bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Accelerated Biochemical Kinetic Model Fitting
via the Asynchronous, Generalized Island
Method

J Kyle Medley'*, Shaik Asifullah?, Joseph Hellerstein’, and Herbert M Sauro'

! Department of Bioengineering, University of Washington, Seattle, Washington, 98195-5061, United States of America
2BITS Pilani, K K Birla Goa campus, NH 17B, Bypass Road, Zuarinagar, Pilani, Sancoale, Goa 403726, India
3eScience Institute, University of Washington, Seattle, Washington, 98195-5061, United States of America

Mechanistic kinetic models of biological pathways are an im-
portant tool for understanding biological systems. Construct-
ing kinetic models requires fitting the parameters to experi-
mental data. However, parameter fitting on these models is
a non—convex, non-linear optimization problem. Many algo-
rithms have been proposed to addressing optimization for pa-
rameter fitting including globally convergent, population—based
algorithms. The computational complexity of the this optimiza-
tion for even modest models means that parallelization is essen-
tial. Past approaches to parameter optimization have focused
on parallelizing a particular algorithm. However, this requires
re-implementing the algorithm usinga distributed computing
framework, which requires a significant investment of time and
effort. There are two major drawbacks of this approach: First,
the choice of best algorithm may depend on the model. Given
the large variety of optimization algorithms available, it is dif-
ficult to re-implement every potentially useful algorithm. Sec-
ond, when new advances are made in a given optimization al-
gorithm, the parallel implementation must be updated to take
advantage of these advantages. Thus, there is a continual bur-
den placed on the parallel implementation.The drawbacks of
re-implementing algorithms lead us to a different approach to
parallelizing parameter optimization. Instead of parallelizing
the algorithms themselves, we run many instances of the algo-
rithm on single cores. This provides great flexibility as to the
choice of algorithms by allowing us to reuse previous imple-
mentations. Also, it does not require the creation and main-
tenance of parallel versions of optimization algorithms. This
approach is known as the island method. To our knowledge,
the utility of the island method for parameter fitting in sys-
tems biology has not been previously demonstrated. For the
parameter fitting problem, we allow islands to exchange infor-
mation about their “best” solutions so that all islands leverage
the discoveries of the few. This turns out to be avery effec-
tive in practice, leading to super-linear speedups. That is, if
a single processor finds the optimal value of parameters in time
t, then N processors exchanging information in this way find
the optimal value much faster than ¢/N. We show that the is-
land method is able to consistently provide good speedups for
these problems. We also benchmark the island method against
a variety of large, challenging kinetic models and show that
it is able to consistently improve the quality of fit in less time
than a single-threaded implementation.Our software is avail-
able at https://github.com/sys-bio/sabaody under a
Apache 2.0 license.

Contact: mailto:medjk @comcast.net

sbml | systems biology | web

Correspondence: medleyj@uw.edu

Models in systems biology are based on varying degrees of
granularity. Increased detail often comes at the expense of
decreased scalability. For example, constraint—based models
exhibit excellent scalability and are often used as a formal-
ism for genome—scale reconstructions. This scalability is due
in part to the fact that optimization of constraint-based mod-
els is ammenable to efficient solvers from linear program-
ming (1). Kinetic models, however, are less scalable due
to a larger number of parameters, more expensive objective
function evaluations, and the presence of many local minima.
However, kinetic models are necessary to study the mecha-
nisms behind transient biological processes such as signaling
cascades and circadian rhythms. Thus, there is an impetus to
improve the optimization of kinetic models.

One class of algorithms that have been designed to
solve non—convex, non-linear optimization problems is
biologically—inspired population—based algorithms. A
population—based algorithm maintains a pool of candidate so-
lutions and improves the pool as a whole over time. Such
algorithms are usually designed to balance speed of conver-
gence with diversity of the solution candidates.

This class includes population—based methods such as
genetic algorithms (GAs) (2), differential evolution (3),
particle—swarm optimization (PSO) (4), harmony search (5),
the artificial bee colony algorithm (ABC) (6), and many oth-
ers.

The parallel nature of population—based methods lends these
algorithms to efficient parallelization (7). However, mod-
ern cloud-based computing is best suited for algorithms that
can be efficiently parallelized across nodes on a network.
From an implementation perspective, this creates unique
challenges that are not present in multithreaded paralleliza-
tion such as: how much data must be exchanged between
nodes, how much synchronization is required, and how can
the system be made fault—tolerant? These issues can have a
major effect on the scalability of the algorithm.

