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ABSTRACT  

Aims: We conducted a genome-wide association study of blood DNA methylation and smoking, 

attempted replication of previously discovered associations, and assessed the reversibility of 

smoking-associated methylation changes. 

Methods: DNA methylation was measured in baseline peripheral blood samples for 5,044 

participants in the Melbourne Collaborative Cohort Study using the HumanMethylation450 

BeadChip assay. For 1,032 participants, these measures were repeated using blood samples collected 

at follow-up, a median of 11 years later. A cross-sectional analysis of the association between 

smoking and DNA methylation and a longitudinal analysis of changes in smoking status and changes 

in DNA methylation were conducted. We used our cross-sectional analysis to attempt replication of 

previously reported associations for current (N=3,327) and former (N=172) smoking. A 

comprehensive smoking index accounting for and biological half-life of smoking compounds 

bioactivity was constructed to assess the reversibility of smoking-associated methylation changes. 

Results: We identified 4,496 cross-sectional associations between smoking and blood DNA 

methylation at P<10-7, including 3,296 that had not been reported before. We replicated the majority 

(90%) of previously reported associations for current and former smokers. In our data, we observed 

for former smokers a substantial degree of return to the methylation levels of never smokers, 

compared with current smokers (median: 74%, IQR=63% to 86%). Consistent with this, analyses 

using the comprehensive smoking index indicated a wide-ranging rate of reversibility of smoking-

associated methylation changes. Longitudinal analyses identified 368 sites at which methylation 

changed upon smoking cessation. 

Conclusion: Our study provides evidence of many novel associations between smoking and DNA 

methylation at CpGs across the genome and replicates the vast majority of previously reported 

associations. The reversibility of smoking-associated methylation was quantified by using a 

comprehensive smoking index accounting for both the bioactivity of smoking and several aspects of 

smoking history that are relevant to DNA methylation, and using longitudinal methylation measures. 
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INTRODUCTION 

Several studies have examined the association between exposure to tobacco smoke and DNA 

methylation levels in blood [1-12]. A systematic review identified methylation at 1,460 CpG sites to 

be associated with smoking [13], and a recent large-scale study identified 2,623 CpGs with P<10-7 

[12]. These associations were identified comparing current with never smokers, and not all were 

replicated using independent data. Additionally, there is substantial variability by study in the 

strength of associations, which may be due to characteristics of the cohorts such as age or ethnicity, 

or methodological issues such as the variables used for adjustment in statistical models or the 

pipeline used for normalisation of the DNA methylation data. 

Most of these studies also reported differences in methylation for former smokers compared with 

never and current smokers, indicating a degree of reversibility of smoking-associated methylation 

changes. Few studies have examined reversibility patterns beyond assessing the effect of time since 

quitting [5, 10, 12]. Guida and colleagues assessed reversibility in a study based on 745 women and 

identified two clusters of smoking-associated methylation at CpG sites according to whether 

methylation reverted back to the level of never smokers within 35 years of quitting [5]. The 

assessment of reversibility made by Joehanes and colleagues was based on 2,374 participants and 

concluded that for the majority of the 2,568 CpGs they examined (those with FDR-adjusted P<0.05 

in the comparison of former vs. never smokers) methylation levels returned to those of never 

smokers within five years of smoking cessation, and for only 36 CpGs did they observe no tendency 

of a return to the methylation levels of never smokers 30 years after they had quit [12]. Consistent 

findings were reported by Wilson and colleagues, who made use of repeated methylation measures 

taken seven years apart to identify methylation at CpG sites that varied longitudinally with changes 

in smoking status [10]. They also observed differential methylation in former smokers who had quit 

more than 40 years before methylation measurement, compared to never smokers. Assessing what 

smoking-associated methylation changes are transient or long-lasting may have important 

implications for biological understanding and clinical practice [14]. 

