

1 Glacial runoff promotes deep burial of sulfur cycling-associated 2 microorganisms in marine sediments 3

4 Claus Pelikan^{1,2}, Marion Jaussi³, Kenneth Wasmund^{1,2}, Marit-Solveig Seidenkrantz⁴,
5 Christof Pearce⁴, Zou Zou Anna Kuzyk⁵, Craig W. Herbold¹, Hans Røy³, Kasper Urup
6 Kjeldsen³, and Alexander Loy^{1,2*}

7 ¹Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science,
8 University of Vienna, Vienna, Austria

9 ²Austrian Polar Research Institute, Vienna, Austria

10 ³Center for Geomicrobiology and Section for Microbiology, Department of Bioscience, Aarhus
11 University, Aarhus, Denmark

12 ⁴Department of Geoscience, iClimate, and Arctic Research Centre, Aarhus University, Denmark

13 ⁵Department of Geological Sciences, University of Manitoba, Winnipeg, Canada

14 ***Correspondence:**

15 Alexander Loy (Tel: +43 1 4277 91205, loy@microbial-ecology.net)

16 **Running Head:** Glacial runoff impacts benthic microbiota

17 **Keywords:** sulfate-reducing microorganisms, marine sediment, glacial impact, deep biosphere,
18 microbial community assembly, Greenland, arctic

19 5584 words, 2 tables, and 5 figures

20 **Contribution to the Field Statement**

21 In most coastal marine sediments organic matter turnover and total energy flux are highest at the
22 surface and decrease significantly with increasing sediment depth, causing depth-dependent
23 changes in the microbial community composition. Glacial runoff in arctic and subarctic fjords
24 alters the composition of the microbial community at the surface, mainly due to different
25 availabilities of organic matter and metals. Here we show that glacial runoff also modifies
26 microbial community assembly with sediment depth. Sediment age was a key driver of microbial
27 community composition in six-meter-long marine sediment cores from the Godthåbsfjord region,
28 south-western Greenland. High sedimentation rates at glacier-influenced sediment stations
29 enabled a complex community of sulfur-cycling-associated microorganisms to continuously
30 thrive at high relative abundances from the surface into the sediment subsurface. These
31 communities consisted of putative fermenters, sulfate reducers and sulfur oxidizers, which likely
32 depended on high metal concentrations in the relatively young, glacier-influenced sediments. In
33 non-glacier-influenced sediments with lower sedimentation rates, these sulfur-cycling-associated
34 microorganisms were only present near the surface. With increasing sediment depth these
35 surface microorganisms were largely replaced by other surface microorganisms that positively
36 correlated with sediment age and belong to known taxa of the energy-limited, marine deep
37 biosphere.

38

39

40

41

42

43

44

45

46 **Abstract**

47

48 Marine fjords with active glacier outlets are hot spots for organic matter burial in the sediments
49 and subsequent microbial mineralization, and will be increasingly important as climate warming
50 causes more rapid glacial melt. Here, we investigated controls on microbial community assembly
51 in sub-arctic glacier-influenced (GI) and non-glacier-influenced (NGI) marine sediments in the
52 Godthåbsfjord region, south-western Greenland. We used a correlative approach integrating 16S
53 rRNA gene and dissimilatory sulfite reductase (*dsrB*) amplicon sequence data over six meters of
54 depth with biogeochemistry, sulfur-cycling activities, and sediment ages. GI sediments were
55 characterized by comparably high sedimentation rates and had 'young' sediment ages of <500
56 years even at 6 m sediment depth. In contrast, NGI stations reached ages of approximately
57 10,000 years at these depths. Sediment age-depth relationships, sulfate reduction rates, and C/N
58 ratios were strongly correlated with differences in microbial community composition between GI
59 and NGI sediments, indicating that age and diagenetic state were key drivers of microbial
60 community assembly in subsurface sediments. Similar bacterial and archaeal communities were
61 present in the surface sediments of all stations, whereas only in GI sediments were many surface
62 taxa also abundant through the whole sediment core. The relative abundance of these taxa,
63 including diverse *Desulfobacteraceae* members, correlated positively with sulfate reduction
64 rates, indicating their active contributions to sulfur-cycling processes. In contrast, other surface
65 community members, such as *Desulfatiglans*, *Atribacteria* and *Chloroflexi*, survived the slow
66 sediment burial at NGI stations and dominated in the deepest sediment layers. These taxa are
67 typical for the energy-limited marine deep biosphere and their relative abundances correlated
68 positively with sediment age. In conclusion, our data suggests that high rates of sediment
69 accumulation caused by glacier runoff and associated changes in biogeochemistry, promote
70 persistence of sulfur-cycling activity and burial of a larger fraction of the surface microbial
71 community into the deep subsurface.

72

73

74 **Introduction**

75

76 Arctic fjords with marine-terminating glaciers constitute an important interface for freshwater
77 and sediment influx from land into the sea, thereby influencing the physical and chemical
78 conditions in the coastal marine ecosystems (Etherington et al., 2007; Svendsen et al., 2002). The
79 high influx of sedimentary materials, e.g., minerals, terrigenous organic matter and metals, in
80 glacier-associated fjords has a strong effect on the distributions of the benthic microbial
81 communities (Bourgeois et al., 2016; Buongiorno et al., 2019; Park et al., 2011). Increased water
82 turbidity in close proximity to the glacier can negatively influence surface water primary
83 production (Etherington et al., 2007; Zajączkowski, 2008), which leads to lower organic matter
84 availability in the underlying sediments (Bourgeois et al., 2016). High sediment accumulation
85 rates often seen in such glacier-proximal environments are also limiting benthic life. On the other
86 hand, glacial meltwater also provides an important source of dissolved nutrients, which can
87 stimulate phytoplankton growth beyond the high turbidity zone (Meire et al., 2015; Sørensen et
88 al., 2015; Statham et al., 2008). Consequences of increased primary production together with
89 strong sediment supply are a net CO₂ uptake in glaciated fjords as well as rapid burial of fresh
90 detrital phytoplankton biomass to the underlying sediments (Bourgeois et al., 2016; Meire et al.,
91 2015; Smith et al., 2015). Fjord sediments also receive significant amounts of terrigenous

92 organic matter as evidenced by high C/N ratios of the sediment organic matter pool (Goñi et al.,
93 2013; Wehrmann et al., 2014). With these large inputs of both marine and terrigenous organic
94 matter, the ultimate role of glaciated fjord sediments in the global carbon cycle depends on the
95 extent to which the large organic matter inputs get degraded, and thus there is a need to better
96 understand constraints on microbial community structure and degradation potential.

97 The labile fraction of organic matter in marine sediments is initially degraded by
98 microorganisms with hydrolytic and fermenting capabilities (Müller et al., 2018). These largely
99 unidentified microbial species typically excrete a wide range of enzymes, which enable rapid
100 organic matter turnover even in cold arctic sediments (Arnoldi et al., 1998; Teske et al., 2011).
101 Fermentation products released by primary organic matter degrading microorganisms are either
102 further degraded by secondary fermenters or are mineralized completely to CO₂ via microbial
103 respiration (Arndt et al., 2013).

104 Of prime importance in microbial organic matter degradation is the respiratory reduction
105 of sulfate to sulfide, which facilitates up to 69% of the total organic matter mineralization in
106 Arctic fjord sediments (Sørensen et al., 2015). Other key electron acceptors are metals such as
107 iron(oxyhydr)oxides and manganese oxides that can be introduced in high amounts via glacial
108 runoff to marine sediments and are subjected to redox cycling (Bhatia et al., 2013; Buongiorno et
109 al., 2019; Laufer et al., 2016; Wehrmann et al., 2014). Fe(III) and Mn(IV) also facilitate the
110 oxidation of reduced sulfur compounds (Wehrmann et al., 2014; Zopfi et al., 2004) and thereby
111 fuel a cryptic sulfur cycle in glacier-influenced sediments (Wehrmann et al., 2017).

112 In sediments with comparably slow sediment accumulation, which typify non-glaciated
113 Arctic shelf areas (Kuzyk et al., 2013), the rate of organic matter mineralization is highest at the
114 surface and decreases significantly with increasing sediment depth (Kuzyk et al., 2017; Lomstein
115 et al., 2012), reflecting a concomitant decrease in energy available for cell maintenance and
116 growth (Starnawski et al., 2017). This depth gradient results in pronounced compositional
117 changes in the benthic microbial community, which are driven by highly selective survival of
118 microorganisms that are able to subsist in the energy-limited subsurface (Bird et al., 2019;
119 Marshall et al., 2019; Petro et al., 2017; Starnawski et al., 2017). Here, we hypothesized that this
120 strong environmental filtering effect would be attenuated in sediments with high rates of
121 sedimentation (i.e., in coastal sediments impacted by glacial runoff) and result in a different
122 pattern of microbial community assembly with depth. Therefore, we investigated microbial
123 diversity and community compositions of glacier-influenced (GI) and non-glacier-influenced
124 (NGI) coastal sediments in the Godthåbsfjord region of Greenland. Compositions of bacterial
125 and archaeal communities and the community of putative sulfite/sulfate-reducing
126 microorganisms (SRM), as analyzed by 16S rRNA and dissimilatory sulfite reductase (*dsrB*)
127 gene amplicon sequencing, respectively, were compared across sediment samples of different
128 depths and ages. Co-occurrence analyses of operational taxonomic units (OTUs) and correlations
129 with biogeochemical data revealed key environmental factors that were driving the major
130 community differences between GI and NGI sediments. These analyses also identified various
131 uncultivated microorganisms that were associated with sulfur cycling. As hypothesized, our
132 results demonstrate that glacial runoff exerts a strong influence on microbial community
133 assembly processes and community functions in marine sediments.

134

135 Materials and Methods

136

137 *Sediment sampling*

138 The sediment cores used in this study were collected using a gravity corer in 2013 during a
139 research cruise on board of RV *Sanna* (Seidenkrantz et al., 2014). Sampling of the cores for this
140 study was described previously (Glombitza et al., 2015). In brief, up to 6 m long gravity cores
141 were recovered from four sites on the open shelf and within the Godthåbsfjord (Nuup Kangerlua)
142 system in South West Greenland (Table 1, Supplementary Figure S1) in August 2013. The four
143 stations can be broadly subdivided into two groups. First, the non-glacier-influenced (NGI)
144 stations 3 and 6. Station 3 (core SA13-ST3-20G) is located outside the fjord on the continental
145 shelf of the Labrador Sea. Station 6 (core SA13-ST6-40G) is situated in the Kapisigdit
146 Kanderdluat, a side-fjord without glaciers. Second, the glacier-influenced (GI) stations 5 and 8.
147 Station 5 (core SA13-ST5-30G) is located in the main channel of the Godthåbsfjord. Although
148 station 5 is not directly in front of a glacier, most glacier-derived material is transported towards
149 the Labrador Sea across this site. Station 8 (core SA13-ST8-47G) is in very close proximity to a
150 glacier front at the northernmost outlet of the Greenland ice sheet in the Kangersuneq fjord
151 (Supplementary Figure S1).

152 For molecular analyses, sediment cores were sampled by cutting small holes into the core
153 liner and scraping off the surface with sterile spatulas before collecting sediment samples in
154 duplicates with sterile 5 mL cut-off syringes. The sediment sub-samples were packed in Whirl-
155 Pak bags and immediately frozen at -80°C. Porewater was extracted from the sediment cores as
156 described previously (Glombitza et al., 2015).

