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Abstract 

Age-related memory impairments have been linked to differences in structural brain parameters, 

including cerebral white matter (WM) microstructure and hippocampal (HC) volume, but their 

combined influences are rarely investigated. In a population-based sample of 337 older 

participants 61–82 years of age (Mage=69.66, SDage=3.92 years) we modeled the independent and 

joint effects of limbic WM microstructure and HC subfield volumes on verbal learning. 

Participants completed a verbal learning task over five learning trials and underwent magnetic 

resonance imaging (MRI), including structural and diffusion scans. We segmented three HC 

subregions on high-resolution MRI data and sampled mean fractional anisotropy (FA) from 

bilateral limbic WM tracts identified via deterministic fiber tractography. Using structural 

equation modeling, we evaluated the associations between learning rate and latent factors 

representing FA sampled from limbic WM tracts, and HC subfield volumes, as well as their 

latent interaction. Results showed limbic WM and the interaction of HC and WM – but not HC 

volume alone – predicted verbal learning rates. Model decomposition revealed HC volume is 

only positively associated with learning rate in individuals with higher levels of WM anisotropy. 

We conclude that structural characteristics of limbic WM regions and HC volume jointly 

contribute to verbal learning in older adults.  

 

Keywords: hippocampus, white matter, aging, verbal learning, memory, Berlin Aging Study II 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 3 

Hippocampal Subfields and Limbic White Matter Jointly Predict Learning Rate in Older Adults 

Age-related deficits in verbal learning and memory have a long history of study in 

psychological and cognitive sciences (Kausler, 1994; Korchin and Basowitz, 1957; Salthouse, 

1985). Individual differences in learning and memory in older adults are linked with differences 

in both regional gray matter volumes in the medial temporal lobe (MTL; Petersen et al., 2000) 

and microstructural measures of limbic white matter (WM) pathways (see Madden et al., 2012 

for a review). However, few studies to date have investigated the influences of both classes of 

neuroanatomical correlates of verbal learning, using two magnetic resonance imaging (MRI) 

modalities, in a population-based cohort of older adults. Arguably, modeling learning and 

memory as a function of a larger, integrated neural system affords a more balanced perspective 

over traditional univariate modeling of individual neural structures (Aggleton, 2014).  

Verbal learning is commonly tested via serial presentation of lexical stimuli, followed by 

tests of free or cued recall and recognition. For instance, multiple neuropsychological 

instruments assessing verbal learning repeatedly present the same stimulus list over multiple 

successive learning trials; following each presentation, participants freely recall as many items as 

possible (Baldo et al., 2002; Schmidt, 1996). Although the sum of recalled items is commonly 

used as measure of aggregate performance, the slope of change in memory performance across 

learning trials can serve as an estimate of the rate of learning (Jones et al., 2005). Although many 

studies have explored the neural correlates of age-associated decrements in delayed mnemonic 

retrieval, fewer have investigated the structural brain correlates associated with learning rate 

(Gifford et al., 2015). These initial studies suggest that individual differences in learning rate are 

associated with hippocampal (HC) volumes in normal aging and mild cognitive impairment 

(Bonner-Jackson et al., 2015; Gifford et al., 2015), and may afford a more sensitive behavioral 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 4 

correlate of brain organization. Although prior work has linked larger hippocampal subregional 

volumes in Cornu Ammonis (CA) and dentate gyrus (DG) to better verbal learning, associative 

memory, and higher longitudinal retest improvements (Bender et al., 2013; Mueller et al., 2011; 

Shing et al., 2011), this has not been investigated as a correlate of learning rate.  

In addition to HC, other established neuroanatomical correlates of age-associated 

memory decline include structurally linked afferent and efferent limbic WM pathways measured 

via diffusion magnetic resonance imaging (dMRI; Bender et al., 2016; Bennett et al., 2014; 

Charlton et al., 2013; Fletcher et al., 2013; Henson et al., 2016; Metzler-Baddeley et al., 2011a; 

Sasson et al., 2013; Sepulcre et al., 2008; Stoub et al., 2006; see Preston and Eichenbaum, 2013; 

Shing et al., 2008 for reviews). In particular, these extant reports implicate cingulum bundle, 

including dorsal and parahippocampal segments, fornix, and uncinate fasciculus (UF) as primary 

WM correlates of age-related memory declines. Furthermore, associations between total HC 

volume and memory in older adults are inconsistent (Van Petten, 2004), and suggest other, less 

elucidated factors may modify this relationship. One possibility is that its structure includes 

multiple functionally and cytoarchitectonically distinct subregions, which show differential 

associations with aging and with mnemonic processes (Braak et al., 1996; Duvernoy, 2005; 

Insausti et al., 1998; Kiernan, 2012; Wilson et al., 2006). This perspective suggests that the 

relationship between total HC volume and memory may be attenuated by the lack of functional 

and structural specificity (Van Petten, 2004). Alternatively, associations between HC volume and 

memory may be modified by related factors, such as the extent of WM connectivity (Foster et 

al., 2019; Metzler-Baddeley et al., 2019). However, the statistical interaction between HC 

volumes and limbic WM microstructure has not been tested previously. 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 5 

Investigating the links of different HC subfields and limbic WM fiber tracts to episodic 

memory requires a sufficiently large sample and the incorporation of multiple MRI measurement 

approaches. The Berlin Aging Study-II (BASE-II; Bertram et al., 2014; Gerstorf et al., 2016) 

includes over 1500 healthy older adults; of these, a subset of whom underwent MRI 

neuroimaging. The sample is sufficiently large to permit the use of structural equation modeling 

(SEM), which allows the confirmatory construction of memory performance and brain 

parameters as latent factors, moving from an observed level to a more valid construct level. 

These latent factors then serve as a basis for exploring brain–behavior associations as between–

construct correlations, independent of measurement error. Thus, following the plea of 

Brandmaier et al. (2013), we use SEM as a statistical tool that combines the benefits of both 

confirmatory and explanatory modes of scientific inquiry. 

Specifically, we were interested in modeling the rate of learning across five free recall 

trials of a test of verbal learning (Helmstaedter and Durwen, 1989; Schmidt, 1996) to test the 

notion that rate of learning is a more sensitive correlate of brain structure and organization than 

the intercept. By evaluating the combined contributions from both limbic WM and HC subfield 

volumes under the SEM framework, our goal was to simultaneously model multiple distinct, but 

interdependent structural neural correlates of learning.  Our initial approach was more 

exploratory by freely estimating all associations between individual HC and WM factors and 

verbal learning slope and intercept. We expected a similar pattern of anatomical associations 

with learning as previously reported: higher FA in cingulum and fornix tracts and larger 

hippocampal volumes, particularly of CA and DG (Bender et al., 2016; Bennett et al., 2014; 

Madden et al., 2012). Herein, we also tested the general hypothesis that aggregate, latent 

measures of HC volume and limbic white matter fractional anisotropy in older adults are both 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 6 

associated with verbal learning rate. Furthermore, we hypothesized that individual differences in 

rates of learning would be associated with individual differences in the interaction between HC 

volume and FA in limbic WM. 

Methods 

Participants. Study data were drawn from the first wave of the BASE-II cohort (Bertram 

et al., 2014; Gerstorf et al., 2016), a population-based study of older and younger adults living in 

Berlin, Germany. The baseline cohort included 1532 older adults from 60 to 88 years of age. 

