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Abstract1

Though the temporal precision of neural computation has been studied intensively, a data-driven determination2

of this precision remains a fundamental challenge. Reproducible spike time patterns may be obscured on single3

trials by uncontrolled temporal variability in behavior and cognition, or may not even be time locked to measurable4

signatures in either behavior or local field potentials (LFP). To overcome these challenges, we describe a general-5

purpose time warping framework that reveals precise spike-time patterns in an unsupervised manner, even when6

spiking is decoupled from behavior or is temporally stretched across single trials. We demonstrate this method7

across diverse systems: cued reaching in nonhuman primates, motor sequence production in rats, and olfaction in8

mice. This approach flexibly uncovers diverse dynamical firing patterns, including pulsatile responses to behavioral9

events, LFP-aligned oscillatory spiking, and even unanticipated patterns, like 7 Hz oscillations in rat motor cortex10

that are not time-locked to measured behaviors or LFP.11

Introduction12

The role of spike time precision in neural computation has been widely examined from both experimental and13

theoretical perspectives (Softky and Koch 1993; London et al. 2010; Bruno 2011; Amarasingham et al. 2012;14

Amarasingham et al. 2015; Brette 2015; Denève and Machens 2016), engendering intense debates in systems15

neuroscience over the last several decades. Empirically determining the degree of temporal precision from data is16

challenging because multi-neuronal spike trains may contain highly structured temporal patterns that are completely17
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masked by temporal variations in behavioral and cognitive variables not under direct experimental control. For18

example, precise spike patterns may not be temporally locked to naı̈vely chosen sensory or behavioral events.19

Indeed, the fidelity of olfactory coding may be underestimated by factors of two to four when spike times are aligned20

to stimulus delivery instead of inhalation onset (Shusterman et al. 2011; Cury and Uchida 2010; Shusterman et al.21

2018).22

Thus, experimental estimates of spike time precision hinge on the choice of an alignment point, which defines the23

origin of the time axis on each trial. This choice can often be challenging and subjective. Even in relatively simple24

behavioral tasks, animals can experience a sequence of stimuli, actions, and rewards, each of which occur with25

varying latencies on different trials. Such tasks thus provide multiple choices for aligning multineuronal spike trains26

to measurable events marking an origin of time. Moreover, in addition to choosing an origin of time, we must also27

choose its units. Should spike times be measured in absolute clock time relative to some measured event, or in28

units of fractional time between two events? Should the units of time change between successive pairs of events?29

Could any one of these choices unmask spike-timing precision that is otherwise invisible?30

Past studies have addressed these challenges in a number of ways: grouping trials together with similar durations31

before averaging spike counts (Murakami et al. 2014; Starkweather et al. 2017; Wang et al. 2018), manually32

stretching or compressing time units between measured task events (Leonardo and Fee 2005; Shusterman et al.33

2011; Kobak et al. 2016; Aronov et al. 2017), or repeating statistical analyses around different choices of alignment34

point (Feierstein et al. 2006; Harvey et al. 2012; Jazayeri and Shadlen 2015; Shushruth et al. 2018). Determining35

an appropriate alignment and scaling of time is most challenging in systems far from the sensory or motor periphery,36

where neural responses are often not locked to any external event, and instead reflect internal decisions or changes-37

of-mind that occur at variable times within each trial. In these cases, the ideal temporal alignment point (e.g. the38

time a decision is made) may be entirely unmeasurable or ill-defined from the standpoint of behavior.39

These complications, and the diversity of heuristic approaches used to address them, underscore a broad need40

for statistical frameworks to assess the temporal precision of neural computation. Of particular interest are41

unsupervised statistical methods that reveal precise patterns in multi-neuronal spike trains without reference to42

behavioral measurements. Such methods would be broadly applicable, as they make few assumptions about43

experimental design, animal model, or measured behaviors. Furthermore, by only considering the neural data, these44

methods may discover novel spike patterns aligned to unexpected variables. Most intriguingly, these methods could45

potentially identify spike patterns that are not well-aligned to any behavior, but instead to unobservable cognitive46

states, such as decision times.47

While time series and image alignment methods are a well-studied topic in signal processing (Berndt and Clifford48

1994; Marron et al. 2015; Mueen and Keogh 2016; Pnevmatikakis and Giovannucci 2017), these techniques49

have rarely been applied to large-scale neural recordings (but see recent work by Poole et al. 2017; Lawlor et al.50

2018; Duncker and Sahani 2018). Neuroscientists have historically utilized simple alignment operations—namely,51

translating (Baker and Gerstein 2001; Ventura 2004) and potentially stretching/compressing activity traces between52

pairs of behavioral events (Shusterman et al. 2011; Leonardo and Fee 2005; Perez et al. 2013; Kobak et al. 2016).53

In contrast, popular statistical methods, such as Dynamic Time Warping (DTW; Berndt and Clifford 1994), allow54

signals to be non-uniformly compressed and dilated on each trial. While such nonlinear warping models can be55

useful, we demonstrate that they can be difficult to interpret and sensitive to the high level of noise that is typical of56

neural data.57

To identify interpretable alignments for high-dimensional spike trains, we developed a framework for linear and58

piecewise linear time warping that encompass existing human-annotated procedures (Leonardo and Fee 2005;59

Kobak et al. 2016). Relative to nonlinear warping methods, the methods we describe are simpler to interpret, more60

robust to overfitting, and more computationally scalable. We applied these methods to multielectrode recordings61
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collected from three experiments spanning different animal models (rodents and primates), brain regions (olfactory62

and motor cortex), and behavioral tasks (sensation and motor production). In each case, time warping revealed63

precise spike patterns that were imperceptible in the raw data. Moreover, some of these results were not easily64

captured by commonly chosen temporal alignments. For example, in rodents performing a motor timing task,65

we uncovered prominent ∼7 Hz oscillations in spike times that were not aligned to the LFP or any measured66

behavioral event, providing a convincing example in which salient population dynamics would be likely overlooked67

by pre-defined behavioral alignments.68

Overall, we demonstrate that simple time warping models can detect salient, yet easy-to-overlook, features in69

large-scale neural data. We expect these methods to particularly enable inquiry into circuits far from the sensory70

or motor periphery that are not tightly time-locked to any measurable stimulus or behavior. Yet, even in cases71

with seemingly obvious sensory or behavioral alignment points, our immediate findings suggest that common72

manual alignment and trial-averaging procedures may underestimate temporal precision, and may even qualitatively73

misrepresent single-trial dynamics. Thus, we provide a broadly applicable, data-driven framework to reveal and74

scientifically characterize fine-scale temporal features of neural dynamics. Such a framework, when combined with75

future experiments, may help in adjudicating long-standing debates surrounding the temporal precision of neural76

computation.77

Results78

Time Warping Framework79

Our ultimate goal is to identify dynamical firing patterns that reliably occur on a trial-by-trial basis. If these activity80

patterns are tightly time-locked to a sensory or behavioral event, which can be confidently identified and measured,81

then we can accurately characterize the neural response by averaging over trials. This is illustrated in Figure 1a82

(left) which shows 100 trials of a simulated neural activity trace with additive Gaussian noise. The average activity83

trace (red trace; bottom) extracts the reliable features of the neural response from noisy single-trial instantiations84

(semi-transparent black traces). This synthetic example loosely resembles calcium fluorescence traces, but the85

methods we describe can be flexibly applied to any multi-dimensional time series including spike trains, fMRI data,86

or LFP traces.87

More formally, if N neurons are measured at T timepoints over K nominally identical trials, the trial-average is given88

by:89

X =
1

K

K∑
k=1

Xk. (1)

Here, Xk is an N × T matrix denoting the measured activity of all neurons on trial k. In the context of spiking data,90

each row of X corresponds to a peri-stimulus time histogram (PSTH) of a recorded neuron. Trial averaging is also a91

common step in population-level statistical analyses (Gao and Ganguli 2015; Kobak et al. 2016).92

Despite its widespread use, trial averaging can produce highly inaccurate and misleading results when neural93

activity is misaligned across trials. For example, introducing a random temporal shift to each simulated trial results94

in a less informative trial-average trace (Fig 1a, right). Such jitter commonly arises in practical applications, leading95

many research groups to develop custom-built alignment procedures for their experimental system. For example,96

in songbirds it is common to manually segment and cluster song syllables and warp intervening spike times on a97

per-syllable basis (Leonardo and Fee 2005). In olfaction, detailed measurements and fluid dynamics modeling98

of the sniff cycle have been pursued to understand the accuracy of sensory responses (Shusterman et al. 2011;99
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Shusterman et al. 2018). Jitter and other forms of temporal variability are likely exacerbated in deeper brain areas,100

where there is greater opportunity for unobserved cognitive states (e.g. attentiveness) and actions (e.g. internal101

decision times) to influence the timing of dynamics.102

Time warping methods address these challenges through a data-driven, statistical approach. The key idea is to fit a103

response template time series that is shifted and stretched—i.e., warped—on a trial-by-trial basis to match the data.104

The response template, denoted X̃, is an N × T matrix of activity traces that captures the average activity across105

trials after correcting for temporal deformations.106

The time axis of the response template is then transformed by a warping function on each trial. Formally, we107

denote the warping function for trial k as ωk(t); this function maps each timebin t (clock time) to a new index ωk(t)108

(template time). If ωk(t) is an integer between 1 and T , then the warping transformation for every neuron n on trial k109

amounts to the transformation X̃nt 7→ X̃nωk(t). If ωk(t) is not an integer then time warping is implemented by linear110

interpolation (see Methods). Note that this model assumes all recorded neurons share the same warping function111

on a trial-by-trial basis, though this could be relaxed by future work.112

Figure 1b illustrates how different classes of warping functions account for single-trial variability in timing. In this113

paper, we focus on three main model classes: shift-only time warping, linear time warping, and piecewise linear time114

warping (Fig 1b, top three models). Shift-only warping represents the simplest model: the warping functions are115

constrained to be linear with slope equal to one, and only a single parameter (the y-intercept of ωk(t)) is fit on each116

trial. As its name suggests, the shift-only model can only account for trial-to-trial differences in response latency. In117

contrast, a linear warping model, which fits the slope in addition to the intercept of ωk(t), can account for variable118

latencies as well as uniform stretches or compressions of the response template. A piecewise linear warping model119

adds further complexity by adding one or more knots (points where the slope of ωk(t) can change). Most generally,120

nonlinear warping functions may be used, which non-uniformly stretch and compress portions of the template on121

each trial (Fig 1b, bottom).122

In all cases, we constrain the time warping functions to be monotonically increasing. Intuitively, this ensures that the123

model cannot go backwards in time while making a prediction—that is, as t (clock time) increases, ωk(t) (template124

time) must also increase. This ensures that the warping functions are invertible, which we later exploit to align data125

across trials. DTW-based time warping paths are not invertible, since the first derivative can be zero or infinite.126