157

158 *Analytical methods*

159 Sulfate, hydrogen sulfide, and dissolved inorganic carbon (DIC) concentration measurements, as
160 well as sulfate reduction rate (SRR) measurements were previously described in Glombitza et al.
161 (2015). In addition, ferrous iron, total organic carbon (TOC), and total nitrogen (TN) were
162 analyzed. For analyses of ferrous iron (Fe^{2+}) concentrations, porewater was amended with 0.5 M
163 HCl (1:1, v/v) and stored at 4°C. One mL of ferrozine solution (1 g L^{-1} in 50 mM HEPES-buffer
164 at pH 7) was subsequently added to 20 μ L of acid-preserved porewater, producing a magenta
165 color reaction (Phillips and Lovley, 1987; Sørensen, 1982). The absorbance was measured at 562
166 nm (Stookey, 1970) with a spectrophotometer (FLUOstar Omega, BMG Labtech GMBH). To
167 determine total organic carbon (TOC) and total nitrogen (TN), sediment samples were treated
168 with sulfuric acid (5-6% w/w) to remove inorganic carbon. Once dried, 50 mg of acidified
169 sediment were packed into cleaned tin cups and burned in the elemental analyzer (FLASH EA
170 1112 series, Thermo Scientific). TOC and TN concentrations were calculated from a standard
171 curve with wheat flour, which contains 43.37% of carbon and 2.31% of nitrogen. The C/N ratio
172 was calculated as the molar ratio of total organic carbon to total nitrogen. For determination of
173 methane concentrations, 2 cm^3 sediment was transferred to 20 mL GC vials containing 2.5 mL
174 saturated NaCl with excess crystalline salt. The bottles were vigorously shaken to release
175 methane into the headspace of the GC vials and stored upside down at -20°C until further
176 analysis. Methane concentrations in the vial headspace were subsequently measured by gas
177 chromatography (SRI 310C GC, SRI Instruments Europe GmbH) with a flame ionization
178 detector. Ammonium concentrations were determined from 2 mL of porewater. Concentrations
179 were analyzed spectrophotometrically as previously described (Dansk-Standard, 1975) (Bower
180 and Holm-Hansen, 1980).

181 Sediment age profiles for cores from stations 3, 5, and 6 were based on radiocarbon
182 dating and age modeling. Materials and depths were chosen for dating based on availability. For
183 the ^{14}C age determination, calcareous mollusk shells, benthic foraminifera, and seaweed samples

184 were collected from cores and the ^{14}C concentrations were determined by Accelerator Mass
185 Spectrometry at the AMS ^{14}C Dating Centre of Aarhus University. The ^{14}C ages were calibrated
186 using the Marine13 radiocarbon calibration curve (Reimer et al., 2013) with a reservoir
187 correction of $\Delta\text{R} = 140 \pm 35$ years. Age-depth models for cores from station 3 and 6 were
188 calculated using the software Oxcal v4.2 (Ramsey, 2008). The presence of rapidly deposited
189 turbidite sequences in the core from station 5 made a detailed age model difficult.

190 In the core retrieved from station 8 no material usable for ^{14}C dating was found, and thus
191 radiocarbon dating was not possible. Instead, the sediment age was estimated from ^{210}Pb and
192 ^{226}Ra measurements of freeze-dried, homogenized sediment samples. The water content of each
193 sample was determined before and after freeze-drying, and results were reported on a dry-weight
194 basis and salt-corrected for bottom-water salinity at the time of sampling. Core sections were
195 analyzed by gamma spectroscopy using a CANBERRA® Broad Energy Germanium with a P-
196 type detector (model BE3830). Detector efficiency and self-absorption were corrected by
197 counting reference material from the International Atomic Energy Agency (IAEA) within the
198 same geometry. The reproducibility errors, determined by counting the same sample four times,
199 were 5.7 and 3.8%, for ^{210}Pb and ^{226}Ra , respectively. ^{210}Pb was also determined from its ^{210}Po
200 daughter isotope using alpha spectroscopy ($n=23$ sediment sections). The samples were prepared
201 as previously described (Flynn, 1968). A ^{209}Po tracer, calibrated against a ^{210}Po NIST standard
202 (Isotope Product Laboratories) was employed for quantitation. The reproducibility error was less
203 than 1%. Sedimentation rates that were used for the age model presented in this study were
204 estimated from the least-squares fit to the natural log of the excess ^{210}Pb ($^{210}\text{Pbex}$) in the core and
205 the output of a one-dimensional two-layer advection diffusion model that accounts for both
206 bioturbation and compaction with depth (Kuzyk et al., 2015; Lavelle et al., 1985). When using
207 any tracer data for age model reconstructions within marine sediments, it is important to
208 recognize that profiles may be affected by mixing (physical or bioturbation). Physical
209 disturbance such as a rapid deposition event (turbidite) may be seen in, for example, reversal in
210 the sediment porosity gradient and unusually low ^{210}Pb profiles in a particular layer. Many
211 organic-rich shelf sediment cores exhibit two-layer ^{210}Pb profiles reflecting a ‘surface mixed
212 layer’ (SML) overlying accumulating sediments that are subject to little or no mixing (Kuzyk et
213 al., 2013). If mixing rates are significant relative to sediment accumulation, then it is not possible
214 to assign ages to specific sediment sections because each section will contain a distribution of
215 various ages. In the case of station 8, the sediments are low in organics and $^{210}\text{Pbex}$ decreases
216 exponentially with depth, implying that mixing is minor relative to sediment accumulation.
217 Furthermore, the sediment is highly laminated, indicating very little mixing.

218
219 To estimate the loss of surface sediment by gravity coring and to correct the age-depth
220 model, we compared the porewater profiles of ammonium, dissolved inorganic carbon and the
221 carbon isotope ratio $^{13}\text{C}/^{12}\text{C}$ of DIC (data not shown) between Rumohr cores collected during the
222 same cruise and the gravity cores presented in this study. The upper 18 cm of the gravity core
223 retrieved at station 3 and the upper 10 cm of the core retrieved at station 6 were missing. The
224 depths of potential surface sediment loss at the two GI stations were corrected as the mean values
225 of the two first cores (14 cm) since the Rumohr core casts at the GI stations were not successful.
226 Finally, sediment age was recalculated as “actual age”, i.e., the surface of the seafloor was
227 considered as 0 year old at the time of sampling, based on the age models and the above
228 mentioned depth correction.

229

230 *DNA extraction and preparation of 16S rRNA gene and dsrB amplicon libraries*

231 Approximately 0.5 to 1 g of sediment was used for DNA extraction according to a previously
232 established protocol (Kjeldsen et al., 2007). Per station, 8 to 10 samples from different depths,
233 corresponding to approximately 2 samples per meter core were selected for further analyses, with
234 highest resolution at the top of the cores (Supplementary Table S1). Barcoded 16S rRNA gene
235 amplicons were produced with a two-step PCR barcoding approach (Herbold et al., 2015), using
236 the general bacterial and archaeal primers U519F (5'-CAGCMGCCGCGTAATWC-3') and
237 802R (5'-TACNVGGGTATCTAATCC-3') for initial amplification (Klindworth et al., 2013).
238 These primers were modified with a 16 bp head sequence as described previously (Herbold et al.,
239 2015). The first round of amplification was performed in triplicates with 12.5 µL per reaction
240 volume. The reaction mix contained 1× Taq buffer (Thermo Scientific), 0.2 mM dNTP mix
241 (Thermo Scientific), 2 mM MgCl₂, 0.25 U Taq polymerase (Thermo Scientific), 0.2 µM of each
242 primer and approximately 1-10 ng DNA. The PCR started with a denaturation at 95°C for 3 min,
243 followed by 30 cycles of 95°C for 30 s, 48°C for 30 s and 72°C for 30 s, and a final elongation at
244 72°C for 2 min. The subsequent barcoding PCR round (50 µL total volume) was performed with
245 1× Taq buffer (Thermo Scientific), 0.2 mM dNTP mix (Thermo Scientific), 2 mM MgCl₂, 1 U
246 Taq polymerase (Thermo Scientific), 0.2 µM of each primer and 2 µL of the pooled triplicate
247 PCR products from the first PCR reaction. The thermal cycling program consisted of an initial
248 denaturation at 95°C for 3 min, 12 cycles of 95°C for 30 s, 52°C for 30 s and 72°C for 30 s,
249 followed by a final elongation at 72°C for 2 min. The *dsrB* amplicons were produced according
250 to an established protocol (Pelikan et al., 2016). Barcoded amplicons were mixed and further
251 prepared for multiplexed, paired-end MiSeq sequencing (Herbold et al., 2015). Sequence data-
252 sets are available in the NCBI Sequence Read Archive under study accession number
253 PRJNA546002.

254

255 *Sequence data processing*

256 16S rRNA gene and *dsrB* amplicon raw reads were demultiplexed, filtered and clustered as
257 described previously (Herbold et al., 2015; Pelikan et al., 2016) using fastq-join (Aronesty, 2013)
258 to merge reads and UPARSE version 8.1.1861 (Edgar, 2013) to generate OTUs. Phylum/class-
259 level classification of 16S rRNA-OTUs was performed with the Ribosomal Database Project
260 naïve Bayesian classifier in MOTHUR (Schloss et al., 2009; Wang et al., 2007), using the
261 SILVA database v.128 (Quast et al., 2013) as a reference. *dsrB*-OTUs were classified by
262 phylogenetic placement of representative sequences into a DsrAB reference tree (Müller et al.,
263 2015) that was updated with novel sequences from diverse candidate phyla (Anantharaman et al.,
264 2017; Hausmann et al., 2018; Parks et al., 2017). This DsrAB reference tree was constructed by
265 de-replicating novel DsrA and DsrB sequences with less than 100 % similarity to any DsrAB
266 sequence in the original reference database and aligning them to the reference alignments of
267 DsrA and DsrB (Müller et al., 2015) using MAFFT (Katoh et al., 2002). The combined DsrA and
268 DsrB alignments were then concatenated and sequences with a total length of less than 500
269 amino acids were removed. The concatenated DsrAB alignment was clustered at 70 % sequence
270 identity with usearch (Edgar, 2010), and alignment positions were kept if they were conserved in
271 at least 10 % of all sequences in the 70%-clustered alignment (56 sequences). The unclustered
272 DsrAB alignment (2985 sequences) was then filtered for conserved alignment positions using
273 seqmagick (<https://fhcrc.github.io/seqmagick/>) and was used to generate a maximum likelihood
274 tree with FastTree (Price et al., 2010). 16S rRNA gene and *dsrB* OTU tables were processed in R
275 using native functions (R Core Team, 2015) and the R software package phyloseq (McMurdie

276 and Holmes, 2013). OTU counts were rarefied, i.e., sub-sampled at the smallest library size
277 (*dsrB*: 1521; 16S rRNA gene: 4517) and transformed into relative abundances for all further
278 analyses, except for network analyses, which were performed with the unrarefied OTU count
279 matrices (Friedman and Alm, 2012).

280

281 *Statistical analyses*

282 Shannon alpha diversity was calculated using R (R Core Team, 2015). Beta diversity analyses
283 were performed with the R software package vegan (Oksanen et al., 2017), including
284 calculations of Bray-Curtis distances with the function ‘vegdist()’ and nonmetric
285 multidimensional scaling ordination analysis with the function ‘nMDS()’. Environmental
286 variables were tested for effects on the overall community composition by Mantel tests using the
287 native R function ‘mantel()’. Obtained p-values were corrected for multiple testing with the
288 native R function ‘p-adjust()’ using the Benjamini-Hochberg correction method. Correlations of
289 individual OTUs with environmental variables were calculated with the native R function cor()
290 using the Spearman correlation coefficient. P-values were generated by permuting the values of
291 each environmental variable followed by correlation of individual OTU abundances with the
292 permuted environmental variable. This process was repeated 1000 times and the obtained p-
293 values were corrected as described above.

