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Abstract
Age-related memory impairments have been linked to differences in structural brain parameters,
including cerebral white matter (WM) microstructure and hippocampal (HC) volume, but their
combined influences are rarely investigated. In a population-based sample of 337 older
participants 61-82 years of age (Mage=69.66, SD4=3.92 years) we modeled the independent and
joint effects of limbic WM microstructure and HC subfield volumes on verbal learning.
Participants completed a verbal learning task over five learning trials and underwent magnetic
resonance imaging (MRI), including structural and diffusion scans. We segmented three HC
subregions on high-resolution MRI data and sampled mean fractional anisotropy (FA) from
bilateral limbic WM tracts identified via deterministic fiber tractography. Using structural
equation modeling, we evaluated the associations between learning rate and latent factors
representing FA sampled from limbic WM tracts, and HC subfield volumes, as well as their
latent interaction. Results showed limbic WM and the interaction of HC and WM — but not HC
volume alone — predicted verbal learning rates. Model decomposition revealed HC volume is
only positively associated with learning rate in individuals with higher levels of WM anisotropy.
We conclude that structural characteristics of limbic WM regions and HC volume jointly

contribute to verbal learning in older adults.
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 3

Hippocampal Subfields and Limbic White Matter Jointly Predict Learning Rate in Older Adults

Age-related deficits in verbal learning and memory have a long history of study in
psychological and cognitive sciences (Kausler, 1994; Korchin and Basowitz, 1957; Salthouse,
1985). Individual differences in learning and memory in older adults are linked with differences
in both regional gray matter volumes in the medial temporal lobe (MTL; Petersen et al., 2000)
and microstructural measures of limbic white matter (WM) pathways (see Madden et al., 2012
for a review). However, few studies to date have investigated the influences of both classes of
neuroanatomical correlates of verbal learning, using two magnetic resonance imaging (MRI)
modalities, in a population-based cohort of older adults. Arguably, modeling learning and
memory as a function of a larger, integrated neural system affords a more balanced perspective
over traditional univariate modeling of individual neural structures (Aggleton, 2014).

Verbal learning is commonly tested via serial presentation of lexical stimuli, followed by
tests of free or cued recall and recognition. For instance, multiple neuropsychological
instruments assessing verbal learning repeatedly present the same stimulus list over multiple
successive learning trials; following each presentation, participants freely recall as many items as
possible (Baldo et al., 2002; Schmidt, 1996). Although the sum of recalled items is commonly
used as measure of aggregate performance, the slope of change in memory performance across
learning trials can serve as an estimate of the rate of learning (Jones et al., 2005). Although many
studies have explored the neural correlates of age-associated decrements in delayed mnemonic
retrieval, fewer have investigated the structural brain correlates associated with learning rate
(Gifford et al., 2015). These initial studies suggest that individual differences in learning rate are
associated with hippocampal (HC) volumes in normal aging and mild cognitive impairment

(Bonner-Jackson et al., 2015; Gifford et al., 2015), and may afford a more sensitive behavioral
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 4
correlate of brain organization. Although prior work has linked larger hippocampal subregional
volumes in Cornu Ammonis (CA) and dentate gyrus (DG) to better verbal learning, associative
memory, and higher longitudinal retest improvements (Bender et al., 2013; Mueller et al., 2011;
Shing et al., 2011), this has not been investigated as a correlate of learning rate.

In addition to HC, other established neuroanatomical correlates of age-associated
memory decline include structurally linked afferent and efferent limbic WM pathways measured
via diffusion magnetic resonance imaging (AMRI; Bender et al., 2016; Bennett et al., 2014;
Charlton et al., 2013; Fletcher et al., 2013; Henson et al., 2016; Metzler-Baddeley et al., 2011a;
Sasson et al., 2013; Sepulcre et al., 2008; Stoub et al., 2006; see Preston and Eichenbaum, 2013;
Shing et al., 2008 for reviews). In particular, these extant reports implicate cingulum bundle,
including dorsal and parahippocampal segments, fornix, and uncinate fasciculus (UF) as primary
WM correlates of age-related memory declines. Furthermore, associations between total HC
volume and memory in older adults are inconsistent (Van Petten, 2004), and suggest other, less
elucidated factors may modify this relationship. One possibility is that its structure includes
multiple functionally and cytoarchitectonically distinct subregions, which show differential
associations with aging and with mnemonic processes (Braak et al., 1996; Duvernoy, 2005;
Insausti et al., 1998; Kiernan, 2012; Wilson et al., 2006). This perspective suggests that the
relationship between total HC volume and memory may be attenuated by the lack of functional
and structural specificity (Van Petten, 2004). Alternatively, associations between HC volume and
memory may be modified by related factors, such as the extent of WM connectivity (Foster et
al., 2019; Metzler-Baddeley et al., 2019). However, the statistical interaction between HC

volumes and limbic WM microstructure has not been tested previously.
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Investigating the links of different HC subfields and limbic WM fiber tracts to episodic
memory requires a sufficiently large sample and the incorporation of multiple MRI measurement
approaches. The Berlin Aging Study-II (BASE-II; Bertram et al., 2014; Gerstorf et al., 2016)
includes over 1500 healthy older adults; of these, a subset of whom underwent MRI
neuroimaging. The sample is sufficiently large to permit the use of structural equation modeling
(SEM), which allows the confirmatory construction of memory performance and brain
parameters as latent factors, moving from an observed level to a more valid construct level.
These latent factors then serve as a basis for exploring brain—behavior associations as between—
construct correlations, independent of measurement error. Thus, following the plea of
Brandmaier et al. (2013), we use SEM as a statistical tool that combines the benefits of both
confirmatory and explanatory modes of scientific inquiry.

Specifically, we were interested in modeling the rate of learning across five free recall
trials of a test of verbal learning (Helmstaedter and Durwen, 1989; Schmidt, 1996) to test the
notion that rate of learning is a more sensitive correlate of brain structure and organization than
the intercept. By evaluating the combined contributions from both limbic WM and HC subfield
volumes under the SEM framework, our goal was to simultaneously model multiple distinct, but
interdependent structural neural correlates of learning. Our initial approach was more
exploratory by freely estimating all associations between individual HC and WM factors and
verbal learning slope and intercept. We expected a similar pattern of anatomical associations
with learning as previously reported: higher FA in cingulum and fornix tracts and larger
hippocampal volumes, particularly of CA and DG (Bender et al., 2016; Bennett et al., 2014;
Madden et al., 2012). Herein, we also tested the general hypothesis that aggregate, latent

measures of HC volume and limbic white matter fractional anisotropy in older adults are both
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LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 6
associated with verbal learning rate. Furthermore, we hypothesized that individual differences in
rates of learning would be associated with individual differences in the interaction between HC
volume and FA in limbic WM.

Methods

Participants. Study data were drawn from the first wave of the BASE-II cohort (Bertram
et al., 2014; Gerstorf et al., 2016), a population-based study of older and younger adults living in
Berlin, Germany. The baseline cohort included 1532 older adults from 60 to 88 years of age.
None of the participants took medication that might affect memory function, and none had
neurological disorders, psychiatric disorders, or a history of head injuries. All participants
reported normal or corrected to normal vision and were right-handed. All participants were
invited to two cognitive sessions with an exact interval of seven days and at the same time of day
to avoid circadian confounding effects on session differences in performance. Participants were
tested in groups of 46 individuals. The ethics section of the German Psychological Society
approved the study (SK 012013 _6). All participants had provided informed consent in accord
with the Declaration of Helsinki.

