

1 **Morphology does not covary with predicted behavioural correlations of the** 2 **domestication syndrome in dogs**

3

4 Christina Hansen Wheat^{1*}, Wouter van der Bijl^{1,2} & Christopher West Wheat¹

5

6 ¹*Department of Zoology, Stockholm University, SE-10961 Stockholm, Sweden*

7 ²*Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver BC,
8 Canada.*

9 **Corresponding author: christina.hansen@zoologi.su.se*

10

11 **Abstract**

12 Domesticated animals display suites of altered morphological, behavioural and physiological
13 traits compared to their wild ancestors, a phenomenon known as the domestication syndrome
14 (DS). Because these alterations are observed to co-occur across a wide range of present day
15 domesticates, the traits within the DS are assumed to covary within species and a single
16 developmental mechanism has been hypothesized to cause the observed co-occurrence.

17 However, due to the lack of formal testing it is currently not well-resolved if the traits within
18 DS actually covary. Here we test the hypothesis that the presence of the classic morphological
19 domestication traits white pigmentation, floppy ears and curly tails predict the strength of
20 behavioural correlations in support of the DS in 78 dog breeds. Contrary to the expectations of
21 covariation among DS traits, we found that morphological traits did not covary among
22 themselves, nor did they predict the strength of behavioural correlations among dog breeds.
23 Further, the number of morphological traits in a breed did not predict the strength of
24 behavioural correlations. Our results thus contrast with the hypothesis that the DS arises due to
25 a shared underlying mechanism, but more importantly, questions if the morphological traits

26 embedded in the DS are actual domestication traits or post-domestication improvement traits.
27 For dogs, it seems highly likely that strong selection for breed specific morphological traits
28 only happened recently in relation to breed formation. Present day dogs therefore have limited
29 bearing of the initial selection pressures applied during domestication and we should re-
30 evaluate our expectations of the DS accordingly.

31

32 *Key words: Domestication syndrome, dog domestication, correlated traits, morphology,*
33 *behaviour*

34

35

36 **Introduction**

37 Domesticated animals display suites of altered morphological, behavioural and physiological
38 traits compared to their wild ancestors, a phenomenon known as the domestication syndrome
39 (DS). Key examples of components in the DS are increased tameness, reduced brain size,
40 white pigmentation and decreased hypothalamic-pituitary-adrenal (HPA) axis reactivity (Kruska,
41 1996; Driscoll et al., 2009; Trut et al., 2009). Because these alterations are observed to
42 co-occur across a wide range of present day domesticates, such as dogs (*Canis familiaris*), cats
43 (*Felis catus*), rabbits (*Oryctolagus cuniculus*), horses (*Equus caballus*) and pigs (*Sus scrofa*)
44 (Sánchez-Villagra et al., 2016), the traits within the DS are assumed to covary within species (Trut,
45 1998; Trut et al., 2009). Domestication experiments have demonstrated that selection for
46 tame behaviour alone can produce the myriad changes seen in the DS (Belyaev et al., 1985;
47 Trut et al., 2009). While the mechanistic origin of the DS is currently unresolved, these
48 findings have nurtured the hypothesis that the convergent patterns seen across domesticated
49 species arise via a singular developmental mechanism such as altered neuroendocrine control

50 of ontogenesis (Belyaev, 1979), or neural crest deficit during embryogenesis (Wilkins et al.,
51 2014). Both of these influential studies have led to the general assumption that morphological
52 changes, such as white pigmentation, floppy ears and curly tails, have arisen as by-products of
53 the physiological alterations caused by selection upon behaviour (Wilkins et al., 2014).

54

55 The hypotheses that the DS is founded in single developmental mechanism offer a coherent,
56 logical and satisfying explanation for the observed covariation among DS traits. However,
57 traits of the DS are not fully consistent with such hypotheses. First, DS traits are not evenly
58 distributed among domesticated animals (Sánchez-Villagra et al., 2016). Second, even though
59 rat (*Rattus norvegicus*) lines selected for tameness have an increased frequency of white spots
60 (Trut et al., 2000), there is no genomic association between white coat colouration and tame
61 behaviour (Albert et al., 2009). This is unexpected based on the hypothesis that white
62 pigmentation should arise as a by-product of selection on tameness and further, because
63 syndrome traits originating from a shared physiological origin should be difficult to decouple
64 (*sensu* Sih et al., 2004). Finally, while recent genomic studies in horses (Librado et al., 2017),
65 foxes (*Vulpes vulpes*, Wang et al., 2018), dogs (Pendleton et al., 2018) and cats (Montague et
66 al., 2014) find signatures of domestication selection pressures in genes associated with neural
67 crest development, and thus are argued to support the neural crest hypothesis, these genes are
68 only a subset of many showing selective signatures during domestication. Thus, while it is
69 generally assumed that DS traits covary, possibly due to a single developmental mechanism,
70 further quantitative testing of this hypothesis is warranted.

71

72 Only recently has a formal test of covariance of DS traits been conducted. In their study of the
73 behavioural component of the DS in more than 76,000 dogs, Hansen Wheat et al. (2019)

74 demonstrated that while correlations between fear, aggression, sociability and playfulness were
75 stronger in ancient breeds, these correlations were weaker or had been decoupled in modern
76 breeds. However, this study focused only upon behaviour, which was likely the focal trait in
77 dog domestication (*sensu* Belyaev et al., 1985; Trut et al., 2009). To date, no studies have
78 investigated the covariation of morphological traits, either among themselves, or with the
79 expected behavioural correlations of the DS. Such a formal investigation of the predicted
80 expectations of how behavioural and morphological components of domestication arise is
81 needed if we are to further our understanding of the DS.