294 Correlation network analyses were performed separately for 16S rRNA- and *dsrB*-OTUs
295 to highlight potential synergistic interactions between microbial community members (Weiss et
296 al., 2016). Species co-occurrence networks were calculated using SparCC (Friedman and Alm,
297 2012) based on count matrices of all OTUs with >10 reads in at least 7 out of 34 samples. Use of
298 more abundant and prevalent OTUs increases sensitivity of the network analyses (Berry and
299 Widder, 2014). P-values were generated as described above. Only positive OTU correlations
300 >0.5 were considered. Attributes of individual OTUs, i.e., sampling station and sediment age at
301 which the OTU was found at the highest relative abundance, were assigned to OTUs in R and
302 networks were visualized in Cytoscape (Shannon et al., 2003). Significant OTU clusters, i.e.,
303 significantly more interactions between OTUs within the community cluster than with OTUs
304 outside the community cluster, were defined by Mann-Whitney U tests using the Cytoscape
305 plugin “clusterONE” (Nepusz et al., 2012).

306

307 *Phylogenetic analysis*

308 Representative sequences of 16S rRNA-OTUs were aligned with the SINA aligner (Pruesse et
309 al., 2012) using the SILVA database v.128 (Quast et al., 2013) as a reference. Sequences that
310 were closely related to 16S rRNA-OTUs were extracted from the SILVA database and used to
311 construct a reference tree with FastTree (Price et al., 2010). Subsequently, 16S rRNA-OTU
312 sequences were placed into the reference tree using the EPA algorithm (Berger et al., 2011) in
313 RAxML (Stamatakis, 2014). The placement trees of 16S rRNA-OTUs and *dsrB*-OTUs (utilized
314 for *dsrB*-OTU classification) were visualized with iTOL (Letunic and Bork, 2007).

315

316

317 **Results**

318

319 *Depth profiles of sediment age and porewater chemistry differ substantially between non-*
320 *glacier-influenced and glacier-influenced sediments*

321 A goal of the present study was to identify environmental factors (biogeochemical data is
322 partially described in Glombitza *et al.*, 2015) that shape the microbial community compositions
323 and interactions in NGI and GI sediments. NGI stations 3 and 6 are located on the open shelf and
324 within the Godthåbsfjord, respectively, and were both characterized by a strong gradient of
325 sediment age due to comparably low sedimentation rates with maximum ages of the gravity
326 cores close to 10,000 years (Figure 1). Furthermore, NGI sediments had high TOC and TN
327 concentrations, as well as low C/N ratios down to 500 cm sediment depth. SRR decreased with
328 depth at both stations and sulfate became depleted in the bottom of the core from station 3, but
329 not in the core from station 6. At station 3, hydrogen sulfide concentrations gradually increased
330 with depth and decreased again below a depth of 400 cmbsf, coinciding with the appearance of
331 methane in the porewater. At station 6, hydrogen sulfide was present in lower amounts and
332 methane did not accumulate at any depth.

333 In comparison, GI stations 5 and 8 were both characterized by high sedimentation rates as
334 indicated by the low sediment ages, i.e., around 200 years at the bottom of the core at station 8
335 and around 500 years at the bottom of the core at station 5 (Figure 1). GI stations had low TOC
336 and TN concentrations, as well as high C/N ratios of up to 48. The porewater contained dissolved
337 Fe^{2+} in the upper 250 cmbsf at both GI stations. SRR were high in deeper sediment layers at the
338 GI stations. Notably, SRR in the deep sediments of station 8 were higher than those measured in
339 the uppermost sediment samples from the core retrieved at station 3. Despite substantial SRR,
340 hydrogen sulfide was not detected at any depth.

341
342 *Glacier runoff and sediment age are strong determinants of microbial community composition*
343 In total, 6755 16S rRNA-OTUs and 1094 *dsrB*-OTUs were obtained by amplicon sequencing.
344 NGI and GI sediments clearly differed in 16S rRNA- and *dsrB*-OTU compositions and these
345 differences increased with depth at NGI stations (Supplementary Figure S2 A and B). Mantel
346 correlations with environmental factors revealed that the 16S rRNA- and *dsrB*-OTU
347 compositions were mostly impacted by sediment age and C/N ratio of organic matter (Table 2).
348 Further differences in 16S rRNA gene and *dsrB*-OTU compositions were explained to a lesser
349 extent by sediment structure (i.e., density and porosity), TOC, TN, SRR and Fe^{2+} concentrations
350 (the latter two parameters were only significant for the 16S rRNA gene community) (Table 2).
351 Gradually increasing sediment age with depth at NGI stations (Figure 1) was associated with
352 gradual changes in 16S rRNA gene and *dsrB* beta-diversity with depth (Supplementary Figure
353 S2 A and B). 16S rRNA and *dsrB* alpha-diversity at the NGI stations gradually decreased with
354 depth (Supplementary Figure S2 C and D). In contrast, alpha-diversity in GI stations remained
355 rather high throughout the cores (Supplementary Figure S2 C and D). Relative abundance
356 patterns of most phyla/classes and DsrAB families at GI stations 5 and 8 did not follow a gradual
357 change in compositions with increasing sediment depth like at NGI stations 3 and 6, but
358 remained rather constant, with some fluctuations among taxa (Figure 2). *Alpha*-, *Delta*- and
359 *Gammaproteobacteria*, *Campylobacterota* and notably *Cyanobacteria* were overall more
360 abundant at GI sediments as compared to NGI sediments (Figure 2 A). Furthermore, the *dsrAB*-
361 containing community in GI sediments had higher relative abundances of *Desulfobacteraceae*,
362 *Desulfobulbaceae*, uncultured DsrAB family-level lineages 4, 7, and 9 and unclassified DsrAB
363 sequences from the *Firmicutes* group and the *Nitrospira* supercluster (Figure 2 B). At NGI
364 stations, several phyla/classes, i.e., *Acidobacteria*, *Bacteroidetes*, *Deltaproteobacteria*,
365 *Dependentiae* (TM6), *Gammaproteobacteria*, *Omnitrophica* (OP3), *Planctomycetes*, and
366 *Woesarchaeota* (DHVEG-6) decreased in relative abundance with depth, particularly at station 3

367 (Figure 2 A). The phyla *Atribacter* (JS1), *Aerophobetes* (BHI80–139), *Aminicenantes* (OP8),
368 *Alphaproteobacteria*, *Betaproteobacteria*, and *Chloroflexi* increased in relative 16S rRNA gene
369 abundances with depth at both NGI stations (Figure 2 A). The relative abundances of the
370 following *dsrAB*-containing groups decreased with depth at NGI stations: *Desulfobacteraceae*,
371 *Syntrophobacteraceae*, the uncultured family-level lineages 7 and 9, and uncultured bacteria
372 within the Environmental supercluster 1 (Figure 2 B). In contrast, representatives of the
373 uncultured family-level lineage 3, as well as uncultured bacteria within the *Delta*
374 *proteobacteria* supercluster and the *Firmicutes* group, increased in relative abundances with depth at the NGI
375 stations.

376
377 *OTUs that were positively correlated to SRR have high inter-species connectivity in young*
378 *sediments*

379 Correlation network analyses of 16S rRNA- and *dsrB*-OTUs revealed two nearly separated 16S
380 rRNA-OTU clusters and two completely separated *dsrB*-OTU clusters, which were structured
381 along a sediment age gradient (Figure 3 A and B). One cluster included OTUs that were most
382 abundant in old NGI sediments and the other one included OTUs that were most abundant in
383 young GI and NGI sediments. These separate network clusters in ‘young’ and ‘old’ sediments
384 largely overlapped with regions of particularly high inter-species OTU correlations. These
385 ‘young’ and ‘old’ sediment OTU clusters were separated at a sediment age of around 300–400
386 years (Figure 3 C and D), which corresponds to a sediment depth of 30–40 and 20–30 cmbsf at
387 NGI stations 3 and 6, respectively.

388 The OTUs in the 16S rRNA- and *dsrB*-OTU networks were additionally subjected to
389 correlation analyses with environmental parameters (Supplementary Figures S3 and S4). The
390 majority of OTUs that constituted the ‘young’ and ‘old’ sediment clusters were positively
391 correlated with SRR and sediment age, respectively (Figure 3 A and B). Most OTUs that
392 correlated positively with SRR also correlated negatively with sediment age and vice versa
393 (Supplementary Figures S3 and S4). OTUs that positively correlated to SRR showed distinct
394 distributions in relative abundances, i.e., highest abundances in the surface sediments of NGI
395 stations and mostly ubiquitous distributions throughout the whole core at GI stations (Figure 4).
396 Many of these 16S rRNA-OTUs ($n=10$) and most of the *dsrB*-OTUs belonged to the family
397 *Desulfobacteraceae* (Supplementary Figures S5 and S6). Other SRR-correlated 16S rRNA-
398 OTUs belonged to the families *Desulfobulbaceae*, *Desulfarculaceae*, and *Syntrophobacteraceae*
399 and to the phyla/classes, *Acidobacteria*, *Actinobacteria*, *Alphaproteobacteria*, *Bacteroidetes*,
400 *Ignavibacteria*, *Gammaproteobacteria*, *Planctomycetes* and *Woesarchaeota* (Supplementary
401 Figure S5). Besides the prevalence of *Desulfobacteraceae*, *dsrB*-OTUs positively correlated to
402 SRR were affiliated with the uncultured family-level lineages 7 and 9 (Supplementary Figure
403 S6). The *dsrB*-OTUs 40 and 41 were also affiliated with the Environmental Supercluster 1. OTU
404 40 belongs to a sequence cluster of uncultured bacteria, and is related to the metagenome-derived
405 genome RBG_13_60_13 (accession number GCA_001796685.1) of a *Chloroflexi* bacterium
406 (Supplementary Figure S6).

407 OTUs positively correlated with sediment age were affiliated with diverse taxa (Figure
408 5). The phyla/classes that were represented by at least two age-correlated 16S rRNA-OTUs were
409 *Aerophobetes* (BHI80–13), *Alphaproteobacteria*, *Aminicenantes* (OP8), *Atribacter* (JS1),
410 *Chloroflexi*, *Delta*
411 *proteobacteria*, *Euryarchaeota* (Marine Benthic Group D), *Omnitrophica*
412 (OP3) and *Planctomycetes* (Supplementary Figure S5). Three *dsrB*-OTUs that positively
correlated with sediment age were affiliated to the family *Desulfobacteraceae* (Supplementary

413 **Figure S6).** The *dsrB*-OTU 16 belonged to a group of uncultured bacteria in the
414 *Delta proteobacteria* supercluster, OTU 58 could only be assigned to the *Firmicutes* group, and
415 OTU 1 was affiliated with the family *Syntrophobacteraceae*.

416

417 Discussion

418

419 *Glacier-runoff affects age-depth relationships and microbial community assembly in marine*
420 *sediments*

421 Rates and amounts of glacial inputs into sedimentary environments of fjords have a major impact
422 on their biogeochemistry (Glombitza et al., 2015). Here, we have compared microbial
423 community structure between NGI and GI sediments, and highlighted the environmental factors
424 that underlie the observed differences in community assembly with sediment depth. Sulfate is the
425 key terminal electron acceptor in marine sediments of the Godthåbsfjord (Sørensen et al., 2015),
426 but the depth distributions of SRR and microbial community structures differed between NGI
427 and GI sediments.

428 In the NGI sediments, steep gradients of SRR (Figure 1) indicated that most of the labile
429 organic matter deposited from marine primary production was mineralized near the seafloor
430 surface as typically observed for marine shelf sediments (Flury et al., 2016). Microbial
431 communities in the NGI sediments became less diverse with depth and increasingly distinct from
432 the surface communities (Supplementary Figure S2). Such shifts in community composition with
433 depth can be attributed to the progressing geochemical stratification of the sediment and
434 decreasing flux of energy with increasing sediment age (Petro et al., 2017).

