabolite-hits, h
2

Class-hits, and 234 

h
2

Notclass-hits. We observed no significant differences in h
2

total estimates among the metabolite classes. 235 

Consistent with a previous twin-family study
13

, none of the heritability estimates differed significantly 236 

among essential and non-essential amino acids. We observed significant h
2

Metabolite-hits differences among 237 

the different classes of organic acids. Keto acids had significantly lower h
2

Metabolite-hits estimates as 238 

compared with carboxylic acids. Class-specific metabolite loci heritability estimates for fatty acyls, 239 

lipoproteins and steroids were significantly higher. Similarly, significant heterogeneity in lipid class 240 

heritability, with lower h
2

total and h
2

SNP for phospholipids than for sphingolipids or glycerolipids has been 241 

reported
16,18,32

. Lastly, we assessed whether heritability increases with added complexity in lipid 242 

species
14,19

. We found that this was the case with respect to h
2

Metabolite-hits estimates in more complex 243 

diacyl and acyl-alkyl phosphatidylcholines, but not for more complex TGs. Previous research reported 244 

significant higher h
2

SNP estimates in polyunsaturated fatty acid containing lipids
18

. Furthermore, loci 245 

associated with traditional lipid measures explained 2% to 21% of the variance in lipid levels
18

. Together 246 

these results suggest that higher heritability in phosphatidylcholines is driven by a lower number of 247 

carbon atoms and higher number of double bonds, e.g., a larger degree of unsaturation.  248 

Evaluating the mean heritability differences among lipids and organic acids, it appears that lipids 249 

have higher h
2

total, h
2

Class-hits and h
2

Metabolite-hits estimates than organic acids (Table 3). Previous twin-family 250 

studies indicates that the heritability difference among lipids and organic acid is rarely investigated
12–15

. 251 
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This is possibly because most metabolomics platforms focus mainly on either lipids or organic acids. 252 

Lipid metabolite classes tend to be very well represented on metabolomics platforms, whereas organic 253 

acids are unrepresented, and as a consequence, the analysis to obtain h
2

Class-hits and h
2

Metabolite-hits 254 

estimates of the organic acids will be underpowered due to this imbalance.  255 

Limitations 256 

The current study has several limitations. First, the extent to which our findings generalize to 257 

populations of non-European ancestry is unknown. Loci of common human metabolism pathways are 258 

most likely to replicate over ethnicities
33

. Second, estimates of the total variance explained may show 259 

upward bias when based on data from closely related individuals (e.g., first cousins or closer)
22,23

. This 260 

bias is caused by the influence of shared environmental influences, epistatic interactions,  or 261 

dominance
22,23

. While the results of the current study may suffer of such biases by the inclusion of twins, 262 

siblings and parents, the sample also includes many unrelated individuals which will reduce the possible 263 

bias (Supplementary Figure 3).  264 

Kettunen et al. (2012) investigated 217 metabolites of the Nightingale Health 
1
H-NMR platform 265 

in a classical twin design and reported dominance effects for 6.45% of the metabolites
34

. Tsepsilov et al. 266 

(2015) performed GWA study targeting non-additive genetic effects and concluded that most genetic 267 

effects on metabolite levels and ratios were in fact additive
35

. Together, these studies suggested that the 268 

bias due to dominance effects on metabolite levels will be minor.  269 

Relatively few twin-family studies explicitly investigated the role of shared environmental 270 

influences on metabolite levels. Overall, shared environmental influences are reported for a small 271 

number of metabolites (e.g., 14.3% of all Nightingale Health 
1
H-NMR metabolites

34
) and the influence of 272 

the shared environment is small-to-moderate (platform and metabolite class-dependent averages range 273 

from 0.03 to 0.45
9,16,36–38

 with larger estimates deriving from small studies). For studies including parents 274 
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and offspring, or adult twin and siblings pairs the question arises which effects are captured by the 275 

shared environment. Are these the lasting influences of the environment offspring shared with their 276 

parents and with each other before they started living independently? Additional research is necessary 277 

to elucidate the role of the shared environment on metabolite levels
22

. 278 

Third, standard errors of h
2

SNP estimates were high. While we have included all h
2

SNP estimates in the 279 

supplements, we stress that the primary goal of our paper was to investigate the contribution of known 280 

metabolite loci in an independent sample rather than obtaining the h
2

SNP estimates for metabolites.  281 

Finally, the estimates for h
2

metabolite-hits are based on SNPs of 40 different studies from a decade of 282 

GWA and (exome-) sequencing studies. The sample size, and therefore the power, of these studies vary, 283 

with some studies conducted with as few as 211 individuals while others included over 24,000 284 

individuals (Supplementary Note 1). For underrepresented metabolites the low power may result in 285 

downward biased heritability estimates. However, leveraging information from a decade of research in 286 