82

83 Among domesticates, the dog has been argued to be the only species expressing the full DS
84 (Sánchez-Villagra et al., 2016). Dogs have been bred for highly breed-specific morphological
85 and behavioural traits (Svartberg, 2006; Mehrkam and Wynne, 2014), which are illustrated by
86 the extreme phenotypic variation expressed among the more than 400 present day dog breeds
87 (Lindblad-Toh et al., 2005; Parker et al., 2017). The result is dramatic phenotypic variation
88 expressed across breeds. However, while key DS traits of behaviour and morphology do not
89 qualitatively appear to occur simultaneously across breeds (Sánchez-Villagra et al., 2016), this
90 has never been tested quantitatively. Furthermore, though dogs express a range of traits not
91 present in wolves (Parker et al., 2009; Larson et al., 2014), it is currently not well resolved if
92 dog traits are original domestication traits, i.e. traits evolved under direct selection in the initial
93 stages of domestication, or so-called improvement traits that have been secondarily enhanced
94 post-domestication during breed formation (Larson and Fuller, 2014; *sensu* Olsen and Wendel,
95 2013).

96

97 With modern breeds created from intense breeding efforts only within the last 150-200 years
98 (Lindblad-Toh et al., 2005; vonholdt et al., 2010), it is possible that modern dogs provide a
99 suboptimal basis for the expectations embedded in the DS. Indeed, as noted earlier, modern
100 dogs lack the strong behavioural correlations expected of the DS (Hansen Wheat et al., 2019).
101 Nonetheless, because the foundation for the DS hypothesis is based on extant domesticates, it
102 remains unclear if we should expect the expression of the DS to vary across different stages of
103 domestication. Archaeological findings of early dogs provide limited information on
104 morphology (i.e. skeletal features), and none on behaviour, which impairs our ability to
105 compare trait expression in dogs at different stages of domestication. Pre-breed formation
106 domesticated dogs, i.e. village dogs, could be very informative, but unfortunately, the only
107 non-admixed village dog populations identified to date are found in Borneo (Shannon et al.,
108 2015) and have not been studied behaviourally. However, a small group of present day dogs
109 can be categorized as ancient breeds due to their a) detectable admixture with wolf, which is
110 not present in modern breeds, and b) an origin about 500 years ago (Lindblad-Toh et al., 2005;
111 vonholdt et al., 2010). Certainly, ancient breeds are expected to have improvement traits, but
112 importantly, these breeds have been shown to have stronger behavioural correlations expected
113 of the DS compared to modern breeds (Hansen Wheat et al., 2019). While acknowledging they
114 are an imperfect proxy, ancient breeds are arguably the only available representatives for
115 earlier stages of dog domestication, and thus the division of ancient and modern breeds
116 provides an opportunity for temporal comparisons among dogs on a domestication time scale.
117
118 Here we test the hypothesis that the presence of morphological traits predict the strength of
119 behavioural correlations in support of the DS in dogs. For the morphological component of our
120 study, we focused upon variation in the traits white pigmentation, floppy ears and curly tails,

121 which have been referred to as morphological markers of domestication (Trut et al., 2009). For
122 the behavioural component, we used estimates of effect sizes for behavioural correlations
123 associated with the DS, derived from data extracted from the Swedish Kennel Club's database
124 on 76,158 dogs completing a highly standardized behavioural test battery (Hansen Wheat et
125 al., 2019). We then matched these effect sizes of behavioural correlations with our estimates of
126 morphological traits from the 78 breeds. We further added a temporal component by assessing
127 7 ancient and 71 modern breeds separately. As predicted by the DS, we expected that the
128 presence of white pigmentation, floppy ears and curly tails would co-vary among breeds.
129 Additionally, we expected that the presence or absence of these morphological traits would
130 predict the strength of behavioural correlations of the DS. That is, we expected stronger
131 behavioural correlations of the DS when morphological traits of the DS are present, as well as
132 the converse, weaker behavioural correlations when morphological traits of the DS are absent.
133 We further predicted that behavioural correlations would be stronger with the number of
134 morphological traits present.

135

136

137 **Methods**

138 *Morphological assessment*

139 We based our study on the 78 dog breeds used in a recent study to test behavioural correlations
140 within the domestication syndrome (Hansen Wheat et al., 2019). Of the 78 breeds, seven were
141 ancient breeds and 71 modern breeds. This difference in sample sizes between breed groups
142 does not reflect a lack in sampling effort, but the natural limitation of only few breeds being
143 categorized as ancient. We carefully inspected the breed standards for those 78 breeds by
144 consulting the Fédération Cynologique Internationale, the world's largest federation of kennel

145 clubs, to assess the presence or absence of our three chosen morphological traits; white
146 pigmentation, floppy ears and curly tails. We used both relaxed and conservative assessments
147 of the three morphological traits (Figure 1, Figure 2, Figure S1). We defined white
148 pigmentation as any form of white pigmentation in the breed, regardless of its placement or
149 shape. We also classified dogs with a white base colour, such as Dalmatians and Samoyeds, to
150 express white pigmentation. Breeds where “white” was not mentioned in the coat colour
151 description, such as Dobermann and Rottweiler, were assessed as not having white
152 pigmentation. For our conservative assessment of white pigmentation, only breeds specifically
153 described to have a white base colour or characteristic white coloration, or breeds where some
154 versions have white pigmentation (such as Schnauzers) were included. Breeds were a small
155 white spot or a few white hairs are “tolerated” or “undesirable” were not included as having
156 white pigmentation in our conservative assessment. For the relaxed assessment, we included
157 breeds where small white spots or a few white hairs, for instance on the chest, are “tolerated” or
158 “undesirable” (Figure 1A-D). Floppy ears were assessed based on whether a breed has ears
159 that are either erect or to some degree floppy (i.e. from just the tip to hanging straight down,
160 Figure 1E-H). Thereby the presence or absence of floppy ears was assessed as a completely
161 binary trait, and did not differ between the relaxed and conservative assessments. For our
162 conservative assessment of curly tails, only breeds described to specifically have their tail in a
163 permanent curl, i.e. with no option to let down the tail, as seen in Pugs, were included. For the
164 relaxed assessment breeds that are described to carry their tail in a “curl”, “hook”, “sabre”,
165 “sickle” or “J”, and even breeds carrying their tails in the slightest “curve”, but can let their
166 tails straight down were assessed as having curly tails (Figure 1I-L). Breeds where the words
167 “curl”, “hook”, “sabre”, “sickle”, “J” or “curve” were not included in the description of the tail
168 were assessed as not having a curly tail in either assessment.