435 In contrast, the two GI sediment cores were characterized by higher sedimentation rates,
436 low porosity (station 8), young ages, low TOC concentrations, low TN, and high C/N ratios
437 (Figure 1); the latter being attributed to influx of terrestrial organic matter (Goñi et al., 2013;
438 Meyers, 1994; Wehrmann et al., 2014). Terrestrial organic matter of particulate phase
439 transported by the glaciers is mostly old, diagenetically altered, and likely unavailable for
440 microbial degradation (Wehrmann et al., 2014). Therefore, the strong impact of C/N ratio
441 differences on the microbial community might only reflect the high rate of sedimentation. The on
442 average higher SRR throughout the GI sediment cores were possibly sustained by low amounts
443 of reactive organic matter that was deposited from algal blooms in nutrient-rich waters of
444 glaciated fjords (Bourgeois et al., 2016). Glacial runoff also contains considerable amounts of
445 iron and manganese (Bhatia et al., 2013; Wehrmann et al., 2014). Accumulation of dissolved
446 Fe²⁺ suggested that Fe(III) reduction substantially contributed to organic matter mineralization in
447 upper GI station sediments (Wehrmann et al., 2014). Lack of sulfide accumulation with depth
448 indicated immediate re-oxidation and/or scavenging of sulfide produced from high sulfate
449 reduction activity (Figure 1) (Wehrmann et al., 2017). In agreement with previous studies
450 (Bourgeois et al., 2016; Buongiorno et al., 2019; Park et al., 2011), differences in organic matter
451 availability and electron acceptor concentrations are suggested to had a major influence on the
452 composition of the seafloor microbial community in glaciated fjords.

453

454 *Identities and potential functional interactions of sulfur cycling-associated taxa in 'young' NGI*
455 *and GI sediments*

456 16S rRNA gene and *dsrB* correlation network analyses both revealed two main OTU interaction
457 clusters (Figure 3). In one cluster most OTUs were positively correlated to SRR but not sediment
458 age, while in the other cluster most OTUs were positively correlated to sediment age but not

459 SRR. The relative abundances of 16S rRNA- and *dsrB*-OTUs that positively correlated with SRR
460 were highest in ‘young’ GI and NGI sediments with active sulfur cycling (up to about 400 years
461 of age). The majority of these OTUs was affiliated with the family *Desulfobacteraceae*, as well
462 as other *bona fide* delta- proteobacterial SRM taxa from marine sediments (Wasmund et al., 2017).
463 In addition, several SRR-correlated *dsrB*-OTUs were affiliated with uncultured DsrAB lineages.
464 Some of these lineages contain metagenome-derived sequences of uncultivated bacteria from the
465 phyla *Acidobacteria* (DsrAB family-level lineage 9), *Planctomycetes* or *Chloroflexi*
466 (Anantharaman et al., 2017; Wasmund et al., 2016). Interestingly, several 16S rRNA-OTUs that
467 positively correlated with SRR were also affiliated with these phyla, supporting their putative
468 involvement in sulfite/sulfate reduction or sulfur disproportionation in the Godthåbsfjord
469 sediments.

470 Despite high rates of sulfate reduction, sulfide did not accumulate in the GI sediments
471 (Figure 1) likely due to its reaction with metals resulting in its oxidation and/or precipitation
472 (Wehrmann et al., 2014). Several 16S rRNA-OTUs that correlated positively with SRR were
473 affiliated with taxa containing sulfur-oxidizing microorganisms such as the candidate genus
474 PHOS-HE36 (phylum *Ignavibacteriae*) (Koenig et al., 2005), the *Woeseiaceae*/JTB255 sediment
475 group (*Gammaproteobacteria*) (Dyksma et al., 2016; Mußmann et al., 2017), and the
476 *Rhodobacteriaceae* (*Alphaproteobacteria*) (Lenk et al., 2012; Thrash et al., 2017)
477 (Supplementary Figure S5). In addition, OTU 30 affiliated with the sulfur-oxidizing genus
478 *Sulfurovum* was solely responsible for the high relative abundance of *Campylobacterota* at GI
479 station 5. We hypothesize that high SRR and chemical oxidation of sulfide by metals may
480 support significant populations of sulfur-oxidizing or sulfur-disproportionating taxa in deep GI
481 sediments, although future work would be required to substantiate this hypothesis, e.g., detection
482 of mRNA transcripts for sulfur-dissimilating enzymes.

483 We also identified numerous SRR-correlated OTUs that were affiliated with taxa that are
484 not known to have sulfur-based energy metabolisms. While these OTUs could indeed represent
485 unknown sulfur-cycling microorganisms, they may also be degraders of organic matter that fuel
486 sulfate reduction with fermentation products. For instance, some of these 16S rRNA-OTUs were
487 affiliated with BD2-2 (phylum *Bacteroidetes*), *Phycisphaera* (phylum *Planctomycetes*) or OM1
488 (phylum *Actinobacteria*). Representatives of these phyla hydrolyze and ferment organic
489 polymers in marine sediments and consequently might have trophic associations with SRM
490 (Baker et al., 2015; Schauer et al., 2011; Trembath-Reichert et al., 2016; Webster et al., 2011).
491 These associations may therefore explain their cooccurrences with SRM detected here.

492
493 *Assembly of the deep subsurface microbial biosphere in NGI sediments*
494 OTU correlation analysis showed that OTU clusters and thus the microbial communities of
495 young and old sediment zones in NGI sediments became ‘disconnected’ at a sediment age of
496 about 300-400 years (Figure 3), corresponding to a sediment depth of approximately 30 cmbsf at
497 NGI stations. This is in line with observations that a considerable shift in microbial community
498 structures occur in marine sediments below the zone of bioturbation, which was suggested to be
499 the main site of assembly of the subsurface community (Jochum et al., 2017; Starnawski et al.,
500 2017). Most OTUs that positively correlated with sediment ages in NGI sediments were
501 affiliated with lineages known to harbor members that selectively persist from the surface into
502 deep subsurface sediments, e.g., *Chloroflexi*, *Aerophobetes*, *Atribacter* (JS1), *Aminicenantes*
503 (OP8), *Alphaproteobacteria* and *Delta- proteobacteria* (Supplementary Figure S5) (Orcutt et al.,
504 2011; Wang et al., 2016). Members of these taxa, such as the genus *Desulfatiglans* (Jochum et

505 al., 2018), the delta-proteobacterial candidate lineage SEEP-SRB1 (Schreiber et al., 2010) or the
506 euryarchaeal Marine Benthic Group D (Kaster et al., 2014; Lloyd et al., 2013; Nobu et al., 2016;
507 Robbins et al., 2016; Wang et al., 2016b; Wasmund et al., 2014) are postulated to have traits
508 such as fermentation, sulfate reduction or acetogenesis to support the maintenance of basic
509 cellular functions even under extreme energy-limited conditions in most subsurface sediment
510 environments (Petro et al., 2017).

511

512 **Conclusions**

513

514 Coastal marine ecosystems in arctic and sub-arctic oceans are poised to be increasingly impacted
515 by melting of glaciers caused by climate change. In this comparative study, we found that
516 discharge from marine-terminating glaciers had a strong control over the depth-dependent
517 microbial community assembly in sediments of a sub-arctic fjord. Increasing differences in the
518 benthic community composition between GI and NGI sites with depth were largely explained by
519 sediment age. High sedimentation rates at GI stations enabled a complex community of sulfur-
520 cycling-associated microorganisms, including both putative SRM and sulfide oxidizers, to
521 continuously thrive at high relative abundances from the surface deep into the subsurface.
522 Similar communities of sulfur-cycling-associated microorganisms were also present in surface
523 sediments at NGI stations. However, with increasing depth the surface communities were largely
524 replaced by microorganisms that positively correlated with sediment age. Lower sedimentation
525 rates at the NGI sites thus resulted in slow burial and highly selective survival of microorganisms
526 adapted to the energy-limited subsurface (Petro et al., 2017). In summary, our results suggest that
527 increased glacier runoff and the associated high sedimentation rates allow processes that are
528 typically predominant in surface sediments such as sulfide oxidation and associated community
529 members to be rapidly buried and maintained at high abundances in deep subsurface sediments.

530

531 **Conflict of Interest**

532

533 The authors declare that the research was conducted in the absence of any commercial or
534 financial relationships that could be construed as a potential conflict of interest.

535

536 **Author Contributions**

537

538 CIP, HR, KUK, and AL designed the research. CIP generated and analyzed the sequencing data.
539 MSS, HR, and ChP collected the sediment cores. MJ, HR, and KK obtained the samples and MJ
540 performed most biogeochemical analyses. KUK performed DNA extractions. MSS, ChP, and
541 ZAK calculated sediment ages. CIP, KW, and AL wrote the manuscript. All authors revised the
542 manuscript.

543

544 **Funding**

545

546 The cruise was led by Marit-Solveig Seidenkrantz and funded by the Arctic Research Centre,
547 Aarhus University. This work was financially supported by the Austrian Science Fund (P29426-
548 B29 to KW; P25111-B22 to AL) and the Danish National Research Foundation (Grant
549 DNRF104).

550

551

552 **Acknowledgments**

553

554 The authors thank the crew of the R/V Sanna and the scientific party during the 2013 sampling
555 campaign and Britta Poulsen and Susanne Nielsen for laboratory technical assistance. We
556 acknowledge the use of imagery from the NASA Worldview application
557 (<https://worldview.earthdata.nasa.gov>), part of the NASA Earth Observing System Data and
558 Information System (EOSDIS).

559

560

561 **Tables**

562

563 **Table 1. Description of the sampling stations and cores, including sampling position, water**
564 **depth and core length.** Table was modified from Glombitza et al., 2015. The exact location of
565 the sampling stations is indicated in **Supplementary Figure S1**.

Station	Core name	Latitude (N)	Longitude (W)	Waterdepth (m)	Core length (cm)
3	SA13-ST3-20G	6426.7425'	5247.6486'	498.2	587
5	A13-ST5-30G	6425.3479'	5130.6209'	622.4	607
6	SA13-ST6-40G	6429.0604'	5042.3240'	389	562
8	SA13-ST8-47G	6440.7078'	5017.4672'	475.8	569

566

567

568 **Table 2. Mantel correlations between 16S rRNA gene and *dsrB* community compositions**
569 **and physicochemical parameters.** Only significant values ($p < 0.05$) are shown in the table.
570 Parameters with the strongest effect on the 16S rRNA gene or *dsrB* community compositions are
571 indicated in bold.

	16S rRNA gene		<i>dsrB</i>	
	Mantel statistic	p-value	Mantel statistic	p-value
Sediment age [actual years]	0.380	0.003	0.538	0.002
Sulfate [mmol L ⁻¹]	0.179	0.016	0.390	0.002
DIC [mmol L ⁻¹]	0.108	0.047	0.207	0.010
H ₂ S [μmol L ⁻¹]	0.227	0.003	0.418	0.002
Fe(II) [μmol L ⁻¹]	0.262	0.003	-	-
Density [g cc ⁻¹]	0.234	0.003	0.349	0.002
Porosity	0.213	0.003	0.364	0.002
TOC [μmol g dw ⁻¹]	0.228	0.005	0.329	0.002
C/N ratio	0.471	0.003	0.478	0.002
SRR [nmol Sulfate cm ⁻³ d ⁻¹]	0.260	0.003	-	-
Methane [μmol L ⁻¹]	-	-	0.310	0.002

572 DIC, dissolved inorganic carbon; TOC, total organic carbon; SRR, sulfate reduction rate

573

574

575 **Figure legends**

576

577 **Figure 1. Physicochemical sediment properties in non-glacier-influenced (NGI) and glacier-**
578 **influenced (GI) sediment cores.** Colours indicate the sampling station. Note that the scales are
579 different for each physicochemical parameter. Data on SRR and DIC, as well as, sulfate and
580 sulfide concentrations were taken from Glombitza et al., 2015.