The bioactivity of exposure to smoking can be modelled as a function of the smoking history of an 

individual, including the number of cigarettes smoked, the age at starting smoking, and the duration 

of smoking. The resulting comprehensive smoking index (CSI) was shown to substantially improve 

the prediction of smoking-related disease compared with simpler smoking assessment models [15-

17]. A prominent feature of the CSI is that it includes a parameter for biological half-life, 

representing the rate at which the activity of smoking compounds declines, and is therefore the 

parameter of interest when assessing reversibility. 
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In this study, we aimed to: i) conduct a genome-wide association study of DNA methylation and 

exposure to tobacco smoking measured using traditional smoking assessment and CSI [15], the latter 

allowing a better assessment of the methylation reversibility pattern; ii) replicate previously reported 

associations, including associations observed in former smokers or by time since quitting; iii) assess 

the association between changes in DNA methylation and changes in smoking using repeated 

measures taken a median of 11 years apart. 

 

MATERIAL AND METHODS 

Study participants 

Between 1990 and 1994 (baseline), 41,513 participants were recruited to the Melbourne 

Collaborative Cohort study (MCCS). The majority (99%) were aged 40 to 69 years and 41% were 

men. Southern European migrants were oversampled to extend the range of lifestyle factors and 

genetic variation [18]. Participants were contacted again between 2003 and 2007 (follow-up). Blood 

samples were taken at baseline and follow-up from 99% and 64% of participants, respectively. 

Baseline samples were stored as dried blood spots on Guthrie cards for the majority (73%), as 

mononuclear cell samples for 25% and as buffy coat samples for 2% of the participants. Follow-up 

samples were stored as buffy coat samples and dried blood spots on Guthrie cards. All participants 

provided written informed consent and the study protocols were approved by the Cancer Council 

Victoria’s Human Research Ethics Committee. 

The present study sample comprised MCCS participants selected for inclusion in one of seven 

previously conducted nested-case control studies of DNA methylation [19-23]. Controls were 

matched to incident cases of prostate, colorectal, gastric, lung or kidney cancer, urothelial cell 

carcinoma or mature B-cell neoplasms on sex, year of birth, country of birth, baseline sample type 

and smoking status (the latter for the lung cancer study only). We included in the analysis all 

participants in any of the seven case-control studies (colorectal, gastric, kidney, lung, B-cell 

lymphoma, prostate and UCC). For the cross-sectional analyses, we excluded participants whose 

blood sample was taken at follow-up (303 samples from the UCC study) because their questionnaire 

data and storage time were different. We also excluded cases from the lung and UCC studies to avoid 

bias due to the strong association between smoking and these cancers [24]. Methylation data for 

baseline blood samples (baseline study) were available from a total of 2,777 controls and 2,267 cases 

after quality control and exclusions. Additionally, methylation measures (Guthrie cards) were 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/660878doi: bioRxiv preprint 

https://doi.org/10.1101/660878
http://creativecommons.org/licenses/by-nc/4.0/


5 

 

repeated at follow-up (2004-2007) for a subset of 1,100 of the controls who also had their baseline 

sample collected on a Guthrie card, of which 1,088 were available after quality control. 

Description of the smoking variables is presented in Table 1. Participants with missing data for 

smoking variables were excluded from the analysis, as were those who had never smoked cigarettes 

but had smoked cigars or pipes. Missing data for confounders (<1% for age, sex, ethnicity, BMI or 

alcohol drinking) were imputed using the median or mode of the distribution for continuous and 

categorical variables, respectively. 

Methods relating to DNA extraction, and DNA methylation processing and quality are presented in 

Supplementary Material. 

 

Previously reported associations 

We identified previous studies using the keywords (“smoking” and “blood” and “methylation”), 

which returned 416 articles in PubMed (31 July 2018). We retained from this search six studies 

having conducted an EWAS of smoking and blood DNA methylation [2, 5, 9, 10, 12, 25]. Other 

studies were identified but not selected due to small sample size (N<200), or not adjusting for 

potential confounders of the association [1, 3, 4, 6-8, 11, 26-30]. The six studies retained identified 

3,327 associations with a P-value less than 10-7, 2500 (75%) in one study only, 438 (13%) in two, 

and 389 (12%) in three or more studies. Of the six studies, four also reported differentially 

methylated CpGs for former compared with never smokers [5, 9, 12, 31], identifying 172 

associations, including 146 in only one study. 