169

170 *Behavioural assessment*

171 For the behavioural component of our study, we used the dataset presented in Hansen Wheat et
172 al. 2019, in which the strength and direction of behavioural correlations between aggression,
173 fearfulness, sociability and playfulness across the 78 dog breeds were investigated.
174 Behavioural data were provided by the Swedish Kennel Club for dog completing the Dog
175 Mentality Assessment, a highly standardized behavioural test for dogs in Sweden. We refer to
176 this paper for a full description of the methods used to estimate the effect sizes for these
177 behavioural correlations.

178

179 *Statistical analyses*

180 To evaluate the relationship between breed morphology and agreement with the domestication
181 syndrome hypothesis, we assessed the correlation between our morphology scores, treated as
182 dichotomous variables. First, we estimated the phi coefficient (ϕ) for presence/absence of each
183 of each trait in pairwise combinations with significance determined using Fisher's Exact Test,
184 as implemented in the xtab_statistics function of the sjstats package v. 0.17.5 (Lüdeke, 2019).
185 Second, we repeated this analysis using a Pearson's product-moment correlation with similar
186 results. Third, we assess whether the presence/absence of traits were correlated while taking
187 into account phylogenetic correction, using a pairwise binomial phylogenetic glm.

188

189 To evaluate the relationship between breed morphology and agreement with the domestication
190 syndrome hypothesis, as quantified by the strength and direction of behavioural correlations,
191 we used a meta-analytic model. It is a multi-level model that uses the 1326 observed
192 correlation coefficients (Hansen Wheat et al., 2019), and their associated uncertainty, as the

193 dependent variable. These correlations test multiple behavioural predictions by the DS, such as
194 a positive association between sociability and playfulness, or a negative association between
195 sociability and aggression (Trut et al., 2009; Himmeler et al., 2013). The correlations test six
196 such DS predictions. For some predictions multiple correlations per breed were measured,
197 since the Dog Mental Assessment test provided multiple measurements for aggression and
198 fearfulness. 17 correlations were obtained per breed. Therefore, we treat the DS as a nested
199 compound hypothesis, with six predicted associations and 17 correlations. We aligned the sign
200 of the correlations with the predicted directions, i.e. we flipped the sign of correlations
201 expected to be negative, so that positive effect sizes represent support in favour of the DS.

202

203 To account for this nested structure, we included group level effects that allow the support for
204 the DS to vary between the different predicted associations and the measured correlations. We
205 additionally included group level effects of morphology for the associations and correlations,
206 so that the moderating effect of morphological traits could be stronger or weaker depending on
207 what behavioural correlations were measured. Since each breed was represented by multiple
208 correlations, we included a group level intercept for breed. And because breeds are non-
209 independent due to shared ancestry (Felsenstein, 1985), an additional group level effect was
210 added with the expected covariance matrix of the phylogeny. Morphology was modelled as
211 three additive binary effects, one each for the presence or absence of white pigmentation,
212 floppy ears and curly tails. We implemented the models in the probabilistic programming
213 language Stan (Carpenter et al., 2017), using the interfacing R (R Core Team, 2019) package
214 brms (Bürkner 2017, 2018). In brms syntax, the models were of the form: $Zr | se(vi, sigma =$
215 $TRUE) \sim breed_category + pigmentation + ears + tails + (I + breed_category +$
216 $pigmentation + ears + tails || prediction/correlation) + (I | breed) + (I | phylogeny)$, where Zr

217 is the z-transformed correlations coefficients, vi is the measurement error and $\sigma = \text{TRUE}$
218 allows for the estimation of the residual standard deviation.

219

220 Inference about the effects of morphology was based on two approaches. We used the
221 posterior distributions for the parameters directly to evaluate the role of the three
222 morphological traits separately. Secondly, we assessed the role of the number of
223 morphological traits (regardless of which trait) by calculating the estimated mean response for
224 each trait combination, and then calculating the marginal mean for a breed having 0, 1, 2 or 3
225 traits present.

226

227 Posterior distributions for the parameters were obtained through MCMC sampling, using 16
228 chains of 2000 iterations each, of which 1000 were warmup. We adjusted the adapt delta to
229 0.995 and the maximum tree depth to 20 to eliminate any divergent transitions. For population
230 level effects, we used the default weak student-t prior with a mean of 0, scale parameter of 10
231 and 3 degrees of freedom. The same prior was used for standard deviations of group-level
232 effects and the residual standard deviation, but there it was restricted to be non-negative. Trace
233 plots indicated that the chains were well mixed, and we obtained an effective sample size of
234 more than 2500 for all parameters. The largest \hat{R} was 1.01, indicating convergence.

235

236 All analyses were done for both relaxed and conservative assessments of morphological traits.
237 Results for the two different assessments were qualitatively similar, and below we present the
238 results for the relaxed assessment (see Supplemental Files for results for the conservative
239 assessment)

240

241

242 **Results**

243 We placed the morphological traits and average effect sizes for behavioural correlations onto
244 the latest dog phylogeny (Parker et al., 2017), revealing large variation among breeds in both
245 our morphological and behavioural traits (Figure 2, for conservative assessments see
246 Supplemental Files and Figure S1).

247 First, we used three different methods to test whether the presence of morphological DS traits
248 covary amongst themselves. Neither phi coefficients (ϕ), Pearson's product-moment
249 correlation (t) nor phylogenetically corrected correlations (z) for the three morphological
250 traits produced significant results: white pigmentation vs. floppy ears ($\phi = 0.172$, $p_{\phi} = 1$; $t = -$
251 0.115 , $p_t = 0.909$; $z = -0.080$, $p_z = 0.937$), white pigmentation vs. curly tail ($\phi = 0.013$, $p_{\phi} =$
252 1 ; $t = -5.7071^{20}$, $p_t = 1$; $z = 0.653$, $p_z = 0.514$), floppy ears vs. curly tail ($\phi = 0$, $p_{\phi} = 0.2063$;
253 $t = -1.5176$, $p_t = 0.1333$; $z = -0.49807$, $p_z = 0.618$).