Some other nonlinear warping methods (e.g. Duncker and Sahani 2018) do not require warping functions to be127

monotonic (and therefore invertible), though future work on these methods could incorporate this constraint.128

The warping functions and response template are numerically optimized to minimize the total reconstruction error129

over all neurons, trials, and timepoints. For flexibility and computational efficiency, we chose the mean squared130

error to quantify reconstruction accuracy. Ignoring the interpolation step of time warping for the sake of clarity (see131

Methods), the total model error is:132

1

NTK

N∑
n=1

T∑
t=1

K∑
k=1

(X̃nωk(t) −Xntk)
2 (2)

This expression is minimized with respect to the warping functions on each trial, ωk(t), and the response template,133

X̃. Other loss functions may be substituted for the mean squared error. In particular, a loss function based on134

Poisson noise is popular in neural modeling (Paninski 2004) and our accompanying Python package supports this135

option. To optimize the response template we utilize standard methods—least-squares solvers when minimizing136

squared loss, and gradient-based optimization when minimizing the Poisson objective function. To optimize the137

warping functions, we found that gradient-based methods were prone to converge to suboptimal local minima, and138

that it was preferable and tractable to use randomized searches over these low-dimensional parameter spaces (see139

Methods).140
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Fig 1. Illustration of time warping models. (A) Synthetic data from a single neuron on 100 trials. When the data are aligned
(top left) the trial-average provides an effective, denoised description of activity (bottom left). When the data are misaligned by
introducing jitter (right), the trial-average does not capture the typical firing pattern (bottom right). (B) Time warping models
estimate a template (black line, left) that can be transformed on a trial-by-trial basis by warping functions (middle column)
producing single-trial estimates of neural activity (right column). Red, blue and green lines represent warping functions and
estimated firing rates on three example trials. Top row illustrates shifting the template activity in time (shift-only warping), second
row illustrates stretching and compressing the template (linear warping), third row illustrates piecewise-linear warping with two
line segments (one may increase the number of segments to introduce more nonlinearity into the warping function), the bottom
row illustrates a fully nonlinear warping. (C) Results of a shift-only warping model (top), a linear warping model (middle), and a
nonlinear warping model (bottom; Petitjean et al. 2011) fit to the synthetic data from panel A. For each model, we show the
warping templates (left, black lines) and warping functions (right, lines colored by ground truth shift to the right vs left). (D) The
predicted firing rates of the shift-only warping model provide a denoised trial-by-trial estimate of neural activity. (E) The raw data
sorted by the per-trial shift parameter learned by the shift-only warping model. (F) Data aligned by the shift-only model; the
per-trial shift learned on the model template is applied in the opposite direction to the raw data.
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For illustration, we fit shift-only, linear, and nonlinear warping models to the misaligned synthetic data shown Figure141

1a. By design, the shift-only model is sufficient to capture the ground truth variability in timing; as expected, this142

model identifies a highly accurate template firing pattern (Fig 1c, top left), along with warping functions that tightly143

correlate with the ground truth delay on a trial-by-trial basis (Fig 1c, top right). The linear warping model is a gentle144

extension of the shift-only warping model, which only introduces one additional parameter on each trial—the slope145

of each warping function. Yet, even this very minor extension produces a slightly worse estimate of the template146

and ground truth warping functions (Fig 1c, middle). This worsened estimate results from the model overfitting to147

noise in the simulated data; the linear warping model can use its additional per-trial parameter to align patterns of148

noise in the data across trials, which then appear in the response template. To demonstrate a more severe case149

of overfitting, we fit a nonlinear warping model using Dynamic Time Warping (DTW; Berndt and Clifford 1994),150

combined with a standard barycenter averaging procedure (Petitjean et al. 2011). This method can be highly151

effective on datasets with low levels of noise and complex temporal deformations. However, as we will soon see,152

neural datasets often exhibit the opposite—high levels of noise and simple temporal deformations. In this regime,153

DTW barycenter averaging identifies a noisy and deformed template (Fig 1c, bottom left) and warping paths that154

correlate with the ground truth jitter, but are unnecessarily complex (Fig 1c, bottom right).155

These results demonstrate that time warping models can be sensitive to noise, especially when a more flexible156

class of warping functions is utilized. Our time warping framework uses three strategies to prevent overfitting. First,157

as illustrated by the progression of models in Figure 1c, we always compare the estimates of complex warping158

models (e.g. with piecewise linear warping functions) to the performance of simpler models (e.g. shift-only warping).159

Second, we include a smoothness regularization term on the template, which penalizes the average norm of the160

second temporal derivative, and thus encourages temporally smooth model estimates. Third, we place a penalty on161

the area between each warping function and the identity line, which penalizes the magnitude of warping on each162

trial. We include these roughness and warp-magnitude penalties in subsequent results, but show the results of163

unregularized time warping in Figure 1c for the sake of illustration. A detailed description of these regularization164

terms is provided in the Methods section.165

These time warping models enable several strategies for visualizing and understanding neural data. First, one can166

directly inspect the model parameters (Fig 1c). The response template for each neuron captures the shape of the167

neural response, while the warping functions capture trial-to-trial variability. When simple warping functions are168

used, the parameters of each function (e.g. the slope and intercept, for a linear warping model) can be visualized in169

a histogram or scatterplot, or regressed against behavioral covariates. Second, one can view the model prediction170

as a denoised estimate of firing rates on a single-trial basis (Fig 1d). Third, one can re-sort the trials by the slope171

or the intercept of the warping function, producing a multi-trial raster plot that is easier to visually digest (Fig 1e).172

Finally, one can invert the learned warping functions on each trial to transform the raw data into an aligned time173

domain (Fig 1f). This alignment procedure simply entails plotting each activity trace as a function of ω−1k (t) instead174

of raw clock time, t. Intuitively, this amounts to reversing the flow diagram shown Figure 1b, which is possible as175

long as the warping functions are monotonically increasing (i.e. invertible).176

Extraction of precise, ground truth spike patterns on synthetic data177

Before proceeding to biological data, we examined a more challenging synthetic dataset involving multiple neurons178

and complex single-trial variability in timing. We simulated spike train data from N = 5 neurons, T = 150 timebins,179

and K = 75 trials. On each trial, the neural firing rates were time warped by randomized piecewise linear functions180

with one knot (the “ground truth” model; see Methods). This resulted in spike trains that appear highly variable in181

their raw form (Fig 2a).182
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Fig 2. Recovery of ground truth warping functions in synthetic data. (A) Synthetic spiking data from N = 5 units, T = 150
timebins, and K = 75 trials. Data were simulated from a ground truth model with piecewise linear warping functions with 1 knot.
(B) Data re-aligned by a shift-only warping model. Re-alignment is implemented by applying the inverse warping transformation
to the time base of each trial. (C) Data re-aligned by a linear warping model. (D) Data re-aligned by a piecewise-linear (1-knot)
warping model. (E) Data re-aligned by a piecewise-linear (2-knots) warping model. (F) Data re-aligned by the ground truth
model. Note similarity with panels D & E. (G) Ground truth neural response templates (black) and estimated response templates
(red) from the piecewise-linear (1-knot) model. Y-axis denotes the probability of spiking in each time bin. (H) Ground truth
warping functions (black) on six representative trials, and estimated warping functions (red) from the piecewise-linear (1-knot)
model. (I) Normalized reconstruction errors (norm of residuals divided by norm of raw data) in training, validation, and test
partitions of various warping models. Thin lines represent maximum and minimum values; thick lines represent mean ± standard
error. Results were computed over 40 randomized cross-validation runs.
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Given these noisy observations, time warping successfully reveals the spike patterns corresponding to the ground183

truth process. Figures 2b-e show model-aligned spike trains (as in Fig 1f), across warping models of increasing184

complexity. These model-derived alignments can be compared to the ground truth spike times after omitting185

temporal variability from the simulation (Fig 2f). The patterns evident in the ground truth data are partially revealed186

by shift-only and linear time warping (Fig 2b-c), but these models are too simplistic to capture the complete187

fine-scale temporal structure in the data. A piecewise linear warping model with one knot (piecewise-1 model; Fig188

2d) accurately captures these details, and represents a parsimonious and “correct” model since it matches the data189

generation process. Furthermore, the parameters this model closely matched the ground truth response template190

(Fig 2g) and warping functions (Fig 2h). Using a slightly more complex model—a piecewise linear model with 2191

knots—did not result in substantial overfitting and indeed closely matched the result of the piecewise-1 model (Fig192

2e).193

Identifying a parsimonious warping model is challenging in real-world applications where there is no observable194

ground truth. To select the appropriate model and regularization strengths we developed a nested cross-validation195

scheme (see Methods). Briefly, we fit the neural response template using a subset of trials, and we fit the warping196

functions using a subset of the neurons in the data set (the training set). For each warping model class (shift-only,197

linear, piecewise linear, etc.) we select regularization parameters based on a different subset of neurons and trials198

(the validation set). Finally, we evaluate and compare model performance on the remaining data (the test set).199

This procedure is then repeated many times with different partitions of the data. On simulated data, this procedure200

correctly identifies the piecewise-1 model as having minimal average test error (Fig 2i).201

In the following sections, we examine the utility of time warping on real neural datasets derived from a variety of202

sensory and motor areas. The dynamics of these circuits is thought to be closely time-locked to behaviors and203

sensory cues, yet we found time warping revealed additional temporal structure and precision in all cases, and204

even identified unexpected oscillatory patterns in two datasets that were decoupled from measured behaviors.205

Furthermore, we show that simple time warping models (linear or shift-only) are often sufficient to extract these206

insights, obviating the need for complex, nonlinear warping methods.207

Alignment of olfactory responses to sniff cycle208

Mitral/tufted cells in the mouse olfactory bulb display highly variable firing patterns across trials when naı̈vely aligned209

to odor delivery (Fig 3a). This variability largely stems from trial-to-trial variability in the latency between odor210

delivery and inhalation, which controls the access of odorants to receptors. Aligning spike times on each trial to211

inhalation onset reveals a drastically more reliable encoding of the olfactory stimulus (Shusterman et al. 2011).212

We reasoned that simple time warping models could be used to accurately align mitral/tufted cell activity using purely213

neural activity, bypassing the need to measure inhalation directly. We tested this hypothesis on a multielectrode214

recording from N = 30 neurons over K = 45 trials of odor presentation at a fixed concentration (α-pinene, 10−2215

M). We found comparable results on a separate set of trials on which a different odorant was presented (Fig 3,216