 

Comprehensive smoking index (CSI) 

We constructed a CSI following the recommendations of Leffondré and colleagues [15]. We 

observed better model fits (data not shown) when using the log-transformed version of the CSI: 

ln(CSI)+1, referred to as simply ‘CSI’, and we assumed no lag-time between exposure to smoking 

and changes in DNA methylation [15]. The CSI was defined in our study as: 

��� � �� �� 	 �� 	 
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�
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� 
 . �
 

 

where T is duration of smoking in years, tsc the time since smoking cessation in years, N the average 

number of cigarettes smoked per day and τ the half-life parameter. We estimated τ from the data as 

follows: (i) by visual inspection of CSI values obtained for various τ values (Figure 1), we 
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concluded that for smaller values of τ, the CSI was both sensitive and more consistent with assumed 

biological activity by smoking history; (ii) for a CpG of interest, we fitted the same model for every 

CSI with τ value within the grid: {0.001; 0.005; 0.01; 0.025; 0.05; 0.1 to 1 by increment of 0.1; 1 to 

10 by increment of 0.25; 10 to 30 by increment of 1; and 30 to 100 by increment of 10}; (iii) the 

estimated τ that maximised model fit [15], based on the restricted maximum likelihood from a linear 

mixed model (see following section). 

 

Genome-wide association study of DNA methylation (EWAS) 

We assessed cross-sectional associations (baseline data) for methylation at each individual CpG by 

regressing DNA methylation M-values on smoking status using linear mixed-effects regression 

models, using the function lmer from the R package lme4 [32]. Models were adjusted by fitting fixed 

effects for baseline values of age (continuous), country of birth (Australia/New-Zealand, Italy, 

Greece, United Kingdom/Malta), sex, alcohol drinking in the previous week (continuous, in 

grams/day), BMI (≤25 kg/m2, >25 to ≤30, >30 to ≤35, >35), sample type (peripheral blood 

mononuclear cells, dried blood spots, buffy coats) and estimated white blood cell composition 

(percentage of CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes and granulocytes, 

estimated using the Houseman algorithm [33, 34]), and random effects for study, plate, and chip. 

Heterogeneity in the association between smoking and methylation by age (continuous), sex, alcohol 

intake in the previous week (continuous), BMI (continuous) and future case status was assessed 

using likelihood ratio tests for interaction. 

We estimated τ for the 3,327 CpGs previously reported to be associated with smoking. These 

findings are summarised in Table 4 and Figure 1. We assumed that the median, and the 25th and 75th 

percentile of the distribution of τ were the values most likely to detect novel associations between 

smoking and DNA methylation. We thus ran cross-sectional EWAS analyses for: i) current 

compared with never smoking, ii) former compared with never smoking; and iii) CSI (continuous 

variable) with τ=1.5, τ=2.75, and τ=5.25. Given the substantial correlation between these tests, we 

did not correct further for multiple testing and used a threshold of P<10-7 to identify associations for 

any of these EWAS [35]. The false discovery rate (FDR-adjusted P<0.05) was used to identify 

suggestive associations [12, 31]. 

For all associations with P<10-7 in our cross-sectional EWAS we estimated the half-life τ that 

provided the best model fit for the CSI, as described previously. We also calculated a ‘reversibility 

coefficient’, expressed as a percentage and defined as the regression coefficient comparing ‘former’ 
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to ‘current’ smokers divided by the coefficient comparing ‘never’ to ‘current’ smokers, as done 

previously [36]. 

 

Longitudinal analysis 

Linear mixed effects regression models were used to assess the relationship between change in 

smoking status and change in methylation for individual differentially-methylated CpGs in our cross-

sectional EWAS (P<10-7). In a first model, we used the following longitudinal smoking patterns: 

current (at baseline)-current (at follow-up), current-former, former-former, and never-never. Study 

was included as a random effect and the following variables were included as fixed effects: sex, 

country of birth (four categories), baseline age (continuous), baseline alcohol intake (continuous), 

baseline BMI (continuous), baseline cell composition (as defined previously), change in age, BMI 

and alcohol intake (all continuous), the difference between baseline and follow-up composition for 

each cell type (continuous), baseline smoking (expressed using a CSI with τ=1.5 because it identified 

the greatest number of associations in the cross-sectional EWAS) and the baseline methylation M-

value of the CpG. As adjustment for baseline methylation in analyses of change in methylation may 

lead to bias in some circumstances [37], we conducted a sensitivity analysis using models without 

adjustment for baseline M-value. We also carried the analysis not adjusting for baseline smoking 

status. 