One approach to parallelizing population—based algorithms
is to simply distribute the population update step across dif-
ferent nodes (8, 9). For example, in differential evolution,
new candidate decision vectors can be evaluated on different
nodes and later combined to form the complete population
for a given iteration. This manner of parallelization offers a

Medley etal. | bioRxiv | October4,2019 | 1-12

https://github.com/sys-bio/sabaody
mailto:medjk@comcast.net
https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Initial seed population

())

e O) e O) (. O)
(Candidates \ [Candidates \ (Candidates \ (Candidates \ [Candidates \ [Candidates \
0000 0000 0000 0000 0000 0000
OOOOJ E)OOO OOOOJ E)OOO OOOOJ E)OOO
Single thread Single thread Single thread Single thread Single thread Single thread

N\ J \C J

CPU cores per node

Y ‘

Accept solution if <
threshold

Fig. 1. A visual depiction of the island method. A cluster containing a number of nodes (machines) and CPUs (one per processor core on each machine) is initialized
randomly with a seed population. Each CPU maintains a population of solution vectors corresponding to one island. At the end of k iterations of the local algorithm (which
can be different for each CPU), the best solutions obtained so far are exchanged among CPUs on the same or different machines.

initialize populations for all threads
initialize_candidates ()

run update loop on each cpu core in the cluster

for each thread:

run local_island_algorithm k times # add fig for local island impl?

send top_candidates to other_cpus
update population with incoming_migrants
if stopping_criterion:
stop
else
repeat

Fig. 2. Distributed island method pseudocode. The island method runs locally on a number of threads, which can be on different CPU cores or different machines (the total
number of threads should not exceed the total number of CPU cores in the cluster). In every update loop, the island method first runs the local algorithm (e.g. DE, ABC, etc.)
for k iterations on each thread separately. Next, each island ¢ sends its top [solutions to neighboring islands and receives up to I X m solutions from neighboring islands,
where m is the connectivity of island 4. This process repeats until a stopping criterion is reached (the objective function reaches a threshold value or the maximum number

of iterations is exhausted).

potentially linear performance increase, and for this reason it
is often used in multithreaded parallelization. However, we
discuss later that certain factors limit the scalability of using
this same approach for distributed algorithms.

An alternative approach is the so—called generalized island

2 | bioRxiv

method (8, 10-12) (also referred to as the island model; we
avoid this terminology here because we reserve the word
“model” for the biochemical models we are optimizing).
The island method is a meta—algorithm that parallelizes op-
timization by running different copies of an optimization al-

Medley etal. | libsbmljs

https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

gorithm (or different algorithms) on different nodes in the
network. This is based on the biologically—inspired princi-
ple of punctuated equilibria (13), which states that isolated,
independently—evolving populations tend to quickly reach
equilibrium, and that once genetic equilibrium is reached
there is little further genetic drift, leading to stagnation.

In the island method, islands running on different nodes pe-
riodically exchange solutions, thereby preventing stagnation
and leading to better solutions. If the migration is based on
the best individuals in each island, the method also exhibits
accelerated convergence compared to a single island working
alone. Additionally, the island method allows reusing pre-
viously existing algorithm implementations. The PaGMO2
library (11, 14), which we use in this work, provides im-
plementations for 14 global and 16 local fitting algorithms,
which was possible in part because of pre-existing implemen-
tations of the algorithms.

The island method has been applied to various diverse op-
timization problems such as nuclear power plant feedwater
monitoring (15), vehicle routing (16), and trajectory plan-
ning for spacecraft (8, 11). The island method has also been
applied to large—scale kinetic systems biology models (17—
20). In this article, we apply the island method to a set of
very large, challenging dynamical models from systems bi-
ology (21) in order to quantify the performance of different
algorithms and the performance gains due to parallelization
using the island model. We show that the distributed island
method is able to accelerate parameter fitting and obtain bet-
ter solutions for all models tested. As expected, the island
method scales sub-linearly, but nevertheless provides a sub-
stantial improvement to performance and quality of fit. Our
approach is completely asynchronous and uses very little net-
work bandwidth, making it in principle an ideal candidate for
scalling to massive numbers of nodes, even if the maximum
bandwidth of the network infrastructure is low. We provide
a reusable version of our software at https://github.
com/distrib-dyn-modeling/sabaody. This soft-
ware can be easily installed as a docker container on cloud
services such as Amazon Web Services (AWS) and Google
Compute Engine.