After completing the comprehensive cognitive assessment in BASE-II, MR-eligible
participants were invited to take part in one MRI session within a mean time interval of 3.2
months after the cognitive testing. The subsample consisted of 345 older adults aged 61-82 years
(mean age 70.1 years, SD = 3.9 years, 39% female). We excluded six participants following
technical errors in cognitive test administration, and we excluded two additional participants
with scores below 25 on the Mini-Mental Status Examination (MMSE; Folstein et al., 1975).
Most participants’” MMSE scores were well above this cut-off (mean = 28.61, SD = 1.15).

BASE-II participants in the MRI cohort did not differ from those who did not undergo MRI


https://doi.org/10.1101/661702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/661702; this version posted October 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 7
scanning in terms of educational attainment, cognitive performance, or MMSE scores (for all, <
1.0), although the MRI cohort was significantly younger than the non-MRI cohort (¢ =2.577, p <
.05) by approximately 6 months. The final sample retained for analysis included 337 older adults
(mean age = 69.66, SD = 3.92 years). Sample demographics showed a greater proportion of men
(61.7%) than women (38.3%), and mean level of years of education nearing one year of
university (mean = 14.07, SD = 2.90 years).

Magnetic Resonance Imaging (MRI)

Image acquisition. All MRI data were acquired on a 3T Siemens Magnetom Tim Trio
scanner. For most cases, a 32-channel head coil was used, although in two cases a 12-channel
coil was used as the 32-channel coil provided an uncomfortable fit. MRI data acquisition
included a T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) sequence,
acquired in the sagittal plane with a single average, repetition time (TR) = 2,500 ms, echo time
(TE) =4.77 ms, with an isotropic voxel size of 1.0 x 1.0 x 1.0 mm, using a 3D distortion
correction filter and pre-scan normalization with FOV =256, and GRAPPA acceleration factor =
2. Acquisition also included a single T>-weighted, turbo spin echo (TSE) high-resolution
sequence in a coronal direction, oriented perpendicularly to the long axis of the left HC, with
voxel size = 0.4 X 0.4 x 2.0 mm, 30 slices. TR = 8,150 ms, TE = 50 ms, flip angle = 120°,
positioned to cover the entire extent of the HC. A single-shot, echo-planar imaging, diffusion
weighted sequence was also acquired in transverse plane with TR = 11,000 ms, TE = 98 ms, in
60 gradient directions, diffusion weighting of b = 1,000 s/mm?, seven volumes collected without
diffusion weighting (b = 0) and generalized autocalibrating partially parallel acquisitions

(GRAPPA) acceleration factor = 2 with an isotropic voxel of 1.70 mm?.


https://doi.org/10.1101/661702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/661702; this version posted October 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 8

Diffusion MRI Processing. All diffusion-weighted images (DWI) underwent an initial
quality control (QC) process using DTIPrep v. 1.2.4 (Oguz et al., 2014), software to eliminate
noisy gradient directions and correct for motion and eddy currents.

Free water estimation and removal. The influence of partial volume artifacts from
cerebral spinal fluid (CSF) is an established limitation of the single-tensor diffusion tensor
imaging (DTI) model that is often used in the context of tractography (Concha et al., 2005;
Metzler-Baddeley et al., 2011b; Pasternak et al., 2009), particularly in regions directly adjacent
to ventricular CSF, such as the fornix (Jones and Cercignani, 2010; Metzler-Baddeley et al.,
2011a). To address this limitation, tensor data were corrected for CSF contamination on a voxel-
by-voxel basis, using the free water elimination MATLAB code (FWE; Pasternak et al., 2009),
resulting with free-water corrected diffusion tensors. The free water corrected tensors were then
decomposed using FSL to produce FA image maps.

Sample template creation. We used DTI-TK (Zhang et al., 2006) software to align all
participants’ data into a common template. The complete procedures for inter-subject
registration are detailed in Supplementary Materials.

Region of Interest (ROI) creation. Individual ROIs reflecting seed regions, regions of
inclusion, and regions of exclusion were drawn on the template-space FA image, colored by
orientation image output as an option by DTI-TK in ITK-SNAP (www.itksnap.org; Yushkevich
et al., 2006). All template-space ROIs were nonlinearly deprojected to native space, where they
were inspected for errors by one of the authors (A.R.B.). Following published deterministic
tractography approaches for these regions (Bennett et al., 2014; Malykhin et al., 2008; Metzler-
Baddeley et al., 2011a), we created ROIs for tractography of four, bilateral limbic WM: dorsal

cingulum bundle (CBD), parahippocampal cingulum bundle (CBH), posterior fornix, and
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uncinate fasciculus (UF). The procedures for tractography mask creation, placement, and spatial
transformation from standard to native space are detailed in Supplementary Materials.
Constrained spherical deconvolution (CSD) tractography. To enhance the anatomical
validity and minimize the potentially confounding influences of crossing fiber populations, we
performed diffusion MR tractography using constrained spherical deconvolution (CSD), a
method that fits a fiber orientation distribution (FOD) to each voxel and performs tractography
based on peaks in the FOD (Tournier et al., 2007; Tournier et al., 2004). CSD tractography is
considered superior to other commonly used approaches for delineating WM tracts of interest,
such as white matter skeletonization, due to greater anatomical precision for any given tract
(Metzler-Baddeley et al., 2011a). MRtrix3 (Tournier et al., 2007; Tournier et al., 2004) software
was used for CSD-based deterministic tractography on the DWI data following QC, but before
any free water correction. Response function estimation used the method previously described
(Tournier et al., 2013) with maximum spherical harmonic degree = 4. Following default
procedures ("Beginner DWI Tutorial," 2017), two separate FOD images were produced using the
estimated response function, one using a whole brain mask, and the other using the thresholded
FA mask (here FA prior to free water elimination was used). The whole brain mask was used
only for tractography of the fornix, as using the thresholded FA masked FOD data did not permit
sufficient information for reliable tractography of fornix, whereas use of the whole brain mask
for other regions produced excessive spurious and anatomically implausible streamlines (i.e.,
crossing sulci). For fornix, a secondary mask was also applied, in which the operator (A.R.B.)
drew an inclusionary ROI to cover the fornix, but exclude other regions of the ventricles, the
thalamus, and choroid plexus. Additional exclusionary masks were liberally applied outside

these regions to limit any spurious streamlines. The thresholded, FA-masked FOD data were
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used for CSD tractography of the other regions: CBD CBH, and UF. All streamline outputs were
inspected by the same person (A.R.B.) using the MRtrix image viewer to ensure complete
inclusion and to check for spurious streamlines (see Fig. SM1 for an example of sampled
streamlines). Additional information on streamline inspection is available in Supplementary
Materials. Following streamline generation and inspection, we used streamlines to sample
median free-water corrected FA values, and then calculated the mean value across all streamlines
in each tract of interest.

Hippocampal subfield morphometry. HC subfield regions included were based on
methods from prior work (Bender et al., 2013; Daugherty et al., 2016; Mueller et al., 2011;
Mueller et al., 2007; Shing et al., 2011), and included separate regions for SUB, and
aggregations of CA1 and 2 (CA1/2), and an aggregation of CA3 and the DG (CA3/DQG).