All statistical analyses were performed using the statistical software R (version 3.4.4). 

 

RESULTS 

Altogether, 5,044 MCCS participants were included in the cross-sectional analysis; at baseline, their 

median age was 60.7 years (IQR: 53.9-65.4), 3,408 (68%) were males, and 655 (68%) were current, 

2,010 (40%) former, and 2,379 (47%) never smokers (Table 1). Participants in the longitudinal 

analysis were younger (median age at baseline: 58.5 years) and generally had healthier lifestyle than 

other participants included in the cross-sectional analysis. 

Genome-wide association study of DNA methylation 

Comparison of current, former and never smokers 

At P<10-7, we observed 1,851 differentially methylated CpG sites between current and never 

smokers, and 156 differentially methylated CpGs between former and never smokers, with 140 

overlapping CpGs and 16 found in former smokers only. In total, 917 of the 1,851 CpGs (50%) 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/660878doi: bioRxiv preprint 

https://doi.org/10.1101/660878
http://creativecommons.org/licenses/by-nc/4.0/


8 

 

associated with current smoking had not been reported in previous studies at P<10-7 (Supplementary 

Table 1); 1,124 (61%) showed some methylation differences (P<0.05 and same direction of 

coefficient) in former smokers. Reversibility coefficients indicated that for former smokers, there 

was a substantial degree of return to methylation levels of never smokers (median: 74%, IQR=63% 

to 86%).  

Comprehensive smoking indices (CSI) 

We first considered plausible values of CSI based on 3,327 differentially-methylated CpGs identified 

in six previous studies at P<10-7 (Supplementary Table 2). Estimated τ values were wide-ranging: 

median: 2.25, IQR: 1 to 5.25 and 3,038 (91%) CpGs had P<0.05. To further refine the potential for 

these values to identify new associations, we considered only the 1,277 CpGs for which the 

previously reported association was replicated in our sample (with the estimated τ) at P<10-7. For 

these, the median and 25th and 75th percentile values were 2.75, 1.5 and 5.25 respectively. These 

values were consistent with the simulated values presented in Figure 1. We thus conducted 

methylome-wide association studies for each of these three values and identified 3,497 (τ=2.75), 

4,022 (τ=1.5) and 2,433 (τ=5.25), respectively, at P<10-7. From these analyses, 4,496 associations 

were identified and DNA methylation at these CpGs was classified as smoking-associated in 

subsequent analyses, including 1,775 overlapping with associations identified using the current and 

former smoking variables. Of these, 3,296 (73%) had not been reported at P<10-7 in previous studies. 

Interaction analyses 

Using the Bonferroni correction for multiple testing (P=0.05/4,496=1.1x10-5) and the CSI with τ=1.5, 

we observed a weaker association for DNA methylation in women at a CpG not annotated to a gene, 

and a weaker association for participants with higher BMI at five CpGs, including two in AHRR 

(Supplementary Table 3). No significant interaction with smoking status was observed at this 

significance threshold by age, alcohol consumption, or future case status. 

Replication of previously reported associations 

We examined the replication in the MCCS of 3,327 associations between current smoking and 

whole-blood DNA methylation previously reported in any of the six studies considered. We 

replicated, with coefficients consistent in direction, 2,795 (84%) at P<0.05 and 934 (28%) at P<10-7 

using the current vs. never comparison. These numbers were 2,946 (89%) and 1,200 (36%), 

respectively, when considering any of the CSIs with τ=1.5, τ=2.75 or τ=5.25 (Table 2, 

Supplementary Table 2). Of the 2,500 associations that had been reported in one study only, we 
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replicated 1,983 (79%) at P<0.05 using the current smoking variable; and 97% of associations that 

had been reported in two or more studies (Table 2). 