40 studies and extracting loci for metabolite classes across multiple studies, the number of such 287 

metabolites is not large. New
32,39–41

 and future studies will increase the number of variants identified as 288 

metabolite loci. The investment in UK Biobank
42

 is expected to dramatically increase sample sizes for 289 

large-scale genomic investigations of the human metabolome and subsequently the number of 290 

metabolite loci. 291 

Future directives and conclusions 292 

Mendelian Randomization may benefit from the comprehensive overview of metabolite loci that we 293 

identified. The identified loci can serve as instruments in metabolome-wide Mendelian Randomization 294 

studies of complex traits. In addition, our work offers valuable insights into the role of common genetic 295 

variants in class specific heritability differences among metabolite classes and lipids species. Further 296 

research is required to elucidate the contribution of rare genetic variants to metabolite levels, and 297 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2019. ; https://doi.org/10.1101/661769doi: bioRxiv preprint 

https://doi.org/10.1101/661769
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

differences in the contribution of rare genetic variants among metabolite classes. A reasonable 298 

approach would be to carry out a similar study in a large sample of whole-genome sequencing (WGS) 299 

data. Such an approach, using MAF- and LD-stratified GREML analysis
43

, identified additional variance 300 

due to rare variants for height and BMI
44

.  301 

In conclusion, we contributed to our understanding of the genetic architecture of fasting blood 302 

metabolite levels, and of differences in the genetic architecture among metabolite classes. Extending 303 

the GREML framework with the inclusion of known metabolite loci allowed us to simultaneously 304 

estimate h
2

total, and h
2

metabolite-hits (which consists of h
2

Class-hits and h
2

Notclass-hits) for 361 metabolites. 305 

Significant differences in h
2

Metabolite-hits estimates were observed among different classes of lipids and 306 

organic acids and for more complex diacyl and acyl-alkyl phosphatidylcholines. Future studies should 307 

address the proportion of metabolite variation influenced by heritable and non-heritable lifestyle 308 

factors, as this will facilitate the development of personalized disease prevention and treatment of 309 

complex disorders. 310 

Methods 311 

Participants 312 

At the Netherlands Twin Register (NTR)
45

 metabolomics data for twins and family members as measured 313 

in blood samples were available for 6,011 individuals of whom 5,667 were genotyped. The blood 314 

samples for the four metabolomics experiments described in this study were mainly collected in 315 

participants of the NTR biobank project
28,46

. Blood samples were collected after a minimum of two hours 316 

of fasting (1.3%), with the majority of the samples collected after overnight fasting (98.7%). Fertile 317 

women were bled in their pill-free week or on day 2-4 of their menstrual cycle. For the current paper, 318 

we excluded participants who were not of European ancestry, who were on lipid-lowering medication at 319 
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the time of blood draw, and who failed to adhere to the fasting protocol. The exact number of 320 

exclusions per dataset is listed in Supplementary Table 9. After completing the preprocessing of the 321 

metabolomics data, the separate subsets (e.g., different collection and measurement waves; see 322 

Supplementary Table 9) of each platform were merged into a single per platform dataset, retaining a 323 

single (randomly chosen) observation per platform when multiple observations were available. 324 

Supplementary Table 10 gives an overview of the overlap in participants among the different platforms, 325 

with the overlap among each metabolite that survived quality control (QC) for all four platforms 326 

available in Supplementary Table 11. The final number of participants included in the study was 5,117, 327 

with platform specific sample size ranging from 1,448 to 4,227 individuals clustered in 946 to 2,179 328 

families. Characteristics for the individuals can be found in Table 2. Supplementary Figure 3 depicts the 329 

distribution of the relatedness in the sample. Informed consent was obtained from all participants. 330 

Projects were approved by the Central Ethics Committee on Research Involving Human Subjects of the 331 

VU University Medical Centre, Amsterdam, an Institutional Review Board certified by the U.S. Office of 332 

Human Research Protections (IRB number IRB00002991 under Federal-wide Assurance- FWA00017598; 333 

IRB/institute codes, NTR 03-180 and EMIF-AD 2014.210). 334 

Metabolite profiling 335 

Nightingale Health 
1
H-NMR platform 336 

Metabolic biomarkers were quantified from plasma samples using high-throughput proton nuclear 337 

magnetic resonance spectroscopy (
1
H-NMR) metabolomics (Nightingale Health Ltd, Helsinki, Finland; 338 

formerly Brainshake Ltd.). This method provides simultaneous quantification of routine lipids, 339 

lipoprotein subclass profiling with lipid concentrations within 14 subclasses, fatty acid composition, and 340 

various low-molecular weight metabolites including amino acids, ketone bodies and glycolysis-related 341 
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metabolites in molar concentration units. Details of the experimentation and epidemiological 342 

applications of the NMR metabolomics platform have been reviewed previously
47,48