None of the participants took medication that might affect memory function, and none had 

neurological disorders, psychiatric disorders, or a history of head injuries. All participants 

reported normal or corrected to normal vision and were right-handed. All participants were 

invited to two cognitive sessions with an exact interval of seven days and at the same time of day 

to avoid circadian confounding effects on session differences in performance. Participants were 

tested in groups of 4–6 individuals. The ethics section of the German Psychological Society 

approved the study (SK 012013_6). All participants had provided informed consent in accord 

with the Declaration of Helsinki.  

After completing the comprehensive cognitive assessment in BASE-II, MR-eligible 

participants were invited to take part in one MRI session within a mean time interval of 3.2 

months after the cognitive testing. The subsample consisted of 345 older adults aged 61–82 years 

(mean age 70.1 years, SD = 3.9 years, 39% female). We excluded six participants following 

technical errors in cognitive test administration, and we excluded two additional participants 

with scores below 25 on the Mini-Mental Status Examination (MMSE; Folstein et al., 1975). 

Most participants’ MMSE scores were well above this cut-off (mean = 28.61, SD = 1.15). 

BASE-II participants in the MRI cohort did not differ from those who did not undergo MRI 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 7 

scanning in terms of educational attainment, cognitive performance, or MMSE scores (for all, t < 

1.0), although the MRI cohort was significantly younger than the non-MRI cohort (t = 2.577, p < 

.05) by approximately 6 months. The final sample retained for analysis included 337 older adults 

(mean age = 69.66, SD = 3.92 years). Sample demographics showed a greater proportion of men 

(61.7%) than women (38.3%), and mean level of years of education nearing one year of 

university (mean = 14.07, SD = 2.90 years).  

Magnetic Resonance Imaging (MRI) 

Image acquisition. All MRI data were acquired on a 3T Siemens Magnetom Tim Trio 

scanner. For most cases, a 32-channel head coil was used, although in two cases a 12-channel 

coil was used as the 32-channel coil provided an uncomfortable fit. MRI data acquisition 

included a T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) sequence, 

acquired in the sagittal plane with a single average, repetition time (TR) = 2,500 ms, echo time 

(TE) = 4.77 ms, with an isotropic voxel size of 1.0 × 1.0 × 1.0 mm, using a 3D distortion 

correction filter and pre-scan normalization with FOV = 256, and GRAPPA acceleration factor = 

2. Acquisition also included a single T2-weighted, turbo spin echo (TSE) high-resolution 

sequence in a coronal direction, oriented perpendicularly to the long axis of the left HC, with 

voxel size = 0.4 × 0.4 × 2.0 mm, 30 slices. TR = 8,150 ms, TE = 50 ms, flip angle = 120°, 

positioned to cover the entire extent of the HC. A single-shot, echo-planar imaging, diffusion 

weighted sequence was also acquired in transverse plane with TR = 11,000 ms, TE = 98 ms, in 

60 gradient directions, diffusion weighting of b = 1,000 s/mm2, seven volumes collected without 

diffusion weighting (b = 0) and generalized autocalibrating partially parallel acquisitions 

(GRAPPA) acceleration factor = 2 with an isotropic voxel of 1.70 mm3.  
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 8 

Diffusion MRI Processing. All diffusion-weighted images (DWI) underwent an initial 

quality control (QC) process using DTIPrep v. 1.2.4 (Oguz et al., 2014), software to eliminate 

noisy gradient directions and correct for motion and eddy currents.  

Free water estimation and removal. The influence of partial volume artifacts from 

cerebral spinal fluid (CSF) is an established limitation of the single-tensor diffusion tensor 

imaging (DTI) model that is often used in the context of tractography (Concha et al., 2005; 

Metzler-Baddeley et al., 2011b; Pasternak et al., 2009), particularly in regions directly adjacent 

to ventricular CSF, such as the fornix (Jones and Cercignani, 2010; Metzler-Baddeley et al., 

2011a). To address this limitation, tensor data were corrected for CSF contamination on a voxel-

by-voxel basis, using the free water elimination MATLAB code (FWE; Pasternak et al., 2009), 

resulting with free-water corrected diffusion tensors. The free water corrected tensors were then 

decomposed using FSL to produce FA image maps.  

Sample template creation. We used DTI-TK (Zhang et al., 2006) software to align all 

participants’ data into a common template.  The complete procedures for inter-subject 

registration are detailed in Supplementary Materials.  

Region of Interest (ROI) creation. Individual ROIs reflecting seed regions, regions of 

inclusion, and regions of exclusion were drawn on the template-space FA image, colored by 

orientation image output as an option by DTI-TK in ITK-SNAP (www.itksnap.org; Yushkevich 

et al., 2006). All template-space ROIs were nonlinearly deprojected to native space, where they 

were inspected for errors by one of the authors (A.R.B.). Following published deterministic 

tractography approaches for these regions (Bennett et al., 2014; Malykhin et al., 2008; Metzler-

Baddeley et al., 2011a), we created ROIs for tractography of four, bilateral limbic WM: dorsal 

cingulum bundle (CBD), parahippocampal cingulum bundle (CBH), posterior fornix, and 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 9 

uncinate fasciculus (UF). The procedures for tractography mask creation, placement, and spatial 

transformation from standard to native space are detailed in Supplementary Materials.  

Constrained spherical deconvolution (CSD) tractography. To enhance the anatomical 

validity and minimize the potentially confounding influences of crossing fiber populations, we 

performed diffusion MR tractography using constrained spherical deconvolution (CSD), a 

method that fits a fiber orientation distribution (FOD) to each voxel and performs tractography 

based on peaks in the FOD (Tournier et al., 2007; Tournier et al., 2004). CSD tractography is 

considered superior to other commonly used approaches for delineating WM tracts of interest, 

such as white matter skeletonization, due to greater anatomical precision for any given tract 

(Metzler-Baddeley et al., 2011a). MRtrix3 (Tournier et al., 2007; Tournier et al., 2004) software 

was used for CSD-based deterministic tractography on the DWI data following QC, but before 

any free water correction. Response function estimation used the method previously described 

(Tournier et al., 2013) with maximum spherical harmonic degree = 4. Following default 

procedures ("Beginner DWI Tutorial," 2017), two separate FOD images were produced using the 

estimated response function, one using a whole brain mask, and the other using the thresholded 

FA mask (here FA prior to free water elimination was used). The whole brain mask was used 

only for tractography of the fornix, as using the thresholded FA masked FOD data did not permit 

sufficient information for reliable tractography of fornix, whereas use of the whole brain mask 

for other regions produced excessive spurious and anatomically implausible streamlines (i.e., 

crossing sulci). For fornix, a secondary mask was also applied, in which the operator (A.R.B.) 

drew an inclusionary ROI to cover the fornix, but exclude other regions of the ventricles, the 

thalamus, and choroid plexus. Additional exclusionary masks were liberally applied outside 

these regions to limit any spurious streamlines. The thresholded, FA-masked FOD data were 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 10 

used for CSD tractography of the other regions: CBD CBH, and UF. All streamline outputs were 

inspected by the same person (A.R.B.) using the MRtrix image viewer to ensure complete 

inclusion and to check for spurious streamlines (see Fig. SM1 for an example of sampled 

streamlines). Additional information on streamline inspection is available in Supplementary 

Materials. Following streamline generation and inspection, we used streamlines to sample 

median free-water corrected FA values, and then calculated the mean value across all streamlines 

in each tract of interest.  

Hippocampal subfield morphometry. HC subfield regions included were based on 

methods from prior work (Bender et al., 2013; Daugherty et al., 2016; Mueller et al., 2011; 

Mueller et al., 2007; Shing et al., 2011), and included separate regions for SUB, and 

aggregations of CA1 and 2 (CA1/2), and an aggregation of CA3 and the DG (CA3/DG).  