Optimized automated segmentation. We used the Automated Segmentations of
Hippocampal Subfields (ASHS; Yushkevich et al., 2015a; Yushkevich et al., 2010) software
with a customized atlas for HC subfield morphometry (Bender et al., 2018). Because it uses
multi-atlas label fusion methods, ASHS may be more sensitive to individual differences in HC
subfield morphology, than single-atlas approaches, such as Freesurfer. The customized atlas was
built using a modified version of the manual demarcation and tracing rules described previously
(Daugherty et al., 2016; Keresztes et al., 2017; see Supplementary Materials for more
information).

ICV correction. We sampled the intra-cranial vault (ICV) as described previously
(Bender et al., 2013; Keihaninejad et al., 2010), using the brain extraction tool (BET; Smith,
2002) in FSL 5.0 (Jenkinson et al., 2005; 2012) on the MPRAGE images (further detail is

provided in Supplementary Materials).
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Cognitive Testing

The Verbal Learning and Memory Test (VLMT; Helmstaedter and Durwen, 1989) is a
German version of the Rey Auditory Verbal Learning Test (Schmidt, 1996). Participants heard a
list of 15 nouns, serially presented via headphones. Presentation of the list was followed by a
recall phase in which a computer screen prompted the participants to type as many words as they
could remember from the list. This was repeated over five learning trials, each with the same
word list. The same list of German nouns was used for all participants. The present analyses are
based on the five verbal learning trials and do not include data from the delayed recall and
recognition tasks that are also part of the VLMT.
Data Conditioning

ICV values were divided by 1,000 to align the scales of HC subfields and ICV, and to
increase numerical stability in the parameter estimation. We corrected each of the subregional
HC volumes for ICV using the analysis of covariance approach (Bender et al., 2013; Jack et al.,
1989; Raz et al., 2005). All analyses reported below used the adjusted HC subfield volumes. In
addition, all FA values were centered at their respective sample means and HC subfield volumes
were standardized to z-scores.
Data Analysis

Overview. Data modeling and analysis was performed in Mplus 7 (Muthén and Muthén,
2012). We used latent factor analysis to explore associations among verbal learning, HC subfield
volumes, and WM FA within an overall multivariate model. In light of the complex Model
specification proceeded in an iterative fashion, as we sought to establish the validity of each .
The first step involved specifying, testing, and refining individual measurement models for latent

variables (factors) in each domain, including: 1) a latent growth model across learning trials
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(specified below) yielded factors for intercept and slope, 2) three separate HC subfield volume
factors, and 3) four latent factors representing mean FA of four WM tracts of interest (see Table
SM1 for factor loadings). Following this, we combined these individual measurement models
with a structural model to test associations across domains between all latent factors (Fig. 1).
Next, we specified an additional model to test the fit of separate second-order factors
representing the HC and WM factors (Fig. 2A). Second-order factors are constructed from other
estimated factors, rather than observed indicators. Thus, this approach permits estimation of
overall HC and WM factors based on their constituent factors by subregion or tract, which
should provide more reliable brain factor estimates. We then tested regression paths from both
second-order factors for HC and WM to the learning slope factor. Last, we modeled the latent
interaction (Fiirst & Ghisletta, 2009; Maslowsky, Jager, & Hemken, 2014; Little, Bovaird, &
Widaman, 2006) between the second-order factors for HC and WM to test the hypothesis that
the association between HC volume and learning is modified by WM microstructure.

All models used full information maximum likelihood (FIML) to account for missing
data without requiring pairwise deletion. Goodness of model fit was assessed by multiple indices
including chi-square (3?), chi-square value divided by degrees of freedom (y*/df), comparative fit
index (CFI), root mean square error of approximation (RMSEA), and standardized root mean
square residual (SRMR). We evaluated models according to commonly accepted goodness-of-fit
thresholds, that is, non-significant chi-square values, CFI values > 0.95, RMSEA values reliably
< 0.05, and SRMR values < 0.05 indicate good model fit (Bentler, 1990; Hooper et al., 2008).

Verbal learning latent growth model. We modeled verbal learning by fitting a latent free
basis model (McArdle, 1986), a type of latent growth model (LGM; Duncan et al., 2013;

Meredith and Tisak, 1990) to the five learning trials. LGM is commonly used to assess latent
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change over successive occasions, and generally includes separate factors for the intercept and
for change trajectories. LGM commonly specifies fixed factor loadings in incrementing value
following a specific change function (i.e., linear, quadratic, etc.) across sequential indicators. In
contrast, the latent free basis model fixes the factor loadings of the first and last trials at one and
zero, respectively; the other factor loadings are freely estimated. Descriptions of the full
modeling procedures for the LGM are reported in Supplementary Materials. Briefly, however, it
should be noted that initial attempts to fit the LGM with only intercept and linear slopes were
poor fit for the data (Table SM3). However, latent basis models may be the best approaches for
estimating relative change over trials when linear, quadratic, cubic or other functional patterns do
not provide a good fit for the data (Berlin et al., 2013).

WM tract and HC subregional factor models. To model each brain imaging parameter,
we used a confirmatory factor analysis (CFA) approach (see Supplementary Materials for a
complete description). That is, we fit individual, single-factor models for each of the three HC
subfield volumes and for each combination of the four WM tracts. For each single-factor model,
left and right hemisphere brain parameter measures (i.e., FA or mm? brain volume) served as
dual indicators (Bender and Raz, 2015; Raz et al., 2005). In all dual-indicator models of brain
imaging parameters, the factor’s variance parameter was fixed to 1 and the factor loadings for
both indicators were freely estimated, as were the residual variances. This approach of separate
factors per region was preferred over combining all indicator loading into a single factor (see
Supplemental Materials for a complete description).

Combined model. Next, we specified a combined model that included: (a) the verbal
learning intercept and slope factors; (b) the three factors of HC subfields volume; and (c) four

factors of FA in WM tracts. Then we estimated a fully crossed latent covariance matrix for each
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combined model. We used bootstrapped resampling with 1,000 draws to generate confidence
intervals around the combined model parameters, and to test significance of the combined model
parameters.

Second-order factor model. In the following steps, we re-specified the model to estimate
two second-order factors: one representing all four WM factors and one representing the four HC
subfield factors (Fig. 2A). This model was initially estimated with covariances freely estimated
among factors. Following the observation of good fit, we then respecified the model to include
directional regression paths from the factors representing both WM and HC to the LGM slope
and intercept factors. Although such regression procedures imply causal relationships, it is worth
noting that the data were cross-sectional and thus cannot inform regarding order or directionality
of age-related changes (Lindenberger et al., 2011).

Latent moderation models. Following successful convergence and estimation of the
second-order factor model, we followed published suggestions for modeling the latent interaction
(Fiirst & Ghisletta, 2009; Maslowsky, Jager, & Hemken, 2014; Little, Bovaird, & Widaman,
20006) between the factors for the HC and WM second-order factors. We specified the regression
paths from the two latent factors representing the brain (i.e., WM and HC), and from their latent
interaction to verbal learning to test if the effect of HC on learning varies across levels of WM,
and vice versa. We then compared model fit between the models with and without the latent
interaction using log-likelihood ratio tests. In addition, we estimated difference in R? and
variance accounted for in learning rate with and without estimating the interaction between WM
and HC. Next, we applied the Johnson-Neyman (1936; Preacher et al., 2006) technique for
plotting the effects of each factor in the interaction, WM and HC, on the learning rate factor, at

different levels of the other. That is, we plotted the effects of WM on learning rate at different
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levels of HC volume, and vice versa. Last, we tested simple slopes of each WM or HC predictor
on learning slope for each level of the other.