Supplement 1; limonene, 10−2 M). We experimentally measured intra-nasal pressure to detect sniff onset and217

offset. Critically, sniff measurements were not provided to the model and spike times were instead aligned to odor218

presentation. As expected, this initial alignment strategy produced highly disordered spike rasters for individual219

neurons (Fig 3b).220

We found that a shift-only time warping model captured precise sensory responses from these raw data, as revealed221

by re-sorting the trials based on the model’s shifts (Fig 3c) or by applying these shifts to align the raw spike times222

(Fig 3d). Here, as well in all subsequent results, we adopted a leave-one-out validation procedure such that223
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Fig 3. Time warping of mitral/tufted cell activity recovers sniff-locked activity patterns. (A) A head-fixed mouse sampled
odorized air (α-pinene, 10−2 M) while spiking activity of isolated mitral/tufted cells neural activity was recorded. Airflow was
switched from a non-odorized source to an odorized source on each trial. Variability in inhalation onset from trial-to-trial caused
jitter in the onset of the olfactory response. (B) Spike raster plots for six representative cells over all K = 45 trials with spike
times aligned to odor delivery. Black dots denote spike times, blue dots denote sniff onset. Blue histogram at the bottom
indicates distribution of sniff onset times. (C) Same plots as shown in panel B, but with trials re-ordered by the magnitude of the
warping model. (D) Raster plots with spike and sniff onset times re-aligned by applying the inverse warping functions on each
trial. (E) Raster plots with spike re-aligned to sniff onset. (F) Trial-to-trial reliability (R2) for all N = 30 cells before (x-axis) and
after (y-axis) alignment by the shift-only model. Dashed black line indicates the identity line. Dashed grey lines indicate a
two-fold increase or decrease in R2. The p-value is computed using a Wilcoxon signed rank test. (G) Same as F, but comparing
the alignment of the linear warping model (x-axis) to a shift-only warping model (y-axis). (H) Same as F, but comparing the
alignment of the shift-only warping model (y-axis) to the data manually aligned to sniff onset (x-axis).
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model-aligned spike rasters were computed only for held out neurons. That is, we excluded each cell (1-5 in Figure224

3) from model fits, and then simply applied each trial’s inverse warping function to the held out cell. Thus any225

temporal structure seen in Figure 3d is unlikely to arise as an artifact of overfitting.226

As expected, aligning spike times to inhalation onset times reveals similar patterns in these data (Fig 3e). Indeed,227

the shift parameters learned by the model correlated very tightly with the onset of sniffing (see blue dots and228

histograms, Fig 3b-e). These results are nonetheless a useful demonstration, since the model inferred these229

precise responses from the neural data alone and without reference to intra-nasal pressure. Furthermore, closer230

examination suggested that the unsupervised, shift-only model may enjoy slight performance advantages relative to231

the simple supervised alignment method. For example, when aligned to sniff onset, cells 4 and 5 in Figure 3 exhibit232

subtle, but perceptible, jitter in their responses (Fig 3e), and this variability is visibly corrected by time warping233

(compare to Fig 3d).234

We quantified the trial-to-trial variability of each neuron by computing the coefficient of determination (R2) of the235

neuron’s PSTH. In an approach similar to leave-one-out cross-validation, we fit time warping models while holding236

out neurons one at a time; the R2 was then computed on the held out neuron before and after warping. Relative237

to the raw spike times (i.e. odor onset aligned), shift-only time warping improved R2 in nearly all neurons, with238

many increasing over two-fold (Fig 3f; average 107% increase in R2, geometric mean; Wilcoxon signed rank test,239

p < 10−4, n = 30). Moreover, moving from a shift-only warping model to a more flexible linear warping model did240

not produce any significant improvements in R2 (Fig 3g). Relative to sniff onset alignment, shift-only time warping241

improved the R2 criterion mildly (Fig 3h; average 11% increase in R2, geometric mean; Wilcoxon signed rank test,242

p = 0.005, n = 30).243

Alignment of motor cortex dynamics during reaching in nonhuman primates244

Neural dynamics underlying motor control also exhibit variable time courses due to trial-to-trial differences in reaction245

times and muscle kinematics. To investigate the benefits of time warping in this setting, we first examined data from246

a canonical reaching experiment in a nonhuman primate (Fig 4a). On each trial, the subject (Monkey J) moved247

its arm to one of several possible target locations after a mandatory delay period that randomly varied between248

300 and 700 ms. In addition to this inherent timing variability due to task design, the monkey exhibited variable249

reaction time ranging from 293-442 ms (5th and 95 percentiles). We limited our analysis to upward reaches (90◦250

from center) with the target placed at 40, 80, or 120 cm from the center. We observed similar results on other reach251

angles (Fig 4, Supplement 1), as well as when data was pooled across all reach angles (data not shown). Multiunit252

activity was collected from N =191 electrodes across two Utah multielectrode arrays placed in primary motor (M1)253

and premotor (PMd) cortices (see Methods).254

The most dramatic changes in neural firing rates are closely time-locked to movement (Churchland et al. 2012;255

Kaufman et al. 2016). Thus, it is common to track hand position on a moment-by-moment basis and use these256

measurements to align spike times to the onset of movement or the peak hand velocity on each trial. We instead257

examined spike trains aligned to the beginning of the delay period (Fig 4b), and used time warping to infer an258

alignment without any reference to the animal’s behavior.259

As expected, a shift-only warping model closely aligned spike times with the onset of movement. The model’s260

learned shift parameter on each trial correlated very tightly with movement onset (Fig 4c), achieving a comparable261

level of performance (R2 = 0.9) to what was recently reported for a complex, nonlinear warping method (Duncker262

and Sahani 2018). Furthermore, the shift-only warping model enabled the visualization of movement-related firing263

rate changes in single-neuron rasters, either by re-sorting the trial order of the raw data (Fig 4d) or by re-aligning264
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Fig 4. Time warping of reach dynamics in a nonhuman primate. (A) Reaches towards a 90◦ target were analyzed. (B)
Spike data from four example multiunits over all trials. Units 1 & 4 were from primary motor cortex; units 2 & 3 were from
pre-motor cortex. At the bottom, the time distribution of task events is shown: 100 ms after target onset (TARG, green), end of
delay period (GO, blue), and movement onset (MOVE, red). (C) Scatterplot showing correlation between the hand movement
onset on each trial and the learned shift parameter in the shift-only warping model. (D) Same as panel B, but with trials re-sorted
by the per-trial shift parameter in the shift-only warping model. (E) Same as panel B, but with spikes aligned according to the
shift-only warping model. (F) Same as panel B, but with spikes aligned according to the linear warping model. (G) Same as
panel B, but with spikes aligned according to the piecewise-linear warping model with one knot.

the spike times (Fig 4e).265

Thus, learning a single per-trial shift was sufficient to align neural spike times to movement, without any reference to266

hand tracking data. However, shifting spike times in this manner also destroyed other structure in the data. Namely,267

a subset of multiunits, mostly in PMd, showed increased firing around ∼100ms into the delay period—i.e. shortly268

after the reach target was visually presented to the animal (see units 2 & 3 in Fig 4). Due to the variable delay269

between target onset and movement onset, a shift-only warping model is incapable of simultaneously aligning270

spikes across these two events.271

A linear time warping model more appropriately captures this structure in the data. On each trial, the model utilizes272

its two free parameters—the slope and intercept of the warping function—to precisely align these two task events273

(Fig 4f). Importantly, as in all of our results, the warping model is fit purely to the neural data without any reference to274

behavior. Thus, these results provide strong evidence, via an unsupervised time warping method, that reliable neural275

dynamics occur around the time of movement onset and shortly after target onset. Using nested cross-validation,276

we determined that more complex, piecewise-linear warping functions did not provide large benefits over the linear277

warping model; however, the linear warping model provided a reproducible benefit over the shift-only warping model278

(Fig 4, Supplement 2).279

Detection of ∼13-40 Hz spike-time oscillations in primate pre-motor cortex280

Thus far, we have shown that the temporal alignments learned by simple warping models can closely correlate281

with behaviors (e.g. movement or sniffing) and sensory cues (e.g. reach target presentation). This agreement282
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Fig 5. Spike-level oscillations in primate premotor cortex. (A) Multiunit activity aligned to go cue. Four representative
multiunits are shown; spike rasters (black) trial-average PSTH (blue) are shown for each multiunit. Go cue onset is shown in red.
The average firing rate across all multiunits is shown on the bottom (black trace). Shaded grey region denotes upper and lower
quartiles. (B) Same as (A) but with spike times aligned by shift-only warping model. Each displayed multiunit was held out from
the model fit. (C) Same as (A) but with spike times aligned by linear warping model. Each displayed multiunit was held out from
the model fit. (D) Oscillatory power at 18Hz in trial-average multiunit activity aligned to go cue (black dots) and after linear
warping (purple dots). Each dot represents one of N = 96 multiunits. (E) Same as (E) but showing oscillation phase for each
multiunit. (F) Multiunit activity averaged across electrodes and trials in a larger time window (800 ms) around go cue (red arrow).
Oscillations are not visible in the raw data (top) or after shift warping (second from top). Oscillations are recovered by either
linear (second from bottom) or piecewise linear warping (bottom). Shaded grey region denotes upper and lower quartiles.
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demonstrates that time warping models can converge to reasonable and human-interpretable solutions, and,283

conversely, suggests that established alignment practices in these systems are well-justified from a statistical284

perspective. However, time warping methods can also uncover more subtle and unexpected features in spike train285

data.286

In primate premotor cortex, the local field potential (LFP) shows prominent oscillations in the beta frequency range287

(13-40 Hz) during movement preparation, which are correlated with spike timing (Murthy and Fetz 1992; Sanes and288

Donoghue 1993; Reimer and Hatsopoulos 2010). While recent work has elucidated the statistical relationships289

between LFP and behavior (Khanna and Carmena 2015; Khanna and Carmena 2017; Chandrasekaran et al.290

2019), the impact of beta oscillations on population-level spiking activity is still poorly understood. Recent work291

used a complex, black box model of neural dynamics to detect oscillatory structure in high-dimensional spike292

trains (Pandarinath et al. 2018). Here, we show that shift-only or linear time warping models can recover similar293

oscillations, and compactly summarize single-trial variations in oscillation phase and frequency in the warping294

function parameters.295

We examined premotor cortical data collected from two different monkey subjects (Monkey J and Monkey U)296

performing point-to-point reaches; one animal performed these reaches with an unrestrained hand, while the other297

used a manipulandum (see Methods). The oscillations are strongest during the pre-movement delay period, and298

thus we first focused on a time window beginning 400 ms prior to and 100 ms after go cue presentation. We found299

that having a larger number of trials was beneficial, so we pooled trials from all reach angles for this analysis. We300

analyzed multiunit data (not spike sorted) for each monkey from N = 96 electrodes placed in PMd.301