. 343 

UPLC-MS lipidomics platform 344 

Plasma lipid profiling was performed at the division of Analytical Biosciences at the Leiden Academic 345 

Center for Drug Research at Leiden University/Netherlands Metabolomics Centre. The lipids were 346 

analyzed with an Ultra-High-Performance Liquid Chromatograph directly coupled to an Electrospray 347 

Ionization Quadruple Time-of-Flight high resolution mass spectrometer (UPLC-ESI-Q-TOF; Agilent 6530, 348 

San Jose, CA, USA) that uses reference mass correction. For liquid chromatographic separation a 349 

ACQUITY UPLC HSS T3 column (1.8μm, 2.1 ∗ 100mm) was used with a flow of 0.4 ml/min over a 16 350 

minute gradient. Lipid detection was done using a full scan in the positive ion mode. The raw MS data 351 

were pre-processed using Agilent MassHunter Quantitative Analysis software (Agilent, Version B.04.00). 352 

Detailed descriptions of lipid profiling and quantification have been described previously
49,50

.  353 

Leiden 
1
H-NMR platform (for small metabolites) 354 

The Leiden 
1
H-NMR spectroscopy experiment of EDTA-plasma samples used a 600 MHz Bruker Advance 355 

II spectrometer (Bruker BioSpin, Karlsruhe, Germany). The peak deconvolution method used for this 356 

platform has been previously described
51

.  357 

Biocrates Absolute-IDQ
TM

 p150 platform 358 

The Biocrates Absolute-IDQ
TM

 p150 (Biocrates Life Sciences AG, Innsbruck, Austria) metabolomics 359 

platform on serum samples was analyzed at the Metabolomics Facility of the Genome Analysis Centre at 360 

the Helmholtz Centre in Munich, Germany. This platform utilizes flow injection analysis coupled to 361 

tandem mass spectrometry (MS/MS) and has been described in detail elsewhere
7,52,53

.  362 
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Metabolomics data preprocessing  363 

Preprocessing of the metabolomics data was done separately for each of the platforms and each 364 

measurement batch. Metabolites were excluded from analysis when the mean coefficient of variation 365 

exceeded 25% and the missing rate exceeded 5%. Metabolite measurements were set to missing if they 366 

were below the lower limit of detection or quantification or could be classified as an outlier (five 367 

standard deviations greater or smaller than the mean). Metabolite measurements, which were set to 368 

missing because they fell below the limit of detection/quantification were imputed with half of the value 369 

of this limit, or when this limit was unknown with half of the lowest observed level for this metabolite. 370 

All remaining missing values were imputed using multivariate imputation by chained equations 371 

(‘mice’)
54

. On average, 9 values were imputed for each metabolite (SD = 12; range: 1-151). Data for each 372 

metabolite on both 
1
H-NMR platforms were normalized by inverse normal rank transformation

51,55
, 373 

while the imputed values of the Biocrates metabolomics platform and the UPLC-MS lipidomics platform 374 

were normalized by natural logarithm transformation
14,56

, conform previous normalization strategies 375 

applied to the data obtained using these platforms. The complete lists with full names of all detected 376 

metabolites that survived QC and preprocessing for all platforms can be found in Supplementary Table 377 

1, these tables also include the quartile values of the untransformed metabolites. 378 

Genotyping, imputation and ancestry outlier detection 379 

Genotype information was available for 21,001 NTR participants from 6 different genotyping arrays 380 

(Affymetrix 6.0 [N = 8,640], Perlegen-Affymetrix [N = 1,238], Illumina Human Quad Bead 660 [N = 1,439], 381 

Affymetrix Axiom [N = 3,144], Illumnia GSA [N = 5,938] and Illumina Omni Express 1M [N =238]), as well as 382 

sequence data from the Netherlands reference genome project GONL (BGI full sequence at 12x (N = 364)
57

. 383 

For each genotyping array samples were removed if they had a genotype call rate above 90%, gender-384 

mismatch occurred or if heterozygosity (Plink F statistic) fell outside the range of -0.10 – 0.10. SNPs were 385 
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removed if they were palindromic AT/GC SNPs with a minor allele frequency (MAF) range between 0.4 and 386 

0.5, if the MAF was below 0.01, if Hardy Weinberg Equilibrium (HWE) had p < 10
-5