Covariate models. To determine if our findings were influenced by relevant demographic
variables, we re-evaluated the combined, second-order factor, and latent interaction models with
the inclusion of the covariates age in years, sex, and number of years of formal education. Years
of age and education were centered at their respective sample means.

Results

Associations between WM, HC, and learning parameters. Initial models for WM and HC
showed that individual factor models by subregions or WM tracts fit better than single factors
models (Table SM2). Similarly, the latent basis free LGM fit better than modeling learning as a
linear slope. Furthermore, combining the verbal learning LGM with the individual factors for the
seven factors representing HC subfield volumes and limbic WM tracts also resulted in excellent
fit. This combined model estimated associations between the seven factors representing the
structural brain parameters — free-water corrected FA in four limbic WM fiber tracts and ICV-
corrected volumes in three HC subregions — and verbal learning (Fig. 1).

In the combined model, we found that higher learning rate was significantly associated
with higher FA in CBH (std. est. = 0.207, p = .002) and fornix (std. est. = 0.160, p =.025). No
additional significant associations were observed between HC subfield factors and verbal
learning. Of note, the intercept factor was not significantly associated with any brain factor or

with the slope factor.
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Figure 1. Diagram of the ‘combined model,” with only significant correlations (i.e., p <.05)
shown. The estimated model included the fully saturated latent correlation matrix. Larger ellipses
with small double-headed arrows represent latent factors with variance either fixed at 1 or freely
estimated (*). Small single-headed arrows between factors and their respective observed
indicators reflect factor loadings, with the value of the factor loading pre-specified (i.e., based on
estimated loadings from earlier modeling steps) or freely estimated (*). The rectangles reflect the
observed indicators for each measurement, and the small circles with double-headed arrows
reflect their residuals and residual variance; all residual error variance parameters were freely
estimated. In the LGM portion on the right side of the figure, (right) factor loadings for the LGM
slope factor were originally estimated using a latent basis free model. The intercept (i.e., all
factor loadings fixed to 1), and slope with factor loadings represent individual differences in
growth across the verbal learning trials. (See Table SM3 for a comparison for factor loadings and
fit to a model with linear slope). Larger curved bidirectional arrows represent significant
covariances between factors (p < .05), and covariance path values reflect standardized
parameters. The figure shows only the significant associations within each brain domain (i.e.,
among HC subfield factors, and among factors for WM tract FA), and between WM and HC
factors. In addition, the bold covariance double-headed arrows show significant associations
between brain factors and the slope factor for the LGM on learning trials.
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Table 1. Differences in explained variance with and without latent interaction

Original Model Latent Moderation Model Difference
Model Pvxi Prxz R’ Prxi Pz Pxiz R? AR’

No Covariates  0.452 0.290  0.074 0372 0293 0.486 0.110 0.036

Age 0.426 0.030 0.038 0.358 0.048 0.479 0.077 0.040
Age, Sex 0.416 0.019 0.036 0.297 -0.050 0.461 0.060 0.025

Age, Sex, Edu  0.391 0.024  0.032 0.227 -0.273 0.483 0.050 0.017

Note. R? and AR? (i.e., change in R?) was calculated using the formula provided by Maslowsky et
al., (2015). frxi: SEM model parameter for regression path to verbal learning slope latent factor
from latent factor WM (X1). Byx2: SEM model parameter for regression path to verbal learning
slope factor from latent factor HC (X2). fxix2: Covariance between the factors for HC and WM.
R? values reflect only variance in verbal learning slope factor explained by the two latent factors
WM (X1) and HC (X2), and by their latent interaction. AR?: difference in R? values with and
without latent interaction. In covariate models, R’ estimates reflect inclusion of age, sex and
education.

Second-order factor model. Based on the combined model, we also specified a model in
which the four WM factors UF, CBD, CBH, and fornix, load onto a second-order factor
representing WM, and the three HC subfield factors SUB, CA1/2, and CA3/DG load onto the
HC volume second-order factor (Fig. 2A). Following the observation of a nonsignificant
relationship between brain factors and the intercept of the LGM, we re-specified the model to
only estimate the direct paths between the HC and WM second-order factors and the learning
slope factor; this model specification proved a good fit for the data (Table SM2). In addition, the
R? values output by Mplus showed the second order factors accounted for a large and significant
proportion of the variance in their constituent factors (Table SM4). However, the only significant

covariance between factors was a positive association between the WM factor representing

combined FA and the learning slope parameter (r = .195, p = .007). Notably, HC was associated
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with neither the WM factor nor the learning curve factor. In addition, the LGM intercept factor
was also unrelated to other latent factors.

Latent moderation model. Next, using the latent moderated SEM (LMS) approach as
implemented in Mplus, we estimated 1) the latent interaction between the HC and WM second-
order factors, and 2) the direct regression paths from the HC and WM second-order factors and
the latent interaction parameter to the intercept and slope on the LGM (Fiirst & Ghisletta, 2009;
Maslowsky, Jager, & Hemken, 2014; Little, Bovaird, & Widaman, 2006). The use of the
maximum likelihood estimation with robust standard errors (MLR) estimator necessary for LMS
in Mplus does not provide standard fit indices for model comparison. Thus, we used log-
likelihood ratio tests to compare fit between the models with and without the latent interaction.
Modeling the latent moderation effect resulted in a significantly better fit (Table SM6). In
addition, we estimated difference in R? and variance accounted for in learning rate with and
without estimating the interaction between WM and HC and calculated the differences in
explained variance using the formula provided by Maslowsky et al. (2015; Table 1). The model
with the latent interaction explained an additional 3.6% of variance in verbal learning over
models without estimating parameter.

Next, we followed the Johnson-Neyman (1936) technique for plotting the effects of each
factor in the interaction, WM and HC, on the learning rate factor, at different levels of the other.
That is, we plotted the effects of WM on learning rate at different levels of HC volume, and vice
versa. Last, we extended this approach to test simple slopes of each WM or HC predictor on
learning slope for each level of the other predictor (Clavel, 2015; Fig. 3). The effects of both HC
and WM factors on rate of verbal learning is only apparent at higher levels of the other. That is,

the positive effect of HC volume on the learning slope factor is only apparent at values of the
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WM factor above the sample mean. Moreover, the effect of WM on the verbal learning slope
factor is only significant in individuals with HC factor scores above the sample mean (Fig.

SM3). We confirmed this by re-specifying the model to include additional constraints to test the
simple slope of HC on verbal learning separately for WM factor standardized values of £ 0.5
(Clavel, 2015). Model results showed that whereas the low slope of HC on the learning factor at
—0.5 on the WM factor was nonsignificant (est. = 0.050, p = .841; 95% CI =-0.436 to 0.535), the
high slope was significant (est. = 0.536, p = .015; CI = 0.105 to 0.967). The positive relationship
between HC volume and verbal learning rate was only apparent among those with higher FA in
limbic WM.