254

255 Second, to test whether the presence of white pigmentation, floppy ears and curly tails predicts
256 the strength of any of the behavioural correlations, we evaluated these traits as binary
257 predictors of DS support. We found that there was no difference in the behavioural correlations
258 when any of the three morphological traits were present or absent (Table 1, Figure 3A and B,
259 Figure S2 and Supplemental Files). We emphasize that there is no support for even a very
260 small difference in effect size (most extreme effect within CI: 0.04, Table 1). We did not
261 confirm an effect of breed age, as the difference between ancient and modern breeds could not
262 be clearly distinguished from 0, although considerable uncertainty in this estimate remains and
263 most of the posterior favours stronger behavioural correlations in ancient breeds (Figure 3A
264 and B, Table 1, for non conservative measurements see Supplemental Files).

265

266 Lastly, we evaluated support for the DS based on the “morphology score” of each breed, which
267 ranged from 0 - 3 depending on how many, if any, of the three morphological traits is present
268 in a breed (Figure 3C, Supplemental Files). We found that the number of morphological traits
269 present in a breed did not predict the strength of behavioural correlations (0 traits: posterior
270 mean_{slope} = 0.080, 95CI[-0.006 - 0.191]; 1 trait: posterior mean_{slope} = 0.080, 95CI[-0.008 -
271 0.193]; 2 traits: posterior mean_{slope} = 0.082, 95CI[-0.006 - 0.192]; 3 traits: posterior mean_{slope} =
272 0.083, 95CI[-0.004 - 0.190]). Given the small number of ancient breeds, we were not able to
273 include breed age in this morphology score analysis.

274

275

276 **Discussion**

277 Here we tested the whether the presence of three traits referred to as the morphological
278 markers of domestication (white pigmentation, floppy ears and curly tails) predicted the
279 strength of behavioural correlations within the DS. Contrary to the expectations of covariation
280 among DS traits, we found that these morphological traits did not covary among themselves,
281 nor did they predict the strength of behavioural correlations among dog breeds. Further, the
282 number of morphological traits in a breed did not predict the strength of behavioural
283 correlations. Additionally, we found no effect of breed age, i.e. ancient and modern breeds, in
284 the predictive value of morphological traits on behavioural correlations. A high covariance
285 among DS traits suggests a strong, central role for their shared origin in a single developmental
286 source (e.g. white pigmentation arising as a by-product of increased tameness, Wilkins et al.,
287 2014), while a lack of covariance suggests a more complex genotype to phenotype
288 relationship. Thus, the lack of covariation among morphological and behavioural traits in our

289 study is not consistent with the hypothesis that trait alterations in the DS are founded in a
290 singular developmental source (Belyaev, 1979; Wilkins et al., 2014).

291

292 The DS in animals is primarily based on observations in present day domesticates. However,
293 the ability of phenotypes in extant domesticates to provide insights about selection during
294 initial domestication is complicated by post-domestication selection events, i.e. improvement
295 traits (Olsen and Wendel, 2013; Larson and Fuller, 2014). Initial domestication efforts likely
296 targeted existing variation at multiple loci across the genome (Larson and Fuller, 2014), but the
297 breed-specific morphology and behaviour expressed in present day dog breeds was likely
298 selected for post-domestication during breed formation. Many of the morphological traits seen
299 across modern dog breeds are therefore not likely to be by-products of initial selection for
300 domestication traits rather they are most likely improvement traits. Thus, while studies refer to
301 the phenotypes of modern dog breeds as evidence for the DS (Wilkins et al., 2014; Sánchez-
302 Villagra et al., 2016), whether these traits are relevant to domestication itself is questionable.
303 Thus, our findings of a lack of covariation among morphological and behavioural traits, rather
304 than providing insights into the DS, could be due to these traits being improvement traits, for
305 which no covariance is expected. Regardless, the phenotypes of modern dog breeds should be
306 interpreted with caution when trying to understand the domestication process.

307

308 One way to gain more insight into selection pressures during earlier stages of dog
309 domestication, rather than those of breed improvement, is to include a temporal comparison by
310 separating out ancient breeds and modern breeds. Here, we investigated whether the presence
311 of morphological traits predict the strength of behavioural correlations in each breed group, but
312 found no such effect. This finding contrasts with a recent study in which behavioural

313 correlations of the DS were demonstrated to be stronger in ancient breeds compared to modern
314 breeds (Hansen Wheat et al., 2019). Given that selection on tameness alone can generate the
315 DS in foxes (Trut et al., 2009), and that aggression shows selective signatures directly
316 associated with initial domestication efforts in these selection lines of foxes (Kukekova et al.,
317 2018), it is likely that initial selection during dog domestication acted upon behaviour, not
318 morphology (*sensu* Belyaev et al., 1985; Trut et al., 2009). Thus, with behaviours in the DS
319 likely representing domestication traits, behavioural domestication phenotypes might to a
320 larger extent be maintained in ancient compared to modern breeds. Morphology in dog breeds
321 on the other hand, is arguably linked to breed improvement (Larson and Fuller, 2014), as
322 reflected in the large variability in morphological trait combinations across dog breeds as
323 quantified here.

324
325 In sum, whether the lack of covariance between morphology and behaviour in dogs is due to
326 decoupling of independent domestication alleles (possibly caused by altered selection regimes
327 during breed formation), these traits never having covaried because of a singular
328 developmental mechanism or whether it is because we are applying a domestication hypothesis
329 on traits that are not actual domestication traits, but rather improvement traits, remains an open
330 question. If the latter is true, which seems likely for dogs, we must reevaluate our expectations
331 of the DS and thereby also our assessment of DS traits in present day domesticates, as they
332 have limited bearing of the initial selection pressures applied during domestication.

333

334

335

336 **Author contributions**

337 CHW and CWW conceived the study. CHW prepared the data and all authors discussed how
338 to analyse it. WvdB and CWW analysed the data. CHW prepared the manuscript draft and
339 WvdB and CWW provided comments to produce the final version.

340

341 **Data availability statement**

342 All data used for this study is available through Figure 2, the Supplemental Materials and
343 Hansen Wheat et al. 2019.