Optimized automated segmentation. We used the Automated Segmentations of 

Hippocampal Subfields (ASHS; Yushkevich et al., 2015a; Yushkevich et al., 2010) software 

with a customized atlas for HC subfield morphometry (Bender et al., 2018). Because it uses 

multi-atlas label fusion methods, ASHS may be more sensitive to individual differences in HC 

subfield morphology, than single-atlas approaches, such as Freesurfer. The customized atlas was 

built using a modified version of the manual demarcation and tracing rules described previously 

(Daugherty et al., 2016; Keresztes et al., 2017; see Supplementary Materials for more 

information). 

ICV correction. We sampled the intra-cranial vault (ICV) as described previously 

(Bender et al., 2013; Keihaninejad et al., 2010), using the brain extraction tool (BET; Smith, 

2002) in FSL 5.0 (Jenkinson et al., 2005; 2012) on the MPRAGE images (further detail is 

provided in Supplementary Materials).  
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Cognitive Testing 

The Verbal Learning and Memory Test (VLMT; Helmstaedter and Durwen, 1989) is a 

German version of the Rey Auditory Verbal Learning Test (Schmidt, 1996). Participants heard a 

list of 15 nouns, serially presented via headphones. Presentation of the list was followed by a 

recall phase in which a computer screen prompted the participants to type as many words as they 

could remember from the list. This was repeated over five learning trials, each with the same 

word list. The same list of German nouns was used for all participants. The present analyses are 

based on the five verbal learning trials and do not include data from the delayed recall and 

recognition tasks that are also part of the VLMT. 

Data Conditioning 

ICV values were divided by 1,000 to align the scales of HC subfields and ICV, and to 

increase numerical stability in the parameter estimation. We corrected each of the subregional 

HC volumes for ICV using the analysis of covariance approach (Bender et al., 2013; Jack et al., 

1989; Raz et al., 2005). All analyses reported below used the adjusted HC subfield volumes. In 

addition, all FA values were centered at their respective sample means and HC subfield volumes 

were standardized to z-scores.  

Data Analysis 

Overview. Data modeling and analysis was performed in Mplus 7 (Muthén and Muthén, 

2012). We used latent factor analysis to explore associations among verbal learning, HC subfield 

volumes, and WM FA within an overall multivariate model. In light of the complex Model 

specification proceeded in an iterative fashion, as we sought to establish the validity of each . 

The first step involved specifying, testing, and refining individual measurement models for latent 

variables (factors) in each domain, including: 1) a latent growth model across learning trials 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/661702doi: bioRxiv preprint 

https://doi.org/10.1101/661702
http://creativecommons.org/licenses/by-nc-nd/4.0/


LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 12 

(specified below) yielded factors for intercept and slope, 2) three separate HC subfield volume 

factors, and 3) four latent factors representing mean FA of four WM tracts of interest (see Table 

SM1 for factor loadings). Following this, we combined these individual measurement models 

with a structural model to test associations across domains between all latent factors (Fig. 1). 

Next, we specified an additional model to test the fit of separate second-order factors 

representing the HC and WM factors (Fig. 2A). Second-order factors are constructed from other 

estimated factors, rather than observed indicators. Thus, this approach permits estimation of 

overall HC and WM factors based on their constituent factors by subregion or tract, which 

should provide more reliable brain factor estimates. We then tested regression paths from both 

second-order factors for HC and WM to the learning slope factor. Last, we modeled the latent 

interaction (Fürst & Ghisletta, 2009; Maslowsky, Jager, & Hemken, 2014; Little, Bovaird, & 

Widaman, 2006) between the second-order factors for HC and WM  to test the hypothesis that 

the association between HC volume and learning is modified by WM microstructure.   

All models used full information maximum likelihood (FIML) to account for missing 

data without requiring pairwise deletion. Goodness of model fit was assessed by multiple indices 

including chi-square (χ2), chi-square value divided by degrees of freedom (χ2/df), comparative fit 

index (CFI), root mean square error of approximation (RMSEA), and standardized root mean 

square residual (SRMR). We evaluated models according to commonly accepted goodness-of-fit 

thresholds, that is, non-significant chi-square values, CFI values > 0.95, RMSEA values reliably 

< 0.05, and SRMR values < 0.05 indicate good model fit (Bentler, 1990; Hooper et al., 2008). 

Verbal learning latent growth model. We modeled verbal learning by fitting a latent free 

basis model (McArdle, 1986), a type of latent growth model (LGM; Duncan et al., 2013; 

Meredith and Tisak, 1990) to the five learning trials. LGM is commonly used to assess latent 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 13 

change over successive occasions, and generally includes separate factors for the intercept and 

for change trajectories. LGM commonly specifies fixed factor loadings in incrementing value 

following a specific change function (i.e., linear, quadratic, etc.) across sequential indicators. In 

contrast, the latent free basis model fixes the factor loadings of the first and last trials at one and 

zero, respectively; the other factor loadings are freely estimated. Descriptions of the full 

modeling procedures for the LGM are reported in Supplementary Materials. Briefly, however, it 

should be noted that initial attempts to fit the LGM with only intercept and linear slopes were 

poor fit for the data (Table SM3). However, latent basis models may be the best approaches for 

estimating relative change over trials when linear, quadratic, cubic or other functional patterns do 

not provide a good fit for the data (Berlin et al., 2013).  

WM tract and HC subregional factor models. To model each brain imaging parameter, 

we used a confirmatory factor analysis (CFA) approach (see Supplementary Materials for a 

complete description). That is, we fit individual, single-factor models for each of the three HC 

subfield volumes and for each combination of the four WM tracts. For each single-factor model, 

left and right hemisphere brain parameter measures (i.e., FA or mm3 brain volume) served as 

dual indicators (Bender and Raz, 2015; Raz et al., 2005). In all dual-indicator models of brain 

imaging parameters, the factor’s variance parameter was fixed to 1 and the factor loadings for 

both indicators were freely estimated, as were the residual variances. This approach of separate 

factors per region was preferred over combining all indicator loading into a single factor (see 

Supplemental Materials for a complete description).  

Combined model. Next, we specified a combined model that included: (a) the verbal 

learning intercept and slope factors; (b) the three factors of HC subfields volume; and (c) four 

factors of FA in WM tracts. Then we estimated a fully crossed latent covariance matrix for each 
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 14 

combined model. We used bootstrapped resampling with 1,000 draws to generate confidence 

intervals around the combined model parameters, and to test significance of the combined model 

parameters.  

Second-order factor model. In the following steps, we re-specified the model to estimate 

two second-order factors: one representing all four WM factors and one representing the four HC 

subfield factors (Fig. 2A). This model was initially estimated with covariances freely estimated 

among factors. Following the observation of good fit, we then respecified the model to include 

directional regression paths from the factors representing both WM and HC to the LGM slope 

and intercept factors. Although such regression procedures imply causal relationships, it is worth 

noting that the data were cross-sectional and thus cannot inform regarding order or directionality 

of age-related changes (Lindenberger et al., 2011).  