To further probe the moderation effect, we saved the standardized factor scores from the
model using the factor score regression method. Subsequently, we subdivided the sample
distributions for the standardized WM and HC factors into tertiles and used these to examine the
results of Johnson-Neyman plots. Our objective for these follow-up analyses was to identify
whether different WMxHC patterns in this population-based sample might further qualify
differences in learning. Examining bootstrapped (1000 draws) zero-order correlations between
learning slope and HC volume by three different levels of WM (Fig. 4) showed individuals in the
lowest tertile of FA in limbic WM exhibit negative associations between HC volume and
learning slope (» =—0.221, p = .016; 95% CI =—0.381 to —0.036), which differed from those both
in the middle WM factor tertile (» = 0.261, p = .005; 95% CI = 0.084 to 0.428) and in the third
WM factor tertile representing highest FA (»=0.392, p <.001; 95% CI = 0.265 to 0.497).

Next, because the learning slope and intercept factors were not significantly related in the
total sample, we inquired whether this association also might jointly depend on HC and WM

characteristics. We evaluated differences in the correlation between the slope and intercept
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factors across the different levels of WM, separately for each tertile of the HC factor distribution.
Among participants in the tertile for largest HC, higher learning intercept was associated with
less positive slope in those with the highest FA (r =—-0.248, p = .154; 95% CI = —0.481 to —
0.020); however, this relationship was positive in both the middle (» = 0.522, p = .001; 95% CI =
0.251 to 0.718), and lower WM tertiles (» = 0.261, p = .131; 95% CI = —0.001 to 0.485). Thus,
whereas higher initial recall performance left less room for improvement across learning trials in
those with the most robust brain parameters, intercept served as a positive correlate of learning in
participants whose brain parameter estimates were near or below the sample mean.

Covariate models. Although the LMS model without covariates (i.e., the ‘No Covariates’
model in Table 1) provided the primary findings of interest, we repeated the modeling process to
assess how these effects are influenced by three relevant demographic covariates: years of age,
and educational attainment, both centered at their respective sample means, and participant sex.
Initially, we tested the inclusion of covariates in the combined model by specifying paths from
each covariate to each of the nine latent factors for HC subfields, WM tracts, and the intercept
and slope, which proved an acceptable fit (Table SM2). In addition, covariances between
learning slope and WM brain parameters (i.e., FA in fornix and CBH), remained significant in
the combined model, with the inclusion of covariates (for both, p <.05).

Next, we respecified the second-order models to include the paths from the three
covariates to the latent factors for WM, HC, and learning slope. Model fit was acceptable across
all second-order covariate models (Table SM5). In the second-order model with all three
covariates, the path from the WM factor to learning slope remained significant (estimate = 0.172,
p=0.013; 95% CI = 0.055 to 0.765). However, following estimation of the LMS covariate

model to test the latent interaction between WM and HC factors on learning, the direct effect
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from WM to learning rate was no longer significant (estimate = 0.227, p = 0.256; 95% CI = —
0.165 to 0.620). Of note, however, the path from the HCxWM latent interaction term to the
learning rate factor remained significant (estimate = 0.483, p =.013; 95% CI = 0.102 to 0.864).
The LMS covariate model also showed that older age was associated with lower learning slope
(estimate = —0.530, p = .011; 95% CI =—-0.937 to —0.124) and with smaller HC (estimate = —
0.267, p <.001; 95% CI =-0.399 to —0.135). Model results also revealed a significant effect of
sex on the learning intercept factor (estimate = 0.592, p = .011; 95% CI = 0.137 to 1.046)
showing superior recall performance by women over men.

Next, we evaluated the differences in levels of covariates across the tertiles of the WM
and HC factor distributions. Separately, for each of the three HC factor tertiles we evaluated one-
way ANOVAs with age as the dependent variable and WM tertile as the independent variable.
The model for the lowest tertile of the HC factor yielded an effect of WM tertile on age, F(1,110)
=4.837, p = .030, which was rendered nonsignificant following Bonferroni correction for
multiple comparisons across the three models. We repeated this process to evaluate differences
in educational attainment. The ANOVA revealed a significant effect of WM tertile on education
only for the second tertile of HC, F(1,110) = 9.564, p = .003. Post hoc Student’s t-tests showed
that among the participants in the middle tertile of the HC factor, those with lowest WM factor
scores had fewer self-reported years of formal education than those with the highest limbic FA:

#(72) = -3.060, p = .003.
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Figure 2. Data modeling steps for second-order models and latent moderated structural equation
models. A. Initial specification of the second-order latent factor model. No covariances or
regression paths between factors are illustrated. B. Reduced illustration of the specified model
(indicators and error variances not shown). Initial specification without latent interaction
included regression paths from the HC and WM/FA second-order factors to the slope and
intercept factors. Dashed lines indicate nonsignificant regression paths, and solid lines reflect
significant paths. C. The latent interaction model showing significant paths from HC and

WM/FA factors to the slope factor. The dot symbolizes the latent interaction between the HC and
WM/FA factors.
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Figure 3. Johnson-Neyman plot illustrating the decomposed interaction to test the moderating
effect of limbic white matter FA (WM) on the effect of hippocampal volume (HC) on the verbal
learning slope factor. The x-axis represents the continuous moderator — here, the standardized
white matter (WM) factor score, and the y-axis represents the effect of the hippocampus (HC)
latent factor in the latent interaction on the verbal learning slope parameter, adjusted for other
model parameters. The solid regression line reflects the association between the adjusted effect
of the hippocampal factor on the learning slope factor, as a function of level in the WM factor.
The dotted lines represent the upper and lower 95% confidence band around the regression slope.
The solid horizontal line at y = 0, and the dotted vertical line at x = 0 are superimposed to assist
with interpretation. Regions where the confidence bands overlap with y = 0 indicates the levels
of the x-variable in which the effect represented by the regression slope are not significant; this is
denoted by dark gray shading. The confidence bands overlap with zero until the WM factor score
is slightly greater than 0.15, demonstrating that the adjusted effect of HC volume on learning is
only apparent at non-negative values of the WM factor (i.e., area with lighter gray shading).
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Figure 4. Decomposition of the effects of the latent interaction between hippocampus (HC) and
white matter (WM) on the latent factor representing the slope across learning trials based on WM
tertiles. The scatter plot shows the HC factor score on the x-axis plotted against the learning
slope factor on the y-axis, with linear smoothers fitted separately for each of the three tertiles of
the WM distribution. Scales for both axes are depicted using standardized scores. Separate
symbols and fitted regression lines represent each of the three tertiles of the WM distribution
representing low, middle, and high FA values. Greater HC volume is associated with higher
learning slope only in the middle (short-dashed regression line and triangle symbols) and highest
tertiles (long-dashed regression line and square symbols) of the WM factor. For the lowest tertile
of WM (solid regression line and circle symbols), higher HC volume is associated with lower
learning rate.
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Discussion

We used latent factor modeling to evaluate the relationships between multiple limbic
structures and learning in a large, population-based cohort study of older adults. The present
study yielded several notable results concerning associations between limbic WM
microstructure, HC subfield volumes, and verbal learning. First, a latent factor formed from FA
in limbic WM regions and uncinate was consistently associated with faster rate of learning.
Moreover, the latent factor representing volume of the hippocampus was not significantly related
to learning rate in the total sample. However, evaluating the latent interaction between HC and
WM factors revealed an important moderation effect: hippocampal volume was only positively
related to learning rate in older adults with more coherent diffusion in limbic WM, possibly
reflecting more intact WM microstructure. In contrast, larger hippocampal volume was
associated with lower learning rate for individuals with lower WM anisotropy. This has
substantial implications for the use of HC volume as a biomarker of brain and cognitive aging.