581

582 **Figure 2. Microbial community composition in non-glacier-influenced (NGI) and glacier-**
583 **influenced (GI) sediment cores.** Changes in 16S rRNA phylum/class (A) and DsrAB-family
584 (B) relative abundances with sediment depth are shown. Only phyla/classes and DsrAB-families
585 with a relative abundance greater than 1% are shown. DS, *Deltaproteobacteria* supercluster.
586 ES1, Environmental supercluster 1. FG, *Firmicutes* group. NS, *Nitrospira* supercluster.

587

588 **Figure 3. Co-occurrence of abundant OTUs across non-glacier-influenced (NGI) and**
589 **glacier-influenced (GI) sediment cores.** Inter-species correlations are indicated for 16S rRNA
590 gene (A) and *dsrB* (B) OTUs. Only edges with $p \leq 0.01$ and $R^2 \geq 0.5$ are shown. OTUs are
591 colored and shaped according to the approximated sediment age and sampling station at which
592 they were found at the highest relative abundance, respectively. The orange and green border
593 color of OTUs indicates significant correlations to sulfate reduction rates and sediment age,
594 respectively. OTUs that are connected by black and purple edges formed significant community
595 clusters in old and young sediments, respectively. C and D, Age of the sediment layer at which
596 individual OTUs from (A) and (B) were found at the highest relative abundance across all
597 samples and stations. Each dot represents an OTU. Black and purple background colors indicate
598 the affiliation to significant community clusters determined for the inter-species correlation
599 networks, respectively.

600

601 **Figure 4. Relative abundances of 16S rRNA- and *dsrB*-OTUs with significant correlations**
602 **to sulfate reduction rates in non-glacier-influenced (NGI) and glacier-influenced (GI)**
603 **sediment cores.** The column annotation indicates the sampling depth in centimeters below
604 seafloor (cmbsf). The color range from blue to red indicates the relative abundance of OTUs.
605 Phyla/classes and DsrAB-families that were represented by more than one OTU are indicated in
606 bold.

607

608 **Figure 5. Relative abundances of 16S rRNA- and *dsrB*-OTUs with significant correlations**
609 **to sediment age in non-glacier-influenced (NGI) and glacier-influenced (GI) sediment**
610 **cores.** The column annotation indicates the sampling depth in centimeters below seafloor
611 (cmbsf). The color range from blue to red indicates the relative abundance of OTUs.
612 Phyla/classes and DsrAB-families that were represented by more than one OTU are indicated in
613 bold.

614

615

616 **References**

617 Anantharaman, K., Hausmann, B., Jungbluth, S. P., Kantor, R. S., Lavy, A., Warren, L. A., et al.
618 (2018). Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle.
619 *ISME J.* 12, 1715–1728.

620 Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, P.
621 (2013). Quantifying the degradation of organic matter in marine sediments: A review and
622 synthesis. *Earth-Sci. Rev.* 123, 53–86.

623 Arnosti, C., Jørgensen, B. B., Sagemann, J., and Thamdrup, B. (1998). Temperature dependence
624 of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis,
625 oxygen consumption, and sulfate reduction. *Marine Ecology Progress Series* 165, 59–70.

626 Aronesty, E. (2013). Comparison of Sequencing Utility Programs. *The Open Bioinformatics
627 Journal* 7, 1–8.

628 Baker, B. J., Lazar, C. S., Teske, A. P., and Dick, G. J. (2015). Genomic resolution of linkages in
629 carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria.
630 *Microbiome* 3, 14.

631 Berger, S. A., Krompass, D., and Stamatakis, A. (2011). Performance, accuracy, and Web server
632 for evolutionary placement of short sequence reads under maximum likelihood. *Syst. Biol.*
633 60, 291–302.

634 Berry, D., and Widder, S. (2014). Deciphering microbial interactions and detecting keystone
635 species with co-occurrence networks. *Front. Microbiol.* 5, 219.

636 Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., and Charette, M. A.
637 (2013). Greenland meltwater as a significant and potentially bioavailable source of iron to
638 the ocean. *Nat. Geosci.* 6, 503–503.

639 Bird, J. T., Tague, E. D., Zinke, L., Schmidt, J. M., Steen, A. D., Reese, B., et al. (2019).
640 Uncultured Microbial Phyla Suggest Mechanisms for Multi-Thousand-Year Subsistence in
641 Baltic Sea Sediments. *MBio* 10. doi:10.1128/mBio.02376-18.

642 Bourgeois, S., Kerhervé, P., Calleja, M. L., Many, G., and Morata, N. (2016). Glacier inputs
643 influence organic matter composition and prokaryotic distribution in a high Arctic fjord
644 (Kongsfjorden, Svalbard). *J. Mar. Syst.* 164, 112–127.

645 Bower, C. E., and Holm-Hansen, T. (1980). A Salicylate–Hypochlorite Method for Determining
646 Ammonia in Seawater. *Canadian Journal of Fisheries and Aquatic Sciences* 37, 794–798.

647 Buongiorno, J., Herbert, L. C., Wehrmann, L. M., Michaud, A., Laufer, K., Røy, H., et al.
648 (2019). Complex microbial communities drive iron and sulfur cycling in Arctic fjord
649 sediments. *Appl. Environ. Microbiol.* doi:10.1128/AEM.00949-19.

650 Dansk-Standard. (1975) DS 224: Vandundersøgelse. Bestemmelse af ammonium-nitrogen. 6 pp.

651 Dyksma, S., Bischof, K., Fuchs, B. M., Hoffmann, K., Meier, D., Meyerdierks, A., et al. (2016).
652 Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. *ISME J.* 10, 1939–1953.

653

654 Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
655 *Bioinformatics* 26, 2460–2461.

656 Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads.
657 *Nat. Methods* 10, 996–998.

658 Etherington, L. L., Hooge, P. N., Hooge, E. R., and Hill, D. F. (2007). Oceanography of Glacier
659 Bay, Alaska: Implications for biological patterns in a glacial fjord estuary. *Estuaries Coasts*
660 30, 927–944.

661 Flury, S., Røy, H., Dale, A. W., Fossing, H., Tóth, Z., Spiess, V., et al. (2016). Controls on
662 subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay,
663 Denmark). *Geochim. Cosmochim. Acta* 188, 297–309.

664 Flynn, W. W. (1968). The determination of low levels of polonium-210 in environmental
665 materials. *Anal. Chim. Acta* 43, 221–226.

666 Friedman, J., and Alm, E. J. (2012). Inferring Correlation Networks from Genomic Survey Data.
667 *PLoS Comput. Biol.* 8, e1002687.

668 Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., et
669 al. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial
670 Atlantic: suboxic diagenesis. *Geochim. Cosmochim. Acta* 43, 1075–1090.

671 Glombitza, C., Jaussi, M., Røy, H., Seidenkrantz, M.-S., Lomstein, B. A., and Jørgensen, B. B.
672 (2015). Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic
673 sediments of Southwest Greenland. *Front. Microbiol.* 6, 846.

674 Goñi, M. A., O'Connor, A. E., Kuzyk, Z. Z., Yunker, M. B., Gobeil, C., and Macdonald, R. W.
675 (2013). Distribution and sources of organic matter in surface marine sediments across the
676 North American Arctic margin. *J. Geophys. Res. C: Oceans* 118, 4017–4035.

677 Hausmann, B., Pelikan, C., Herbold, C. W., Köstlbacher, S., Albertsen, M., Eichorst, S. A., et al.
678 (2018). Peatland Acidobacteria with a dissimilatory sulfur metabolism. *ISME J.* 12, 1729–
679 1742.

680 Herbold, C. W., Pelikan, C., Kuzyk, O., Hausmann, B., Angel, R., Berry, D., et al. (2015). A
681 flexible and economical barcoding approach for highly multiplexed amplicon sequencing of
682 diverse target genes. *Front. Microbiol.* 6, 731.

683 Jochum, L. M., Chen, X., Lever, M. A., Loy, A., Jørgensen, B. B., Schramm, A., et al. (2017).
684 Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine

685 Sediments of Aarhus Bay. *Appl. Environ. Microbiol.* 83. doi:10.1128/AEM.01547-17.

686 Jochum, L. M., Schreiber, L., Marshall, I. P. G., Jørgensen, B. B., Schramm, A., and Kjeldsen,
687 K. U. (2018). Single-Cell Genomics Reveals a Diverse Metabolic Potential of Uncultivated
688 Desulfatiglans-Related Deltaproteobacteria Widely Distributed in Marine Sediment.
689 *Frontiers in Microbiology* 9. doi:10.3389/fmicb.2018.02038.

690 Kaster, A.-K., Mayer-Blackwell, K., Pasarelli, B., and Spormann, A. M. (2014). Single cell
691 genomic study of Dehalococcoides species from deep-sea sediments of the Peruvian
692 Margin. *ISME J.* 8, 1831–1842.

693 Katoh, K., Misawa, K., Kuma, K.-I., and Miyata, T. (2002). MAFFT: a novel method for rapid
694 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* 30, 3059–
695 3066.

696 Kjeldsen, K. U., Loy, A., Jakobsen, T. F., Thomsen, T. R., Wagner, M., and Ingvorsen, K.
697 (2007). Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great
698 Salt Lake (Utah). *FEMS Microbiol. Ecol.* 60, 287–298.

699 Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., et al. (2013).
700 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-
701 generation sequencing-based diversity studies. *Nucleic Acids Res.* 41, e1.

702 Koenig, A., Zhang, T., Liu, L.-H., and Fang, H. H. P. (2005). Microbial community and
703 biochemistry process in autosulfurotrophic denitrifying biofilm. *Chemosphere* 58, 1041–
704 1047.

705 Kuzyk, Z. Z. A., Gobeil, C., Goñi, M. A., and Macdonald, R. W. (2017). Early diagenesis and
706 trace element accumulation in North American Arctic margin sediments. *Geochimica et
707 Cosmochimica Acta* 203, 175–200.

708 Kuzyk, Z. Z. A., Gobeil, C., and Macdonald, R. W. (2013). ^{210}Pb and ^{137}Cs in margin
709 sediments of the Arctic Ocean: Controls on boundary scavenging. *Global Biogeochemical
710 Cycles* 27, 422–439.

711 Kuzyk, Z. Z. A., Macdonald, R. W., and Johannessen, S. C. (2015). Calculating Rates and Dates
712 and Interpreting Contaminant Profiles in Biomixed Sediments. *Environmental
713 Contaminants*, 61–87.

714 Laufer, K., Byrne, J. M., Glombitza, C., Schmidt, C., Jørgensen, B. B., and Kappler, A. (2016).
715 Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments
716 controlled by organic carbon content. *Environ. Microbiol.* 18, 3159–3174.

717 Lavelle, J. W., Massoth, G. J., and Crecelius, E. A. (1985). *Sedimentation Rates in Puget Sound
718 from ^{210}PB Measurements*.

719 Lenk, S., Moraru, C., Hahnke, S., Arnds, J., Richter, M., Kube, M., et al. (2012). Roseobacter

720 clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur
721 oxidation genes. *ISME J.* 6, 2178–2187.

722 Letunic, I., and Bork, P. (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic
723 tree display and annotation. *Bioinformatics* 23, 127–128.

724 Lloyd, K. G., Schreiber, L., Petersen, D. G., Kjeldsen, K. U., Lever, M. A., Steen, A. D., et al.
725 (2013). Predominant archaea in marine sediments degrade detrital proteins. *Nature* 496,
726 215–218.

727 Lomstein, B. A., Langerhuus, A. T., D'Hondt, S., Jørgensen, B. B., and Spivack, A. J. (2012).
728 Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor
729 sediment. *Nature* 484, 101–104.