No oscillations were visible in pre-movement spike rasters aligned to go cue (Fig 5a; data from Monkey U).302

However, re-aligning these spike trains based on a shift-only warping model revealed oscillations in virtually all303

multiunits. These oscillations occurred at ∼18 Hz in Monkey U (shown in Fig 5b) and at ∼40 Hz in Monkey J (Fig 5,304

Supplement 1); these results are within previously reported frequency ranges (Murthy and Fetz 1992; Sanes and305

Donoghue 1993). In Monkey U, these oscillations were more apparent after linear warping (Fig 5c), suggesting that306

the frequency (in addition to the phase) of the oscillations can be variable on each trial. These oscillations were307

roughly in-phase across multiunits—as a result, averaging spike counts across all multiunits and trials (Fig 5a-c,308

bottom) produced a cleaner ∼18 Hz oscillation in time warped spike trains.309

We confirmed that the spike-level oscillations were in-phase with LFP oscillations in Monkey U. To do this, we310

applied the time warping models fit on spike train data to bandpass-filtered LFP signals (10-30 Hz). The LFP signal311

was misaligned across trials in raw data, but was accurately aligned by the spike-level time warping models (Fig312

5, Supplement 2), suggesting that the two signals are coherently time-warped (in this case, temporally shifted313

and/or stretched) on a trial-by-trial basis. On a methodological level, this demonstrates that time warping models314

can generalize and make accurate predictions about other time series (e.g., LFP) with qualitatively distinct statistics315

from the training data (e.g., spike times). This ability to identify structure across different data streams in a flexible,316

unsupervised manner is an attractive feature of time warping models, which is facilitated by our choice to use simple317

and invertible warping functions.318

To quantify these effects more carefully across all multiunits, we compared the PSTHs computed from raw data319

(blue traces; Fig 5a) to PSTHs computed from data aligned by linear time warping (blue traces; Fig 5c). The320

raw PSTHs exhibited no oscillations, as this pattern was temporally jittered and stretched from trial-to-trial and321

therefore abolished by trial averaging. In contrast, oscillations can be observed to varying extents in the PSTHs322

computed after alignment by linear warping (which corrects for these trial-to-trial variations). Using Fourier analysis323

to estimate the amplitude and phase of the oscillation at 18 Hz, we found that alignment by linear warping increased324

the strength of the oscillation by 1-2 orders of magnitude in most multiunits (Fig 5d). Furthermore, in the raw PSTHs325

the oscillation phases were widely spread across multiunits, consistent with there being no detectable oscillations326
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above background noise (Fig 5e; gray dots); in the aligned PSTHs, the phases were tightly clustered, reflecting that327

nearly all multiunits oscillated in a coherent and detectable manner (Fig 5e; purple dots).328

We wondered whether time warping would fail to recover these oscillations if the movement-related spiking, which329

occurs at a much higher firing rate than pre-movement activity, was included in the analysis. To examine this, we fit330

warping models to a larger time window (±400 ms around go cue presentation), which included the movement-331

related increase in firing rate. Time warping was still able to extract oscillations under these more challenging332

circumstances (Fig 5f). Interestingly, a shift-only model was no longer sufficient to reliably capture oscillatory activity,333

suggesting that the oscillations were not phase-aligned with movement onset on a trial-by-trial basis. In contrast,334

linear or piecewise linear warping functions were able to recover the oscillatory structure (Fig 5f; bottom). Thus,335

while the shift-only model is simplest to interpret, it may be insufficient to capture certain results under particular336

circumstances. This emphasizes the utility of conceptualizing time warping as a range of models (as in Figure337

1b) rather than a single method—one can systematically increase the warping complexity to capture increasingly338

complex features in neural data.339

Detection of ∼6-7 Hz oscillations in rat motor cortex340

We have seen that time warping can reveal interpretable structure, even under very simple and well-controlled341

experimental conditions. Discrete reaching, for example, is arguably the simplest volitional motor behavior that342

one can study, and yet straightforward behavioral alignments obscure salient spike-time oscillations (see Fig 5).343

To study a more complex behavior, in a different animal model, we analyzed motor cortical activity in rats trained344

to produce a timed motor sequence (Kawai et al. 2015; Dhawale et al. 2017). Rats were trained to press a lever345

twice with a target time interval of 780 ms, and were rewarded if the sequence was completed within ±80 ms of346

this target (Fig 6a). While rats produce stereotyped motor sequences in this setting, the duration between lever347

presses and the timing of intermediate motor actions is variable from trial-to-trial. We examined a dataset consisting348

of N = 30 neurons and K = 1265 trials; the interval between lever presses ranged from 521-976 ms (5th- and349

95th-percentiles) across trials.350

This experiment has three obvious alignment procedures: align spike times to the first lever press, align spike times351

to the second lever press, or linearly stretch/compress the spike times to align both lever presses across trials (i.e.352

human-supervised time warping). Figure 6b-d shows the activity of six example neurons under these alignment353

strategies. At a high level, these rasters demonstrate that neurons preferentially respond to different behavioral354

events within a trial. For example, cell 1 in Figure 6 fires after the second lever press, while cell 6 in Figure 6 fires355

after the first press. Thus, it is not obvious which alignment is preferable and indeed different insights may be gained356

from analyzing each.357

Unsupervised time warping revealed structure in the data that is hidden in all three behavioral alignments. A358

shift-only warping model uncovered strong oscillations in many neurons, as visualized either by re-sorting trials359

based on the learned shift (Fig 6e, same alignment as Fig 6b), or by using the model to re-align spike times (Fig360

6f). These findings are not due to spurious alignments produced by an overfit model. Each spike raster in Figure 6f361

was generated from data held-out from the model—that is, the visualized cells were excluded during optimization of362

the warping functions, and the learned alignment transformation was then applied to this held out data.363

These results reveal a partial decoupling of behavioral events (lever presses) with neural firing patterns. After364

alignment, both the first and second lever presses occur at variable times within each trial (Fig 6f, histograms at365

bottom). Furthermore, the learned shift on each trial only loosely correlated with inter-press interval (Fig 6g). Taken366

together, these features of the data suggest that it would be difficult to discover this oscillatory structure by manual367
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Fig 6. Shift-only time warping reveals temporally precise theta-locked oscillations in rat motor cortex. (A) Rats were
trained to press a lever twice with a prescribed temporal delay. The median ± IQR inter-press-interval is listed. (B) Spike raster
plots for six representative cells over all trials with spike times aligned to the first lever press (blue line) and trials sorted by the
inter-press-interval. The time of the second lever press is denoted by the red line in all plots. Red histogram at the bottom
denotes the distribution of the second lever press times. (C) Spike raster plots re-aligned to the second lever press. Blue
histogram at the bottom denotes the distribution of the first lever press times. (D) Spike raster plots aligned by linearly
stretching/compressing the time axis in each trial so that the first and second lever presses were both aligned (note the lack of
scale bar, as time is no longer constant across trials). (E) Same spike rasters as in panel B, but with trials re-sorted by the
magnitude of a shift-only warping model. The time of the second lever press on each trial is denoted by a semi-transparent red
dot. (F) Spike raster plots after re-sorting trials as in panel E and shifting the spike trains on each by the shift-only time warping
model. (G) Relationship between per-trial shift learned by the shift-only time warping model (horizontal axis) and measured
inter-press interval (vertical axis) on each trial. No tight correlation with behavior is observed—dashed red line denotes a robust
linear regression fit (Huber loss function, ε = 1.001), and the Median Absolute Deviation (MAD) is listed as a measure of fit.
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alignment, demonstrating the power of unsupervised time warping models.368

While the uncovered oscillations are not phase locked with lever press times, they are nonetheless correlated with369

certain aspects of the animal’s behavior. In particular, some cells only exhibit the ∼6-7 Hz oscillation following the370

first lever press, with remarkable temporal precision (see cells 3 and 6 in Fig 6f). Indeed, multiple cells exhibit371

non-oscillatory firing prior to the first lever press, but rapidly switch to an oscillatory behavior following the lever372

press (see cell 3 in Fig 6f and Fig 6, Supplement 1). Other cells exhibit oscillations prior to the first lever press, but373

the amplitude and precision of the oscillations appears to improve following the first lever press (see cell 4 in Fig374

5F). Still other cells either do not exhibit oscillations (cell 1 in Fig 6f) or exhibit strong oscillations both prior to and375

following the first lever press (cell 5 in Fig 6f). Time warping enables us to discover and visualize this full spectrum376

of functional cell types, which are otherwise difficult to detect and characterize. The presence of oscillations in single377

neurons can be confirmed by plotting the distribution of inter-spike-intervals (Fig 6, Supplement 1); the shift-only378

model goes beyond this method by demonstrating that a large population of neurons are coherently phase-shifted379

on a trial-by-trial basis, and by enabling characterization of the full population dynamics and behavioral events in an380

aligned temporal space.381

We then examined whether these spike-level oscillations were aligned with oscillations in LFP. The average frequency382

spectrum of the LFP did display a prominent peak at ∼6-7 Hz—a very similar frequency range to the spike-level383

oscillations identified in Figure 6. To characterize the relationship between these two oscillatory signals, we384

bandpassed filtered the LFP between 5-9 Hz on each trial and fit a separate shift-only time warping model to the385

LFP traces. The time warping functions learned on LFP data did not uncover the spike-time oscillations shown in386

Figure 6, and likewise the LFP signals were not well-aligned by the time warping functions fit to spike times (Fig387

6, Supplement 1). Thus, unlike the oscillations identified in primate premotor cortex, the oscillations in rat motor388

cortex were not aligned with the LFP. This analysis illustrates two useful features of our time warping framework.389

First, the models can be flexibly applied to other data types beyond spiking data (e.g. LFP). Second, if two or390

more data types are simultaneously collected (e.g., LFP and spikes), separate time warping models can be fit to391

each signal and then compared to assess whether these signals are coherently warped on a trial-by-trial basis.392