Latent moderation models. Following successful convergence and estimation of the 

second-order factor model, we followed published suggestions for modeling the latent interaction 

(Fürst & Ghisletta, 2009; Maslowsky, Jager, & Hemken, 2014; Little, Bovaird, & Widaman, 

2006) between the factors for the HC and WM second-order factors. We specified the regression 

paths from the two latent factors representing the brain (i.e., WM and HC), and from their latent 

interaction to verbal learning to test if the effect of HC on learning varies across levels of WM, 

and vice versa. We then compared model fit between the models with and without the latent 

interaction using log-likelihood ratio tests. In addition, we estimated difference in R2 and 

variance accounted for in learning rate with and without estimating the interaction between WM 

and HC. Next, we applied the Johnson-Neyman (1936; Preacher et al., 2006) technique for 

plotting the effects of each factor in the interaction, WM and HC, on the learning rate factor, at 

different levels of the other. That is, we plotted the effects of WM on learning rate at different 
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levels of HC volume, and vice versa. Last, we tested simple slopes of each WM or HC predictor 

on learning slope for each level of the other.  

Covariate models. To determine if our findings were influenced by relevant demographic 

variables, we re-evaluated the combined, second-order factor, and latent interaction models with 

the inclusion of the covariates age in years, sex, and number of years of formal education. Years 

of age and education were centered at their respective sample means.  

Results 

Associations between WM, HC, and learning parameters. Initial models for WM and HC 

showed that individual factor models by subregions or WM tracts fit better than single factors 

models (Table SM2). Similarly, the latent basis free LGM fit better than modeling learning as a 

linear slope. Furthermore, combining the verbal learning LGM with the individual factors for the 

seven factors representing HC subfield volumes and limbic WM tracts also resulted in excellent 

fit. This combined model estimated associations between the seven factors representing the 

structural brain parameters – free-water corrected FA in four limbic WM fiber tracts and ICV-

corrected volumes in three HC subregions – and verbal learning (Fig. 1). 

In the combined model, we found that higher learning rate was significantly associated 

with higher FA in CBH (std. est. = 0.207, p = .002) and fornix (std. est. = 0.160, p =.025).  No 

additional significant associations were observed between HC subfield factors and verbal 

learning. Of note, the intercept factor was not significantly associated with any brain factor or 

with the slope factor.  
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Figure 1. Diagram of the ‘combined model,’ with only significant correlations (i.e., p < .05) 
shown. The estimated model included the fully saturated latent correlation matrix. Larger ellipses 
with small double-headed arrows represent latent factors with variance either fixed at 1 or freely 
estimated (*). Small single-headed arrows between factors and their respective observed 
indicators reflect factor loadings, with the value of the factor loading pre-specified (i.e., based on 
estimated loadings from earlier modeling steps) or freely estimated (*). The rectangles reflect the 
observed indicators for each measurement, and the small circles with double-headed arrows 
reflect their residuals and residual variance; all residual error variance parameters were freely 
estimated. In the LGM portion on the right side of the figure, (right) factor loadings for the LGM 
slope factor were originally estimated using a latent basis free model. The intercept (i.e., all 
factor loadings fixed to 1), and slope with factor loadings represent individual differences in 
growth across the verbal learning trials. (See Table SM3 for a comparison for factor loadings and 
fit to a model with linear slope). Larger curved bidirectional arrows represent significant 
covariances between factors (p < .05), and covariance path values reflect standardized 
parameters. The figure shows only the significant associations within each brain domain (i.e., 
among HC subfield factors, and among factors for WM tract FA), and between WM and HC 
factors. In addition, the bold covariance double-headed arrows show significant associations 
between brain factors and the slope factor for the LGM on learning trials.  
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Table 1. Differences in explained variance with and without latent interaction 
 
  Original Model    Latent Moderation Model  Difference 

Model βYX1 βYX2 R2   βYX1 βYX2 βX1X2 R2 ΔR2 

No Covariates 0.452 0.290 0.074  0.372 0.293 0.486 0.110 0.036 

Age 0.426 0.030 0.038  0.358 0.048 0.479 0.077 0.040 

Age, Sex 0.416 0.019 0.036  0.297 -0.050 0.461 0.060 0.025 

Age, Sex, Edu 0.391 0.024 0.032  0.227 -0.273 0.483 0.050 0.017 

 
Note. R2 and ΔR2 (i.e., change in R2) was calculated using the formula provided by Maslowsky et 
al., (2015). βYX1: SEM model parameter for regression path to verbal learning slope latent factor  
from latent factor WM (X1). βYX2: SEM model parameter for regression path to verbal learning 
slope factor from latent factor HC (X2). βX1X2: Covariance between the factors for HC and WM. 
R2 values reflect only variance in verbal learning slope factor explained by the two latent factors 
WM (X1) and HC (X2), and by their latent interaction. ΔR2: difference in R2 values with and 
without latent interaction. In covariate models, R2 estimates reflect inclusion of age, sex and 
education.  
 

Second-order factor model. Based on the combined model, we also specified a model in 

which the four WM factors UF, CBD, CBH, and fornix, load onto a second-order factor 

representing WM, and the three HC subfield factors SUB, CA1/2, and CA3/DG load onto the 

HC volume second-order factor (Fig. 2A). Following the observation of a nonsignificant 

relationship between brain factors and the intercept of the LGM, we re-specified the model to 

only estimate the direct paths between the HC and WM second-order factors and the learning 

slope factor; this model specification proved a good fit for the data (Table SM2). In addition, the 

R2 values output by Mplus showed the second order factors accounted for a large and significant 

proportion of the variance in their constituent factors (Table SM4). However, the only significant 

covariance between factors was a positive association between the WM factor representing 

combined FA and the learning slope parameter (r = .195, p = .007). Notably, HC was associated 
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with neither the WM factor nor the learning curve factor. In addition, the LGM intercept factor 

was also unrelated to other latent factors. 

Latent moderation model. Next, using the latent moderated SEM (LMS) approach as 

implemented in Mplus, we estimated 1) the latent interaction between the HC and WM second-

order factors, and 2) the direct regression paths from the HC and WM second-order factors and 

the latent interaction parameter to the intercept and slope on the LGM (Fürst & Ghisletta, 2009; 

Maslowsky, Jager, & Hemken, 2014; Little, Bovaird, & Widaman, 2006). The use of the 

maximum likelihood estimation with robust standard errors (MLR) estimator necessary for LMS 

in Mplus does not provide standard fit indices for model comparison. Thus, we used log-

likelihood ratio tests to compare fit between the models with and without the latent interaction. 

Modeling the latent moderation effect resulted in a significantly better fit (Table SM6). In 

addition, we estimated difference in R2 and variance accounted for in learning rate with and 

without estimating the interaction between WM and HC and calculated the differences in 

explained variance using the formula provided by Maslowsky et al. (2015; Table 1). The model 

with the latent interaction explained an additional 3.6% of variance in verbal learning over 

models without estimating parameter. 

Next, we followed the Johnson-Neyman (1936) technique for plotting the effects of each 

factor in the interaction, WM and HC, on the learning rate factor, at different levels of the other. 

That is, we plotted the effects of WM on learning rate at different levels of HC volume, and vice 

versa. Last, we extended this approach to test simple slopes of each WM or HC predictor on 

learning slope for each level of the other predictor (Clavel, 2015; Fig. 3). The effects of both HC 

and WM factors on rate of verbal learning is only apparent at higher levels of the other. That is, 

the positive effect of HC volume on the learning slope factor is only apparent at values of the 
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WM factor above the sample mean. Moreover, the effect of WM on the verbal learning slope 

factor is only significant in individuals with HC factor scores above the sample mean (Fig. 

SM3). We confirmed this by re-specifying the model to include additional constraints to test the 

simple slope of HC on verbal learning separately for WM factor standardized values of ± 0.5 

(Clavel, 2015). Model results showed that whereas the low slope of HC on the learning factor at 

–0.5 on the WM factor was nonsignificant (est. = 0.050, p = .841; 95% CI = –0.436 to 0.535), the 

high slope was significant (est. = 0.536, p = .015; CI = 0.105 to 0.967). The positive relationship 

between HC volume and verbal learning rate was only apparent among those with higher FA in 

limbic WM. 