344

345 **References**

346 Albert, F. W., Carlborg, Ö., Plyusnina, I., Besnier, F., Hedwig, D., Lautenschlager, S., et al. (2009). Genetic
347 Architecture of Tameness in a Rat Model of Animal Domestication. *Genetics* 182:541–554.
348 doi:10.1534/genetics.109.102186.

349 Belyaev, D. K. (1979). Destabilizing selection as a factor in domestication. *Journal of Heredity* 70:301-308

350 Belyaev, D. K., Plyusnina, I. Z., and Trut, L. N. (1985). Domestication in the silver fox (*Vulpes fulvus* Desm):
351 Changes in physiological boundaries of the sensitive period of primary socialization. *Applied Animal
352 Behaviour Science* 13:359–370. doi:10.1016/0168-1591(85)90015-2.

353 Bürkner PC. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. *Journal of Statistical
354 Software*. 80:1-28.

355
356 Bürkner PC. (2018). Advanced Bayesian Multilevel Modeling with the R Package brms. *The R Journal*. 10:395-
357 411.

358 Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A.
359 (2017). Stan: A probabilistic programming language. *Journal of Statistical Software*. 76.

360 Driscoll, C. A., Macdonald, D. W., and O'Brien, S. J. (2009). From wild animals to domestic pets, an
361 evolutionary view of domestication. *PNAS* 106:9971–9978.

363 Fédération Cynologique Internationale, www.fci.be

364 Felsenstien J. (1985). Phylogenies and the Comparative Method. *Am. Nat.* 125:1-15

365 Hansen Wheat, C., Fitzpatrick, J. L., Rogell, B., and Temrin, H. (2019). Behavioural correlations of the
366 domestication syndrome are decoupled in modern dog breeds. *Nature Communications* 10:2422.
367 doi:10.1038/s41467-019-10426-3.

368 Himmeler, B. T., Stryjek, R., Modlinska, K., Derksen, S. M., Pisula, W., and Pellis, S. M. (2013). How
369 domestication modulates play behavior: A comparative analysis between wild rats and a laboratory strain of
370 *Rattus norvegicus*. *Journal of Comparative Psychology* 127:453–464. doi:10.1037/a0032187.

371 Kruska, D. (1996). The effect of domestication on brain size and composition in the mink (*Mustela vison*). *J
372 Zoology* 239:645–661. doi:10.1111/j.1469-7998.1996.tb05468.x.

373 Kukekova, A. V., Johnson, J. L., Xiang, X., Feng, S., Liu, S., Rando, H. M., et al. (2018). Red fox genome
374 assembly identifies genomic regions associated with tame and aggressive behaviours. *Nat. ecol. evol.*, 1–16.
375 doi:10.1038/s41559-018-0611-6.

376 Larson, G., and Fuller, D. Q. (2014). The Evolution of Animal Domestication. *Annu. Rev. Ecol. Evol. Syst.*
377 45:115–136. doi:10.1146/annurev-ecolsys-110512-135813.

378 Larson, G., Piperno, D. R., Allaby, R. G., Purugganan, M. D., Andersson, L., Arroyo-Kalin, M., et al. (2014).
379 Current perspectives and the future of domestication studies. *Proceedings of the National Academy of*
380 *Sciences* 111:6139–6146. doi:10.1073/pnas.1323964111.

381 Librado L. E., et al. (2017). Ancient genomic changes associated with domestication of the horse. *Science*
382 356:442–445

383 Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., et al. (2005).
384 Genome sequence, comparative analysis and haplotype structure of the domestic dog. *Nature* 438:803–819.
385 doi:10.1038/nature04338.

386 Lüdecke D (2019). *sjstats: Statistical Functions for Regression Models (Version 0.17.5)*, <https://CRAN.R-project.org/package=sjstats>

387

388

389 Mehrkam, L. R., and Wynne, C. D. L. (2014). Behavioral differences among breeds of domestic dogs (*Canis*
390 *lupus familiaris*): Current status of the science. *Applied Animal Behaviour Science* 155:12–27.
391 doi:10.1016/j.applanim.2014.03.005.

392 Montague, M. J., Li, G., Gandolfi, B., Khan, R., Aken, B. L., Searle, S. M. J., et al. (2014). Comparative analysis
393 of the domestic cat genome reveals genetic signatures underlying feline biology and domestication.
394 *Proceedings of the National Academy of Sciences* 111:17230–17235. doi:10.1093/nar/gks596.

395 Olsen, K. M., and Wendel, J. F. (2013). A Bountiful Harvest: Genomic Insights into Crop Domestication
396 Phenotypes. *Annu. Rev. Plant Biol.* 64:47–70. doi:10.1146/annurev-arplant-050312-120048.

397 Parker, H. G., Dreger, D. L., Rimbault, M., Davis, B. W., Mullen, A. B., Carpintero-Ramirez, G., et al. (2017).
398 Genomic Analyses Reveal the Influence of Geographic Origin, Migration, and Hybridization on Modern
399 Dog Breed Development. *Cell Reports* 19:697–708. doi:10.1016/j.celrep.2017.03.079.

400 Parker, H. G., vonholdt, B. M., Quignon, P., Margulies, E. H., Shao, S., Mosher, D. S., et al. (2009). An
401 expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. *Science*
402 325:995–998. doi:10.1126/science.1173275.

403 Pendleton, A. L., Shen, F., Taravella, A. M., Emery, S., Veeramah, K. R., Boyko, A. R., et al. (2018).
404 Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication.
405 *BMC Biology* 16:64.

406 R Core Team (2019). R: A language and environment for statistical computing. R Foundation
407 for Statistical Computing, Vienna, Austria. www.R-project.org.

408

409 Sánchez-Villagra, M. R., Geiger, M., and Schneider, R. A. (2016). The taming of the neural crest: a
410 developmental perspective on the origins of morphological covariation in domesticated mammals. *R. Soc.*
411 *open sci.* 3:160107. doi:10.1093/iscb/45.3.387.

412 Shannon, L. M., Boyko, R. H., Castelhano, M., Corey, E., Hayward, J. J., McLean, C., et al. (2015). Genetic
413 structure in village dogs reveals a Central Asian domestication origin. *Proceedings of the National*
414 *Academy of Sciences* 112:13639–13644. doi:10.1073/pnas.0909559107.