Approach

Our main objective in this study was to test whether the island
method can improve the convergence time and solution qual-
ity for large, challenging dynamical models, and to quantify
the performance of different algorithms and algorithm com-
binations. In order to perform these tests, we constructed a
series of three benchmarks. In the first benchmark, we re-
duced the combinatorial complexity of the different configu-
ration options for the island method. This allowed us to run
the remaining benchmarks in a realistic timeframe. In the
second benchmark, we tested the scaling and convergence
performance of the island method on our most challenging
problems. Finally, in the third benchmark, we looked at the
performance of different algorithms and combinations. Par-
titioning our benchmarks in this way allowed us to test our
main objectives in turn while keeping the number of differ-

Medley etal. | libsbmljs

ent configurations within feasible limits.

The island method is highly configurable. In addition to spec-
ifying potentially different fitting algorithms for each island,
the migration routes between the islands can be connected in
any arbitrary topology. Although our system allows for fully
customizable user—specified migration topologies, we pro-
vide a set of 15 default topologies that can be generated auto-
matically for any island number. These topologies are listed
in Table 2. Since PAGMO2 contains 14 global and 16 local
optimization algorithms, there are 30 - 15 = 450 algorithm /
topology combinations to choose from for a given number of
islands, not including algorithm combinations. Additionally,
the island method can be used with different migration poli-
cies. In this work, we use a policy that selects the best M
individuals from a source island, and replaces the worst M
individuals in the destination island if the replacement candi-
date has a better (lower) score. Another strategy is random
selection and replacement, which can lead to more genetic
diversity but has a less pronounced acceleration effect.
Faced with this large combination of options, we created
a systematic test to eliminate configurations that were un-
likely to perform well. We constructed a set of 1120 bench-
marks using different algorithm and topology combinations
based on five analytic objective functions plotted in two-—
dimensions in Figure 7. These analytic functions have a
much lower computational cost than our biochemical bench-
mark models, and are often used to evaluate newly devel-
oped nonlinear optimization algorithms. We refer to this set
of tests as the elimination benchmark.

Table 3 shows that algorithm choice is more strongly corre-
lated with performance than topology in our tests. Therefore,
we focused on the effect of algorithm choice for the remain-
ing benchmarks. We first ran benchmarks of problems Bl
and B3 from the BioPreDyn suite (21) on the same topology
/ algorithm combination while varying the number of islands.
These problems are expensive, but also allow us to critically
test the convergence properties and performance of the is-
land method. Next, we ran different algorithm combinations
on problems B2 and B4 from BioPreDyn. Our purpose this
time was to test for trends in algorithm performance, and to
investigate whether a “synergistic” effect could be observed
from combinations of different algorithms.

Methods

Elimination Benchmark. Ten—dimensional versions of the
functions in Figure 7 were run for three replicates on the com-
binations of topologies and algorithms shown here. In some
cases, algorithm combinations were used, such as de+sade.
In such cases, the algorithms were alternated along the topol-
ogy structure if linear or ring—shaped, or arbitrarily dis-
tributed otherwise (e.g. hypercube and random graph—based
models). However, once assigned, the algorithm positions
were not changed for the duration of all benchmarks. Re-
sults were grouped by topology and algorithm/combination
respectively and independently ranked for each of the five
problems according to the total number of rounds required
for convergence. A lower score implies that the benchmark

bioRxiv | 3

https://github.com/distrib-dyn-modeling/sabaody
https://github.com/distrib-dyn-modeling/sabaody
https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

finished in fewer rounds. This benchmark consisted of up
to 2000 rounds of migration, each interspersed with 1000
iterations of the local algorithm on each node. The fitting
problem was terminated when the MSE of any decision vec-
tor dropped below a cutoff value of 0.01 with respect to the
best known solution. Migration was fully asynchronous. The
source data for this ranking is available in the supplementary
information at TODO: upload data.