Van Petten’s (2004) meta-analysis of the relationship between hippocampal volume and
memory notes substantial heterogeneity in this association among older adults. The present
findings offer one possible explanation for some of this variation. Indeed, Van Petten notes that
data from one study of population neuroimaging supported a weak but significant association
between total hippocampal volume and immediate and delayed verbal recall (Hackert et al.,
2002), with an age-residualized effect of » = 0.12. However, that review found that smaller and
more selectively sampled study cohorts were often more likely to report the positive association
between HC volume and memory in older adults. In comparison, the present population-based
cohort study of aging more closely resembles the Rotterdam Study, in which the age-residualized

effects of HC volume on memory were rather modest. Thus, population neuroimaging studies
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that include less selectively screened samples should evaluate the associations between HC
volume and memory as conditioned on differences in WM microstructure.

Learning rate has been previously associated with total HC volume in older adults with
and without memory impairments (Bonner-Jackson et al., 2015). However, this is the first study
to link differences in limbic WM with learning, modeled as a growth function. HC afferent and
efferent pathways via the fornix and cingulum play a crucial role in mnemonic encoding and
recall (Aggleton and Brown, 1999), underlining the need to examine structural connections
beyond the HC (Aggleton, 2014). Prior reports evaluating the combined associations of limbic
WM diffusion parameters and HC volumes on episodic memory show mixed effects. Whereas
higher FA in CBH and fornix has been linked with better episodic memory, the relationships of
total HC volume are inconsistent (Ezzati et al., 2015; Metzler-Baddeley et al., 2011a). We found
that higher FA in the ventral (i.e., parahippocampal) portion of the cingulum bundle and the
fornix was consistently associated with higher learning rate. Moreover, the association between
HC volume and learning rate was positive in individuals with higher FA in limbic WM;
however, this relationship was negative in those with low limbic FA.

These results support the notion that the intercept and slope of learning may reflect
different demographic factors like age, sex, and education, as well as differences in other
cognitive abilities including verbal knowledge, processing speed, and cognitive status (Jones et
al., 2005). One possibility is that the different patterns of WM and HC reflect different genetic
and life course influences. We found higher educational attainment was associated with more
coherent limbic WM microstructure in those in the middle tertile of HC. However, whether this
might also serve as an indicator of risk for subsequent decline will require further analysis with

longitudinal data. Future studies might also benefit from applying non-parametric approaches to
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identify non-linear moderation patterns like local SEM (Hildebrandt et al., 2009; Hiiliir et al.,
2011) or SEM trees (Brandmaier et al., 2013). For example, local SEM could be used to move a
window over all participants sorted by WM factor values and then plot estimated model
parameters over WM factor values.

The present findings also highlight the utility of SEM latent factor approaches for
modeling relationships between multiple neural correlates and cognitive measures as latent
factors, free from inherent measurement error. This also permits simultaneous estimation of
associations between related factors, while precluding the need to correct for multiple
comparisons. To the best of our knowledge, this is the first time that the hippocampus has been
modeled in this fashion — as a second-order latent factor formed by individual subregional
factors. Such an approach may provide a more reliable volumetric estimate of hippocampal
structural integrity, particularly in comparison to age-biased estimates of single volumetric
indicators from automated segmentation procedures (Wenger et al., 2014).

Furthermore, specifying the latent interaction between the HC and WM latent factors
resulted in a better model fit and explained more variance in learning rate. There are a limited
number of valid statistical approaches for demonstrating such differential patterns of
relationships in cross-sectional data. Mediational approaches are sometimes used to model more
complex relationships between brain regions, age and cognition (Foster et al., 2019; Metzler-
Baddeley et al., 2019; Salthouse, 2011). Despite violating essential assumptions of temporal
ordering necessary to test causal relationships, this nevertheless points to an important modeling
need — showing that associations between two variables vary across levels of a third. Moderation
approaches are more appropriate for these types of cross-sectional data, and as we show, can

illuminate new patterns of brain-cognition relations in the population.


https://doi.org/10.1101/661702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/661702; this version posted October 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 28
Limitations and Directions for Future Work

The results of the present study need to be interpreted in light of its limitations. First, the
present data are cross-sectional and hence cannot reveal the order and directionality of age-
related changes (Lindenberger et al., 2011). Second, we chose to include participants with
MMSE scores of 25 and 26, raising the possibility that a small number of participants may have
been in the process of developing dementia. There were also several notable technical
limitations. First, higher b-values and multi-shell diffusion MRI data can improve resolution of
crossing fibers and we recommend their use in future studies. Second, we used aggregate values
of WM parameters across tracts of interest, which does not permit more specific anatomical
localization of possible effects in cerebral WM. Future studies should try to discern whether
specific tract segments are differentially associated with learning and memory (Colby et al.,
2012). As the number of brain variables of interest grows (e.g., many regions of interest, or even
voxel-level analyses), one may consider statistical approaches that appropriately deal with
situations with large number of predictors and relatively small sample sizes, such as
regularization (Jacobucci et al., 2019). Also, the 2mm slice thickness associated with the high-
resolution structural imaging sequence for HC subfield volumetry used in this study may have
come with cost of inducing greater partial volume artifacts. In addition, HC subfield
measurement was limited to the body. Although some published methods permit segmentation of
the head and tail, this may simply introduce further methodological heterogeneity (Yushkevich et
al., 2015b). Work currently in progress should help extend valid segmentation of HC subfields to
head and tail of the HC using a harmonized protocol (Wisse et al., 2017).

Last, there are also assumptions and limitations associated with specifying interactions in

latent space (Moosbrugger et al., 1997). One concern is that established estimation methods


https://doi.org/10.1101/661702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/661702; this version posted October 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 29
impose potentially problematic assumptions regarding orthogonality of error structures (Little et
al., 2006). However, most published work with such SEM approaches for testing latent factor
moderation specify exogenous latent factors based on unreliable observed variables. Here, we
used a second-order factor, and although this may be a viable method for circumventing such
concerns, such an approach has not been compared before with other latent moderation
approaches. Thus, further work is needed to establish better practices for estimating interactions
between continuous factors. Moreover, future studies should also compare changes in WM and
HC measures as correlates of longitudinal changes in learning (Bender and Raz 2015; Bender et
al., 2016). It is unclear why the paths from both WM and HC factors to the learning slope were
attenuated following inclusion of the age covariate, but that their interaction was not. Further
work is needed to investigate the possibly differentially age-related mechanisms that underlie HC
and WM and their interaction.
Conclusion

In the present study, we delineated multimodal neural correlates of verbal learning in
older adults, including specific limbic WM fiber tracts and HC subregions. We show
hippocampal volumetric associations with verbal learning are dependent on the levels of FA in
limbic WM fiber tracts. Given that the present sample was unimpaired and did not widely differ
in age, we consider this result as encouraging (cf. Salthouse, 2011), while recognizing that it
needs to be replicated and extended in future cross-sectional and longitudinal investigations.
These findings also suggest future studies should account for differences in WM microstructure
when considering total hippocampal volume as a correlate of learning and memory in older

adults.
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Supplementary Materials