415 Sih, A., Bell, A., and Johnson, J. C. (2004). Behavioral syndromes: an ecological and evolutionary overview.
416 *Trends in Ecology & Evolution* 19:372–378. doi:10.1016/j.tree.2004.04.009.

417 Svartberg, K. (2006). Breed-typical behaviour in dogs—Historical remnants or recent constructs? *Applied*
418 *Animal Behaviour Science* 96:293–313. doi:10.1016/j.applanim.2005.06.014.

419 Trut, L. N. (1998). The evolutionary concept of destabilizing selection: status quo. *Journal of Animal Breeding*
420 *and Genetics* 115:415–431.

421 Trut, L. N., Pliusnina, I. Z., and Prasolova, L. A. (2000). Mutations hooded and nonagouti in the gray rat (*Rattus*
422 *norvegicus*): effect of selection on behavior and photoperiod. *Genetika* 36:813–822.

423 Trut, L., Oskina, I., and Kharlamova, A. (2009). Animal evolution during domestication: the domesticated fox as
424 a model. *BioEssays* 31:349–360. doi:10.1002/bies.200800070.

425 vonholdt, B. M., Pollinger, J. P., Lohmueller, K. E., Han, E., Parker, H. G., Quignon, P., et al. (2010). Genome-
426 wide SNP and haplotype analyses reveal a rich history underlying dog domestication. *Nature* 464:898–902.
427 doi:10.1038/nature08837.

428 Wang, X., Pipes, L., Trut, L. N., Herbeck, Y., Vladimirova, A. V., Gulevich, R. G., et al. (2018). Genomic
429 responses to selection for tame/aggressive behaviors in the silver fox (*Vulpes vulpes*). *Proceedings of the*
430 *National Academy of Sciences* 115:10398–10403. doi:10.1073/pnas.1712126115.

431 Wilkins, A. S., Wrangham, R. W., and Fitch, W. T. (2014). The “Domestication Syndrome” in Mammals: A
432 Unified Explanation Based on Neural Crest Cell Behavior and Genetics. *Genetics* 197:795–808.
433 doi:10.1534/genetics.114.165423.

434

435 Photo references:

436 English Springer Spaniel: By Kruming - Own work, CC BY-SA 3.0,
437 <https://commons.wikimedia.org/w/index.php?curid=18855288>

438 Staffordshire Bull Terrier: By Spcenter - Own work, CC BY-SA 3.0,
439 <https://commons.wikimedia.org/w/index.php?curid=7662830>

440 Shiba Inu: By Roberto Vasarri - Own work, Public Domain,
441 <https://commons.wikimedia.org/w/index.php?curid=5788123>

442 Labrador retriever: Public Domain, <https://commons.wikimedia.org/w/index.php?curid=744735>

443 Alaskan malamute: By SCMW - Own work, CC BY 3.0,
444 <https://commons.wikimedia.org/w/index.php?curid=3329851>

445 Siberian husky: By Utopialand - self-made (<http://www.utopialands.com>), CC BY-SA 4.0,
446 <https://commons.wikimedia.org/w/index.php?curid=3270359>

447 Pug: By Cwazi at Dutch Wikipedia(Original text: Bonnie van den Born, <http://www.bonfoto.nl>) - Transferred
448 from nl.wikipedia to Commons.(Original text: Eigen werk/own work), CC BY-SA 3.0,
449 <https://commons.wikimedia.org/w/index.php?curid=1861840>

450 Dalmatian: By Dalmatiner24.eu - Dalmatiner24.eu, Public Domain,
451 <https://commons.wikimedia.org/w/index.php?curid=12558543>

452 German shorthaired pointer: By Bonnie van den Born, <http://www.bonfoto.nl> - Transferred from nl.wikipedia to
453 Commons., CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=1745399>

454 Bernese Mountain Dog: By AnetaAp - https://commons.wikimedia.org/wiki/File:Bernese_Mountain_DOG.jpg,
455 CC BY-SA 4.0, <https://commons.wikimedia.org/w/index.php?curid=63333376>