Speedup Benchmark. In order to quantify the speed im-
provement of the island method, we benchmarked the B3
model for various numbers of islands using a constant fo-
tal population. For the single—island case, the population of
the island was 4800 individuals. In the case of two islands,
the population of each island was 2400 individuals, and so
on. This is a fair method of measuring speedup because a
property of population—based algorithms is that the popula-
tion must be suitably large in order to sufficiently explore the
parameter space. This threshold is problem—dependent, and
is usually scaled with the number of parameters. In this work,
the total population was chosen based on the minimum value
that tended to avoid getting stuck in local minima. Figure ??
shows the results of the speedup benchmark.

Large Model Scalability Benchmark. In order to quan-
tify the performance improvement of the island method, we
benchmarked problems B1 and B3 from the BioPreDyn suite
against different numbers of parallel islands. B1 is a genome
scale S. cerevisiae model whereas B3 is a model of central
carbon metabolism and transcription in E. coli. Both of these
are large and challenging models, with the original authors
reporting ~ 1-week fitting times for both (21). Figure 4
shows that reasonable fits can be obtained in a day for B3
on our 16—core cluster.

Algorithm Benchmark. Table 3 suggests that combining lo-
cal and global fitting algorithms can lead to better perfor-
mance than either type of algorithm individually. For ex-
ample, de+nelder mead, de+praxis, de+sade, and
de+del220 are all ranked better than de alone. To test
whether this trend would hold for more realistic fitting prob-
lems, we benchmarked problems B2 and B4 from the BioPre-
Dyn suite against different algorithms and algorithm combi-
nations, and quantified the results in Table 1. Figures 5 and 6
show the value of the current champion (the individual with
the best fitness) in the population over time.

Results & Discussion

Scaling Behavior. Figure 3 shows that the island method
exhibits superlinear scaling. Parallel implementations of al-
gorithms have been shown to exhibit this property due to
more effective use of limited CPU cache resources (), but
this would not account for the large ~ 3 x superlinearity fac-
tor observed here. Instead, the effect observed here is most
likely due to the influence of the migration operator on the so-
lution population. It is well-known that genetic and swarm—
based algorithms can be tuned to trade population diversity

4 | bioRxiv

50

40

MigrationRate

Speedup

® 1
20 ® ¢
10
0
1 2 4 8 16
A Number of islands
35
3.0
»
8
2
S
225
15
5
z MigrationRate
5 o
320 ® 4
3
2
%
15
10
1 2 4 8 16
B Number of islands

Fig. 3. Speedup for the island method. Benchmarks were performed against the B3
problem using a constant total population (4800) for all islands (i.e. the sum of the
populations of individual islands is constant) for three replicates. To enable running
single—island variants in a reasonable timeframe (= 60 hrs for the single—island
case), we reduced the box—constrained range for all log1o parameter values from
+1 to +0.1. The convergence and termination criteria were as in Figure 4B. We
expected the island method to exhibit sub—linear scaling behavior, but surprisingly,
the opposite was true. A 16-island benchmark (using 16 cores) converged more
than 40 x faster than the single—core / single—island case (A). This effect was quan-
tified for two different migration rates (1/island/round and 4/island/round, resp.). All
other benchmarks reported here use a migration rate of 4/island/round. To quantify
this scaling, we plotted the same datapoints divided by the respective number of
islands (B). In this plot, linear scaling would be plotted as a horizontal line with a
value of 1. However, the island method appears to operate at 3 x this factor for
large numbers of islands. A possible explanation for this result is provided in the
Discussion Section.

for convergence rate by adjusting their respective algorith-
mic tuning parameters. The migration rate can be thought of
as another tuning parameter. Figure 3 shows a strong depen-
dence of the superlinear speedup on migration rate. In our
implementation, islands always select their best solutions (in
terms of objective value) as migrants. Thus, the population
fraction of these solutions tends to increase over time and
cause clustering of the population around the best minimum
found so far. However, too much of this effect causes the is-
land method to get stuck in local minima. Thus, the migration
rate must be carefully tuned to balance these two effects. In
our benchmarks, a very small rate of migration (4 per island
per round) was sufficient to generate a considerable speedup.
This can be understood in light of superlinear effects seen
in other types of problems, such as depth—first search (22).
Since some instances of the search algorithm will discover
the optimal solution more quickly due simply to better initial

Medley etal. | libsbmljs

https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

RMSD

rel.