These post-hoc comparisons are drastically simplified when time warping functions are constrained to be linear or393

piecewise linear, instead of fully nonlinear.394

Discussion395

While the temporal precision of neural coding has been a matter of intense debate, few studies have leveraged396

statistical alignment methods to address this problem. Earlier work incorporated time warping into single neuron397

encoding and decoding models (Aldworth et al. 2005; Gollisch 2006; Smith and Paninski 2013; Lawlor et al. 2018),398

as well as dimensionality reduction methods (Poole et al. 2017; Duncker and Sahani 2018). Here, we decoupled399

time warping from these other modeling objectives, to achieve a flexible and simplified framework. We surveyed a400

broader range of datasets than past work, spanning multiple model organisms, brain areas, and sensory/motor401

tasks. In all cases, we found that the simplest and most interpretable models—often those with shift-only or linear402

warping functions—matched the performance of more complex models, while uncovering striking and sometimes403

unanticipated dynamics.404

We first examined two datasets in which behavioral alignments are well-established, and found that unsupervised405

time warping inferred similar alignments based on neural data alone. In mouse olfaction, mitral/tufted cells exhibit406

reliable sensory coding when spike times are aligned to sniff onset, but not odor onset (Shusterman et al. 2011). The407

simplest time warping model—a shift-only model—accurately realigned spikes without any reference to intranasal408
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pressure measurements, and more complex warping methods (linear and piecewise linear) produced little additional409

benefit. In primates executing cued reaches, a shift-only time warping model accurately predicted movement410

onsets (R2 ≈ 0.9) without any reference to hand tracking data. This performance is comparable to recent work that411

developed a nonlinear warping method (Duncker and Sahani 2018), and surpasses prior work (Petreska et al. 2011;412

Poole et al. 2017).413

Together, these results demonstrate that shift-only and linear warping models can match or even outperform more414

complex methods. These simpler models have two attractive properties. First, they manipulate model estimates415

of single-trial firing rates in a more interpretable manner (see Fig 1), enabling exploratory data analysis and416

visualization. Second, we developed fast and computationally scalable optimization methods for this class of models.417

On a modern laptop, these models can typically be fit to data from 1000 neurons, 100 timepoints, and 1000 trials418

in one minute or less. This scalability is of great practical importance given the exponentially increasing size of419

neural recordings (Stevenson and Kording 2011), and the growing need for rigorous cross-validation and model420

comparison methods (Chandrasekaran et al. 2018), which are often computationally intensive if not prohibitive.421

Time warping also uncovered firing patterns that were not aligned to any stimulus or measured behavior. For422

example, we observed ∼13-40Hz spike time oscillations in primate premotor cortex during movement preparation423

(see Fig 5), which we then verified were phase-aligned with LFP (see Fig 5, Supplement 2). Notably, the time424

warping models we used did not assume any oscillatory structure in the data, and thus provide a data-driven425

validation that spike-level oscillations are a salient feature of the dynamics. Furthermore, a linear time warping426

considers the activity of the full neural population to estimate the changes in the phase (y-intercept) and frequency427

(slope) of the oscillation on a trial-by-trial basis. This population-level approach can be contrasted with popular428

frequency-domain statistical measures like coherence, which measures the degree of phase synchronization429

between two spike trains or between a single spike train and LFP (Fries et al. 1997; Jarvis and Mitra 2001; Sun430

et al. 2005; Aoi et al. 2015). Future work could incorporate oscillatory basis functions into time warping models431

to combine the benefits of pairwise spectral analysis with the population-level modeling perspective adopted in432

this paper. By drawing statistical power from larger numbers of simultaneously recorded neurons, research in this433

direction could provide tighter links between spike-based and LFP-based measures of oscillation, which have been434

difficult to characterize despite extensive prior work (Ray 2015).435

However, oscillatory patterns may not always be synchronized to LFP or pre-conceived behavioral variables, as we436

observed in rat motor cortex (see Fig 6). While further work is needed to fully elucidate the properties and functions437

of these ∼7 Hz oscillations, we found that they were, in some neurons, gated by a motor action—specifically,438

the first lever press—suggesting a potential relevance of these oscillations to the motor time keeping task (Fig 6,439

Supplement 2). Another, possibility is that orofacial behaviors such as whisking and licking are the primary driver440

of these oscillations (Hill et al. 2011). Other work has shown that persistent ∼7 Hz LFP oscillations may be locked to441

the respiration cycle (Tort et al. 2018); the transient, spike-level oscillations we observed were decoupled from LFP,442

and thus likely distinct from this phenomenon. Regardless of their root cause, this result demonstrates the ability of443

time warping to extract unexpected features of scientific interest from high-dimensional spike trains. Thus, while it444

will be interesting to develop specialized extensions to time warping that address particular scientific questions (e.g.445

oscillatory firing patterns), the general-purpose framework developed here can be a powerful tool for exploratory446

analysis, as it makes few pre-conceived assumptions about the data.447

It is possible that future work using more complex, nonlinear warping methods can uncover even finer structure in448

neural data. However, we observed that DTW and other classical methods were prone to overfit data, suggesting that449

careful regularization will be needed for this approach to succeed. A recently proposed method, called soft-DTW,450

looks promising (Cuturi and Blondel 2017). While the method is mathematically elegant, we found that soft-DTW451

can be difficult to interpret as it does not represent temporal alignments as a single warping function, but rather uses452
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a weighted combination of all possible warping paths. In general, nonlinear warping methods will require careful453

application, cross-validation, and secondary analyses to be useful statistical tools for neuroscience.454

Time warping is only one form of variability exhibited by single-trial neural dynamics. We purposefully examined455

time warping models in the absence of other modeling assumptions, such as trial-to-trial variation in amplitude456

(Bollimunta et al. 2007; Goris et al. 2014; Williams et al. 2018), or condition-specific changes in dynamics (Duncker457

and Sahani 2018). We also made the restrictive assumption that all neurons share the same time warping function458

on an individual trial (Shokoohi-Yekta et al. 2015). Finally, we assumed and exploited a trial structure to neural459

time series data throughout this work. To study more unstructured time series, future work could incorporate time460

warping into state space models (Macke et al. 2015) or sequence extraction algorithms (Mackevicius et al. 2019).461

Despite these exciting prospects for future statistical methodology, our work demonstrates that even a simple time462

warping framework can provide a rich and practical set of tools for the modern neuroscientist.463

While our results already show that averaging over short, stereotyped trials can obscure fine temporal oscillations464

and firing events, these shortcomings are undoubtedly more severe in behaviors that have longer temporal extents465

and exhibit more variability. Thus, we expect time warping methods to play an increasingly crucial role in neural data466

analysis as the field moves to study more complex and unstructured animal behaviors (e.g. under more naturalistic467

settings; Krakauer et al. 2017). Furthermore, in complex experimental tasks involving large numbers of conditions468

and exploratory behaviors, the same motor act or sensory percept may present itself only a small number of times.469

In this trial-limited regime, precise data alignment may be critical to achieve the necessary statistical power to make470

scientific claims. We expect simple models, such as linear and piecewise linear warping, to perform best on these471

emerging datasets due to their interpretability, computational efficiency, and robustness to overfitting.472
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London, Michael, Arnd Roth, Lisa Beeren, Michael Häusser, and Peter E Latham (2010). “Sensitivity to perturbations584

in vivo implies high noise and suggests rate coding in cortex”. Nature 466, p. 123.585

Macke, J. H., L. Buesing, and M. Sahani (2015). “Estimating state and parameters in state space models of spike586

trains”. Advanced State Space Methods for Neural and Clinical Data. Ed. by ZheEditor Chen. Cambridge587

University Press, pp. 137–159.588

Mackevicius, Emily L, Andrew H Bahle, Alex H Williams, Shijie Gu, Natalia I Denisenko, Mark S Goldman, and589

Michale S Fee (2019). “Unsupervised discovery of temporal sequences in high-dimensional datasets, with590

applications to neuroscience”. eLife 8. Ed. by Laura Colgin and Timothy E Behrens, e38471.591

Maheswaranathan, Niru, David B. Kastner, Stephen A. Baccus, and Surya Ganguli (2018). “Inferring hidden structure592

in multilayered neural circuits”. PLOS Computational Biology 14.8, pp. 1–30.593

Marron, J. S., James O. Ramsay, Laura M. Sangalli, and Anuj Srivastava (2015). “Functional Data Analysis of594

Amplitude and Phase Variation”. Statist. Sci. 30.4, pp. 468–484.595

Mueen, Abdullah and Eamonn Keogh (2016). “Extracting Optimal Performance from Dynamic Time Warping”.596

Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.597

KDD ’16. San Francisco, California, USA: ACM, pp. 2129–2130.598

Murakami, Masayoshi, M Inês Vicente, Gil M Costa, and Zachary F Mainen (2014). “Neural antecedents of599

self-initiated actions in secondary motor cortex”. Nature Neuroscience 17, p. 1574.600

Murthy, V N and E E Fetz (1992). “Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving601

monkeys.” Proceedings of the National Academy of Sciences 89.12, pp. 5670–5674.602

Opsomer, Jean, Yuedong Wang, and Yuhong Yang (2001). “Nonparametric Regression with Correlated Errors”.603

Statistical Science 16.2, pp. 134–153.604

Owen, Art B. and Patrick O. Perry (2009). “Bi-cross-validation of the SVD and the nonnegative matrix factorization”.605

Ann. Appl. Stat. 3.2, pp. 564–594.606

Pandarinath, Chethan, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D. Stavisky, Jonathan C.607

Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I. Ryu, Leigh R. Hochberg, Jaimie M. Henderson,608

Krishna V. Shenoy, L. F. Abbott, and David Sussillo (2018). “Inferring single-trial neural population dynamics609

using sequential auto-encoders”. Nature Methods 15.10, pp. 805–815.610

Paninski, Liam (2004). “Maximum likelihood estimation of cascade point-process neural encoding models”. Network:611

Computation in Neural Systems 15.4, pp. 243–262.612

Perez, Oswaldo, Robert E. Kass, and Hugo Merchant (2013). “Trial time warping to discriminate stimulus-related613

from movement-related neural activity”. Journal of Neuroscience Methods 212.2, pp. 203–210.614

Perry, Patrick O. (2009). “Cross-Validation for Unsupervised Learning”. PhD thesis. Stanford University.615
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Methods675

Code Implementation & Availability676

Our code for fitting linear and piecewise linear time warping models is distributed as a GitHub repository (under677

an MIT license): https://github.com/ahwillia/affinewarp. Our Python implementation relies on the standard678

SciPy scientific computing libraries (Jones et al. 2001–; Hunter 2007). Additionally, we achieved substantial679

performance enhancements by leveraging numba, a Python library that enables just-in-time (JIT) compilation (Lam680

et al. 2015). Step-by-step tutorials for executing our code are available on GitHub.681

Detailed Description of Time Warping682

Notation683

We follow the same notation introduced in the main text. Matrices are denoted in bold, uppercase fonts, e.g. M,684

while vectors are denoted in bold, lowercase fonts, e.g. v. Unless otherwise specified, non-boldface letters specify685

scalar quantities, e.g. S or s. We use MT and M−1 to denote the transpose and inverse of a matrix, respectively.686