730 Marshall, I. P. G., Ren, G., Jaussi, M., Lomstein, B. A., Jørgensen, B. B., Røy, H., et al. (2019).
731 Environmental filtering determines family-level structure of sulfate-reducing microbial
732 communities in subsurface marine sediments. *ISME J.*, 1.

733 McMurdie, P. J., and Holmes, S. (2013). phyloseq: An R Package for Reproducible Interactive
734 Analysis and Graphics of Microbiome Census Data. *PLoS One* 8, e61217.

735 Meire, L., Søgaard, D. H., Mortensen, J., Meysman, F. J. R., Soetaert, K., Arendt, K. E., et al.
736 (2015). Glacial meltwater and primary production are drivers of strong CO₂ uptake in fjord
737 and coastal waters adjacent to the Greenland Ice Sheet. *Biogeosciences* 12, 2347–2363.

738 Meyers, P. A. (1994). Preservation of elemental and isotopic source identification of sedimentary
739 organic matter. *Chemical Geology* 114, 289–302. doi:10.1016/0009-2541(94)90059-0.

740 Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M., and Loy, A. (2015). Phylogenetic and
741 environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. *ISME J.* 9,
742 1152–1165.

743 Müller, A. L., Pelikan, C., de Rezende, J. R., Wasmund, K., Putz, M., Glombitza, C., et al.
744 (2018). Bacterial interactions during sequential degradation of cyanobacterial necromass in
745 a sulfidic arctic marine sediment. *Environmental Microbiology* 20, 2927–2940.
746 doi:10.1111/1462-2920.14297.

747 Mußmann, M., Pjevac, P., Krüger, K., and Dyksma, S. (2017). Genomic repertoire of the
748 Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities
749 in marine sediments. *ISME J.* 11, 1276–1281.

750 Nepusz, T., Yu, H., and Paccanaro, A. (2012). Detecting overlapping protein complexes in
751 protein-protein interaction networks. *Nat. Methods* 9, 471–472.

752 Nobu, M. K., Dodsworth, J. A., Murugapiran, S. K., Rinke, C., Gies, E. A., Webster, G., et al.
753 (2016). Phylogeny and physiology of candidate phylum “Atribacteria” (OP9/JS1) inferred
754 from cultivation-independent genomics. *ISME J.* 10, 273–286.

755 Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2017).
756 vegan: Community Ecology Package. *Available online at: <http://CRAN.R-project.org/package=vegan>.*

758 Orcutt, B. N., Sylvan, J. B., Knab, N. J., and Edwards, K. J. (2011). Microbial ecology of the
759 dark ocean above, at, and below the seafloor. *Microbiol. Mol. Biol. Rev.* 75, 361–422.

760 Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P.-A., Woodcroft, B. J., Evans, P. N., et al.
761 (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands
762 the tree of life. *Nat Microbiol* 2, 1533–1542.

763 Park, S.-J., Park, B.-J., Jung, M.-Y., Kim, S.-J., Chae, J.-C., Roh, Y., et al. (2011). Influence of
764 deglaciation on microbial communities in marine sediments off the coast of Svalbard,
765 Arctic Circle. *Microb. Ecol.* 62, 537–548.

766 Pelikan, C., Herbold, C. W., Hausmann, B., Müller, A. L., Pester, M., and Loy, A. (2016).
767 Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and
768 dsrB amplicon sequencing using new primers and mock community-optimized
769 bioinformatics. *Environ. Microbiol.* 18, 2994–3009.

770 Petro, C., Starnawski, P., Schramm, A., and Kjeldsen, K. U. (2017). Microbial community
771 assembly in marine sediments. *Aquat. Microb. Ecol.* 79, 177–195.

772 Phillips, E. J. P., and Lovley, D. R. (1987). Determination of Fe(III) and Fe(II) in Oxalate
773 Extracts of Sediment1. *Soil Science Society of America Journal* 51, 938.
774 doi:10.2136/sssaj1987.03615995005100040021x.

775 Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-
776 Likelihood Trees for Large Alignments. *PLoS One* 5, e9490.

777 Pruesse, E., Peplies, J., and Glöckner, F. O. (2012). SINA: accurate high-throughput multiple
778 sequence alignment of ribosomal RNA genes. *Bioinformatics* 28, 1823–1829.

779 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The SILVA
780 ribosomal RNA gene database project: improved data processing and web-based tools.
781 *Nucleic Acids Res.* 41, D590–6.

782 Ramsey, C. B. (2008). Deposition models for chronological records. *Quaternary Science
783 Reviews* 27, 42–60.

784 R Core Team (2015). R: The R Project for Statistical Computing. *Available online at:
785 <http://www.r-project.org/>.*

786 Reimer, P. J., Bard, E., Bayliss, A., Warren Beck, J., Blackwell, P. G., Ramsey, C. B., et al.
787 (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal
788 BP. *Radiocarbon* 55, 1869–1887.

789 Robbins, S. J., Evans, P. N., Parks, D. H., Golding, S. D., and Tyson, G. W. (2016). Genome-
790 Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives
791 in a Coal Bed Methane Production Well. *Front. Microbiol.* 7.
792 doi:10.3389/fmicb.2016.00731.

793 Schauer, R., Røy, H., Augustin, N., Gennerich, H.-H., Peters, M., Wenzhoefer, F., et al. (2011).
794 Bacterial sulfur cycling shapes microbial communities in surface sediments of an ultramafic
795 hydrothermal vent field. *Environ. Microbiol.* 13, 2633–2648.

796 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al.
797 (2009). Introducing mothur: open-source, platform-independent, community-supported
798 software for describing and comparing microbial communities. *Appl. Environ. Microbiol.*
799 75, 7537–7541.

800 Schreiber, L., Holler, T., Knittel, K., Meyer-Dierks, A., and Amann, R. (2010). Identification of
801 the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2
802 clade. *Environ. Microbiol.* 12, 2327–2340.

803 Seidenkrantz, M.-S., Hans Røy, H., Lomstein, B.A., Meire, L. and the shipboard and on-shore
804 parties, 2014. Godthåbsfjord system and the West Greenland shelf with ‘R/V Sanna’, 11.-
805 16. August 2013; cruise report. Aarhus University.

806 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003).
807 Cytoscape: a software environment for integrated models of biomolecular interaction
808 networks. *Genome Res.* 13, 2498–2504.

809 Smith, R. W., Bianchi, T. S., Allison, M., Savage, C., and Galy, V. (2015). High rates of organic
810 carbon burial in fjord sediments globally. *Nature Geoscience* 8, 450–453.

811 Sørensen, H. L., Meire, L., Juul-Pedersen, T., de Stigter, H. C., Meysman, F., Rysgaard, S., et al.
812 (2015). Seasonal carbon cycling in a Greenlandic fjord: an integrated pelagic and benthic
813 study. *Mar. Ecol. Prog. Ser.* 539, 1–17.

814 Sørensen, J. (1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with
815 reduction of nitrate and sulfate. *Appl. Environ. Microbiol.* 43, 319–324.

816 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of
817 large phylogenies. *Bioinformatics* 30, 1312–1313.

818 Starnawski, P., Bataillon, T., Ettema, T. J. G., Jochum, L. M., Schreiber, L., Chen, X., et al.
819 (2017). Microbial community assembly and evolution in subseafloor sediment. *Proc. Natl.*
820 *Acad. Sci. U. S. A.* 114, 2940–2945.

821 Statham, P. J., Skidmore, M., and Tranter, M. (2008). Inputs of glacially derived dissolved and
822 colloidal iron to the coastal ocean and implications for primary productivity. *Global*
823 *Biogeochem. Cycles* 22. doi:10.1029/2007gb003106.

824 Stookey, L. L. (1970). Ferrozine---a new spectrophotometric reagent for iron. *Analytical*

825 *Chemistry* 42, 779–781. doi:10.1021/ac60289a016.

826 Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland,
827 S., et al. (2002). The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord
828 system in Svalbard. *Polar Res.* 21, 133–166.

829 Teske, A., Durbin, A., Ziervogel, K., Cox, C., and Arnosti, C. (2011). Microbial community
830 composition and function in permanently cold seawater and sediments from an arctic fjord
831 of svalbard. *Appl. Environ. Microbiol.* 77, 2008–2018.

832 Thamdrup, B., Fossing, H., and Jørgensen, B. B. (1994). Manganese, iron and sulfur cycling in a
833 coastal marine sediment, Aarhus bay, Denmark. *Geochim. Cosmochim. Acta* 58, 5115–
834 5129.

835 Thrash, J. C., Cameron Thrash, J., Seitz, K. W., Baker, B. J., Temperton, B., Gillies, L. E., et al.
836 (2017). Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of
837 Mexico “Dead Zone.” *MBio* 8, e01017–17.

838 Trembath-Reichert, E., Case, D. H., and Orphan, V. J. (2016). Characterization of microbial
839 associations with methanotrophic archaea and sulfate-reducing bacteria through statistical
840 comparison of nested Magneto-FISH enrichments. *PeerJ* 4, e1913.

841 Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for
842 rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl. Environ.*
843 *Microbiol.* 73, 5261–5267.

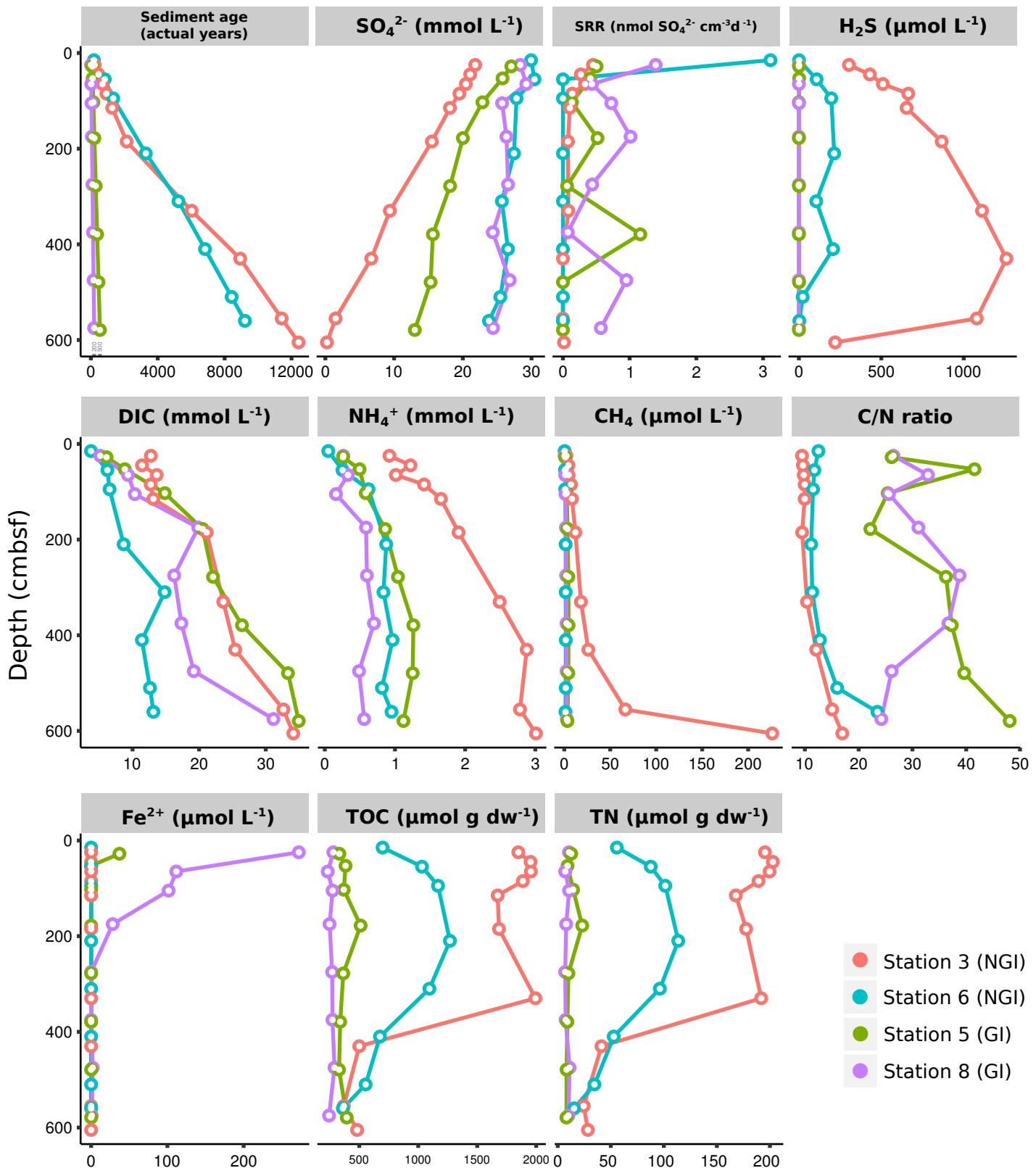
844 Wang, Y., Gao, Z.-M., Li, J.-T., Bougouffa, S., Tian, R. M., Bajic, V. B., et al. (2016). Draft
845 genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic
846 sediments. *Sci Bull. Fac. Agric. Kyushu Univ.* 61, 1176–1186.