, and if the number of 387 

Mendelian errors was greater than 20 and the genotype call rate was < 0.95. After QC the six genotyping 388 

arrays were aligned to the GONL reference set (V4) and SNPs were removed if the alleles mismatched with 389 

this reference panel or the allele frequency different more than 0.10 between the genotyping array and this 390 

reference set. 391 

The data from the six genotyping chips were subsequently merged into a single dataset (1,781,526 392 

SNPs). Identity-by-decent (IBD) was estimated with PLINK
58

 and KING
59

 for all individual pairs based on the 393 

~10.6K SNPs in common across the arrays. Next IBD was compared to expected family relations and 394 

individuals were removed in the event of a mismatch. Prior to imputation to the GONL reference data
60,61

 the 395 

duplicate monozygotic pairs (N = 3,032) or trios (N = 7) and NTR GONL samples (N = 364) were removed and 396 

the data was cross-array phased using MACH-ADMIX
62

. Post-imputation the NTR GONL samples and the 397 

duplicated MZ pairs and trios were re-turned to the dataset. Filtering of the imputed dataset included the 398 

removal of SNPs that were significantly associated with a single genotyping chip (p < 10
-5

), had HWE p < 10
-5

, 399 

the Mendelian error rate > mean + 3 SD, or imputation quality (R
2
) below 0.90. The final cross-platform 400 

imputed dataset included 1,314,639 SNPs, including 20,792 SNPs on the X-chromosome.  401 

The cross-platform imputed data was aligned with PERL based "HRC or 1000G Imputation preparation 402 

and checking" tool (version 4.2.5; https://www.well.ox.ac.uk/~wrayner/tools). The remaining 1,302481 SNPs 403 

were phased with EAGLE
63

 for the autosomes, and SHAPEIT
64

 for chromosome X and then imputed to 1000 404 

Genomes Phase 3 (1000GP3 version 5)
65

 on the Michigan Imputation server using Minimac3 following the 405 

standard imputation procedures of the server
66

. Principal Component Analysis (PCA) was used to project the 406 

first 10 PCs of the 1000 genomes references set population on the NTR cross-platform imputed data using 407 

SMARTPCA
67

. Ancestry outliers (non-Dutch ancestry; N = 1,823) were defined as individuals with PC values 408 
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outside the European/British population range
68

. After ancestry outlier removal the first 10 PCs were 409 

recalculated.  410 

Curation of metabolite loci  411 

In October 2018 PubMed and Google Scholar were searched to identify published GWA and (exome-) 412 

sequencing studies on metabolomics or fatty acid metabolism in blood samples using 
1
H-NMR, mass 413 

spectrometry or gas chromatography-based methods. In the period of November 2008 to October 2018 414 

40 GWA or (exome-) sequencing studies on blood metabolomics in European samples were published 415 

(Supplementary Note 1). The genome-wide significant (p < 5x10
-8

) metabolite-SNP associations of all 416 

studies were extracted, including only those observations for autosomal SNPs and reporting SNP effect 417 

sizes and p-values based on the summary statistics excluding NTR samples
55,56

. In the 40 studies, 242,580 418 

metabolite-SNP or metabolite ratio-SNP associations were reported. These associations included 1,804 419 

unique metabolites or ratios and 49,231 unique SNPs (Supplementary Data 1). For all metabolites their 420 

Human Metabolome Database (HMDB)
3–5

, PubChem
69

, Chemical Entities of Biological Interest (ChEBI)
70

 421 

and International Chemical Identifier (InChiKey)
71

 identifiers were retrieved. Information with regards to 422 

the ‘super class’, ‘class’ and ‘subclass’ of metabolites was extracted from HMDB. If no HMDB identifier 423 

was available and categorization information could not be extracted, ‘super class’, ‘class’ and ‘subclass’ 424 

were provided based on expert opinion. Excluding the ratios and unidentified metabolites, 953 425 

metabolites were classified into 12 ‘super classes’, 43 ‘classes’ or 77 ‘subclasses’ (Supplementary Data 426 

1). Based on the metabolite identifiers we also extracted the log(S) value for each metabolite to assess 427 

the hydrophobicity of the metabolites. The log(S) value represents the log of the partition coefficient 428 

between 1-octanol and water, two fluids that hardly mix. The partition coefficient is the ratio of 429 

concentrations in water and in octanol when a substance is added to an octanol-water mixture and 430 

hence indicates the hydrophobicity of a compound. Thus, we classified a metabolite as hydrophobic if it 431 

is more hydrophobic than 1-octanol, and as hydrophilic otherwise (Supplementary Data 1). 432 
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The rsIDs or chromosome-base pair positions of the 49,231 unique SNPs were reported by 433 

different genome builds or dbSNP maps
72

, therefore we lifted all SNPs to HG19 build 37
73

, after which 434 

43,830 unique SNPs remained (Supplementary Figure 1; Supplementary Data 1). All bi-allelic metabolite 435 