We consider a dataset consisting of N features over K trials with T timesteps per trial. For simplicity, we refer to N687

as the number of neurons in the dataset; however, N could also refer to the number of fMRI voxels, multiunits, or688

regions of interest in imaging data. The full dataset is a third-order tensor (a three-dimensional data array) with689

dimensions K × T × N . The kth slice of the data tensor is a T × N matrix Xk, which represents the activity of690

the neural population on trial k. We denote a single element of the tensor as Xk,t,n, which specifies the activity of691

neuron n at timebin t on trial k.692

The time warping model produces an estimate of population activity on each trial. Mirroring standard notation in693

linear regression, we denote the model estimate on trial k as X̂k (a T ×N matrix).694

Model Estimate and Template Interpolation Scheme695

The main idea behind time warping is to approximate each trial, Xk, as a warped version of a N × T template, X̃,696

that is shared across all trials. For neuron n, at time bin t, on trial k, the spirit behind the model is:697

X̂k,t,n = X̃ωk(t),n (3)

However, this expression is only valid when the warping function, ωk(t), produces integer values. To allow the698

warping functions to produce non-integer values, we adopt a standard linear interpolation scheme. Let ωk : t 7→ τ699

describe the time warping function for trial k, such that t is the integer-valued time index for the data (clock time),700

and τ is any real number representing time for the response template. Then, the model estimate for neuron n, at701

time bin t, on trial k is given by:702

X̂k,t,n = (dτe − τ )X̃bτc,n + (τ − bτc)X̃dτe,n (4)

where τ = ωk(t), b·c represents the “flooring” operation, and d·e represents the “ceiling” operation. Note that τ703

implicitly depends on the trial index k, but we do not explicitly denote this dependence for notational simplicity.704
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Because the model estimate (Eq 4) is a linear combination of X̃bτcn and X̃dτen, the warping transformation can be705

represented as a matrix W with elements:706

Wt,dτe = τ − bτc

Wt,bτc = dτe − τ
(5)

For each trial, the warping matrix Wk can be uniquely determined from the warping function ωk. Thus, the model707

estimate on each trial is given by:708

X̂k = WkX̃ (6)

Optimization Strategy709

The model template and warping functions are optimized to minimize an objective function, which we denote as710

F (X̃, ω1, ω2, . . . , ωK). We assume that this objective function decomposes across trials as follows:711

F (X̃, ω1, ω2, . . . , ωK) =
K∑
k=1

fk(X̃, ωk) + ρ1(X̃) (7)

Here fk is a function defining the model loss on trial k, and ρ1 is a regularization term, penalizing the roughness712

and size of the template (described in the next section). Our online code package supports least-squares and713

Poisson loss functions; we adopted the least-squares criterion for the purposes of this paper due to its computational714

efficiency and its ability to be adapted to non-spike time data (e.g. fMRI or calcium imaging). Under this choice, the715

per-trial loss function is:716

fk(X̃, ωk) =
∥∥WkX̃−Xk

∥∥2
F
+ ρ2(ωk) (8)

Here, ρ2 is a regularization term that penalizes the magnitude of warping (described in the next section), and ‖·‖2F717

denotes the squared Frobenius norm, which is simply the sum of squared residuals, ‖M‖2F =
∑

ijM
2
ij .718

To minimize F , we adopt an alternating optimization (block coordinate descent) approach (Wright 2015). First, each719

warping function is initialized to be the identity, ωk(t) = t, and the template and warping functions are cyclically720

updated according to the following sequence of optimization subproblems:721

X̃ ← argmin
X̃

F (X̃, ω1, . . . , ωK)

ω1 ← argmin
ω1

F (X̃, ω1, . . . , ωK)

...

ωK ← argmin
ωK

F (X̃, ω1, . . . , ωK)

(9)

Here, an underlined variable denotes a dummy variable that is optimized over in each subproblem. This sequence of722

parameter updates is cyclically repeated until the objective value ceases to improve; by construction, the objective723

monotonically decreases at each step of the algorithm so convergence is guaranteed under mild assumptions724

(Wright 2015).725

This partitioning the parameter updates enables each subproblem to be solved very efficiently. When the template726

is considered a fixed variable, the objective function decouples across trials (Eq 7), which simplifies the warping727

function updates considerably:728

ωk ← argmin
ωk

fk(X̃, ωk) (10)
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These parameter updates are entirely independent, with each update only depending on the raw data for trial k, Xk,729

and the current warping template X̃. Our code package executes them efficiently in parallel across CPU threads.730

Furthermore, each warping function is controlled by a small number of parameters in our framework—at best a731

single parameter (shift-only warping) and at worst only a few parameters (piecewise linear warping). Thus, we732

perform these updates by a brute force random search (see Warping Function Regularization and Update Rule).733

The response template is also very simple to update, especially under a least-squares loss criterion. Assume for734

the moment that the model is not regularized; i.e., ρ1(X̃) = 0 and ρ2(Wk) = 0. Then, because each Wk is held735

constant, updating the template amounts to a least-squares problem that can be solved in closed form:736

argmin
X̃

K∑
k=1

∥∥∥WkX̃−Xk

∥∥∥2
F
= argmin

X̃

∥∥∥∥(∑
k

WT
kWk

)
X̃−

(∑
k

WT
kXk

)∥∥∥∥2
F

=

(∑
k

WT
kWk

)−1∑
k

WT
kXk

(11)

Furthermore the matrix
∑K

k=1 WkW
T
k is a symmetric, tridiagonal matrix. Intuitively, the tridiagonal structure arises737

from the constraint that each warping function is monotonically increasing, and the local structure of the linear738

interpolation scheme. Consider any warping matrix W, with an associated warping function ω. Equation 4 implies739

that Wi,tWj,t = 0 if |ω(t)− i| > 1 or if |ω(t)− j| > 1 and thus
[
WTW

]
i,j

= 0 if |i− j| > 1.740

The tridiagonal structure of
∑

kW
T
kWk enables the template parameters to be updated extraordinarily fast for741

practical applications. We use a specialized solver for systems of linear equations with banded, symmetric structure742

(scipy.linalg.solveh banded). This allows the matrix inversion in Equation 11 to be (implicitly) carried out in743

O(TN) operations instead of O(T 3 + T 2N) operations if W was treated as a dense matrix.744

Template Regularization and Update Rule745

We found that introducing regularization (penalties on the magnitude or complexity of model parameters) can746

improve the interpretability of the model and its ability to predict held out data. First, we found in some datasets747

that the warping template could exhibit rapid, high-frequency changes in firing rate (see, e.g., the template in Fig748

1C, which was fit without regularization). These irregularities likely correspond to the model overfitting to noisy749

neuronal data, and can be discouraged by penalizing the magnitude of the second finite differences along the750

temporal dimension of the template (Grosenick et al. 2013; Maheswaranathan et al. 2018). We refer to this term as751

a roughness penalty or smoothness regularization. Second, it is possible that the matrix
∑

kW
T
kWk appearing in752

eq. (11) would become non-invertible or ill-conditioned during optimization. To prevent this, and to discourage the753

template firing rates from becoming too large, we added a penalty on the squared Frobenius norm of the template.754

Formally, the regularization on the template is given by:755

ρ1(X̃) = λ
∥∥∥DX̃

∥∥∥2
F
+ γ

∥∥∥X̃∥∥∥2
F

(12)

where λ > 0 controls the strength of the roughness penalty and γ > 0 controls the strength of the Frobenius norm756

penalty. The matrix D is a (T − 2)× T matrix that computes second-order finite differences:757

D =


1 −2 1 0 . . . 0

0 1 −2 1
...

...
. . . 0

0 . . . 0 1 −2 1

 (13)
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Incorporating this regularization term into the update of the warping template (eq. (11)), we get:758

argmin
X̃

∥∥∥∥(∑
k

WT
kWk

)
X̃−

(∑
k

WT
kXk

)∥∥∥∥2
F

+ λ
∥∥∥DX̃

∥∥∥2
F
+ γ

∥∥∥X̃∥∥∥2
F

= argmin
X̃

∥∥∥∥(∑
k

WT
kWk + λDTD+ γI

)
X̃−

(∑
k

WT
kXk

)∥∥∥∥2
F

(14)

Which yields the template update rule:759

X̃←
(∑
k

WT
kWk + λDTD+ γI

)−1∑
k

WT
kXk (15)

Thus, the solution is the same as before except a term λDTD+ γI is added to the inverted matrix (left-hand side760

of linear system). These modifications hardly affect the computational complexity of the parameter update since761

λDTD+ γI is also a symmetric, banded matrix. Furthermore, as long as γ > 0 the overall matrix is positive definite762

and therefore guaranteed to be invertible.763

In practice, we have found that it is simple to hand-tune the regularization strengths for exploratory analysis (though764

cross-validation procedures, described below, should always be used to monitor for overfitting). We typically set765

the L2 regularization (γ) to be zero or very small (e.g., 1e-4) and do not tune it further. A reasonable value for the766

roughness penalty scale can be found by visually inspecting the template for various neurons (columns of X̃) and767

increasing λ if these time series appear noisy.768

Warping Function Regularization and Update Rule769

We found that the optimization landscape of linear and piecewise linear warping functions is complex and full of770

local minima. Thus, gradient-based optimization methods can be ineffective. Thankfully, the warping functions are771

(a) low-dimensional and (b) entirely decoupled across trials. Thus, when updating the warping functions, we perform772

a brute force parameter search for each trial in parallel. For shift-only warping models, we perform a dense grid773

search over the parameter (the magnitude of the shift).774

For piecewise linear warping models we perform an annealed random search as follows. Consider a warping775

function ω(t) for any arbitrary trial (we drop the trial index k for brevity). We parameterize the warping function as:776

ω(t) = 1 + (T − 1) ·
⌊
ω̃

(
t− 1

T − 1

)⌉1
0

(16)

where ω̃ is a piecewise linear function mapping the unit interval [0, 1] to any real number, and bze10 = max(min(z, 1), 0)777

denotes clipping any real number z to have a value between zero and one.778

The piecewise linear function ω̃ is defined by a series of M x-y coordinates, {(α1, β1), (α2, β2), . . . (αM , βM )}, where779

0 = α1 < α2 < . . . < αM = 1 and β1 ≤ β2 ≤ . . . ≤ βM . We refer to these coordinates as the knots of the warping780
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function. The function is defined using linear interpolation:781

ω̃(t) =



β1 if t = α1 = 0

β1

(
1− t−α1

α2−α1

)
+ β2

(
t−α1

α2−α1

)
if α1 < t < α2

...
...