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Bl

15
0.75
1 island
2 islands
4 islands
8 islands
0.5 16 islands
~) © ~V
time (h)
(A)
0.25
1 island
0.05 2 islands
4 islands
8 islands
16 islands
Y © ,\'j, ,Lb‘

time (h)

(B)

(C) Settings

B1 B3
Pop. per island 300 300
Rounds 100 2000
Generations bet. rounds | 1000 1000
Parameter range 0.1-10x | 0.1-10x

(D) Results

Problem ‘ Num. islands Mean score =+ std. dev.

Replicates

1 0.86+0.072
2 0.61+0.031
0.61+0.022
0.61+£0.035
0.48+0.033

B1

4
8
6
1 0.33+0.0047
2 0.324+0.22
B3 4 0.045+0.014
8 0.022£0.0016
6

0.02+£0.00047

D DN O N W W W W W

Fig. 4. Convergence curves for problems B1 (A) and B3 (B) from the BioPreDyn suite (21) for various numbers of islands. Each curve plots the best champion fitness (i.e.
the best solution up to the current time) per island over time. The settings for each benchmark are shown (C). For a given number of rounds, table (D) shows that increasing
the island size yields an improvement in fitted parameters. As with BioPreDyn, we constrained the values of all fitted parameters to 0.1-10x the nominal value. The fitness
value in (A) and (B) is computed from the root-mean—square deviation for each state variable normalized by the state variable’s average (in B1, the values are also rescaled
to balance error contributions). Not all islands finish at the same time due to our use of variable—step integration in SBML simulation.

conditions, algorithms which are sensitive to initial condi-
tions (such as depth—first search and parameter optimization)
can be expected to benefit from coordination among parallell
instances of the algorithm. This suggests that the main ben-
efit of migration is to allow certain islands to “share” good
candidate solutions that are discovered simply because the
island happened to be initialized with good initial conditions.

The fact that the island method is able to achieve good
speedups using a very small migration rate is another de-

Medley etal. | libsbmljs

sirable property. Whereas parallelization of the main loop
may be an effective way to speed up population—based al-
gorithms (9), it also requires more network bandwidth. For
example, differential evolution forms new decision vectors
from a linear combination of three individuals from the prior
iteration. For a population of size M with N nodes, each
node will evaluate M /N decision vectors and require 3M /N
prior decision vectors to be sent over the network interface,
which imposes bandwidth requirements for the network in-

bioRxiv | 5

https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

bee_colony

~ ° PSS

time (min)

—— 1lisland
—— 2islands
4 islands
—— 8islands
—— 16 islands

~ o

time (min)

de+nelder mead

“ NJ D \’19

time (min)

B2
Pop. per island 100
Max. rounds 1000
Generations bet. rounds | 1000
Parameter range 0.1-10x

Fig. 5. Convergence curves for problem B2 from the BioPreDyn suite. To test the effect of different algorithms and combinations of algorithms on the convergence rate, we
tested the top performing algorithms and combinations determined from the elimination benchmark. Each trace represents the champion value (the individual with the best
fitness) for a single island running on 1 CPU core. Single island variants are elided from combination benchmarks containing two or more algorithms.

frastructure. In our benchmarks, we used up to 2 million
total iterations (2000 rounds of 1000 iterations) across a to-
tal population size of 16 - 300 = 4800. Assuming a decision
vector of length 100, double—precision, this equates to 2.5
TB (terabytes) of information that must be sent over the net-
work. In comparison, the island method, using a migration
rate of 4 individuals per island per round, would require only
4-16-2000-100-64 = 100M B.

Comparison with Distributed Algorithms. Most
population-based algorithms can be implemented in a
distributed fashion, by spreading the update step across N
cores or nodes. This requires re-implementing the algorithm
using a distributed computing framework, but can provide
potentially linear speedups. For example, when using 16
total CPUs (the sum of all CPUs in the cluster), a distributed
algorithm would be expected to be =~ 16 x faster. In contrast,
the speedup provided by the island method is dependent
on the frequency of migration between nodes. However,
increasing the migration frequency excessively causes a drop
in population diversity due to the fact that the selection policy
always chooses the best candidate solution in a population,
hence enriching the population fraction of this candidate over
time. Thus, in general, the island method requires careful

6 | bioRxiv

tuning to achieve linear speedups, whereas a distributed
implementation of a single algorithm would be expected to
exhibit these speedups automatically. This may be seen as a
disadvantage of the island model. However, this is somewhat
offset by the fact that, in all our benchmarks, we were able
to achieve good performance using a constant migration rate
of 4 individuals per round. Thus, just by migrating a small
fraction of individuals in comparison to the population size
per island (which was 100-300 in all benchmaarks), we were
able to attain good speedups without needing to tune the
migration rate. Furthermore, this illustrates the fact that the
island method requires significantly less bandwidth than a
distributed fitting algorithm, which is a major consideration
for scalability.