SNPs were extracted from our 1000GP3 data, which excluded 295 tri-allelic SNPs, and 4,256 SNPs that 436 

could not be retrieved from 1000GP3. Next, MAF > 1% (2,067 SNPs removed), R
2
 > 0.70 (2,002 SNPs) and 437 

HWE P < 10
-4

 (72 SNPs) filtering was performed, resulting in 35,138 metabolite SNPs for NTR participants 438 

(Supplementary Figure 1). Next, we created two ‘super class’-specific lists of metabolite loci and two 439 

‘not-superclass’ lists of metabolite loci. To create a list of loci associated with the 652 unique 440 

metabolites classified as ‘lipids and lipid-like molecules’ (e.g., lipids), we clumped (PLINK version 1.9) all 441 

112,760 lipid-SNP associations using an LD-threshold (r
2
) of 0.10 in a 500kb radius in 2,500 unrelated 442 

individuals (Supplementary Figure 1). Clumping identified 482 lead SNPs, or loci for lipids. An additional 443 

12,169 SNPs were identified as LD-proxies for the lipid-loci (Supplementary Figure 1). To obtain the ‘not-444 

superclass’ list of lipid loci the 12,651 lipid loci and proxies were removed from the list of all metabolite-445 

SNP associations and the resulting list was clumped to obtain the 598 ‘non-superclass’ loci 446 

(Supplementary Figure 1). The same clumping procedure was applied to the 26,352 organic acid-SNP 447 

associations, identifying 398 organic acids loci, 10,781 organic acid LD-proxies and 687 ‘non-superclass’ 448 

loci (Supplementary Figure 1). 449 

Construction of genetic relationship matrices 450 

In total six weighted genetic relationship matrixes (GRMs) were constructed, which were corrected for 451 

uneven and long-range LD between the SNPs (LDAK version 4.9
29,30

). In Supplementary Note 3 the use of 452 

weighted versus unweighted GRMs is compared using simulations. Two of the GRMs used the cross-platform 453 

imputed dataset as backbone and the other four GRMs were based on SNPs extracted from the 1000GP3 454 

imputed data. Before calculating the first GRM, the autosomal SNPs of the cross-platform imputed dataset 455 

were filtered on MAF (<1%) and all lipid and organic acid loci, their LD-proxies and 50kb surrounding both 456 
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types of SNPs were removed (see curation of metabolite loci; Supplementary Figure 1). The LDAK GRM was 457 

created after removal of the 50kb surrounding the lipid and organic acid loci and their LD-proxies (as obtained 458 

by the clumping procedure as described above) and included 434,216 SNPs (Supplementary Figure 1). The 459 

V(G1) variance component in the genomic relatedness matrix residual maximum likelihood (GREML) analyses 460 

is based on this GRM (see heritability analyses; Figure 1). The V(G2) variance component in the GREML 461 

analyses is based on the LDAK GRM including all autosomal SNPs with a MAF greater than 1% included on the 462 

cross-platform imputed dataset (447,794 SNPs), where ancestry outliers were removed, and genome sharing 463 

was set to zero for all individual pairs sharing less than 0.05 of their genome
22

 (Figure 1). Depending on the 464 

metabolite the V(G3) variance component in the GREML analyses was either based on an LDAK GRM of the 465 

1000GP3 extracted lipid loci (479 SNPs) or the organic acid loci (397 SNPs), as obtained after the clumping 466 

procedure as described above (Supplementary Figure 1; Figure 1). Finally, depending on the metabolite 467 

either the ‘not-lipid’ LDAK GRM (596 SNPs) or the ‘not-organic acid’ LDAK GRM (683 SNPs) provided the V(G4) 468 

variance component in the GREML analyses (Supplementary Figure 1; Figure 1). The not-class metabolite loci 469 

on which the LDAK GRMs were build were obtained by the clumping procedure as described above 470 

(Supplementary Figure 1). Supplementary Data 1 indicates for each listed SNP if it was included in any of the 471 

class-specific or not-class LDAK GRMs. 472 

Statistical analyses 473 

Heritability analyses 474 

Mixed linear models
22

, implemented in the genome-wide complex trait analysis (GCTA) software 475 

package (version 1.91.7)
21

, were applied to compare three models including a variable number of 476 

covariates. Supplementary Table 12 gives the three different models, full descriptions of the covariates 477 

and model comparison have been given in Supplementary Note 4. The most parsimonious model was 478 

chosen for further analyses (full results in Supplementary Table 13). This final model included the first 479 
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10 genetic PCs for the Dutch population, genotyping chip, sex and age at blood draw as covariates. For 480 

metabolites of the Nightingale Health 
1
H-NMR and Biocrates platform, measurement batch was included 481 

as covariate.  482 

The final four-variance component model, including four GRMs, allows for the estimation of the 483 

proportion of variation explained by superclass-specific significant metabolite loci and non-superclass 484 

significant metabolite loci. The first two variance components in the 4-variance component model 485 