We then examined the replication of associations identified for former compared with never smoking 

previously reported in any of four large studies. Of the 146 associations that had been reported at 

P<10-7 in one study only, we replicated 129 (88%) at P<0.05 and 60 (41%) at P<10-7 using the 

former smoking variable. All associations that had been reported two or more times were replicated 

at P<0.05 using the MCCS data (Table 2, Supplementary Table 4). 

Replication of our findings by Joehanes et al. 

We examined the replication of our findings using the results from Joehanes et al. [12] in which P-

values up to 0.019 (FDR-adjusted P<0.05) were presented for the current vs. never smoking 

association. Of the 3,296 associations that were novel in our study (P<10-7), 1,189 (36%) were 

replicated at P<0.019 with effect estimates in the same direction. 

 

Reversibility of associations 

Estimated τ values for the 4,496 associations were wide-ranging (Supplementary Table 5) but 90% 

were less than 6, with median [IQR] of 1.75 [1.25-3], consistent with Figure 1 and the 3,327 

previously reported associations. The median τ was equal to 2 for CpGs that were differentially 

methylated in current or former smokers, compared with never smokers. Figure 2 shows the 

relationship between estimated values of τ and: i) reversibility coefficients; this analysis showed 

greater values of τ for CpGs at which methylation levels in former smokers were similar to those of 

current smokers, and ii) the strength of association observed in current compared with never 

smokers; this analysis showed slightly greater τ values for most strongly differentially methylated 

CpGs in the cross-sectional EWAS. 

We then examined the distribution of τ values according to the reversibility patterns observed in 

three previous studies. First, Guida et al. [5] grouped differentially-methylated CpGs into persistent 

(N=149) or reversible (N=602) clusters. We found weak evidence (Wilcoxon rank-sum test one-

sided P=0.03) that τ values were greater in the persistent cluster (median τ (IQR): 3.75 [1.75-5.25]) 

compared with the reversible cluster (2.75 [1.75-5.00]) Second, Joehanes et al. [12] identified 36 

CpGs at which methylation levels did not return to never-smoker levels 30 years after smoking 

cessation: for these CpGs, we found τ values that were greater than for other differentially-

methylated CpGs (6.25 [3.25-13], one-sided P<0.001). Third, in Wilson et al. [10], 15 CpGs were 

differentially methylated in participants who had quit smoking for 40 years or more: for these 15 
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CpGs, we found weak evidence (one-sided P=0.05) of greater τ values (3.75 [2.5-5.25] than for other 

differentially-methylated CpGs. 

We further examined the 4,496 cross-sectional associations for longitudinal associations using 

repeated methylation measures and smoking information collected a median of 11 years apart. After 

adjustment for baseline smoking status (CSI with τ = 1.5), the results were, comparing with smokers 

at both time points, 368 differentially methylated CpGs (P<0.05) in participants who had quit from 

baseline to follow-up, 280 differentially methylated CpGs in former smokers at baseline and 262 in 

never smokers. The regression coefficients for current-to-former and former-to-former smokers were 

a median 35% and 90%, respectively, those observed for never smokers. The results without 

adjustment for baseline M-value were qualitatively similar, albeit identifying fewer longitudinal 

associations (Supplementary Table 6a).  

When no adjustment for baseline smoking status was made, compared with participants who were 

smokers at both time points, 432 CpGs were differentially methylated (P<0.05) in participants who 

had quit between baseline and follow-up, 1,233 differentially methylated CpGs in former smokers at 

baseline, and 1,495 in never smokers; regression coefficients for current-to-former and former-to-

former smokers were a median 56% and 89%, respectively, that of never smokers (Supplementary 

Table 6b). 

Using the results with adjustment for baseline smoking status and baseline DNA methylation, we 

found no evidence that most strongly differentially methylated CpGs in current-to-former compared 

with current smokers at both time points had lower τ values (Figure 2). 