Methods

ROI creation. Three regions were used to specify inclusion of fornices: a seed mask was
placed in the coronal plane on the body of the fornix and transverse-oriented inclusion masks
were drawn at the level of mammillary bodies and, and bilateral masks were drawn on the
coronal plane at crus of the fornix, one just posterior hippocampal body and one more superior.
Exclusion masks were drawn 1) on the coronal plane, two slices anterior to the fornix, 2) on the
coronal plane, in the splenium of the corpus callous (CC), and 3) anterior to the columns of the
fornix, and 4) inferior to the mammillary bodies. The CBD was defined by a single seed ROI
placed in the middle of the dorsal cingulum, with regions of inclusion and termination anterior to
the genu of the CC and posterior to the CC splenium. Exclusion masks were liberally placed
dorsal, rostral, and caudal to the CBD to limit the tract to its core projections. A seed ROI for
CBH was placed in the coronal plane, in middle of the tract as visualized in the parahippocampal
gyrus with regions of inclusion and termination at drawn on the coronal plane at the uncal apex
in the hippocampal head (anterior) and posterior termination at the inferior aspect of the
splenium of the corpus callosum, drawn on the transverse-oriented image. Uncinate fasciculus
was determined using a region of inclusion at the external capsule on the coronal plane on the
slice in which the temporal lobe and frontal lobe become contiguous with regions of inclusion at
the anterior temporal lobe and in the prefrontal lobe. Regions of exclusion were liberally applied
to mask out additional streamlines. Fornix tracts were subsequently edited to restrict streamlines
to the posterior aspect, covering the crus and posterior body.

Spatial transformation of masks to native space. The spatial transformation matrices

produced by DTI-TK during registration to template space were inverted and combined. We
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sampled the s-form matrix from the original diffusion volume prior to nonlinear registration and
used this information to reorient the deprojected masks from neurological to radiological
orientation, and back to the native coordinate space.

Inspection of streamlines. In 18 cases, the rater adjusted the inclusion masks for CBD and CBH,
or swapped seed and inclusion masks. Cases with fewer than 15 streamlines were deemed
unreliable and treated as missing values. Streamlines for fornix were particularly vulnerable to
producing too few streamlines, and cases with less than 15 streamlines in left, right, or bilateral
fornix were produced in approximately 10% of the sample. The numbers of cases assigned as
missing values, varied by region and hemisphere, and the final totals of cases with missing
streamlines were as follows: CBD-left = 8§, CBD-right = 8, CBH-left = 16, CBH-right = 23,
fornix-left = 31, fornix -right = 44, UF-left = 8, UF-right = 8.

Hippocampal subfield segmentation. We used the Automated Segmentations of
Hippocampal Subfields (ASHS; Yushkevich et al., 2015; Yushkevich et al., 2010) software with
a customized atlas for HC subfield morphometry (Bender et al., 2018). The customized atlas was
built using a modified version of the manual demarcation and tracing rules described previously
(Bender et al., 2013; Daugherty et al., 2016), and includes a slightly more lateral placement of
the SUB-CA1/2 boundary as a compromise of that boundary placement in different atlases
included in commonly used HC subfield segmentation software (Iglesias et al., 2015;
Yushkevich et al., 2015). This atlas was built from a lifespan sample, and included data from 10
children and adolescents (age range = 7—13 years; mean age = 10.08, SD = 2.64 years; 50%
female), four young adults (age range = 22-24 years; mean age = 23.00, SD = 0.82 years; 50%
female), and 14 older adults (age range = 6278 years; mean age = 69.64, SD = 4.63 years; 50%

female). To ensure ASHS demarcation was performed on the full extent of the HC body, we used
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an extended atlas (Bender et al., 2018). The extended atlas was built from manually demarcated
data in which the ranges of inclusion were extended beyond anatomical landmarks normally
designated for manual segmentation procedures. Thus, images included for atlas building by
tracing subfields on one to two additional anterior slices and one to two additional posterior
slices to the manually defined ranges, depending on visibility of subfields. In anterior slices, any
visible tissue from the long digitation of the HC head was not included and demarcation was
limited to clearly apparent HC ‘body-like’ regions on slices anterior to the uncal apex.
Automated segmentation failed or produced errors in 36 out of 337 cases (10.68%) included for
analysis, and these were treated as missing values in subsequent analyses.

Manual range determination. We separately determined the ranges of slices for inclusion
in each HC subfield region of interest (ROI) for left and right hemisphere. The first slice
following the uncal apex, and on which the long digitation of HC head was no longer visible and
did not exhibit partial volume artifacts served as the anterior limit of HC body. The penultimate
slice on which the lamina quadrigemina (LQ) was visible served as the posterior limit for
inclusion. We allowed for hemispheric differences in posterior range if only left or right LQ was
visible on the final slice, including presence of a partial volume effect. Using a custom Bourne
shell script, we truncated the output from ASHS to the individualized, manually-determined
ranges.

ICV correction. As described previously (see Bender et al., 2013 for a complete
description) Standard-space masking was applied to remove non-brain tissue, and a fractional
intensity threshold of 0.2 and we used the -A option for the ‘betsurf* feature for estimation of
skull surfaces (Jenkinson et al., 2005). An experienced operator (ARB) reviewed the results and

identified 11 cases in which the procedure produced holes in the ICV brain mask, and filled the
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holes using tools in ITK-SNAP. We used ICV values sampled from the outer skull mask to
adjust HC subfield volumes for head size.

Data Analysis.

Latent growth model (LGM). We specified a model with latent factors for intercept and
slope. For all trials, the factor loadings for the intercept were all fixed at 1. The factor loadings
for the 5 trials were estimated using a latent basis free model approach (McArdle, 1986) in which
the first and last indicator factor loadings are fixed at 0 and 1, respectively, and the remaining
factor loadings are freely estimated.

Brain Parameter Confirmatory Factor Analyses (CFA).

Brain CFAs. All CFA models for HC subfield volumes converged with acceptable fit
according to most indices. Initial estimation of the three—factor model showed negative residual
variance for the left CA3/DG indicator. We addressed this by fixing the residual variance for this
indicator to zero for all subsequent modeling steps, which resulted in unstandardized factor
loading of 1 for this indicator. As shown in Table SM1, the standardized factor loadings for the
remaining HC subfield factor indicators were estimated between 0.711 (right CA3/DG) and
0.962 (left CA1/2). The comparison of model fit indices for one- and four—factor models showed
the four—factor model to provide the best fit (Table SM2). Model fit in the four—factor model was
improved by specifying covariances between indicators for subfields within each hemisphere.
The four—factor model showed significant associations between all HC subfield factors, ranging
from moderate to strong.

Initially, for both HC subfield volumes and DTI tracts, we compared the model fit of two
different approaches: (1) separate latent factors per region or tract with the correlations between

latent factors freely estimated, and (2) all indicators loading onto a single factor (SM Fig. 2
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similar to a first principle component). For both HC subfield volumes and each WM measure, we

assessed which measurement model (individual latent factor or single factor) best fit the data.
Comparison of model fit for the WM factor models showed poor fit by the one-factor

model, and excellent fit by each of the four—factor models (see Table SM2).