To further probe the moderation effect, we saved the standardized factor scores from the 

model using the factor score regression method. Subsequently, we subdivided the sample 

distributions for the standardized WM and HC factors into tertiles and used these to examine the 

results of Johnson-Neyman plots. Our objective for these follow-up analyses was to identify 

whether different WM´HC patterns in this population-based sample might further qualify 

differences in learning. Examining bootstrapped (1000 draws) zero-order correlations between 

learning slope and HC volume by three different levels of WM (Fig. 4) showed individuals in the 

lowest tertile of FA in limbic WM exhibit negative associations between HC volume and 

learning slope (r = –0.221, p = .016; 95% CI = –0.381 to –0.036), which differed from those both 

in the middle WM factor tertile (r = 0.261, p = .005; 95% CI = 0.084 to 0.428) and in the third 

WM factor tertile representing highest FA (r = 0.392, p < .001; 95% CI = 0.265 to 0.497).  

Next, because the learning slope and intercept factors were not significantly related in the 

total sample, we inquired whether this association also might jointly depend on HC and WM 

characteristics. We evaluated differences in the correlation between the slope and intercept 
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factors across the different levels of WM, separately for each tertile of the HC factor distribution. 

Among participants in the tertile for largest HC, higher learning intercept was associated with 

less positive slope in those with the highest FA (r = –0.248, p = .154; 95% CI = –0.481 to –

0.020); however, this relationship was positive in both the middle (r = 0.522, p = .001; 95% CI = 

0.251 to 0.718), and lower WM tertiles (r = 0.261, p = .131; 95% CI = –0.001 to 0.485). Thus, 

whereas higher initial recall performance left less room for improvement across learning trials in 

those with the most robust brain parameters, intercept served as a positive correlate of learning in 

participants whose brain parameter estimates were near or below the sample mean. 

Covariate models. Although the LMS model without covariates (i.e., the ‘No Covariates’ 

model in Table 1) provided the primary findings of interest, we repeated the modeling process to 

assess how these effects are influenced by three relevant demographic covariates: years of age, 

and educational attainment, both centered at their respective sample means, and participant sex. 

Initially, we tested the inclusion of covariates in the combined model by specifying paths from 

each covariate to each of the nine latent factors for HC subfields, WM tracts, and the intercept 

and slope, which proved an acceptable fit (Table SM2). In addition, covariances between 

learning slope and WM brain parameters (i.e., FA in fornix and CBH), remained significant in 

the combined model, with the inclusion of covariates (for both, p < .05).  

Next, we respecified the second-order models to include the paths from the three 

covariates to the latent factors for WM, HC, and learning slope. Model fit was acceptable across 

all second-order covariate models (Table SM5). In the second-order model with all three 

covariates, the path from the WM factor to learning slope remained significant (estimate = 0.172, 

p = 0.013; 95% CI = 0.055 to 0.765). However, following estimation of the LMS covariate 

model to test the latent interaction between WM and HC factors on learning, the direct effect 
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from WM to learning rate was no longer significant (estimate = 0.227, p = 0.256; 95% CI = –

0.165 to 0.620). Of note, however, the path from the HC´WM latent interaction term to the 

learning rate factor remained significant (estimate = 0.483, p = .013; 95% CI = 0.102 to 0.864).  

The LMS covariate model also showed that older age was associated with lower learning slope 

(estimate = –0.530, p = .011; 95% CI = –0.937 to –0.124) and with smaller HC (estimate = –

0.267, p < .001; 95% CI = –0.399 to –0.135). Model results also revealed a significant effect of 

sex on the learning intercept factor (estimate = 0.592, p = .011; 95% CI = 0.137 to 1.046) 

showing superior recall performance by women over men. 

Next, we evaluated the differences in levels of covariates across the tertiles of the WM 

and HC factor distributions. Separately, for each of the three HC factor tertiles we evaluated one-

way ANOVAs with age as the dependent variable and WM tertile as the independent variable. 

The model for the lowest tertile of the HC factor yielded an effect of WM tertile on age, F(1,110) 

= 4.837, p = .030, which was rendered nonsignificant following Bonferroni correction for 

multiple comparisons across the three models. We repeated this process to evaluate differences 

in educational attainment. The ANOVA revealed a significant effect of WM tertile on education 

only for the second tertile of HC, F(1,110) = 9.564, p = .003. Post hoc Student’s t-tests showed 

that among the participants in the middle tertile of the HC factor, those with lowest WM factor 

scores had fewer self-reported years of formal education than those with the highest limbic FA: 

t(72) = –3.060, p = .003. 
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Figure 2. Data modeling steps for second-order models and latent moderated structural equation 
models. A. Initial specification of the second-order latent factor model. No covariances or 
regression paths between factors are illustrated. B. Reduced illustration of the specified model 
(indicators and error variances not shown). Initial specification without latent interaction 
included regression paths from the HC and WM/FA second-order factors to the slope and 
intercept factors. Dashed lines indicate nonsignificant regression paths, and solid lines reflect 
significant paths. C. The latent interaction model showing significant paths from HC and 
WM/FA factors to the slope factor. The dot symbolizes the latent interaction between the HC and 
WM/FA factors. 
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Figure 3. Johnson-Neyman plot illustrating the decomposed interaction to test the moderating 
effect of limbic white matter FA (WM) on the effect of hippocampal volume (HC) on the verbal 
learning slope factor. The x-axis represents the continuous moderator – here, the standardized 
white matter (WM) factor score, and the y-axis represents the effect of the hippocampus (HC) 
latent factor in the latent interaction on the verbal learning slope parameter, adjusted for other 
model parameters. The solid regression line reflects the association between the adjusted effect 
of the hippocampal factor on the learning slope factor, as a function of level in the WM factor. 
The dotted lines represent the upper and lower 95% confidence band around the regression slope. 
The solid horizontal line at y = 0, and the dotted vertical line at x = 0 are superimposed to assist 
with interpretation. Regions where the confidence bands overlap with y = 0 indicates the levels 
of the x-variable in which the effect represented by the regression slope are not significant; this is 
denoted by dark gray shading. The confidence bands overlap with zero until the WM factor score 
is slightly greater than 0.15, demonstrating that the adjusted effect of HC volume on learning is 
only apparent at non-negative values of the WM factor (i.e., area with lighter gray shading).  
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Figure 4. Decomposition of the effects of the latent interaction between hippocampus (HC) and 
white matter (WM) on the latent factor representing the slope across learning trials based on WM 
tertiles. The scatter plot shows the HC factor score on the x-axis plotted against the learning 
slope factor on the y-axis, with linear smoothers fitted separately for each of the three tertiles of 
the WM distribution. Scales for both axes are depicted using standardized scores. Separate 
symbols and fitted regression lines represent each of the three tertiles of the WM distribution 
representing low, middle, and high FA values. Greater HC volume is associated with higher 
learning slope only in the middle (short-dashed regression line and triangle symbols) and highest 
tertiles (long-dashed regression line and square symbols) of the WM factor. For the lowest tertile 
of WM (solid regression line and circle symbols), higher HC volume is associated with lower 
learning rate. 
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Discussion 

We used latent factor modeling to evaluate the relationships between multiple limbic 

structures and learning in a large, population-based cohort study of older adults. The present 

study yielded several notable results concerning associations between limbic WM 

microstructure, HC subfield volumes, and verbal learning. First, a latent factor formed from FA 

in limbic WM regions and uncinate was consistently associated with faster rate of learning. 