 

DISCUSSION  

Our study identified several thousand novel differentially-methylated CpG sites with respect to 

smoking; 3,296 CpGs with P<10-7 that had not been reported at this threshold before were 

discovered in our cross-sectional EWAS and 1,189 (36%) of these were replicated using the results 

from a previous large study [12]. The findings using a less conservative significance threshold (FDR) 

indicate that many more associations exist across the genome, but these would likely be of smaller 

magnitude, hence possibly less replicable and biologically relevant. This is consistent with the 

relatively lower replication rate observed for CpGs discovered using the FDR in study by Joehanes et 

al. [12], and a simulation study that estimated an optimal multiple testing correction threshold for the 

HM450 assay to be 2.4x10-7 [38].  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 5, 2019. ; https://doi.org/10.1101/660878doi: bioRxiv preprint 

https://doi.org/10.1101/660878
http://creativecommons.org/licenses/by-nc/4.0/


11 

 

Although the replication of our novel associations may appear relatively low, it should be noted that 

‘low-hanging fruit’ were already discovered by previous studies. A testament to the quality and 

scientific value of our study is the substantial replication we observed for findings of previous 

studies (~80% for associations reported only once, and 97% for associations reported twice or more). 

Our literature review might have missed some previously discovered smoking-associated 

methylation measures at CpGs, but we likely included the majority of them. Additionally, for former 

smoking, we replicated a substantial proportion (90%) of previously reported associations and 

identified many novel differentially methylated CpGs. 

We assessed associations using a comprehensive smoking index to account for the bioactivity of 

various smoking exposures relevant to DNA methylation. This modelling strategy has several 

limitations, including our assumptions that there was no lag-time between smoking exposure and 

changes in DNA methylation, and that the number of cigarettes smoked contributed equally to 

methylation changes throughout the lifetime. Another limitation is that because the CSI was log-

transformed, the interpretation of the parameter τ was no longer that of a biological half-life, i.e. the 

time required for a biological substance to reduce to half its initial value [15]. Specific to our study, 

this means that τ is not interpretable as half the time by which methylation levels of former smokers 

would return to the level of never smokers. Our values can nevertheless be used to rank CpGs by 

their rate of reversibility. We also observed (by definition) a clear correspondence between the 

values of τ and the reversibility coefficients we calculated, suggesting that our analysis provides a 

more complete picture of how smoking-associated methylation changes vary over time. The main 

strength of the CSI is that it captures in a single variable several aspects of a smoking history that 

individually contribute to differential methylation, hence resulting in a more accurate measure of the 

effects of smoking  (illustrated by e.g. >4,000 CpGs identified with τ=1.5, which was substantially 

more that with the current smoking variable). Finally, the reversibility coefficients calculated in this 

study were substantially lower than those observed in our previous analysis of alcohol consumption 

[36], which suggests that smoking-associated methylation marks might be more frequent but less 

persistent compared to alcohol-associated methylation changes. 

Our longitudinal analysis had less precision due to fewer participants with relatively small variation 

in smoking status over a decade in this age range, and there was no clear correspondence with 

reversibility patterns observed from the cross-sectional data. It nevertheless identified many 

smoking-associated CpGs for which methylation levels returned toward normal in participants who 

had quit at follow-up compared with those still currently smoking, but these findings need to be 

replicated. Another limitation of our study is the potential for residual confounding, especially by 
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white blood cell type composition, which is strongly associated with smoking and DNA methylation. 

Cell composition was estimated with the widely used Houseman algorithm [33, 34] and we did not 

assess sensitivity to the method used for deriving cell composition [39]. Additionally, we reported in 

a previous study that many differentially-methylated CpGs with respect to alcohol drinking are also 

associated with smoking, so it may be difficult to tease out the individual effects or joint influences 

on many of these CpGs across the genome [36]. Finally, we included who later developed cancer, 

which could give rise to collider bias given the strong association of smoking with cancer risk [24], 

but, by assessing effect modification by case-control status, we found no evidence of such bias in our 

setting. 

To conclude, our study provides evidence that several thousand associations between smoking and 

DNA methylation at CpGs exist across the genome that had not been discovered or replicated before. 