βM−1

(
1− t−αM−1

αM−αM−1

)
+ βM

(
t−αM−1

αM−αM−1

)
if αM−1 < t < αM

βM if t = αM = 1

(17)

To optimize the warping functions we perform a random search over these coordinates/knots. Let α =
[
α1, α2, . . . , αM

]
and β =

[
β1, β2, . . . , βM

]
denote the current coordinates. We form a new proposed warping function by:

??α′ ← sort(α+Qη) (18)

α′ ← (α′ − α′1)/(α′M − α′1) (19)

β′ ← sort(β +Qη) (20)

where Q > 0 is a scalar parameter tuning the amount of exploration, and η is a vector of random normal variables
with mean zero and unit variance. The procedure “sort(v)” re-orders the elements of a vector so that they are in
ascending order. If the proposed warping function improves the objective function, we accept the new parameters:

α← α′

β ← β′

For each round of optimization we exponentially relax Q from 1.0 to 0.01 over a fixed number of iterations.782

We also found that penalizing the warping functions based on their distance from the identity line was helpful in783

some cases. Intuitively, this encourages the warping functions to be minimal—as the penalty strength increases the784

warping functions will approach ω(t) = t, resulting in no warping at all in this extreme limit. Similar penalties or hard785

constraints on time warping have been examined in prior literature (see e.g., Zhang et al. 2017). We chose the786

penalty to be the area between the unclipped warping function and the identity line:787

ρ2(Wk) = µ

∫ 1

0

|ω̃k(t)− t| dt (21)

which, for piecewise linear functions with relatively small M , can be efficiently computed as the sum of triangular and788

trapezoidal regions. Here, µ ≥ 0 is a scalar hyperparameter controlling the strength of the penalty. In practice we789

start with µ = 0 and increase it if, upon visual inspection, the warping functions are highly deviant from the identity790

line. Increasing µ in these cases can result in more sensible and interpretable templates. Again, cross-validation791

procedures can be used to asses whether µ is too low (resulting in overfitting) or too high (resulting in underfitting).792

Cross-validation793

As with any statistical method, one must be very careful that time warping does not reveal spurious structure and794

features of the data. In Fig 1, we saw that even a simple linear warping model can result in noticeable overfitting on a795
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simple synthetic time series. An important technical contribution of our work is a rigorous cross-validation framework796

for time warping models. This framework, described in detail below, enables us to fine-tune all regularization797

terms—i.e. the hyperparameters {γ, λ, µ}—across all warping models. That is, we can rigorously compare the798

performance of shift-only, linear, and piecewise-linear time warping models on an even footing, and thus critically799

examine the degree of nonlinearity in time warping. While cross-validation is a common procedure in statistical800

modeling and in modern neuroscience, there are subtle pitfalls that must be avoided in unsupervised learning801

models (Bro et al. 2008; Perry 2009), and in models with smoothness regularization terms (Opsomer et al. 2001).802

These concerns are not merely theoretical; they have directly impacted recent results in neuroscience (Latimer803

2018).804

To properly compare the performance of different warping models, it is important to perform nested cross-validation,805

so that regularization terms are separately tuned for each model. For example, a piecewise linear warping model806

will often require stronger smoothness and warp regularization terms, compared to a simpler, shift-only warping807

model. Thus, on each cross-validation run we split the data in three partitions: a training set, a validation set, and a808

test set. For each model class (shift-only, linear warping, piecewise-linear warping, etc.) we fit 100 models with809

randomized regularization strengths to the training set; we then evaluated all 100 models on the held-out validation810

set; finally, the best-performing model was evaluated on the test set. The test set performance is then compared811

across model classes. We used ∼73% of the data for training, ∼13% for validation, and the final ∼13% for testing.812

We performed this overall cross-validation procedure 100 times, drawing different randomized data partitions each813

time—this is known as randomized cross-validation and is useful for heterogeneous datasets, in which features (i.e.814

neurons) exhibit varied levels of noise.815

Recall that our dataset consists of N neurons, T timebins, and K trials. The question then arises, should we hold816

out neurons, timepoints, or trials during cross-validation? Since the warping functions are assumed to be shared817

across all neurons, these model parameters can be fit on a subset of neurons (training set), and then evaluated on818

held out neurons (validation/test sets). However, if we hold out individual neurons entirely, then it is impossible to fit819

the response template matrix X̃ for those cells. Conversely, the response template can be fit to a subset of trials820

(training set) and evaluated on the remaining trials (validation/test sets). However, if we hold out individual trials821

entirely, then it is impossible to fit the warping functions associated with those held out trials.822

To circumvent this problem we adopt a bi-cross-validation hold out pattern (Owen and Perry 2009). This entails823

separately and independently partitioning neurons and trials. Thus, we randomly choose training neurons (∼73%824

of all cells), validation neurons (∼13% of all cells), and testing neurons (the remaining ∼13%). Additionally, we825

randomly choose training trials, validation trials, and testing trials, according to these same ratios. The model826

warping functions are fit to all trials, but only on the training neurons; the response template is fit for all neurons, but827

only on the training trials. When reporting the training performance, we compute the reconstruction loss on the828

intersection of the training neurons and training trials. Likewise, when evaluating models on the validation (or test)829

set, we compute the the reconstruction loss on the intersection of the validation (or test) neurons and validiation (or830

test) trials.831

Temporal dependencies in model errors can complicate proper cross-validation (Opsomer et al. 2001; Latimer 2018).832

To avoid these complications, we leave out entire trials for individual neurons, rather than leaving out a subset of833

time bins.834

Null models and other sanity checks835

The cross-validation procedure described above is fully rigorous, but computationally expensive to perform. Even if836

each optimization run only takes a few seconds to complete, comparing M warping models over P random samples837
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of the regularization parameters, and repeating the whole process over Q randomized folds leads to long run times;838

for example, ∼26 hours for M = 5, P = 100, Q = 50 and each model taking ∼20 seconds to optimize. This rather839

unfavorable scaling underscores why our attention to performance enhancements—e.g. by exploiting banded840

matrix structure when updating the model template—is critical for practical applications. On the other hand, a full841

cross-validation run is often unnecessary for exploratory data analysis and visualization. Here we briefly outline two842

simple procedures for validating time warping visualizations in a more interactive manner. Our online code package843

also supports both of these options.844

First, one can create a very simple null dataset of neural activity that, by construction, contains no warping. By845

comparing the results of time warping on this null dataset to those achieved on the real data, we gain an informative846

reference point. For spiking data, we simulate null data by computing the trial-average firing rate of each neuron847

and then drawing Poisson i.i.d. random spike trains on every trial. That is, on each trial, the spike train for a neuron848

is drawn from an inhomogeneous Poisson process, with a rate function given by the trial-average firing rate. Similar849

baselines could be developed for calcium imaging and fMRI studies after specifying an appropriate noise model.850

Second, a key visualization tool enabled by time warping is the alignment of neural activity across trials. This851

alignment is achieved by applying the inverse warping functions to re-scale the time axis on the raw data; it does not852

directly rely on the response template, X̃. Thus, one can visualize the aligned activity of an individual neuron in a853

held out manner—the model is fit to all trials and all other neurons, and the warping functions are applied to the854

held out cell. This can then be repeated for each neuron in the full population. All spike raster plots in the main855

paper were produced using this procedure.856

While these two approaches do not supplant the need for careful cross-validation, they can provide a quick validation857

for visualizations and presented results.858

Synthetic data examples859

In Figure 1 data from a single neuron was simulated as a difference of two exponential curves. The activity at860

T = 100 equally spaced time points between [−8,+8] was given by:861

xk(t) =

0 sk − t < 0

3.3 · exp((sk − t)/2)− exp(sk − t) + η sk − t ≥ 0

Where sk was a random shift parameter drawn uniformly on the interval [−5.5, 3.5), and η was randomly drawn862

zero-mean gaussian noise with a standard deviation of 0.15. Unregularized shift-only, linear, and piecewise linear863

(with 1 knot) models were fit to K = 100 simulated trials. DTW-Barycenter Averaging (DBA; Petitjean et al. 2011)864

was fit to the same data using (Tavenard 2017).865

In Figure 2 we simulated random warping warping functions following the procedure listed in Equation ??, with866

Q = .12. The firing rate template of each neuron was given by a smoothed, sparse sequence of heavy-tailed random867

variables:868

x(t) = 0.01 + conv(bt · et)

where et were randomly drawn from an exponential distribution (with scale parameter equal to one) and bt were869

binary random variables drawn from a Bernoulli distribution (with probability of 0.92 that bt = 0). The conv(·)870

procedure denotes convolution with a Gaussian smoothing kernel with a standard deviation of 2. Truncated Poisson871

random variables were then drawn in each timebin; any bins with more than two spikes were truncated to one spike.872
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Experimental Methods873

Mouse Olfactory Task874

All procedures were approved by the Institutional Animal Care and Use Committee of New York University Langone875

Medical Center. We analyzed data that was collected as part of a previously published study (Wilson et al. 2017).876

Data presented from the mouse olfactory bulb were collected from a single recording session using an awake male877

C57B/6 mouse. Subject was implanted with a RIVETS headbar for head-fixation 7 days prior to the experiment (see878

description in Arneodo et al. 2018). Subjects were water deprived prior to the experiment and were administered879

water during random odor presentations to acclimate animals to the experimental apparatus.880

On the day of experiment, the subject was anesthetized using isoflurane and a ∼0.3 mm craniotomy was preformed881

to gain access to the dorsal olfactory bulb. NeuroNexus A2x32 probes were inserted approximately 500 µm into882

the dorsal bulb to record from the mitral-tufted cell layer. After probe insertion, the subject was allowed to recover883

from anesthesia for 30 minutes prior to recording. Electrophysiological and respiration signals were recorded using884

the HHMI Janelia Whisper recording system at 25000 Hz. Respiration (sniff) was monitored non-invasively using a885

pressure sensor sampling from the airflow in front of the nose. Action potentials from the recording were identified886

and classified into units offline using Spyking Circus template-matching software (Yger et al. 2018).887

Two odors at 3 concentrations were presented in randomly interleaved trials. Subjects were passively sampling888

odor during trials. Concentrations covered a range of 2 orders of magnitude of molarity in carrier air. Odorants889

were diluted in mineral oil, stored in amber volatile organic analysis vials, and delivered via a 8-odor olfactometer.890

Odorant concentrations were controlled using a combination of gas- and liquid-phase dilution. We restricted our891

analysis to subsets of trials with odorant concentrations of 10−2 M—the highest concentration analyzed in (Wilson892

et al. 2017).893

Primate Motor Task894

All procedures and experiments were reviewed and approved by the Stanford University Institutional Animal Care895

and Use Committee. Two male rhesus macaque monkeys (Macacca mulatta), denoted monkey J and monkey U,896

were used in this study. The monkeys were 13 (J) and 7 (U) years old and weighed 16 kg (J) and 13 kg (U) at the897

time of these experiments.898

Monkeys performed a standard center-out delayed reach task described previously in (Gilja et al. 2012; Ames et al.899