For example, differential evolution forms new decision vec-
tors from a linear combination of three individuals from the
prior iteration. For a population of size M with N nodes,
each node will evaluate M /N decision vectors and require
3M /N prior decision vectors to be sent over the network in-
terface, which imposes bandwidth requirements for the net-
work infrastructure. In our benchmarks, we used up to 2 mil-
lion total iterations (2000 rounds of 1000 iterations) across
a total population size of 16 - 300 = 4800. Assuming a de-
cision vector of length 100, double—precision, this equates

Medley etal. | libsbmljs

https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

bee_colony

Rel. RMSD

Rel. RMSD

%} time (min)
8 g
s 1 island
o 2 islands
@ 4 islands
o 8 islands

16 islands
> R R 4
time (min)

de+nelder mead

o o SP
time (min)

B4
Pop. per island 100
Max. rounds 500
Generations bet. rounds | 1000
Parameter range 0.1-10x

Fig. 6. Convergence curves for problem B4 from the BioPreDyn suite. As with Figure 5, we plotted the champion values over time for each benchmark configuration.

to 20 Tb (terabits) of information that must be sent over the
network. In comparison, the island method using a migra-
tion rate of 4 individuals per island per round would require
only 4-16-2000-100- 64 = 820Mb. Whether or not these
requirements pose a limtation depends on the networking in-
frastructure used.

More importantly, distributed optimization algorithms must
be re-implemented using a distributed computing frame-
work such as Spark (23) or Dask (24). In many cases, an
independently—validated reference implementation of an al-
gorithm is available in C/C++ for running locally on a sin-
gle node, but not on distributed nodes. Thus, if a researcher
wishes to evaluate a given fitting algorithm using distributed
computing, the researcher must first re-implement the algo-
rithm itself using distributed technologies. Since computing
frameworks like Spark (23) or Dask (24) are evolving rapidly,
it is not known whether a re-implementation will be rendered
obsolete by technology changes, thereby re-creating the same
dilemma again in the future.

Hardware Specification. Our hardware used for this study
consisted of two workstations with a 10—core Intel® Xeon®
CPU E5-2660V3 at 2.6 GHz with 24 GB RAM and a 6-
core Intel® Xeon® CPU E5-2620V2 at 2.1 GHz with 64 GB
RAM.

Medley etal. | libsbmljs

Conclusion

Model calibration is often a major bottleneck in construct-
ing dynamical models. The ability to accelerate this process
would allow modelers more freedom to experiment with dif-
ferent model variants, and shorten the overall length of model
development. We have shown here that the asynchronous,
distributed island method yields accelerated convergence and
better quality of fit for very large, challenging optimization
problems in systems biology.

We also tested the B2 and B4 algorithms against a range of
algorithm types. The results shown here indicate that there is
little variability in algorithm performance for different prob-
lems, and that combinations of different algorithm types (in
a heterogeneous island configuration) does not significantly
enhance performance. Previously, Villaverde et al. (25) re-
ported a sequential / temporal approach to implementing hy-
brid algorithms (rather than a migration—based approach, as
in the case of the island method). By using adjoint—based
sensitivities for computing the local gradient combined with a
global scatter search metaheuristic, Villaverde et al. obtained
significant performance improvements on large models using
a hybrid approach. In our work, we do not observe perfor-
mance improvements when combining local and global algo-
rithms. This discrepancy may be due to (1) the nature of the
algorithms tested (we do not consider adjoint—based gradient

bioRxiv | 7

https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

methods, which were an important component of the hybrid
strategy used by Villaverde et al.), (2) the sequential vs topo-
logical partitioning strategy used by the different approaches,
or (3) the enrichment effect of the “best candidate” migra-
tion strategy used here, which exacerbates the effect of local
minima. A thorough examination of the convergence prop-
erties of both approaches, using identical local and global al-
gorithms in each case, might reveal interesting trends in the
efficacy of different methods for hybrid optimization under
different conditions, and may suggest general strategies for
combining local and global algorithms.