(Figure 1), V(G1) and V(G2) allow for the estimation of the additive genetic variance effects captured by 486 

genome-wide SNPs (h
2

g) and the additive genetic effects associated with pedigree (h
2

ped)
22,74

, and V(G3) 487 

and V(G4) capture the additive genetic effect associated with class-specific (h
2

class-hits) and not-class 488 

(h
2

notclass-hits) metabolite loci. Based on the 4-variance component model, three additional heritability 489 

estimates can be calculated: the total variance explained by significant metabolite loci (h
2

Metabolite-hits) 490 

consists of the sum of 
�����

��
 and 

�����

��
, where Vp is the phenotypic variance, h

2
SNP is defined as the sum of 491 

�����

��
, 

�����

��
 and 

�����

��
, and the total variance explained (h

2
total) is defined as the sum of 

�����

��
,  

���	�

��
, 

�����

��
 492 

and 
�����

��
 (Figure 1). We note that the total variance explained by genetic factors may also include 493 

influences of the shared environment, dominance and epistasis, which may result in upward bias of the 494 

h
2

total estimates
22,23

. This bias is expected to arise by the presence of closely related participants, who 495 

may share these effects, in addition to the additive genetic effects. To calculate the standard errors 496 

(s.e.’s) for the composite variance estimates, we have randomly sampled 10,000 new variances from the 497 

parameter variance-covariance matrices of the V(G1), V(G3) and V(G4) GRMs for each metabolite. 498 

Random sampling was performed in R by creating 10,000 multivariate normal distributions (mvrnorm 499 

function in MASS package version 7.3-50
75

) based on the original means and variance/covariance 500 

matrices. The s.e.’s of the specific ratio of interest were then based on the standard deviation of the 501 

ratio of interest across 10,000 samples. The four-variance component models included variance 502 
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components that were not constrained to be positive, thus allowing for negative h
2

SNP and h
2

Metabolite-hits 503 

estimates. All four-variance component models applied the --reml-bendV flag where necessary to invert 504 

the variance-covariance matrix V if V was not positive definite, which may occur when variance 505 

components are negative
76

. Finally, we calculated the log likelihood of a reduced model with either 506 

V(G3), V(G4) or both dropped from the full model and calculated the LRT and p-value (Supplementary 507 

Table 3). 508 

Mixed-effect meta-regression analyses 509 

To investigate differences in heritability estimates among metabolites of different classes we applied 510 

mixed-effect meta-regression models as implemented in the ‘metafor’ package (version 2.0-0) in R 511 

(version 3.5.1)
77

. Here we tested for the moderation of heritability estimates by metabolite class and 512 

metabolomics platform on all 361 successfully analyzed metabolites. We included a matrix combining 513 

the phenotypic correlations (Supplementary Table 14) and the sample overlap (Supplementary Table 514 

11) between the metabolites as random factor to correct for dependence among the metabolites and 515 

participants. This matrix includes the sample size of the metabolite on the diagonal, with the off-516 

diagonal computed by 

�,�

√��
 ��

� � (Supplementary Table 15), where N1,2 is the sample overlap between 517 

the metabolites, n1 is the sample size of metabolite one, n2 is the sample size of metabolite two and r is 518 

the phenotypic (Spearman’s rho) correlation between the metabolites. In all mixed-effect meta-519 

regression analyses we obtained the robust estimates based on a sandwich-type estimator, clustered by 520 

the metabolites included in the models to correct for the sample overlap among the different 521 

metabolites
78

. First, we used multivariate mixed-effect meta-regression models to simultaneously 522 

estimate the effect of metabolite class and metabolomics platform on the h
2

total, h
2

SNP and the h
2

Metabolite-523 

hits, as well as the h
2 

Class-hits and h
2 

Notclass-hits estimates. Subsequently, to separately assess the effect of the 524 

number of carbon atoms or double bonds in the fatty acyls chains of phosphatidylcholines and 525 
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triglycerides univariate models were fitted, as follow-up. To account for multiple testing the p-values 526 

were adjusted with the with the False Discovery Rate (FDR)
79

 using the ‘p.adjust’ function in R. Multiple 527 

testing correction was done separately for the univariate and the multivariate models.  528 

Data availability 529 

The curated list of all published metabolite-SNP associations is included in Supplementary Data 1 and is 530 

publicly available through the BBMRI – omics atlas (http://bbmri.researchlumc.nl/atlas/#data). All 531 

information on the metabolites in this study are in Supplementary Table 1; with full summary statistics 532 

for the four-variance component models included in Supplementary Table 3. The Nightingale Health 533 

metabolomics data may be requested through BBMRI-NL (https://www.bbmri.nl/Omics-metabolomics). 534 

All (other) data may be accessed, upon approval of the data access committee, through the Netherlands 535 

Twin Register (ntr.fgb@vu.nl). A reporting summary for this Article is available as Supplementary 536 

Information file. 537 
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Figures 

Figure 1. Overview of the 4-variance component models, including the GRMs underlying each variant 

component and all heritability estimates obtained from the models.  