Results
Intra-domain brain associations. Consistent with our expectations that factors within the
respective domains (i.e., WM or HC subfield) would be highly correlated, we observed
significant associations between all HC subfield factors, and between all WM factors for FA,

(Table SM2).
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Table SM1. Standardized factor loadings from single-factor latent models

Left Right
HC Subfield
SUB 0.918 0.698
CA1/2 0.962 0.714
CA3/DG 0.998 0.711
FA
CBD 0.902 0.825
CBH 0.785 0.920
Fornix 0.783 0.416
UF 0.827 0.776

Notes: SUB — subiculum; CA1/2 — aggregated ROI for CA1 and CA2 subfields; CA3/DG —
aggregated ROI for CA3 and DG; CBD — dorsal cingulum bundle; CBH — hippocampal

cingulum bundle; UF — uncinate fasciculus; FA — fractional anisotropy
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Table SM2. Goodness of Fit Statistics for CFAs and Covariance Models

Model x2(df) p ydf CFl RMSEA  RMSEA90%ClI  SRMR

Verbal Learning Memory Test (VLMT) LGM

Linear slope 182.129 (10) .000 18.213 0.839 0.226 0.039-0.120 0.130

Latent basis 42.554 (7) .000 6.079 0.967 0.123 0.089-0.159 0.074
HC Subfield Volume

1-Factor 279.547 (6) .000 46.591 0.791 0.389 0.351-0.429 0.064

3-Factor 3.563 (4) 468 0.891 1.000 0.000 0.000-0.083 0.020
DTI-FA

1-Factor 288.511 (20) .000 14.426 0.704 0.202 0.181-0.223 0.086

4-Factor 9.437 (14) .802 0.674 1.000 0.000 0.000-0.035 0.013
Combined Model

HC-WM 156.026 (136) 115 1.147 0.994 0.021 0.000-0.035 0.030

HC-WM-Covst 199.518 (150) .004 1.330 0.985 0.031 0.018-0.042 0.036

Second-order factor model
Covariances only 171.26 (119) .001 1.439 0.984 0.036 0.023-0.048 0.043

Notes: f: Covariate model including direct paths to each latent factor from observed covariates:

participant years of age and educational attainment (centered at sample mean) and sex.
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Table SM3. Comparison of factor loadings in latent growth models

Factor Loadings by VLMT Trial Model Fit

Model 1 2 3 4 5 RMSEA CFI  SRMR

Latent Basis Model* 0.000 0.452 0.698 0.889 1.000 0.118 0.961 0.097

Linear Slope 0.000 1.000 2.000 3.000 4.000 0.238 0.839 0.139

Notes: Latent basis model = Factor loadings for trial 1 fixed to 0 and for trial 5 fixed to 1, and all
other loadings are freely estimated. Note that the difference in the last factor loading between
models merely reflects a rescaling of the latent slope variable but does not affect model fit. *

indicates factor loadings used in subsequent modeling steps.
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Table SM4. Significant associations between parameters within brain domain

Association Estimate ~ S.E. p 95% Cl
HC Subfields

CA1/2-SUB 0.649 0.042 .000 0.560-0.734

CA3/DG+~SUB 0.629 0.040 .000 0.548-0.705

CA3/DG—CA1/2 0.820 0.024 .000 0.771-0.864

WM fractional anisotropy (FA)
CBH—~CBD 0.554 0.050  .000 0.460-0.639

Fornix<~CBD 0.223 0.080  .005 0.059-0.408

Fornix—~CBH 0.365 0.090  .000 0.166-0.578

UF—CBD 0.552 0.051 .000 0.450-0.645
UF—CBH 0.585 0.051 .000 0.445-0.690
UF«—Fornix 0.303 0.087  .000 0.100-0.513

Notes. SUB = subiculum, CBD = dorsal cingulum bundle, CBH = hippocampal cingulum

bundle, UF = uncinate fasciculus.
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Table SM5. Fit indices for 2™ order models without latent interactions

Model X2 (df) X2 / df p-value CFI RMSEA SRMR
No Covariates  221.776 (144) 1.54 .000 0.977  0.040 0.051
Age 250.185 (161) 1.55 .000 0.974  0.041 0.051
Age, Sex 299.782 (176) 1.70 .000 0.964  0.046 0.053
Age, Sex, Edu  309.887 (191) 1.62 .000 0.959  0.042 0.052

Notes: Results shown for reduced model, specified without latent intercept factor as a dependent

variable.
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Table SM6.
Model LL-Orig LL-LI LLR
No Covariates -530.08 -527.19 5.776*
Age -502.81 -500.04 5.524*
Age, Sex -501.78 -499.15 5.258*
Age, Sex, Edu -1241.20 -1238.50 5.404*

49

Notes: LL: log-likelihood value. Orig: Original model without latent interaction. LI: Latent

moderated structural equation model specifying the interaction between second order factors for

hippocampal volume and limbic white matter fractional anisotropy. LLR: Log-likelihood ratio

test, a two-tailed test of differences in fit. LLR statistic shows significant differences between

models including latent interaction and those that do not, with lower log-likelihood indicating

better fit.
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Figure SM1. Illustration of constrained spherical deconvolution diffusion tractography using
MRtrix3. Using deterministic fiber tractography we sampled free water-corrected fractional
anisotropy from streamlines representing canonical limbic system white matter fiber tracts:

uncinate fasciculus, dorsal and parahippocampal cingulum bundle, and posterior fornix.


https://doi.org/10.1101/661702
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/661702; this version posted October 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

LIMBIC CONTRIBUTIONS TO VERBAL LEARNING IN OLDER ADULTS 51

‘/‘1/ w » . A . \" \‘\‘
LEFT RIGHT LEFT RIGHT LEFT RIGHT LEFT RIGHT
Region 1 Region 1 Region 2 Region 2 Region 3 Region 3 Region 4 Region 1

© © © © © © © o

LEFT RIGHT LEFT RIGHT LEFT RIGHT LEFT RIGHT
Region 1 Region 1 Region 2 Region 2 Region 3 Region 3 Region 4 Region 1

® © o 6 o o 6 ®

Figure SM2. Alternative measurement models for DTI parameters and hippocampal subfields. A.

One-factor model with all indicators loading onto a single factor. B. Four-factor model, with dual
indicators representing left and right hemispheres for each latent factor representing individual,

bilateral anatomical regions (i.e., WM tract or HC subfield volume).
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Figure SM3. Johnson-Neyman plot illustrating the decomposed interaction to test the moderating
effect of hippocampal volume (HC) on the effect of limbic white matter (WM) fractional
anisotropy on the verbal learning slope latent factor. The x-axis represents the continuous
moderator — here, the standardized HC factor score, and the y-axis represents the effect of the
WM latent factor in the latent interaction on the verbal learning slope parameter, adjusted for
other model parameters. The solid regression line reflects the association between the adjusted
effect of the WM factor on the learning slope latent factor, as a function of level in the HC
factor. The dotted lines represent the upper and lower 95% confidence band around the
regression slope. The solid horizontal line at y=0, and the dotted vertical line at x=0 are
superimposed to assist with interpretation. Regions where the confidence bands overlap with y=0
indicates the levels of the x-variable in which the effect represented by the regression slope are
not significant. The confidence bands overlap with zero until the HC factor score is slightly
greater than 0, demonstrating that the adjusted effect of WM volume on learning is only apparent

at non-negative values of the HC factor.
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