A common criticism of biologically—inspired population—
based methods is that such algorithms require careful tuning
of algorithm parameters such as crossover rate (for genetic
algorithms) and local versus global attraction (swarm-based
methods). However, these results show that topology and al-
gorithm choice only exhibit a minor role in determining per-
formance, at least for the benchmarks tested here. This sug-
gests that the island method is useful as a general paralleliza-
tion scheme without the need to tune these hyperparameters.
The top—performing combination of the del220 algorithm
with the rim topology exhibits good general performance and
scalability, and should be sufficient for most users. Users can
scale this combination by setting the number of islands equal
to the total number of CPU cores in the cluster.

Acknowledgements

The authors would like to express their sincere gratitude to
the Google and the National Resource for Network Biology
for providing funding for this project through the Google
Summer of Code program.

Funding

HMS was supported by NIH grants GM123032-01, NHLBI
UO1HL122199-02, and NIBIB P41EB023912. JKM was
supported by NIH grant GM123032-01A1. JH was supported
by the Moore/Sloan Data Science Environments Project at
the University of Washington supported by grants from the
Gordon and Betty Moore Foundation (Award #3835) and the
Alfred P. Sloan Foundation (Award #2013-10-29).

1. Ding Ma, Laurence Yang, Ronan MT Fleming, Ines Thiele, Bernhard O Palsson, and
Michael A Saunders. Reliable and efficient solution of genome-scale models of metabolism
and macromolecular expression. Scientific reports, 7:40863, 2017.

2. Lawrence Davis. Handbook of genetic algorithms. 1991.

3. Rainer Storn and Kenneth Price. Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization, 11(4):341-359,
1997.

4. Yuhui Shi et al. Particle swarm optimization: developments, applications and resources.
In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.
01TH8546), volume 1, pages 81-86. IEEE, 2001.

5. Zong Woo Geem, Joong Hoon Kim, and Gobichettipalayam Vasudevan Loganathan. A new
heuristic optimization algorithm: harmony search. simulation, 76(2):60-68, 2001.

6. Dervis Karaboga and Bahriye Basturk. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. Journal of global optimization,
39(3):459-471, 2007.

7. Erick Cantu-Paz. Efficient and accurate parallel genetic algorithms, volume 1. Springer
Science & Business Media, 2000.

8. Dario Izzo, Marek Rucinski, and Francesco Biscani. The generalized island model. In
Parallel Architectures and Bioinspired Algorithms, pages 151-169. Springer, 2012.

9. Eshan D Mitra, Raquel Dias, Richard G Posner, and William S Hlavacek. Using both qual-
itative and quantitative data in parameter identification for systems biology models. Nature
communications, 9(1):3901, 2018.

10. Marek Rucinski, Dario 1zzo, and Francesco Biscani. On the impact of the migration topology
on the island model. Parallel Computing, 36(10-11):555-571, 2010.

8 | bioRxiv

14.
15.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Francesco Biscani, Dario 1zzo, and Chit Hong Yam. A global optimisation toolbox for mas-
sively parallel engineering optimisation. arXiv preprint arXiv:1004.3824, 2010.

Marcus Martens and Dario 1zzo. The asynchronous island model and nsga-ii: study of a
new migration operator and its performance. In Proceedings of the 15th annual conference
on Genetic and evolutionary computation, pages 1173-1180. ACM, 2013.

. James P Cohoon, Shailesh U Hegde, Worthy N Martin, and D Richards. Punctuated equilib-

ria: a parallel genetic algorithm. In Genetic algorithms and their applications: proceedings
of the second International Conference on Genetic Algorithms: July 28-31, 1987 at the Mas-
sachusetts Institute of Technology, Cambridge, MA. Hillsdale, NJ: L. Erlhaum Associates,
1987., 1987.

PaGMO Developers. Pagmo and pygmo. https://esa.github.io/pagmo2/,2019.
Claudio MNA Pereira and Celso MF Lapa. Parallel island genetic algorithm applied to a nu-
clear power plant auxiliary feedwater system surveillance tests policy optimization. Annals
of Nuclear Energy, 30(16):1665—1675, 2003.

Nicolas Jozefowiez, Frédéric Semet, and El-Ghazali Talbi. Parallel and hybrid models for
multi-objective optimization: Application to the vehicle routing problem. In International
Conference on Parallel Problem Solving from Nature, pages 271-280. Springer, 2002.