Moreover, the latent factor representing volume of the hippocampus was not significantly related 

to learning rate in the total sample. However, evaluating the latent interaction between HC and 

WM factors revealed an important moderation effect: hippocampal volume was only positively 

related to learning rate in older adults with more coherent diffusion in limbic WM, possibly 

reflecting more intact WM microstructure. In contrast, larger hippocampal volume was 

associated with lower learning rate for individuals with lower WM anisotropy. This has 

substantial implications for the use of HC volume as a biomarker of brain and cognitive aging.  

Van Petten’s (2004) meta-analysis of the relationship between hippocampal volume and 

memory notes substantial heterogeneity in this association among older adults. The present 

findings offer one possible explanation for some of this variation. Indeed, Van Petten notes that 

data from one study of population neuroimaging supported a weak but significant association 

between total hippocampal volume and immediate and delayed verbal recall (Hackert et al., 

2002), with an age-residualized effect of r = 0.12. However, that review found that smaller and 

more selectively sampled study cohorts were often more likely to report the positive association 

between HC volume and memory in older adults. In comparison, the present population-based 

cohort study of aging more closely resembles the Rotterdam Study, in which the age-residualized 

effects of HC volume on memory were rather modest. Thus, population neuroimaging studies 
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that include less selectively screened samples should evaluate the associations between HC 

volume and memory as conditioned on differences in WM microstructure.  

Learning rate has been previously associated with total HC volume in older adults with 

and without memory impairments (Bonner-Jackson et al., 2015). However, this is the first study 

to link differences in limbic WM with learning, modeled as a growth function. HC afferent and 

efferent pathways via the fornix and cingulum play a crucial role in mnemonic encoding and 

recall (Aggleton and Brown, 1999), underlining the need to examine structural connections 

beyond the HC (Aggleton, 2014). Prior reports evaluating the combined associations of limbic 

WM diffusion parameters and HC volumes on episodic memory show mixed effects. Whereas 

higher FA in CBH and fornix has been linked with better episodic memory, the relationships of 

total HC volume are inconsistent (Ezzati et al., 2015; Metzler-Baddeley et al., 2011a). We found 

that higher FA in the ventral (i.e., parahippocampal) portion of the cingulum bundle and the 

fornix was consistently associated with higher learning rate. Moreover, the association between 

HC volume and learning rate was positive in individuals with higher FA in limbic WM; 

however, this relationship was negative in those with low limbic FA.  

These results support the notion that the intercept and slope of learning may reflect 

different demographic factors like age, sex, and education, as well as differences in other 

cognitive abilities including verbal knowledge, processing speed, and cognitive status (Jones et 

al., 2005). One possibility is that the different patterns of WM and HC reflect different genetic 

and life course influences. We found higher educational attainment was associated with more 

coherent limbic WM microstructure in those in the middle tertile of HC. However, whether this 

might also serve as an indicator of risk for subsequent decline will require further analysis with 

longitudinal data. Future studies might also benefit from applying non-parametric approaches to 
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identify non-linear moderation patterns like local SEM (Hildebrandt et al., 2009; Hülür et al., 

2011) or SEM trees (Brandmaier et al., 2013). For example, local SEM could be used to move a 

window over all participants sorted by WM factor values and then plot estimated model 

parameters over WM factor values. 

The present findings also highlight the utility of SEM latent factor approaches for 

modeling relationships between multiple neural correlates and cognitive measures as latent 

factors, free from inherent measurement error. This also permits simultaneous estimation of 

associations between related factors, while precluding the need to correct for multiple 

comparisons. To the best of our knowledge, this is the first time that the hippocampus has been 

modeled in this fashion – as a second-order latent factor formed by individual subregional 

factors. Such an approach may provide a more reliable volumetric estimate of hippocampal 

structural integrity, particularly in comparison to age-biased estimates of single volumetric 

indicators from automated segmentation procedures (Wenger et al., 2014).  

Furthermore, specifying the latent interaction between the HC and WM latent factors 

resulted in a better model fit and explained more variance in learning rate. There are a limited 

number of valid statistical approaches for demonstrating such differential patterns of 

relationships in cross-sectional data. Mediational approaches are sometimes used to model more 

complex relationships between brain regions, age and cognition (Foster et al., 2019; Metzler-

Baddeley et al., 2019; Salthouse, 2011). Despite violating essential assumptions of temporal 

ordering necessary to test causal relationships, this nevertheless points to an important modeling 

need – showing that associations between two variables vary across levels of a third. Moderation 

approaches are more appropriate for these types of cross-sectional data, and as we show, can 

illuminate new patterns of brain-cognition relations in the population. 	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/661702doi: bioRxiv preprint 

https://doi.org/10.1101/661702
http://creativecommons.org/licenses/by-nc-nd/4.0/


LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 28 

Limitations and Directions for Future Work 

The results of the present study need to be interpreted in light of its limitations. First, the 

present data are cross-sectional and hence cannot reveal the order and directionality of age-

related changes (Lindenberger et al., 2011). Second, we chose to include participants with 

MMSE scores of 25 and 26, raising the possibility that a small number of participants may have 

been in the process of developing dementia. There were also several notable technical 

limitations. First, higher b-values and multi-shell diffusion MRI data can improve resolution of 

crossing fibers and we recommend their use in future studies. Second, we used aggregate values 

of WM parameters across tracts of interest, which does not permit more specific anatomical 

localization of possible effects in cerebral WM. Future studies should try to discern whether 

specific tract segments are differentially associated with learning and memory (Colby et al., 

2012). As the number of brain variables of interest grows (e.g., many regions of interest, or even 

voxel-level analyses), one may consider statistical approaches that appropriately deal with 

situations with large number of predictors and relatively small sample sizes, such as 

regularization (Jacobucci et al., 2019). Also, the 2mm slice thickness associated with the high-

resolution structural imaging sequence for HC subfield volumetry used in this study may have 

come with cost of inducing greater partial volume artifacts. In addition, HC subfield 

measurement was limited to the body. Although some published methods permit segmentation of 

the head and tail, this may simply introduce further methodological heterogeneity (Yushkevich et 

al., 2015b). Work currently in progress should help extend valid segmentation of HC subfields to 

head and tail of the HC using a harmonized protocol (Wisse et al., 2017).  

Last, there are also assumptions and limitations associated with specifying interactions in 

latent space (Moosbrugger et al., 1997). One concern is that established estimation methods 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2019. ; https://doi.org/10.1101/661702doi: bioRxiv preprint 

https://doi.org/10.1101/661702
http://creativecommons.org/licenses/by-nc-nd/4.0/


LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 29 

impose potentially problematic assumptions regarding orthogonality of error structures (Little et 

al., 2006). However, most published work with such SEM approaches for testing latent factor 

moderation specify exogenous latent factors based on unreliable observed variables. Here, we 

used a second-order factor, and although this may be a viable method for circumventing such 

concerns, such an approach has not been compared before with other latent moderation 

approaches. Thus, further work is needed to establish better practices for estimating interactions 

between continuous factors. Moreover, future studies should also compare changes in WM and 

HC measures as correlates of longitudinal changes in learning (Bender and Raz 2015; Bender et 

al., 2016). It is unclear why the paths from both WM and HC factors to the learning slope were 

attenuated following inclusion of the age covariate, but that their interaction was not. Further 

work is needed to investigate the possibly differentially age-related mechanisms that underlie HC 

and WM and their interaction. 