456

457

458

459

460

461

462

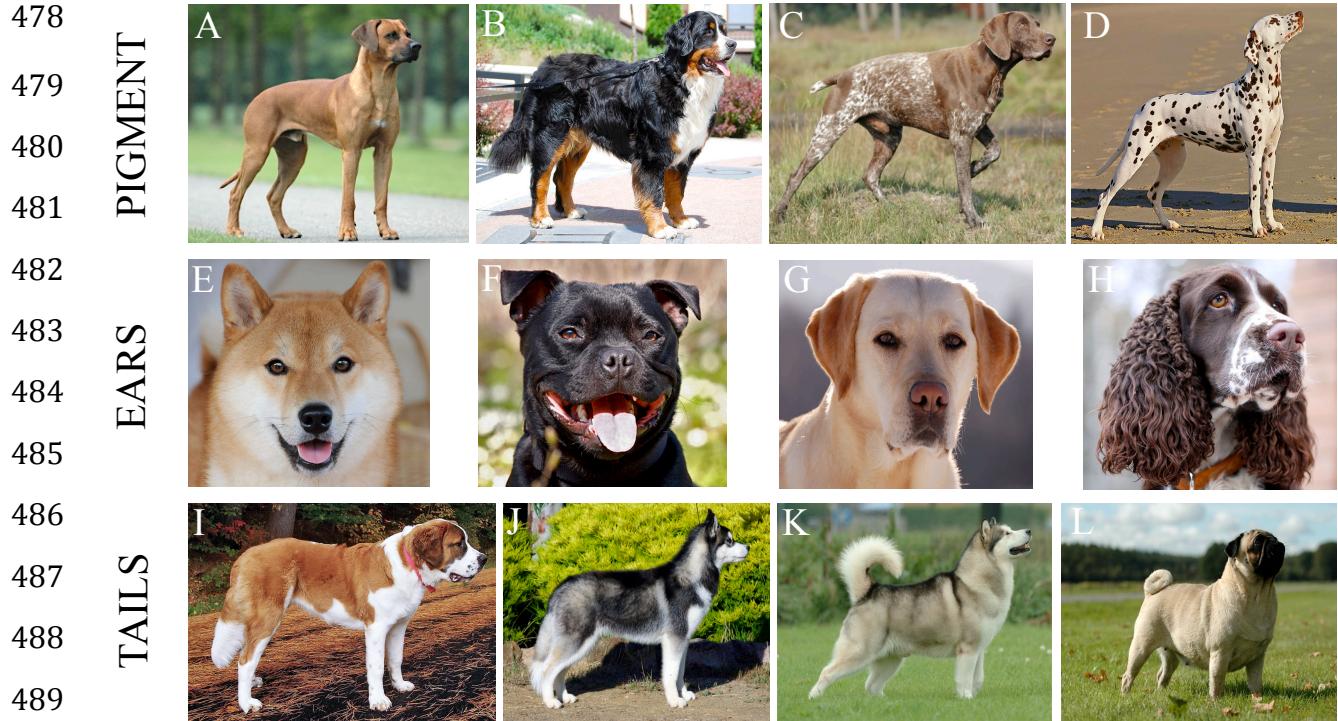
463

464

465 Rhodesian Ridgeback: By Bonnie van den Born, <http://www.bonfoto.nl> - Transferred from nl.wikipedia to
466 Commons., CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=1747204>

467
468 St. Bernard: By Cassie J - originally posted to Flickr as Harley-parents' dog, CC BY 2.0,
469 <https://commons.wikimedia.org/w/index.php?curid=5120324>

470


471

472 **Table 1. Predictive value of morphological traits.** Predictive value of the presence or absence of morphological
473 traits on the strength of behavioural correlations in the DS. Posterior mean, posterior standard deviation (sd) and
474 95% Credible Interval (CI) given for breed category (ancient and modern) and the three morphological traits
475 white pigmentation, floppy ears and curly tail.

476

Term	Posterior mean	Posterior sd	95CI _{lower}	95CI _{upper}
Intercept	0.113	0.053	0.02	0.22
Breed category	-0.06	0.034	-0.129	0.004
White pigmentation	0.001	0.014	-0.027	0.03
Floppy ears	0.004	0.019	-0.033	0.04
Curly tail	-0.001	0.014	-0.026	0.026

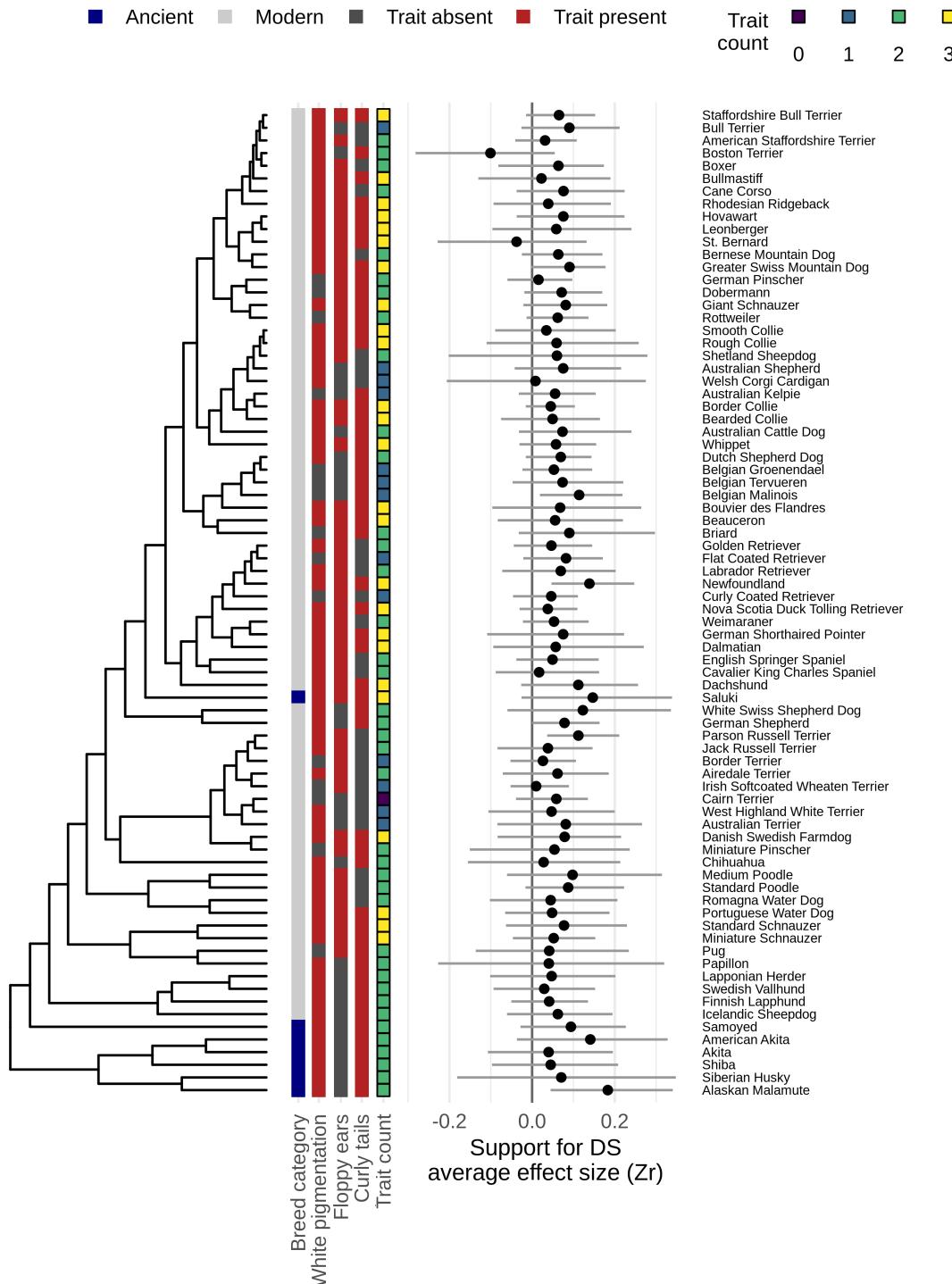
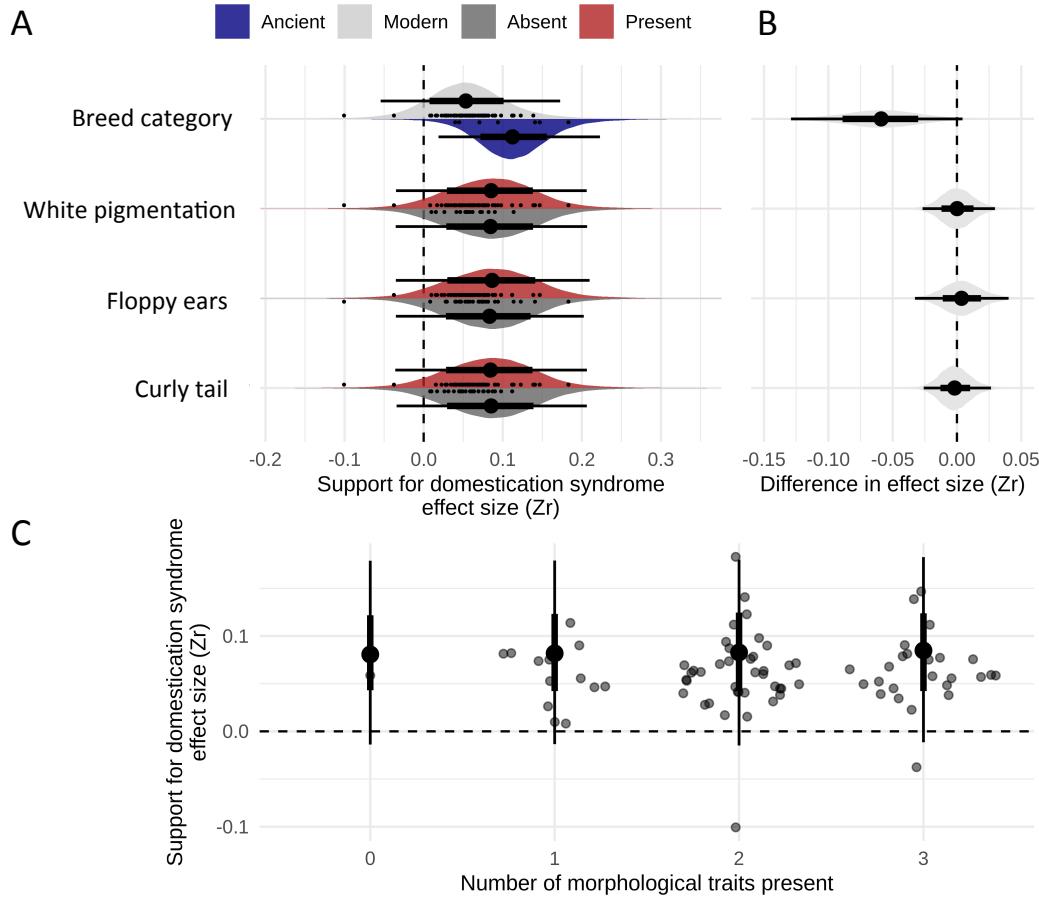

