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ABSTRACT

Aims: We conducted a genome-wide association study of blood DNA methylation and smoking,
attempted replication of previously discovered associations, and assessed the reversibility of
smoking-associated methylation changes.

Methods: DNA methylation was measured in baseline peripheral blood samples for 5,044
participants in the Melbourne Collaborative Cohort Study using the HumanMethylation450
BeadChip assay. For 1,032 participants, these measures were repeated using blood samples collected
at follow-up, a median of 11 years later. A cross-sectional analysis of the association between
smoking and DNA methylation and alongitudinal analysis of changesin smoking status and changes
in DNA methylation were conducted. We used our cross-sectional analysis to attempt replication of
previously reported associations for current (N=3,327) and former (N=172) smoking. A
comprehensive smoking index accounting for and biological half-life of smoking compounds

bioactivity was constructed to assess the reversibility of smoking-associated methylation changes.

Results: We identified 4,496 cross-sectional associations between smoking and blood DNA
methylation at P<10”, including 3,296 that had not been reported before. We replicated the majority
(90%) of previously reported associations for current and former smokers. In our data, we observed
for former smokers a substantial degree of return to the methylation levels of never smokers,
compared with current smokers (median: 74%, IQR=63% to 86%). Consistent with this, analyses
using the comprehensive smoking index indicated a wide-ranging rate of reversibility of smoking-
associated methylation changes. Longitudina analyses identified 368 sites at which methylation
changed upon smoking cessation.

Conclusion: Our study provides evidence of many novel associations between smoking and DNA
methylation at CpGs across the genome and replicates the vast majority of previously reported
associations. The reversibility of smoking-associated methylation was quantified by using a
comprehensive smoking index accounting for both the bioactivity of smoking and several aspects of

smoking history that are relevant to DNA methylation, and using longitudinal methylation measures.
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INTRODUCTION

Severa studies have examined the association between exposure to tobacco smoke and DNA
methylation levelsin blood [1-12]. A systematic review identified methylation at 1,460 CpG sites to
be associated with smoking [13], and a recent large-scale study identified 2,623 CpGs with P<10™
[12]. These associations were identified comparing current with never smokers, and not all were
replicated using independent data. Additionally, there is substantial variability by study in the
strength of associations, which may be due to characteristics of the cohorts such as age or ethnicity,
or methodological issues such as the variables used for adjustment in statistical models or the
pipeline used for normalisation of the DNA methylation data.

Most of these studies also reported differences in methylation for former smokers compared with
never and current smokers, indicating a degree of reversibility of smoking-associated methylation
changes. Few studies have examined reversibility patterns beyond assessing the effect of time since
quitting [5, 10, 12]. Guida and colleagues assessed reversibility in a study based on 745 women and
identified two clusters of smoking-associated methylation at CpG sites according to whether
methylation reverted back to the level of never smokers within 35 years of quitting [5]. The
assessment of reversibility made by Joehanes and colleagues was based on 2,374 participants and
concluded that for the majority of the 2,568 CpGs they examined (those with FDR-adjusted P<0.05
in the comparison of former vs. never smokers) methylation levels returned to those of never
smokers within five years of smoking cessation, and for only 36 CpGs did they observe no tendency
of a return to the methylation levels of never smokers 30 years after they had quit [12]. Consistent
findings were reported by Wilson and colleagues, who made use of repeated methylation measures
taken seven years apart to identify methylation at CpG sites that varied longitudinally with changes
in smoking status [10]. They also observed differential methylation in former smokers who had quit
more than 40 years before methylation measurement, compared to never smokers. Assessing what
smoking-associated methylation changes are transient or long-lasting may have important
implications for biological understanding and clinical practice [14].

The bioactivity of exposure to smoking can be modelled as a function of the smoking history of an
individual, including the number of cigarettes smoked, the age at starting smoking, and the duration
of smoking. The resulting comprehensive smoking index (CSI) was shown to substantially improve
the prediction of smoking-related disease compared with simpler smoking assessment models [15-
17]. A prominent feature of the CSl is that it includes a parameter for biological half-life,
representing the rate at which the activity of smoking compounds declines, and is therefore the

parameter of interest when assessing reversibility.
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In this study, we aimed to: i) conduct a genome-wide association study of DNA methylation and
exposure to tobacco smoking measured using traditional smoking assessment and CSI [15], the latter
allowing a better assessment of the methylation reversibility pattern; ii) replicate previously reported
associations, including associations observed in former smokers or by time since quitting; iii) assess
the association between changes in DNA methylation and changes in smoking using repeated

measures taken a median of 11 years apart.