Conclusion 

In the present study, we delineated multimodal neural correlates of verbal learning in 

older adults, including specific limbic WM fiber tracts and HC subregions. We show 

hippocampal volumetric associations with verbal learning are dependent on the levels of FA in 

limbic WM fiber tracts. Given that the present sample was unimpaired and did not widely differ 

in age, we consider this result as encouraging (cf. Salthouse, 2011), while recognizing that it 

needs to be replicated and extended in future cross-sectional and longitudinal investigations. 

These findings also suggest future studies should account for differences in WM microstructure 

when considering total hippocampal volume as a correlate of learning and memory in older 

adults.  
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Supplementary Materials 
 
 

Methods 
 

ROI creation. Three regions were used to specify inclusion of fornices: a seed mask was 

placed in the coronal plane on the body of the fornix and transverse-oriented inclusion masks 

were drawn at the level of mammillary bodies and, and bilateral masks were drawn on the 

coronal plane at crus of the fornix, one just posterior hippocampal body and one more superior. 

Exclusion masks were drawn 1) on the coronal plane, two slices anterior to the fornix, 2) on the 

coronal plane, in the splenium of the corpus callous (CC), and 3) anterior to the columns of the 

fornix, and 4) inferior to the mammillary bodies. The CBD was defined by a single seed ROI 

placed in the middle of the dorsal cingulum, with regions of inclusion and termination anterior to 

the genu of the CC and posterior to the CC splenium. Exclusion masks were liberally placed 

dorsal, rostral, and caudal to the CBD to limit the tract to its core projections. A seed ROI for 

CBH was placed in the coronal plane, in middle of the tract as visualized in the parahippocampal 

gyrus with regions of inclusion and termination at drawn on the coronal plane at the uncal apex 

in the hippocampal head (anterior) and posterior termination at the inferior aspect of the 

splenium of the corpus callosum, drawn on the transverse-oriented image. Uncinate fasciculus 

was determined using a region of inclusion at the external capsule on the coronal plane on the 

slice in which the temporal lobe and frontal lobe become contiguous with regions of inclusion at 

the anterior temporal lobe and in the prefrontal lobe. Regions of exclusion were liberally applied 

to mask out additional streamlines. Fornix tracts were subsequently edited to restrict streamlines 

to the posterior aspect, covering the crus and posterior body. 

Spatial transformation of masks to native space. The spatial transformation matrices 

produced by DTI-TK during registration to template space were inverted and combined. We 
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sampled the s-form matrix from the original diffusion volume prior to nonlinear registration and 

used this information to reorient the deprojected masks from neurological to radiological 

orientation, and back to the native coordinate space. 

Inspection of streamlines. In 18 cases, the rater adjusted the inclusion masks for CBD and CBH, 

or swapped seed and inclusion masks. Cases with fewer than 15 streamlines were deemed 

unreliable and treated as missing values. Streamlines for fornix were particularly vulnerable to 

producing too few streamlines, and cases with less than 15 streamlines in left, right, or bilateral 

fornix were produced in approximately 10% of the sample. The numbers of cases assigned as 

missing values, varied by region and hemisphere, and the final totals of cases with missing 

streamlines were as follows: CBD-left = 8, CBD-right = 8, CBH-left = 16, CBH-right = 23, 

fornix-left = 31, fornix -right = 44, UF-left = 8, UF-right = 8.  

Hippocampal subfield segmentation. We used the Automated Segmentations of 

Hippocampal Subfields (ASHS; Yushkevich et al., 2015; Yushkevich et al., 2010) software with 

a customized atlas for HC subfield morphometry (Bender et al., 2018). The customized atlas was 

built using a modified version of the manual demarcation and tracing rules described previously 

(Bender et al., 2013; Daugherty et al., 2016), and includes a slightly more lateral placement of 

the SUB-CA1/2 boundary as a compromise of that boundary placement in different atlases 

included in commonly used HC subfield segmentation software (Iglesias et al., 2015; 

Yushkevich et al., 2015). This atlas was built from a lifespan sample, and included data from 10 

children and adolescents (age range = 7–13 years; mean age = 10.08, SD = 2.64 years; 50% 

female), four young adults (age range = 22–24 years; mean age = 23.00, SD = 0.82 years; 50% 

female), and 14 older adults (age range = 62–78 years; mean age = 69.64, SD = 4.63 years; 50% 

female). To ensure ASHS demarcation was performed on the full extent of the HC body, we used 
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an extended atlas (Bender et al., 2018). The extended atlas was built from manually demarcated 

data in which the ranges of inclusion were extended beyond anatomical landmarks normally 

designated for manual segmentation procedures. Thus, images included for atlas building by 

tracing subfields on one to two additional anterior slices and one to two additional posterior 

slices to the manually defined ranges, depending on visibility of subfields. In anterior slices, any 

visible tissue from the long digitation of the HC head was not included and demarcation was 

limited to clearly apparent HC ‘body-like’ regions on slices anterior to the uncal apex. 

Automated segmentation failed or produced errors in 36 out of 337 cases (10.68%) included for 

analysis, and these were treated as missing values in subsequent analyses. 

Manual range determination. We separately determined the ranges of slices for inclusion 

in each HC subfield region of interest (ROI) for left and right hemisphere. The first slice 

following the uncal apex, and on which the long digitation of HC head was no longer visible and 

did not exhibit partial volume artifacts served as the anterior limit of HC body. The penultimate 

slice on which the lamina quadrigemina (LQ) was visible served as the posterior limit for 

inclusion. We allowed for hemispheric differences in posterior range if only left or right LQ was 

visible on the final slice, including presence of a partial volume effect. Using a custom Bourne 

shell script, we truncated the output from ASHS to the individualized, manually-determined 

ranges. 

ICV correction. As described previously (see Bender et al., 2013 for a complete 

description) Standard-space masking was applied to remove non-brain tissue, and a fractional 

intensity threshold of 0.2 and we used the -A option for the ‘betsurf‘ feature for estimation of 

skull surfaces (Jenkinson et al., 2005). An experienced operator (ARB) reviewed the results and 

identified 11 cases in which the procedure produced holes in the ICV brain mask, and filled the 
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holes using tools in ITK-SNAP. We used ICV values sampled from the outer skull mask to 

adjust HC subfield volumes for head size. 

Data Analysis. 

Latent growth model (LGM). We specified a model with latent factors for intercept and 

slope. For all trials, the factor loadings for the intercept were all fixed at 1. The factor loadings 

for the 5 trials were estimated using a latent basis free model approach (McArdle, 1986) in which 

the first and last indicator factor loadings are fixed at 0 and 1, respectively, and the remaining 

factor loadings are freely estimated. 

Brain Parameter Confirmatory Factor Analyses (CFA). 

Brain CFAs. All CFA models for HC subfield volumes converged with acceptable fit 

according to most indices. Initial estimation of the three–factor model showed negative residual 

variance for the left CA3/DG indicator. We addressed this by fixing the residual variance for this 

indicator to zero for all subsequent modeling steps, which resulted in unstandardized factor 

loading of 1 for this indicator. As shown in Table SM1, the standardized factor loadings for the 

remaining HC subfield factor indicators were estimated between 0.711 (right CA3/DG) and 

0.962 (left CA1/2). The comparison of model fit indices for one- and four–factor models showed 

the four–factor model to provide the best fit (Table SM2). Model fit in the four–factor model was 

improved by specifying covariances between indicators for subfields within each hemisphere. 

The four–factor model showed significant associations between all HC subfield factors, ranging 

from moderate to strong.  