Overview of the SNP-filtering and GRM construction can be found in Supplementary Figure 1 and is 

explained in details in the Methods. This figure describes which GRMs (black boxes) are used to 

calculate which variance components (orange boxes) by drawing black arrows from the GRMs to the 

variance components. The variance components give rise to the four different heritability estimates: 

h
2
ped, h

2
g, h

2
Class-hits, and h

2
Notclass-hits (see Methods). The orange arrows indicate how the various variance 

components are summed to obtain estimates for h
2
metabolite-hits, h

2
SNP and h

2
total

 

(see Methods).  

0 
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Figure 2. Heritability of all 52 carboxylic acids and derivatives successfully analyzed across all four 

metabolomics platforms by class.  

Box- and dotplots of the h
2

total, and h
2

Metabolite-hits for all 52 successfully analyzed ‘carboxylic acids and 

derivatives’ by class. The left-hand side of the figure is a close-up of the -0.08 – 0.15 part of the 

heritability range, focusing on the h
2 

Class-hits and h
2 

Notclass-hits estimates. The boxes denote the 25th and 

75th percentile (bottom and top of box), and median value (horizontal band inside box). The whiskers 

indicate the values observed within up to 1.5 times the interquartile range above and below the box. 

Supplementary Table 3 provides the estimates for each of the individual metabolites. 
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Figure 3. Heritability of all 309 lipids successfully analyzed across all four metabolomics platforms by 

class.  

Box- and dotplots of the h
2

total, and h
2

Metabolite-hits for all 309 successfully analyzed lipids by class. The left-

hand side of the figure is a close-up of the -0.06 – 0.17 part of the heritability range, focusing on the h
2 

Class-hits and h
2 

Notclass-hits estimates. The boxes denote the 25th and 75th percentile (bottom and top of 

box), and median value (horizontal band inside box). The whiskers indicate the values observed within 

up to 1.5 times the interquartile range above and below the box. Supplementary Table 3 provides the 

estimates for each of the individual metabolites. 
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Tables 

Table 1. Overview of the number of unique metabolites, for which significant SNP-metabolite 

associations have been published, per Human Metabolome Database
3–5

 ‘super class’.  

See Supplementary Data 1 for an overview of the exact metabolites classified per ‘super class’, ‘class’ 

and ‘subclass’, as well as the SNPs associated with each metabolite. 

Super class Number of unique metabolites 

Lipids and lipid-like molecules (e.g., lipids) 662 

Organic acids and derivatives (e.g., organic acids) 182 

Organoheterocyclic compounds 45 

Organic oxygen compounds 19 

Nucleosides, nucleotides, and analogues 12 

Benzenoids 12 

Organic nitrogen compounds 11 

Phenylpropanoids and polyketides 4 

Proteins 3 

Organic compounds 1 

Trichlorophenols 1 

Organooxygen compounds 1 
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Table 2. Participant characteristics after preprocessing per metabolomics platform.  

This table gives an overview of the number of individuals (N) per platform, specifies the number of families these individuals belong to and the 

percentage of females and twins in each dataset. In addition, for each platform the mean and standard deviation (SD) of the age at blood draw 

in years, the body-mass-index (BMI), the cholesterol level in mmol/l, the low-density lipoprotein cholesterol (LDL) levels in mmol/l and the high-

density lipoprotein cholesterol (HDL) levels in mmol/l are given.  