MATERIAL AND METHODS
Study participants

Between 1990 and 1994 (baseline), 41,513 participants were recruited to the Melbourne
Collaborative Cohort study (MCCS). The majority (99%) were aged 40 to 69 years and 41% were
men. Southern European migrants were oversampled to extend the range of lifestyle factors and
genetic variation [18]. Participants were contacted again between 2003 and 2007 (follow-up). Blood
samples were taken at baseline and follow-up from 99% and 64% of participants, respectively.
Baseline samples were stored as dried blood spots on Guthrie cards for the majority (73%), as
mononuclear cell samples for 25% and as buffy coat samples for 2% of the participants. Follow-up
samples were stored as buffy coat samples and dried blood spots on Guthrie cards. All participants
provided written informed consent and the study protocols were approved by the Cancer Council

Victoria s Human Research Ethics Committee.

The present study sample comprised MCCS participants selected for inclusion in one of seven
previously conducted nested-case control studies of DNA methylation [19-23]. Controls were
matched to incident cases of prostate, colorectal, gastric, lung or kidney cancer, urothelia cell
carcinoma or mature B-cell neoplasms on sex, year of birth, country of birth, baseline sample type
and smoking status (the latter for the lung cancer study only). We included in the analysis all
participants in any of the seven case-control studies (colorectal, gastric, kidney, lung, B-cell
lymphoma, prostate and UCC). For the cross-sectional analyses, we excluded participants whose
blood sample was taken at follow-up (303 samples from the UCC study) because their questionnaire
data and storage time were different. We also excluded cases from the lung and UCC studies to avoid
bias due to the strong association between smoking and these cancers [24]. Methylation data for
baseline blood samples (baseline study) were available from atotal of 2,777 controls and 2,267 cases

after quality control and exclusions. Additionally, methylation measures (Guthrie cards) were
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repeated at follow-up (2004-2007) for a subset of 1,100 of the controls who also had their baseline

sample collected on aGuthrie card, of which 1,088 were available after quality control.

Description of the smoking variables is presented in Table 1. Participants with missing data for
smoking variables were excluded from the analysis, as were those who had never smoked cigarettes
but had smoked cigars or pipes. Missing data for confounders (<1% for age, sex, ethnicity, BMI or
alcohol drinking) were imputed using the median or mode of the distribution for continuous and

categorical variables, respectively.

Methods relating to DNA extraction, and DNA methylation processing and quality are presented in
Supplementary Material.

Previously reported associations

We identified previous studies using the keywords (“smoking” and “blood” and “methylation”),
which returned 416 articles in PubMed (31 July 2018). We retained from this search six studies
having conducted an EWAS of smoking and blood DNA methylation [2, 5, 9, 10, 12, 25]. Other
studies were identified but not selected due to small sample size (N<200), or not adjusting for
potential confounders of the association [1, 3, 4, 6-8, 11, 26-30]. The six studies retained identified
3,327 associations with a P-value less than 107, 2500 (75%) in one study only, 438 (13%) in two,
and 389 (12%) in three or more studies. Of the six studies, four also reported differentially
methylated CpGs for former compared with never smokers [5, 9, 12, 31], identifying 172

associations, including 146 in only one study.

Comprehensive smoking index (CSI)

We constructed a CSI following the recommendations of Leffondré and colleagues [15]. We
observed better model fits (data not shown) when using the log-transformed version of the CSI:
In(CSI)+1, referred to as simply ‘CSI’, and we assumed no lag-time between exposure to smoking
and changesin DNA methylation [15]. The CSI was defined in our study as:

T tsc
c51:1n(1+<1+0.5r).<0.5r).N)

where T is duration of smoking in years, tsc the time since smoking cessation in years, N the average
number of cigarettes smoked per day and 7 the half-life parameter. We estimated = from the data as

follows: (i) by visua inspection of CSI values obtained for various z values (Figure 1), we
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concluded that for smaller values of z, the CSI was both sensitive and more consistent with assumed
biological activity by smoking history; (ii) for a CpG of interest, we fitted the same model for every
CSl with 7 value within the grid: {0.001; 0.005; 0.01; 0.025; 0.05; 0.1 to 1 by increment of 0.1; 1 to
10 by increment of 0.25; 10 to 30 by increment of 1; and 30 to 100 by increment of 10}; (iii) the
estimated t that maximised model fit [15], based on the restricted maximum likelihood from a linear

mixed model (see following section).