Initially, for both HC subfield volumes and DTI tracts, we compared the model fit of two 

different approaches: (1) separate latent factors per region or tract with the correlations between 

latent factors freely estimated, and (2) all indicators loading onto a single factor (SM Fig. 2 
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similar to a first principle component). For both HC subfield volumes and each WM measure, we 

assessed which measurement model (individual latent factor or single factor) best fit the data. 

Comparison of model fit for the WM factor models showed poor fit by the one-factor 

model, and excellent fit by each of the four–factor models (see Table SM2). 

 

Results 

Intra-domain brain associations. Consistent with our expectations that factors within the 

respective domains (i.e., WM or HC subfield) would be highly correlated, we observed 

significant associations between all HC subfield factors, and between all WM factors for FA, 

(Table SM2).   
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Table SM1. Standardized factor loadings from single-factor latent models 
 

  Left Right 

HC Subfield 
 

SUB 0.918 0.698 
CA1/2 0.962 0.714 
CA3/DG 0.998 0.711 

   
FA   

CBD 0.902 0.825 
CBH 0.785 0.920 
Fornix 0.783 0.416 
UF 0.827 0.776 

 
Notes: SUB – subiculum; CA1/2 – aggregated ROI for CA1 and CA2 subfields; CA3/DG – 

aggregated ROI for CA3 and DG; CBD – dorsal cingulum bundle; CBH – hippocampal 

cingulum bundle; UF – uncinate fasciculus; FA – fractional anisotropy  
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Table SM2. Goodness of Fit Statistics for CFAs and Covariance Models 
 

Model χ2(df) p χ2/df CFI RMSEA RMSEA 90% CI SRMR 

Verbal Learning Memory Test (VLMT) LGM 
    

Linear slope 182.129 (10) .000 18.213 0.839 0.226 0.039–0.120 0.130 
Latent basis   42.554 (7) .000 6.079 0.967 0.123 0.089–0.159 0.074 

 
       

HC Subfield Volume       

1-Factor 279.547 (6) .000 46.591 0.791 0.389 0.351–0.429 0.064 
3-Factor 3.563 (4) .468 0.891 1.000 0.000 0.000–0.083 0.020 

 
       

DTI - FA        

1-Factor 288.511 (20) .000 14.426 0.704 0.202 0.181–0.223 0.086 
4-Factor 9.437 (14) .802 0.674 1.000 0.000 0.000–0.035 0.013 

 
       

Combined Model        

HC-WM 156.026 (136) .115 1.147 0.994 0.021 0.000-0.035 0.030 
HC-WM-Covs‡ 199.518 (150) .004 1.330 0.985 0.031 0.018-0.042 0.036 

       
Second-order factor model       
 Covariances only 171.26 (119) .001 1.439 0.984 0.036 0.023–0.048 0.043 

 
Notes: ‡: Covariate model including direct paths to each latent factor from observed covariates: 

participant years of age and educational attainment (centered at sample mean) and sex. 
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Table SM3. Comparison of factor loadings in latent growth models  
 

 Factor Loadings by VLMT Trial Model Fit 

Model 1 2 3 4 5 RMSEA CFI SRMR 

Latent Basis Model* 0.000 0.452 0.698 0.889 1.000 0.118 0.961 0.097 

Linear Slope 0.000 1.000 2.000 3.000 4.000 0.238 0.839 0.139 

 
Notes: Latent basis model = Factor loadings for trial 1 fixed to 0 and for trial 5 fixed to 1, and all 

other loadings are freely estimated. Note that the difference in the last factor loading between 

models merely reflects a rescaling of the latent slope variable but does not affect model fit.    * 

indicates factor loadings used in subsequent modeling steps.  
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Table SM4. Significant associations between parameters within brain domain 
 
  Association Estimate S.E. p 95% CI 
HC Subfields      

 CA1/2↔SUB 0.649 0.042 .000 0.560–0.734 

 CA3/DG↔SUB 0.629 0.040 .000 0.548–0.705 
 CA3/DG↔CA1/2 0.820 0.024 .000 0.771–0.864 

      
WM fractional anisotropy (FA)     

    CBH↔CBD 0.554 0.050 .000 0.460–0.639 

 
Fornix↔CBD 0.223 0.080 .005 0.059–0.408 

 
Fornix↔CBH 0.365 0.090 .000 0.166–0.578 

 
UF↔CBD 0.552 0.051 .000 0.450–0.645 

 
UF↔CBH 0.585 0.051 .000 0.445–0.690 

 
UF↔Fornix 0.303 0.087 .000 0.100–0.513 

      
  
Notes. SUB = subiculum, CBD = dorsal cingulum bundle, CBH = hippocampal cingulum 

bundle, UF = uncinate fasciculus. 
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Table SM5. Fit indices for 2nd order models without latent interactions 
 

 
Model χ2 (df) χ2 / df p-value CFI RMSEA SRMR 

No Covariates 221.776 (144) 1.54 .000 0.977 0.040 0.051 

Age 250.185 (161) 1.55 .000 0.974 0.041 0.051 

Age, Sex 299.782 (176) 1.70 .000 0.964 0.046 0.053 

Age, Sex, Edu 309.887 (191) 1.62 .000 0.959 0.042 0.052 
 
Notes: Results shown for reduced model, specified without latent intercept factor as a dependent 

variable. 
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Table SM6.  

Model LL-Orig LL-LI LLR 

No Covariates -530.08 -527.19 5.776* 

Age -502.81 -500.04 5.524* 

Age, Sex -501.78 -499.15 5.258* 

Age, Sex, Edu -1241.20 -1238.50 5.404* 
 

Notes: LL: log-likelihood value. Orig: Original model without latent interaction. LI: Latent 

moderated structural equation model specifying the interaction between second order factors for 

hippocampal volume and limbic white matter fractional anisotropy. LLR: Log-likelihood ratio 

test, a two-tailed test of differences in fit. LLR statistic shows significant differences between 

models including latent interaction and those that do not, with lower log-likelihood indicating 

better fit.  
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Figure SM1. Illustration of constrained spherical deconvolution diffusion tractography using 

MRtrix3. Using deterministic fiber tractography we sampled free water-corrected fractional 

anisotropy from streamlines representing canonical limbic system white matter fiber tracts: 

uncinate fasciculus, dorsal and parahippocampal cingulum bundle, and posterior fornix.   
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Figure SM2. Alternative measurement models for DTI parameters and hippocampal subfields. A. 

One-factor model with all indicators loading onto a single factor. B. Four-factor model, with dual 

indicators representing left and right hemispheres for each latent factor representing individual, 

bilateral anatomical regions (i.e., WM tract or HC subfield volume).  
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Figure SM3. Johnson-Neyman plot illustrating the decomposed interaction to test the moderating 

effect of hippocampal volume (HC) on the effect of limbic white matter (WM) fractional 

anisotropy on the verbal learning slope latent factor. The x-axis represents the continuous 

moderator – here, the standardized HC factor score, and the y-axis represents the effect of the 

WM latent factor in the latent interaction on the verbal learning slope parameter, adjusted for 

other model parameters. The solid regression line reflects the association between the adjusted 

effect of the WM factor on the learning slope latent factor, as a function of level in the HC 

factor. The dotted lines represent the upper and lower 95% confidence band around the 

regression slope. The solid horizontal line at y=0, and the dotted vertical line at x=0 are 

superimposed to assist with interpretation. Regions where the confidence bands overlap with y=0 

indicates the levels of the x-variable in which the effect represented by the regression slope are 

not significant. The confidence bands overlap with zero until the HC factor score is slightly 

greater than 0, demonstrating that the adjusted effect of WM volume on learning is only apparent 

at non-negative values of the HC factor.  
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