847 Wasmund, K., Schreiber, L., Lloyd, K. G., Petersen, D. G., Schramm, A., Stepanauskas, R., et al.
848 (2014). Genome sequencing of a single cell of the widely distributed marine subsurface
849 Dehalococcoidia, phylum Chloroflexi. *ISME J.* 8, 383–397.

850 Wasmund, K., Cooper, M., Schreiber, L., Lloyd, K. G., Baker, B. J., Petersen, D. G., et al.
851 (2016). Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine
852 Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling. *MBio* 7,
853 doi:10.1128/mbio.00266-16.

854 Wasmund, K., Mußmann, M., and Loy, A. (2017). The life sulfuric: microbial ecology of sulfur
855 cycling in marine sediments. *Environ. Microbiol. Rep.* 9, 323–344.

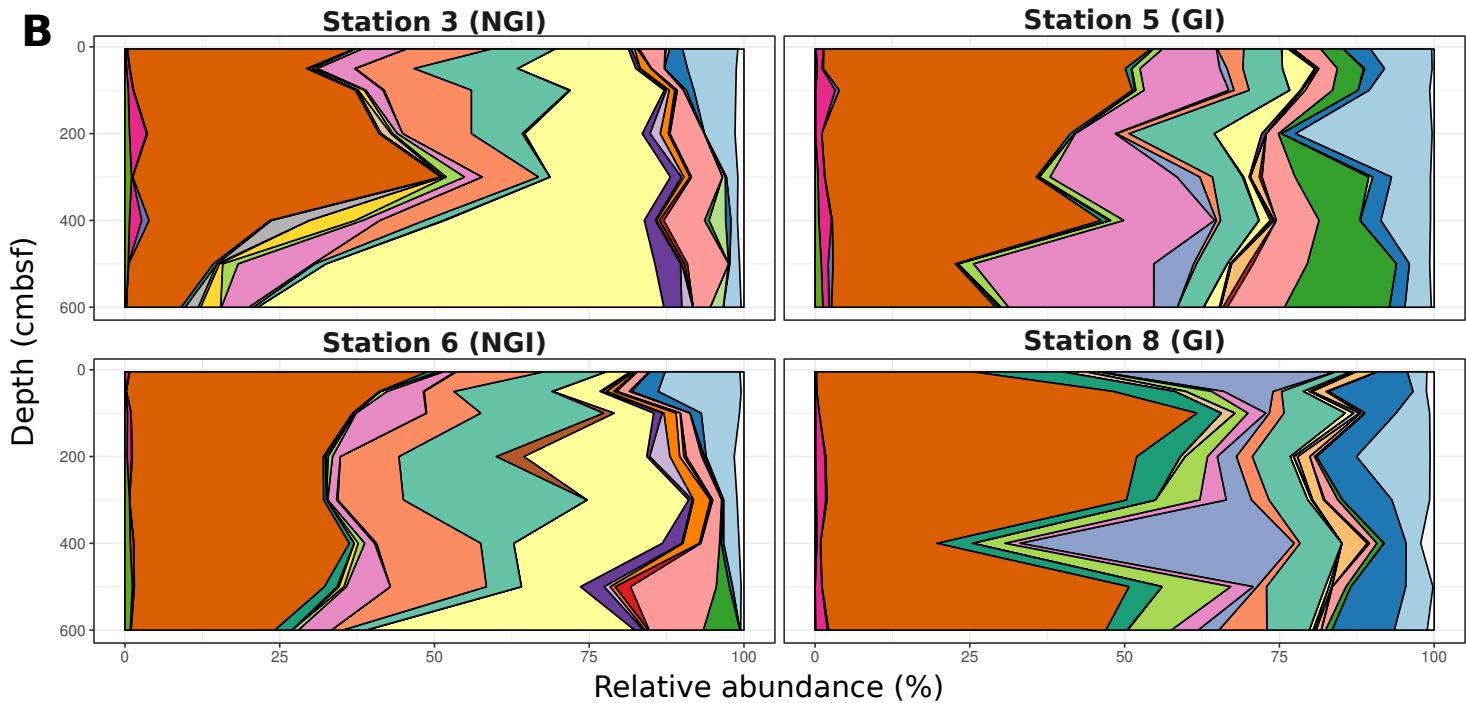
856 Webster, G., Sass, H., Cragg, B. A., Gorra, R., Knab, N. J., Green, C. J., et al. (2011).
857 Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition
858 zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic
859 conditions. *FEMS Microbiol. Ecol.* 77, 248–263.


860 Wehrmann, L. M., Formolo, M. J., Owens, J. D., Raiswell, R., Ferdelman, T. G., Riedinger, N.,
861 et al. (2014). Iron and manganese speciation and cycling in glacially influenced high-
862 latitude fjord sediments (West Spitsbergen, Svalbard): Evidence for a benthic recycling-
863 transport mechanism. *Geochim. Cosmochim. Acta* 141, 628–655.

864 Wehrmann, L. M., Riedinger, N., Brunner, B., Kamyshny, A., Hubert, C. R. J., Herbert, L. C., et
865 al. (2017). Iron-controlled oxidative sulfur cycling recorded in the distribution and isotopic
866 composition of sulfur species in glacially influenced fjord sediments of west Svalbard.
867 *Chem. Geol.* 466, 678–695.

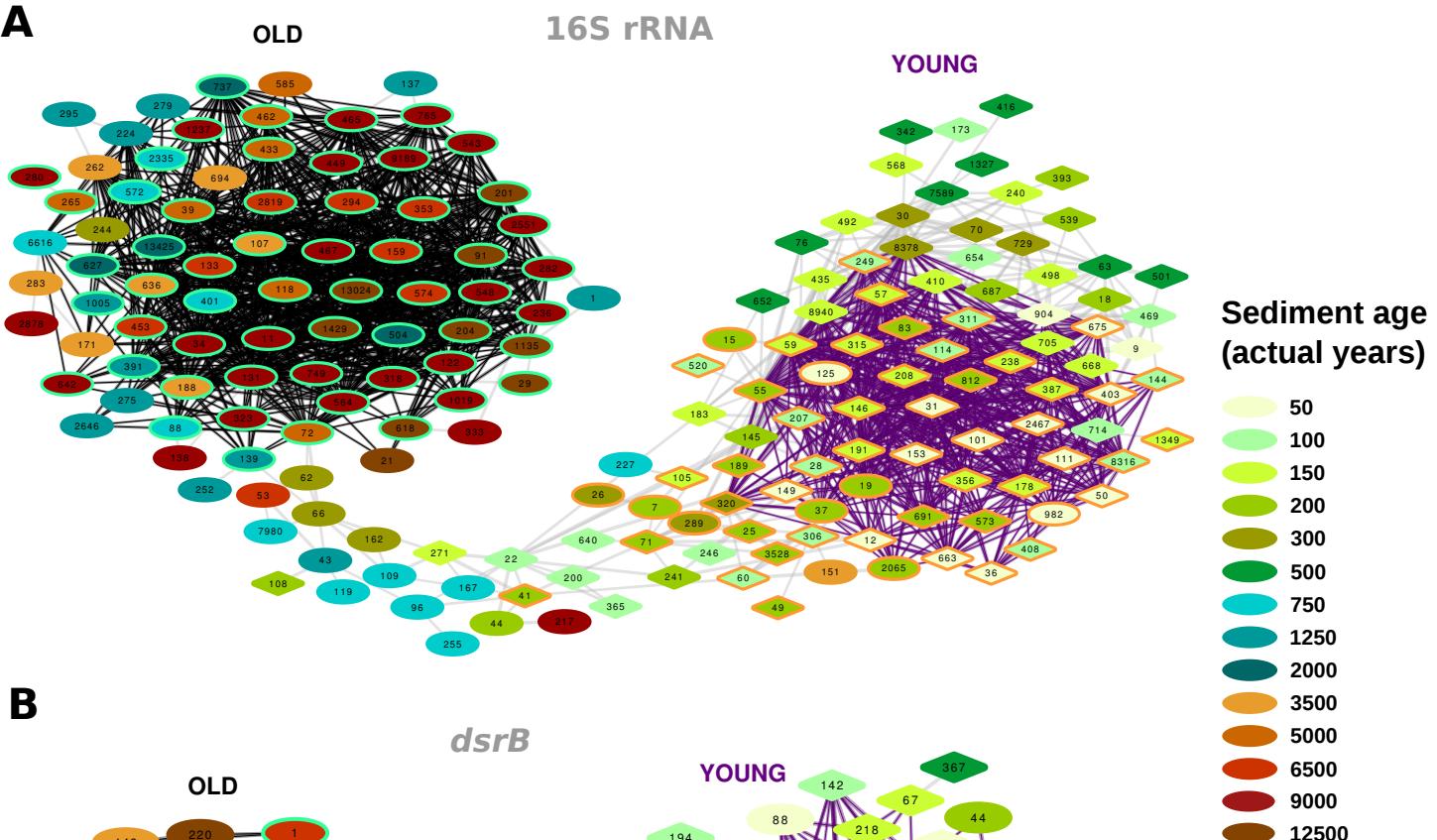
868 Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., et al. (2016).
869 Correlation detection strategies in microbial data sets vary widely in sensitivity and
870 precision. *ISME J.* 10, 1669–1681.

871 Zajączkowski, M. (2008). Sediment supply and fluxes in glacial and outwash fjords,
872 Kongsfjorden and Adventfjorden, Svalbard. *Polish Polar Research* 29, 59–72.