Genome-wide association study of DNA methylation (EWAYS)

We assessed cross-sectional associations (baseline data) for methylation at each individual CpG by
regressing DNA methylation M-values on smoking status using linear mixed-effects regression
models, using the function Imer from the R package Ime4 [32]. Models were adjusted by fitting fixed
effects for baseline values of age (continuous), country of birth (Australia/lNew-Zealand, Italy,
Greece, United Kingdonm/Malta), sex, alcohol drinking in the previous week (continuous, in
gramgday), BMI (<25 kg/m2, >25 to <30, >30 to <35, >35), sample type (periphera blood
mononuclear cells, dried blood spots, buffy coats) and estimated white blood cell composition
(percentage of CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes,
estimated using the Houseman algorithm [33, 34]), and random effects for study, plate, and chip.
Heterogeneity in the association between smoking and methylation by age (continuous), sex, alcohol
intake in the previous week (continuous), BMI (continuous) and future case status was assessed

using likelihood ratio tests for interaction.

We estimated t for the 3,327 CpGs previously reported to be associated with smoking. These
findings are summarised in Table 4 and Figure 1. We assumed that the median, and the 25" and 75"
percentile of the distribution of t were the values most likely to detect novel associations between
smoking and DNA methylation. We thus ran cross-sectional EWAS analyses for: i) current
compared with never smoking, ii) former compared with never smoking; and iii) CSI (continuous
variable) with t=1.5, t1=2.75, and 1=5.25. Given the substantial correlation between these tests, we
did not correct further for multiple testing and used a threshold of P<10™’ to identify associations for
any of these EWAS [35]. The false discovery rate (FDR-adjusted P<0.05) was used to identify
suggestive associations [12, 31].

For all associations with P<10” in our cross-sectional EWAS we estimated the half-life = that
provided the best model fit for the CSl, as described previously. We aso calculated a ‘reversibility

coefficient’, expressed as a percentage and defined as the regression coefficient comparing ‘former’


https://doi.org/10.1101/660878
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660878; this version posted June 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

to ‘current’ smokers divided by the coefficient comparing ‘never’ to ‘current’” smokers, as done

previously [36].

Longitudinal analysis

Linear mixed effects regression models were used to assess the relationship between change in
smoking status and change in methylation for individual differentially-methylated CpGsin our cross-
sectional EWAS (P<10™). In a first model, we used the following longitudinal smoking patterns:
current (at baseline)-current (at follow-up), current-former, former-former, and never-never. Study
was included as a random effect and the following variables were included as fixed effects: sex,
country of birth (four categories), baseline age (continuous), baseline alcohol intake (continuous),
baseline BMI (continuous), baseline cell composition (as defined previously), change in age, BMI
and alcohol intake (all continuous), the difference between baseline and follow-up composition for
each cell type (continuous), baseline smoking (expressed using a CSl with 7=1.5 because it identified
the greatest number of associations in the cross-sectional EWAS) and the baseline methylation M-
value of the CpG. As adjustment for baseline methylation in analyses of change in methylation may
lead to bias in some circumstances [37], we conducted a sensitivity analysis using models without
adjustment for baseline M-value. We also carried the analysis not adjusting for baseline smoking
status.

All statistical analyses were performed using the statistical software R (version 3.4.4).

RESULTS

Altogether, 5,044 MCCS participants were included in the cross-sectional analysis; at baseline, their
median age was 60.7 years (IQR: 53.9-65.4), 3,408 (68%) were males, and 655 (68%) were current,
2,010 (40%) former, and 2,379 (47%) never smokers (Table 1). Participants in the longitudinal
analysis were younger (median age at baseline: 58.5 years) and generally had healthier lifestyle than

other participants included in the cross-sectional analysis.
Genome-wide association study of DNA methylation
Comparison of current, former and never smokers

At P<107, we observed 1,851 differentially methylated CpG sites between current and never
smokers, and 156 differentially methylated CpGs between former and never smokers, with 140
overlapping CpGs and 16 found in former smokers only. In total, 917 of the 1,851 CpGs (50%)
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associated with current smoking had not been reported in previous studies at P<10™" (Supplementary
Table 1); 1,124 (61%) showed some methylation differences (P<0.05 and same direction of
coefficient) in former smokers. Reversibility coefficients indicated that for former smokers, there
was a substantial degree of return to methylation levels of never smokers (median: 74%, 1QR=63%
to 86%).