Smoking-associated methylation changes appeared largely reversible after smoking cessation. We 

also proposed a way to quantify the reversibility of methylation changes due to smoking by using a 

comprehensive smoking index that accounts for both the bioactivity of smoking and several aspects 

of smoking history that are relevant to DNA methylation. 
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TABLES AND FIGURES 

Table 1. Characteristics of study participants from the Melbourne Collaborative Cohort Study (MCCS) at baseline (1990-1994) and follow-up 
(2003-2007)  
 

  Cross-sectional analysis 
(N=5,044) 

Longitudinal analysis 
(N=1,024) 

Baseline data Baseline data Wave 2 data 
Age in years, median, interquartile range 
[IQR] 

60.7 [53.9-65.4] 58.5 [51.1-64.1] 69.8 [62.7-75.5] 

Sex, male 3,408 (68%) 701 (68%) 
Country of birth       

     AU/NZ/Other 3,411 (68%) 799 (78%) 
     Greece 382 (8%) 36 (4%) 
     Italy 714 (14%) 75 (7%) 
     UK 537 (11%) 114 (11%) 
BMI (kg/m²), median [range] 26.9 [24.5-29.5] 26.3 [24.1-29.0] 26.7 [24.2-29.3] 
Alcohol intake (g/day), median [IQR] 4.3 [0.0-18.7] 4.3 [0.0-18.6] 7.9 [0.3-22.7] 
Smoking status 

      
     Never 2,379 (47%)     
     Former ≥15 years ago 1059 (21%)   

  
     Former <15 years ago 951 (19%)   
     Current <20 cig/day 269 (5%)   

  
     Current ≥20 cig/day 386 (8%)   
Smoking status at baseline and follow-up       
     Never-Never   518 (51%) 
     Former-Former   400 (39%) 
     Current-Former   50 (5%) 
     Current-Current   56 (5%) 
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Table 2. Replication of previously reported associations (P<10-7 in six large studies) using the ‘Current vs Never’ smoker comparison, and for 3 
comprehensive smoking indices (τ=1.5, τ=2.75 or τ=5.25) 

 
a We assumed the coefficients from the Ambatipudi study were in the same direction as in our study, which might only slightly overestimate the 
replication rate (90% of associations had P<10-7 in both studies). 
b Of the 172 associations, 30 were identified in Ambatipudi et al., 3 in Guida et al, 161 in Joehanes et al, and 14 in Zeilinger et al. 
  

CpG identified in  
Current vs Never smokers 

 
 

Current smokers  
P<10-7 

Current smokers 
P<0.05 

P<10-7 for 
any CSI 

P<0.05 for 
any CSI 

N current 
smokers 

N reported 
associations 

(P<10-7) 
% replicated % replicated % replicated % replicated 

Ambatipudi et al. a 193 196 90% 99% 91% 100% 
Besingi et al. 117 39 95% 95% 95% 95% 
Guida et al. 177 447 77% 99% 83% 99% 
Joehanes et al. 2,433 2,641 31% 86% 39% 90% 
Wilson et al. 280 584 71% 97% 78% 98% 
Zelinger et al. 262 972 39% 82% 46% 87% 
All studies  3,327 28% 84% 36% 89% 

In one study only  2,500 15% 79% 23% 85% 
In two studies  439 51% 95% 61% 96% 

In three or more studies  389 98% 99.5% 97% 99.5% 
       

CpG identified in  
Former vs Never smokers 

  Former smokers  
P<10-7 

Former smokers  
P<0.05   

 N (P<10-7) % replicated % replicated   
All studies  172b 48% 90%   

In one study only  146 41% 88%   
In two studies  18 83% 100%   

In three or more studies  8 100% 100%   
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Figure 1. Relationshipa between smoking status and comprehensive smoking indices (equation (1)) for various values of half-life parameter τ. 
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a Simulations based on random sampling of N=10,000 data points for T ~ U(0,40);  tsc ~ U(0,30); N ~U(0,40) 
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Figure 2. Estimated values of half-life parameter τ according to other features of smoking-associated CpG sitesa 

 

a Values of τ above 40 (N=44 CpGs) were omitted for graphical presentation 
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