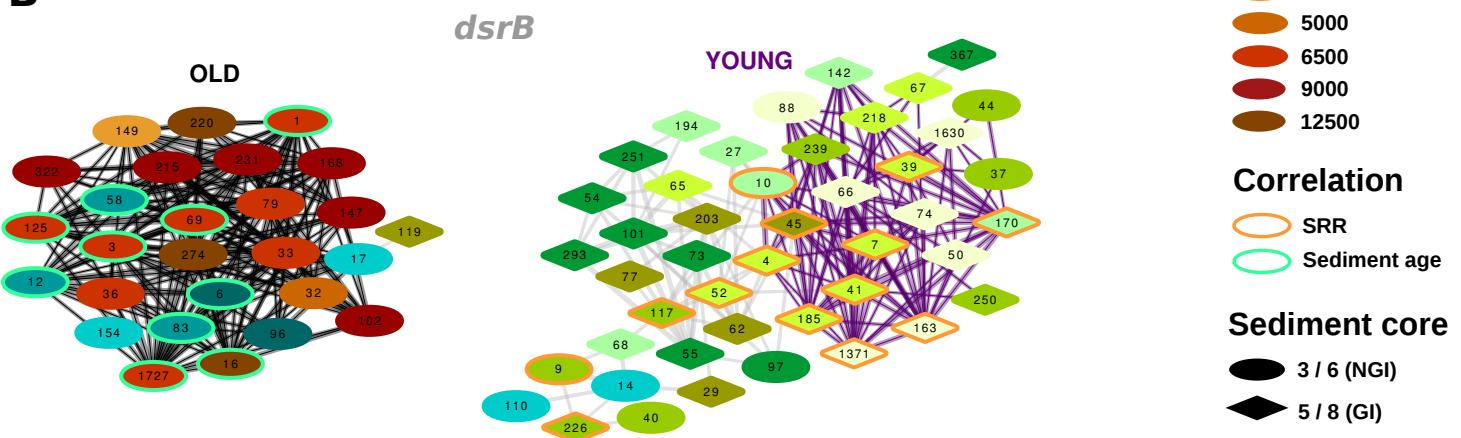

873 Zopfi, J., Ferdelman, T. G., and Fossing, H. (2004). “Distribution and fate of sulfur
874 intermediates—sulfite, tetrathionate, thiosulfate, and elemental sulfur—in marine
875 sediments,” in *Special Paper 379: Sulfur Biogeochemistry - Past and Present*, 97–116.

A

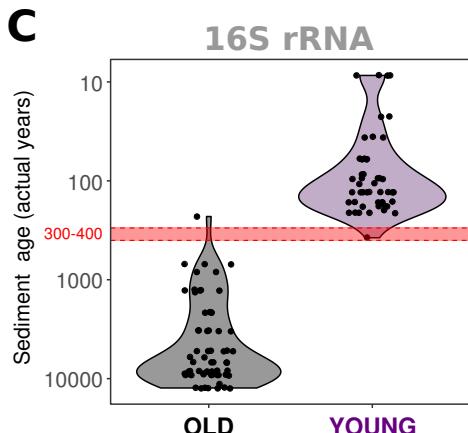
B

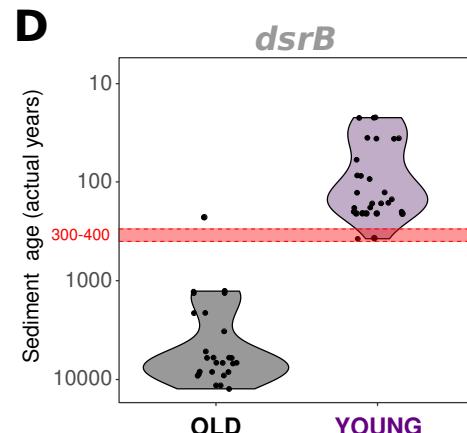


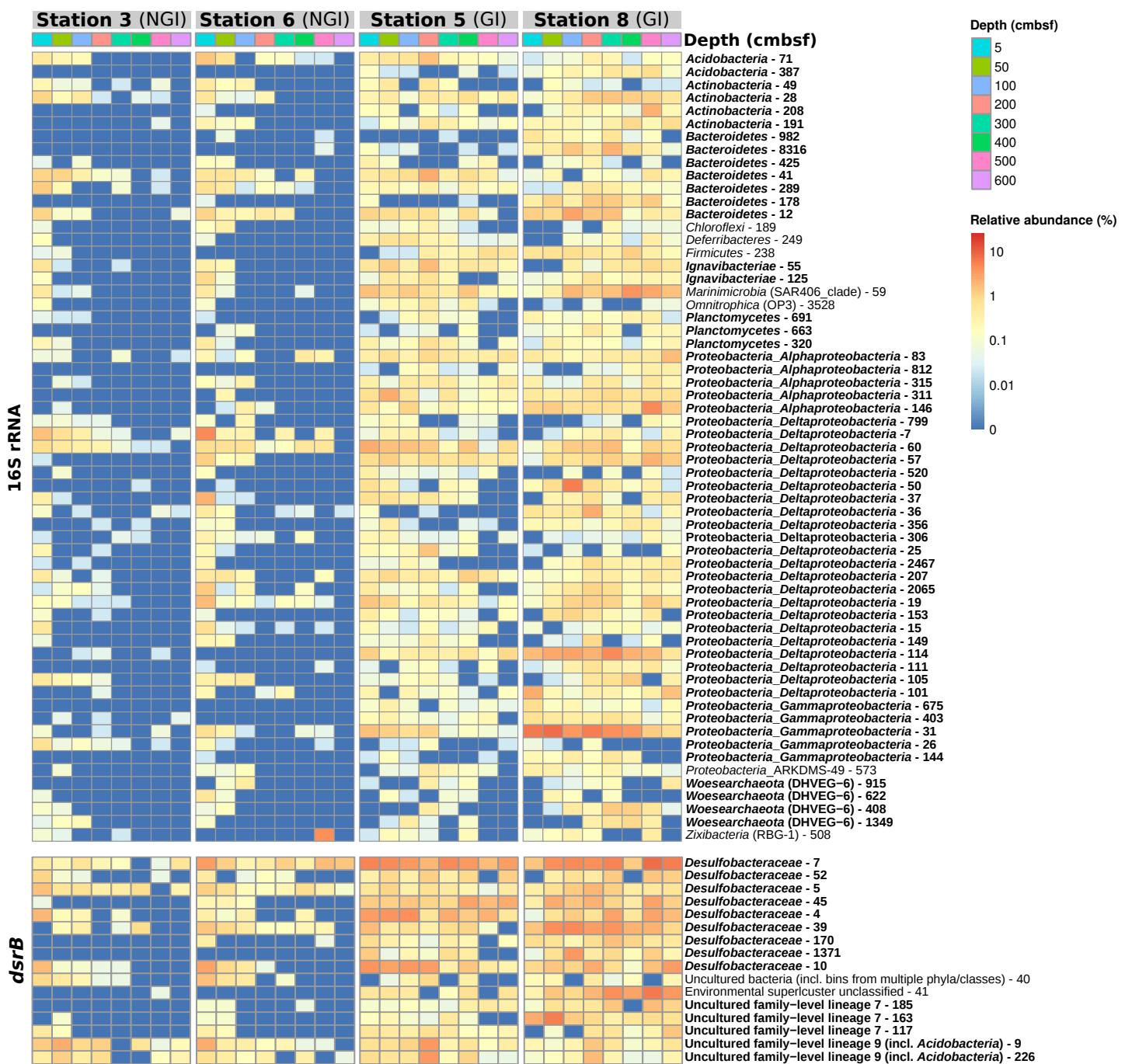
Desulfatiglans anilini lineage
Desulfoarculus baarsii lineage
Desullobacca acetoxidans
Desulfobacteraceae
Desulfovulbaceae
Desulfohalobiaceae
Desulomonile tiedjei lineage
Desulfovibrionaceae
ES1 - unclassified

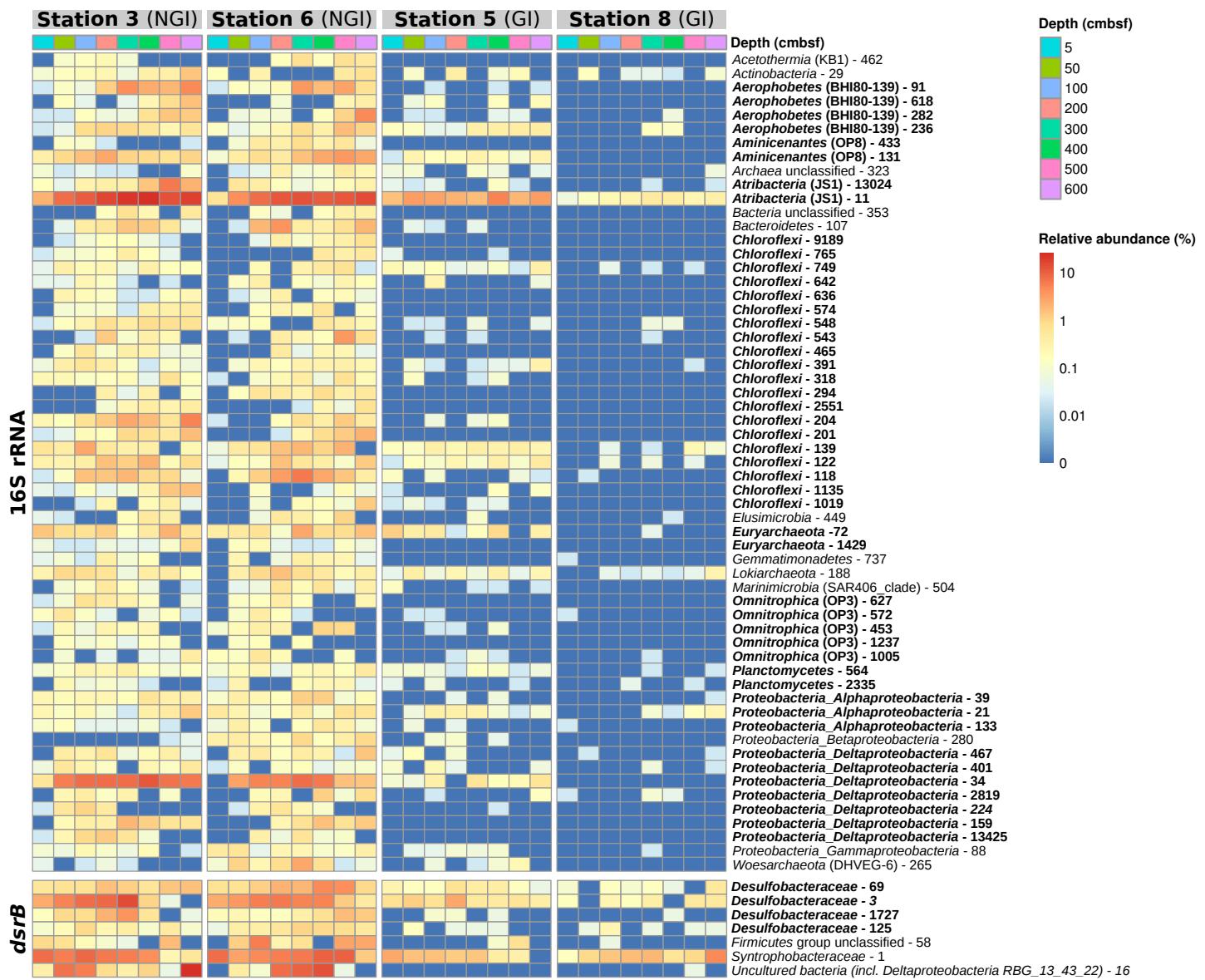

FG - unclassified
Nitrospirae supercluster unclassified
Syntrophobacteraceae
Uncultured bacteria (incl. bins from multiple phyla/classe) - ES1
Uncultured bacteria (incl. Chloroflexi SAG DEH-C11) - FG
Uncultured bacteria (incl. Deltaproteobacteria RBG 13 43 22) - DS
Uncultured bacteria (incl. Deltaproteobacteria RBG 13 61 14) - FG
Uncultured DsrAB family-level lineage 1
Uncultured DsrAB family-level lineage 12

Uncultured DsrAB family-level lineage 13 (incl. *Thermodesulfovibrionia*)
Uncultured DsrAB family-level lineage 2
Uncultured DsrAB family-level lineage 3
Uncultured DsrAB family-level lineage 4
Uncultured DsrAB family-level lineage 5 (incl. novel metagenome bins)
Uncultured DsrAB family-level lineage 7
Uncultured DsrAB family-level lineage 9 (incl. Acidobacteria)
Below 1 % relative abundance


A


B




C

D