Comprehensive smoking indices (CS)

We first considered plausible values of CSI based on 3,327 differentially-methylated CpGs identified
in six previous studies at P<10 (Supplementary Table 2). Estimated r values were wide-ranging:
median: 2.25, IQR: 1 to 5.25 and 3,038 (91%) CpGs had P<0.05. To further refine the potential for
these values to identify new associations, we considered only the 1,277 CpGs for which the
previously reported association was replicated in our sample (with the estimated 7) at P<10’. For
these, the median and 25" and 75™ percentile values were 2.75, 1.5 and 5.25 respectively. These
values were consistent with the simulated values presented in Figure 1. We thus conducted
methylome-wide association studies for each of these three values and identified 3,497 (1=2.75),
4,022 (r=1.5) and 2,433 (1=5.25), respectively, at P<10’. From these analyses, 4,496 associations
were identified and DNA methylation at these CpGs was classified as smoking-associated in
subsequent analyses, including 1,775 overlapping with associations identified using the current and
former smoking variables. Of these, 3,296 (73%) had not been reported at P<10™ in previous studies.

Interaction analyses

Using the Bonferroni correction for multiple testing (P=0.05/4,496=1.1x10"°) and the CSI with t=1.5,
we observed a weaker association for DNA methylation in women at a CpG not annotated to a gene,
and a weaker association for participants with higher BMI at five CpGs, including two in AHRR
(Supplementary Table 3). No significant interaction with smoking status was observed at this

significance threshold by age, alcohol consumption, or future case status.
Replication of previously reported associations

We examined the replication in the MCCS of 3,327 associations between current smoking and
whole-blood DNA methylation previously reported in any of the six studies considered. We
replicated, with coefficients consistent in direction, 2,795 (84%) at P<0.05 and 934 (28%) at P<10’
using the current vs. never comparison. These numbers were 2,946 (89%) and 1,200 (36%),
respectively, when considering any of the CSIs with t=15, 1=2.75 or 1=5.25 (Table 2,
Supplementary Table 2). Of the 2,500 associations that had been reported in one study only, we
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replicated 1,983 (79%) at P<0.05 using the current smoking variable; and 97% of associations that
had been reported in two or more studies (Table 2).

We then examined the replication of associationsidentified for former compared with never smoking
previously reported in any of four large studies. Of the 146 associations that had been reported at
P<10” in one study only, we replicated 129 (88%) at P<0.05 and 60 (41%) at P<10’ using the
former smoking variable. All associations that had been reported two or more times were replicated
at P<0.05 using the MCCS data (Table 2, Supplementary Table 4).

Replication of our findings by Joehanes et al.

We examined the replication of our findings using the results from Joehanes et al. [12] in which P-
values up to 0.019 (FDR-adjusted P<0.05) were presented for the current vs. never smoking
association. Of the 3,296 associations that were novel in our study (P<107), 1,189 (36%) were
replicated at P<0.019 with effect estimates in the same direction.

Reversibility of associations

Estimated t values for the 4,496 associations were wide-ranging (Supplementary Table 5) but 90%
were less than 6, with median [IQR] of 1.75 [1.25-3], consistent with Figure 1 and the 3,327
previously reported associations. The median t was equal to 2 for CpGs that were differentially
methylated in current or former smokers, compared with never smokers. Figure 2 shows the
relationship between estimated values of t© and: i) reversibility coefficients; this anaysis showed
greater values of © for CpGs at which methylation levels in former smokers were similar to those of
current smokers, and ii) the strength of association observed in current compared with never
smokers; this analysis showed slightly greater t values for most strongly differentially methylated
CpGsin the cross-sectional EWAS.

We then examined the distribution of t values according to the reversibility patterns observed in
three previous studies. First, Guida et a. [5] grouped differentially-methylated CpGs into persistent
(N=149) or reversible (N=602) clusters. We found weak evidence (Wilcoxon rank-sum test one-
sided P=0.03) that t values were greater in the persistent cluster (median t (IQR): 3.75 [1.75-5.25])
compared with the reversible cluster (2.75 [1.75-5.00]) Second, Joehanes et al. [12] identified 36
CpGs a which methylation levels did not return to never-smoker levels 30 years after smoking
cessation: for these CpGs, we found t values that were greater than for other differentialy-
methylated CpGs (6.25 [3.25-13], one-sided P<0.001). Third, in Wilson et a. [10], 15 CpGs were
differentially methylated in participants who had quit smoking for 40 years or more: for these 15
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CpGs, we found weak evidence (one-sided P=0.05) of greater t values (3.75 [2.5-5.25] than for other
differentially-methylated CpGs.