Metabolomics platform N 

N 

families 

Age*  

(mean ± 

SD) 

Female 

(%) 

Twins 

(%) 

BMI  

(mean ± 

SD) 

Cholesterol
$
  

(mean ± SD) 

LDL
$
  

(mean ± 

SD) 

HDL
$
  

(mean ± 

SD) 

All Participants 5,117 2,445 42.1 ± 14.2 62.8% 63.4% 24.8 ± 4.1 4.9 ± 1.2 3.0 ± 1.0 1.7 ± 1.0 

Nightingale Health 
1
H-NMR

 
4,227 2,179 40.7 ± 13.7 67.3% 69.7% 24.6 ± 4.0 4.9 ± 1.2 3.0 ± 1.0 1.7 ± 1.0 

UPLC-MS Lipidomics 2,324 1,251 39.0 ± 12.9 66.6% 89.2% 24.4 ± 4.1 5.0 ± 1.0 3.0 ± 0.9 1.4 ± 0.4 

Leiden 
1
H-NMR 2,324 1,323 37.6 ± 12.5 67.0% 89.0% 24.2 ± 4.1 4.6 ± 1.3 2.7 ± 1.0 2.0 ± 1.4 

Biocrates 1,448 946 45.7 ± 15.3 43.8% 39.6% 25.2 ± 3.9 4.6 ± 1.5 2.8 ± 1.1 2.3 ± 1.7 

* Age at blood draw in years; 
$
 levels in mmol/l. 
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Table 3. Summary of the heritability estimates of the four-variance component models for the 309 lipids 

and the 52 organic acids analyzed across all four metabolomics platforms.  

The mean, median and range of the total heritability (h
2

total), heritability based on the 479 significant 

metabolite loci for the lipids or the 397 significant metabolite loci for the organic acids (h
2

Class-hits), the 

596-683 significant metabolite loci not belonging to these classes (h
2 

Notclass-hits) and the total heritability 

explained by metabolite loci (e.g., sum of h
2 

Class-hits and h
2 

Notclass-hits: h
2

Metabolite-hits), as well as their 

standard errors (s.e.’s), are depicted for all 361 successfully analyzed metabolites as included on all 

platforms. Supplementary Table 1 denotes which metabolites belong to each class and Supplementary 

Table 3 provides the estimates for each of the individual metabolites.  

  Lipids and lipid-like molecules Organic acids and derivatives 

  estimate s.e. estimate s.e. 

h
2

total 

mean 0.47 0.04 0.41 0.04 

median 0.47 0.03 0.40 0.03 

range (0.11 - 0.66) (0.02 - 0.07) (0.14 - 0.72) (0.02 - 0.07) 

h
2

Metabolite-hits 

mean 0.06 0.03 0.01 0.02 

median 0.06 0.03 0.02 0.02 

range (-0.05 - 0.16) (0.01 - 0.04) (-0.08 - 0.11) (0.01 - 0.04) 

h
2

Class-hits 

mean 0.06 0.02 0.01 0.02 

median 0.06 0.02 0.01 0.02 

range (-0.02 - 0.16) (0.01 - 0.03) (-0.04 - 0.14) (0.01 - 0.03) 

h
2

Notclass-hits 

mean 0.00 0.02 0.00 0.02 

median 0.01 0.02 0.00 0.02 

range (-0.06 - 0.12) (0.01 - 0.03) (-0.06 - 0.05) (0.01 - 0.03) 
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Table 4. Summary of the heritability estimates of the four-variance component models for the 17 

essential and the 14 non-essential amino acids analyzed across all four metabolomics platforms.  

The mean, median and range of the total heritability (h
2

total), and heritability based on the 397 significant 

metabolite loci for the organic acids (h
2

Class-hits), the 683 significant metabolite loci not belonging to this 

class (h
2

Notclass-hits) and the total heritability explained by metabolite loci (e.g., sum of h
2

Class-hits and 

h
2

Notclass-hits: h
2

Metabolite-hits), as well as their standard errors (s.e.’s), are depicted for all 31 successfully 

analyzed essential and non-essential amino acids as included on all platforms. Supplementary Table 1 

denotes which metabolites belong to each class and Supplementary Table 3 provides the estimates for 

each of the individual metabolites. 

  Essential amino acids Non-essential amino acids 

  estimate s.e. estimate s.e. 

h
2

total 

mean 0.42 0.04 0.39 0.04 

median 0.40 0.03 0.39 0.04 

range (0.23 - 0.64) (0.02 - 0.07) (0.22 - 0.69) (0.03 - 0.07) 

h
2

Metabolite-hits 

mean 0.00 0.02 0.02 0.03 

median 0.00 0.02 0.01 0.03 

range (-0.05 - 0.05) (0.01 - 0.03) (-0.07 - 0.11) (0.01 - 0.04) 

h
2

Class-hits 

mean 0.01 0.02 0.03 0.02 

median 0.00 0.02 0.01 0.02 

range (-0.03 - 0.05) (0.01 - 0.02) (-0.03 - 0.14) (0.01 - 0.03) 

h
2

Notclass-hits 

mean -0.01 0.02 0.00 0.02 

median -0.01 0.02 0.00 0.02 

range (-0.06 - 0.04) (0.01 - 0.03) (-0.04 - 0.03) (0.01 - 0.03) 
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