2014). Targets were presented at (40, 80, 120) cm and 90 cm from the central starting location for monkeys J and U900

respectively. For monkey J, delay periods were evenly distributed between 300 and 700 ms (monkey J) with ∼4.5%901

non-delay trials randomly interleaved. For monkey U, delays were randomly distributed between 350 and 600 ms on902

87% trials, between 5 and 350 ms on 10% of trials, with 3% non-delay trials. Monkeys received a liquid reward upon903

touching and holding the cursor on the target. Movement during the delay period caused a trial failure and provided904

a brief automated time out (∼1 s). Non-delay trials were not analyzed.905

For monkey J, the virtual cursor and targets were presented in a three-dimensional environment (MusculoSkeletal906

Modeling Software, Medical Device Development Facility, University of Southern California). Hand-position data were907

measured at 60 Hz with an infrared reflective bead–tracking system (Polaris, Northern Digital). Behavioral control908

and neural decode were run on separate PCs using the Simulink/xPC platform (Mathworks) with communication909

latencies of less than 3ms. This system enabled millisecond timing precision for all computations. Visual presentation910

was provided via two LCD monitors in a Wheatstone stereotax configuration, with refresh rates at 120 Hz, yielding911
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frame updates of 7 ± 4 ms. Two mirrors visually fused the displays into a single three-dimensional percept for the912

user, as described previously in (Gilja et al. 2012).913

For monkey U, the virtual cursor and targets were presented on a standard 2D display. The monkey controlled the914

position of an onscreen cursor using a haptic manipulandum which applied no additional forces applied to the arm915

and was only used for positional cursor control. The haptic device was constrained to move within a 2D vertical916

workspace and cursor position tracks hand position 1:1 without perceptible lag.917

Neural recordings were obtained via implanted 96-electrode Utah Microelectrode arrays (Blackrock Microsystems)918

using standard neurosurgical techniques. Two arrays were implanted in the left hemisphere of Monkey J, one919

in dorsal premotor cortex (PMd) and one in primary motor cortex (M1). Three arrays were implanted in the left920

hemisphere of Monkey U, one in PMd, one in medial M1, and one in lateral M1. For both monkeys, implantation921

location was estimated visually from local anatomical landmarks.922

Neural data were band-pass filtered between 250-7500 Hz, and processed to obtain multiunit ‘threshold crossings’923

spikes, defined as any time the signal crosses -3.5 times RMS voltage. We did not perform spike sorting, and instead924

grouped together the multiple neurons present on each electrode. As such, we anticipate that these population925

recordings contain both single and multiunit activity.926

For Figure 4 and Figure 4, Supplement 1 (Monkey J), each trial was defined as the 1200 ms following the reach927

target onset. Spike times were binned in 5 ms increments. For Figure 5 (Monkey U) and Figure 5, Supplement 1928

(Monkey J), we aligned spike times to the go cue instead of target onset. To highlight oscillatory spiking activity, we929

defined each trial as the period occurring 400 ms prior to go cue and 100 ms after go cue. Spike times were binned930

in 2.5 ms increments for Monkey J and 5 ms increments for Monkey U; similar results were found for smaller bin931

sizes, and stronger smoothness regularization. In Figure 5F (Monkey U), we extended each trial duration to ±400932

ms around the go cue, but otherwise kept the same parameters.933

Tuning the regularization strength of on template smoothness (λ) and warp magnitude (µ) was important to uncover934

the oscillations in premotor cortex. We used the cross-validation procedure described above to determine roughly935

appropriate values for these parameters; we increased the regularization strength further for the purposes of936

visualization and to be confident that are results were not due to overfitting.937

Rat Motor Task938

All procedures and experiments were reviewed and approved by the Harvard Institutional Animal Care and Use939

Committee. We analyzed data that was collected as part of a previously published study (Dhawale et al. 2017),940

which describes all experimental procedures and data collection protocols in greater detail.941

Experimental subjects were female Long Evans rats, 3-8 months old at the start of the experiment (Charles River).942

Extracellular recordings were obtained from 16 chronically implanted tetrodes in the motor cortex. Signals were943

amplified and digitized on a customized head-stage, and sampled at 30 kHz. The head stage was attached to a944

custom-designed tethering system that allowed the animal to move freely within its cage. Before implantation, an945

automated behavioral training framework (described in Poddar et al. 2013) was used to train the rats on a timed946

lever-pressing task (described in Kawai et al. 2015) until asymptotic performance was achieved.947

The tetrode drive was then surgically implanted and targeted to motor cortex, through a 4-5 mm diameter craniotomy948

made 2 mm anterior and 3 mm lateral to bregma. The tetrode array was lowered to a target depth of 1.85 mm. At949

the end of the experiments, the position of the electrodes was verified by standard histological methods—brains950
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were fixed via transcardial perfusion (4% paraformaldehyde in phosphate-buffered saline, Electron Microscopy951

Sciences) and the location of the electrodes was reconstructed by viewing mounted coronal sections (60 mm).952

After 7 days of recovery post-surgery, training on the task resumed in the animal’s home cage. Neural and behavioral953

data was recorded continuously during this time (12-16 weeks) with only brief interruptions (median time of 0.2 hr).954

Spikes were sorted using Fast Automated Spike Tracker (FAST), a custom algorithm designed for parsing long-term955

continuous neural recordings (for details, see Dhawale et al. 2017). We examined K = 1265 trials, collected over a956

two day period.957

Each trial was defined as the period starting 500 ms prior to the first lever press and 1500 ms after the first958

lever press. Spike times were binned in 10 ms increments for each unit. Raw spike counts were provided to959

the time warping algorithm; however, we observed similar results under various normalization schemes, such as960

soft-normalization (Churchland et al. 2012). All analyses of these data used a shift-only time warping model. The961

per-trial shift was constrained to be less than 10% of the total trial duration.962
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Supplemental Figures963
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Figure 3, Supplement 1. Nested cross-validation results and supplementary results on a different odorant. (A) Nested
cross-validation results for data presented in Fig. 2 (pinene, 10−2 M). Vertical axis shows Euclidean norm of model residuals
divided by norm of data for training and test sets. (B) Same as panel A, but computed on neural responses to a different odorant
(limonene, 10−2 M). (C-F) Same as Fig. 2B-E in the main text, but on K = 45 presentations of limonene (10−2 M).

Figure 4, Supplement 1. Replication of movement onset detection in primate reaching experiment. All figure panels are
directly analogous to Figure 4 in the main text and show comparable results. Instead of 90◦ reach trials (analyzed in the main
text) only 135◦ reach trials were analyzed.
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Figure 4, Supplement 2. Nested cross-validation of primate reaching dynamics aligned to target onset.
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Figure 5, Supplement 1. Oscillations in premotor cortex uncovered in data from a second nonhuman primate. (A)
Trial-by-time raster plots (black) and trial-averaged estimates of firing rate (blue) for four example multiunits. Red vertical line
denotes the time that the go cue was delivered. (B-C) Same as panel A, except after spike times aligned by shift-only time
warping (B) or linear time warping (C). Red histogram shows the distribution of go cue times after after the time warping
transformation was applied. All four multiunits were held out during model fitting—the warping functions were fit to the remaining
N = 95 units and applied to the held out multiunit to generate the displayed raster plots.
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a b c

Figure 5, Supplement 2. Spike time oscillations in primate premotor cortex align with LFP. (A) Top, LFP signal on all
trials. The signal was obtained by averaging over all N = 96 electrodes, z-scoring the signal within each trial, and then bandpass
filtering (10-30 Hz; fifth-order Butterworth digital filter). Bottom, average LFP signal across trials. (B-C) Same as panel A, except
after applying temporal alignments from a shift-only warping model (B) and a linear warping model (C). In both cases, time
warping uncovered strong oscillations at ∼18 Hz—the same frequency of spike-level oscillations identified in Fig 4. Importantly,
the warping models were fit only to binned spike times, demonstrating that the model generalized well to new data stream with
fundamentally distinct features. This suggests that the spike-level oscillations described in Fig 4 are time-locked with LFP
oscillations, in agreement with prior work (Murthy and Fetz 1992; Sanes and Donoghue 1993; Reimer and Hatsopoulos 2010;
Pandarinath et al. 2018). All data were taken from the same animal subject shown in Fig 4.
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Figure 6, Supplement 1. LFP does not correlate with spike-level oscillations in rat motor cortex. The LFP signal was
highly correlated across all electrodes and thus averaged across electrodes before analysis. (A) Trial-averaged periodogram of
the LFP signal. Dashed red line denotes 6.5Hz, illustrating a peak in the LFP spectrum that is similar to the frequency of
spike-level oscillations in Fig 6. (B) One shift-only time warping model was fit to bandpassed-filtered LFP signals (LFP-model;
fifth-order digital Butterworth, 5-9 Hz), and a second shift-only time warping model was fit to binned spike trains (Spike-model;
same as Fig 6). The scatterplot demonstrates the per-trial shift parameters learned by these models were not correlated,
suggesting that the spike-level oscillations are not phase-locked to LFP. (C) Bandpassed LFP as raw data (left; dashed line
denotes first lever press), and same data aligned by LFP-model (middle) and Spike-model (right) time warping models. LFP is
not reliably aligned by the time warping model fit to spiking data. (D) Raster plots from two example neurons (top and bottom
rows), showing raw spike times (left; dashed line denotes first lever press), aligned by LFP-model (middle), and aligned by
Spike-model (right). Spike-level oscillations are not revealed by the time warping model fit to LFP.
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Figure 6, Supplement 2. Five representative isolated units exhibiting stronger spike time oscillations following the
first lever press. (A) Raw spiking activity in a 1 second window around the first lever press. Vertical blue line denotes the time
of the first lever press (manual alignment point). (B) Model-aligned spiking activity by shift-only warping, with trials sorted by the
direction and magnitude of the learned shift. Blue line denotes the time of the first lever press on each trial. (C) Inter-spike
interval (ISI) distributions during the 500 ms preceding the first lever press. (D) ISI distributions during the 500 ms following the
first lever press. Note increased peak around ∼150 ms, corresponding to increased oscillations at ∼7 Hz. (E) Trial-averaged
PSTHs for model-aligned spike times. Black lines denote PSTHs computed from spikes preceding the first lever press, while
blue lines denote PSTHs computed from spikes following the first lever press. Note increased oscillatory dynamics following the
lever press.
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