We further examined the 4,496 cross-sectional associations for longitudinal associations using
repeated methylation measures and smoking information collected a median of 11 years apart. After
adjustment for baseline smoking status (CSI with t = 1.5), the results were, comparing with smokers
at both time points, 368 differentially methylated CpGs (P<0.05) in participants who had quit from
baseline to follow-up, 280 differentialy methylated CpGs in former smokers at baseline and 262 in
never smokers. The regression coefficients for current-to-former and former-to-former smokers were
a median 35% and 90%, respectively, those observed for never smokers. The results without
adjustment for baseline M-value were qualitatively similar, albeit identifying fewer longitudinal

associations (Supplementary Table 6a).

When no adjustment for baseline smoking status was made, compared with participants who were
smokers at both time points, 432 CpGs were differentially methylated (P<0.05) in participants who
had quit between baseline and follow-up, 1,233 differentially methylated CpGs in former smokers at
baseline, and 1,495 in never smokers; regression coefficients for current-to-former and former-to-
former smokers were a median 56% and 89%, respectively, that of never smokers (Supplementary
Table 6b).

Using the results with adjustment for baseline smoking status and baseline DNA methylation, we
found no evidence that most strongly differentially methylated CpGs in current-to-former compared

with current smokers at both time points had lower t values (Figure 2).

DI SCUSSION

Our study identified several thousand novel differentially-methylated CpG sites with respect to
smoking; 3,296 CpGs with P<10’ that had not been reported at this threshold before were
discovered in our cross-sectional EWAS and 1,189 (36%) of these were replicated using the results
from a previous large study [12]. The findings using a less conservative significance threshold (FDR)
indicate that many more associations exist across the genome, but these would likely be of smaller
magnitude, hence possibly less replicable and biologically relevant. This is consistent with the
relatively lower replication rate observed for CpGs discovered using the FDR in study by Joehanes et
al. [12], and asimulation study that estimated an optimal multiple testing correction threshold for the
HM 450 assay to be 2.4x10° [38].

10
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Although the replication of our novel associations may appear relatively low, it should be noted that
‘low-hanging fruit’ were aready discovered by previous studies. A testament to the quality and
scientific value of our study is the substantial replication we observed for findings of previous
studies (~80% for associations reported only once, and 97% for associations reported twice or more).
Our literature review might have missed some previously discovered smoking-associated
methylation measures at CpGs, but we likely included the majority of them. Additionally, for former
smoking, we replicated a substantial proportion (90%) of previously reported associations and
identified many novel differentially methylated CpGs.

We assessed associations using a comprehensive smoking index to account for the bioactivity of
various smoking exposures relevant to DNA methylation. This modelling strategy has several
limitations, including our assumptions that there was no lag-time between smoking exposure and
changes in DNA methylation, and that the number of cigarettes smoked contributed equally to
methylation changes throughout the lifetime. Another limitation is that because the CSl was log-
transformed, the interpretation of the parameter t was no longer that of a biological haf-life, i.e. the
time required for a biological substance to reduce to half its initial value [15]. Specific to our study,
this means that 7 is not interpretable as half the time by which methylation levels of former smokers
would return to the level of never smokers. Our values can nevertheless be used to rank CpGs by
their rate of reversibility. We also observed (by definition) a clear correspondence between the
values of T and the reversibility coefficients we calculated, suggesting that our analysis provides a
more complete picture of how smoking-associated methylation changes vary over time. The main
strength of the CSl is that it captures in a single variable several aspects of a smoking history that
individually contribute to differential methylation, hence resulting in a more accurate measure of the
effects of smoking (illustrated by e.g. >4,000 CpGs identified with 1=1.5, which was substantially
more that with the current smoking variable). Finally, the reversibility coefficients calculated in this
study were substantially lower than those observed in our previous analysis of alcohol consumption
[36], which suggests that smoking-associated methylation marks might be more frequent but less

persistent compared to alcohol-associated methylation changes.

Our longitudinal analysis had less precision due to fewer participants with relatively small variation
in smoking status over a decade in this age range, and there was no clear correspondence with
reversibility patterns observed from the cross-sectional data. It nevertheless identified many
smoking-associated CpGs for which methylation levels returned toward normal in participants who
had quit at follow-up compared with those still currently smoking, but these findings need to be
replicated. Another limitation of our study is the potential for residual confounding, especially by
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white blood cell type composition, which is strongly associated with smoking and DNA methylation.
Cell composition was estimated with the widely used Houseman algorithm [33, 34] and we did not
assess sensitivity to the method used for deriving cell composition [39]. Additionally, we reported in
a previous study that many differentially-methylated CpGs with respect to alcohol drinking are aso
associated with smoking, so it may be difficult to tease out the individual effects or joint influences
on many of these CpGs across the genome [36]. Finaly, we included who later developed cancer,
which could give rise to collider bias given the strong association of smoking with cancer risk [24],
but, by assessing effect modification by case-control status, we found no evidence of such biasin our
setting.