477

Figure 1. Morphological assessments. Examples of morphological variation across dog breeds and how this was taken into account when assessing the presence and absence of morphological traits in the DS. **White pigmentation (pigment, A-D):** Breeds where a small white spot or a few white hairs on the chest is tolerated or undesirable, here illustrated in a Rhodesian Ridgeback (A), were categorized as not having white pigmentation in the conservative assessment, but as having white pigmentation in the relaxed assessment. The presence of white pigmentation varies across breeds in size, shape and placement as illustrated in Bernese Mountain Dog (B), German Short-haired Pointer (C) and Dalmatian (D). **Floppy ears (ears, E-H):** Floppiness of ears is binary and erect ears, as illustrated in the Shiba (E), can never be floppy. Other examples of breeds with erect ears are Siberian Husky (J) and Alaskan Malamute (K). The floppiness of ears can be graduated as illustrated by the Staffordshire Bull Terrier (F), Labrador Retriever (G) and English Springer Spaniel (H). Any degree of floppiness of the ears was assessed as presence of floppy ears. **Curly tail (tails, I-L):** Breeds, such as the St. Bernard (I), with tails hanging straight down and never carry their tail in a curl, curve, hook, sickle, sabre or J shaped express the absence of a curly tail (both assessments). Many breeds carry their tail in a curl, curve, hook, sickle, sabre or J shaped fashion, but can also let their tail straight down, here illustrated by Siberian Husky with a let down tail (J) and an Alaskan Malamute with a tail carried in a curl (K). For the conservative assessment such breeds were categorized as not having curly tails, while they were categorized as having curly tails in the relaxed assessment.


507 Other examples of breeds categorized like this are Rhodesian Ridgeback (A) and Dalmatian (D). A few breeds,
508 like Pugs (L), express the presence of a permanent curly tail (both assessments). All photos are from
509 wikicommons, please see references for specific credits.

510

511

512 **Figure 2. Morphological scores placed onto the latest dog phylogeny.** Morphological scores based on the
 513 presence or absence of curly tail, floppy ears and white pigmentation (relaxed assessment), and average effect
 514 sizes for behavioural correlations in ancient and modern dog breeds placed onto the latest dog phylogeny (Parker
 515 et al 2017). Average effect sizes were calculated by separate meta-analytic models per breed (not used for
 516 inference), and posterior means \pm 95% credible intervals are depicted.

517

518

519

520

521

522

523

524

525

526

527

Figure 3. Morphological traits and the strength of behavioural correlations. A) Estimated support for the DS, quantified as the strength of behavioural correlations (Z_r) depending on the presence or absence of morphological traits (relaxed assessment) and trait category. B) Regression coefficients indicating the difference between binary categories, as in A). C) The number a morphological traits present (relaxed assessment), i.e. morphological score, related to the estimated strength of behavioural correlations within the DS. In all panels, density distributions depict the full posterior distributions, with the thick lines covering the 66% credible interval, thin lines the 95% credible interval and point estimate the posterior median. Scattered points in A) and C) are the estimated average effect size per breed (as in Figure 2).