To conclude, our study provides evidence that several thousand associations between smoking and
DNA methylation at CpGs exist across the genome that had not been discovered or replicated before.
Smoking-associated methylation changes appeared largely reversible after smoking cessation. We
also proposed a way to quantify the reversibility of methylation changes due to smoking by using a
comprehensive smoking index that accounts for both the bioactivity of smoking and several aspects
of smoking history that are relevant to DNA methylation.
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TABLESAND FIGURES 38
Table 1. Characteristics of study participants from the Melbourne Collaborative Cohort Study (MCCS) at baseline (1990-1994) and follow-up rZDS
(2003-2007) Eig’
o O

Cross-sectional analysis Longitudinal analysis %g

(N=5,044) (N=1,024) S5

Baseline data Baseline data Wave 2 data Z‘E

[AI%?Q] In years, median, interquartile range 60.7[539-654] 585[51.1-64.1] 69.8[62.7-75.5] ) %%

Sex, male 3,408 (68%) 701 (68%) 395
Country of birth %33
AU/NZ/Other 3,411 (68%) 799 (78%) Ggg

Greece 382 (8%) 36 (4%) 523

Italy 714 (14%) 75 (7%) 552

UK 537 (11%) 114 (11%) S5c

BMI (kg/m?), median [range] 26.9[245-295] 26.3[24.1-29.0]  26.7[24.2-29.3] 523
Alcohol intake (g/day), median [IQR] 4.3[0.0-18.7] 4.3[0.0-18.6] 7.9[0.3-22.7] 25y
Smoking status 825

Never 2,379 (47%) 524

Former >15 years ago 1059 (21%) 3 g

Former <15 years ago 951 (19%) 3%

Current <20 cig/day 269 (5%) 35

Current >20 cig/day 386 (8%) 33

Smoking status at baseline and follow-up 23
Never-Never 518 (51%) 28
Former-Former 400 (39%) 23
Current-Former 50 (5%) 53
Current-Current 56 (5%) ﬂi Y
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Table 2. Replication of previously reported associations (P<10 in six large studies) using the ‘ Current vs Never’ smoker comparison, and for 3

comprehensive smoking indices (t=1.5, 1=2.75 or t=5.25)

Current sm70kers Current smokers P<10-7 for P<0.05 for
CpG identified in N current N reported P<10 P<0.05 any CSl any CSl
Current vs Never smokers smokers associatig)ns % replicated % replicated % replicated % replicated
(P<10)
Ambatipudi et al. ® 193 196 90% 99% 91% 100%
Besingi et al. 117 39 95% 95% 95% 95%
Guida et al. 177 447 7% 99% 83% 99%
Joehaneset al. 2,433 2,641 31% 86% 39% 90%
Wilson et al. 280 584 71% 97% 78% 98%
Zelinger et al. 262 972 39% 82% 46% 87%
All studies 3,327 28% 84% 36% 89%
In onestudy only 2,500 15% 79% 23% 85%
I n two studies 439 51% 95% 61% 96%
In three or more studies 389 98% 99.5% 97% 99.5%
CpG identified in For mer srr_17okers Former smokers
Former vs Never smokers P<10 P<0.05
N (P<10) % replicated % replicated
All studies 172° 48% 90%
In onestudy only 146 41% 88%
I n two studies 18 83% 100%
In threeor morestudies 8 100% 100%

#We assumed the coefficients from the Ambatipudi study were in the same direction as in our study, which might only slightly overestimate the

replication rate (90% of associations had P<10™ in both studies).
b Of the 172 associations, 30 were identified in Ambatipudi et al., 3 in Guidaet al, 161 in Joehanes et a, and 14 in Zeilinger et al.
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Figure 1. Relationship® between smoking status and comprehensive smoking indices (equation (1)) for various values of half-life parameter 1.
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Figure 2. Estimated values of half-life parameter t according to other features of smoking-associated CpG sites”
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@Values of 1 above 40 (N=44 CpGs) were omitted for graphical presentation
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