. Alejandro F Villaverde, Jose A Egea, and Julio R Banga. A cooperative strategy for pa-

rameter estimation in large scale systems biology models. BMC systems biology, 6(1):75,
2012.

David R Penas, Julio R Banga, Patricia Gonzalez, and Ramon Doallo. Enhanced parallel
differential evolution algorithm for problems in computational systems biology. Applied Soft
Computing, 33:86-99, 2015.

David R Penas, Patricia Gonzalez, Jose A Egea, Ramén Doallo, and Julio R Banga. Pa-
rameter estimation in large-scale systems biology models: a parallel and self-adaptive co-
operative strategy. BMC bioinformatics, 18(1):52, 2017.

Diego Teijeiro, Xoan C Pardo, David R Penas, Patricia Gonzalez, Julio R Banga, and Ramén
Doallo. A cloud-based enhanced differential evolution algorithm for parameter estimation
problems in computational systems biology. Cluster Computing, 20(3):1937—1950, 2017.
Alejandro F Villaverde, David Henriques, Kieran Smallbone, Sophia Bongard, Joachim
Schmid, Damjan Cicin-Sain, Anton Crombach, Julio Saez-Rodriguez, Klaus Mauch, Eva
Balsa-Canto, et al. Biopredyn-bench: a suite of benchmark problems for dynamic modelling
in systems biology. BMC systems biology, 9(1):8, 2015.

V Nageshwara Rao and Vipin Kumar. Superlinear speedup in parallel state-space search. In
International Conference on Foundations of Software Technology and Theoretical Computer
Science, pages 161-174. Springer, 1988.

Apache Software Foundation. Apache spark. https://spark.apache.org/, 2019.
Anaconda, Inc. Dask: Scalable analytics in python. https://dask.org/, 2019.
Alejandro F Villaverde, Fabian Fréhlich, Daniel Weindl, Jan Hasenauer, and Julio R Banga.
Benchmarking optimization methods for parameter estimation in large kinetic models. Bioin-
formatics, 35(5):830-838, 2018.

Réka Albert and Albert-Laszl6 Barabasi. Statistical mechanics of complex networks. Re-
views of modern physics, 74(1):47, 2002.

Paul Erdés and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17-60, 1960.

Duncan J Watts and Steven H Strogatz. Collective dynamics of “small-world” networks.
nature, 393(6684):440, 1998.

David Ackley. A connectionist machine for genetic hillclimbing, volume 28. Springer Science
& Business Media, 2012.

Andreas O Griewank. Generalized descent for global optimization. Journal of optimization
theory and applications, 34(1):11-39, 1981.

LA Rastrigin. Systems of extremal control. Nauka, 1974.

HoHo Rosenbrock. An automatic method for finding the greatest or least value of a function.
The Computer Journal, 3(3):175—184, 1960.

Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary approach to function
optimization. In International Conference on Parallel Problem Solving from Nature, pages
249-257. Springer, 1994.

Supplementary Information

Medley etal. | libsbmljs

https://esa.github.io/pagmo2/
https://spark.apache.org/
https://dask.org/
https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Table 1. Results fof problems B B4. .
Problem ‘ Algoarlt 1) A O(am. islands ~ Mean score + std. dev. Hours Rounds Converged? Replicates

bee colony 1 0.3+0.0091 3.1£0.11 1000.0£0.0 No 3
16 0.34+£0.013 5.4+1.8 1000.0+0.0 No 3

de 1 0.31£0.011 2.0+£0.0042 1000.0+0.0 No 3
16 0.28+0.004 2.0+£1.2 740.0£450.0 Yes 3

de+nelder mead 1 0.32+0.0075 2.0£0.026 1000.0+0.0 No 3
16 0.29+0.016 3.1+£0.86 930.0+130.0 Yes 3

B2 de+praxis 1 0.32+£0.011 2.34+0.0031 1000.0£0.0 No 3
16 0.29+0.019 2.0+£1.2 770.0£400.0 Yes 3

detsade 1 0.32£0.0053 2.2+0.013 1000.0£0.0 No 3
16 0.28+0.012 1.9+0.88 660.0+300.0 Yes 3

4e1220 1 0.3+£0.012 2.0£0.049 1000.0+0.0 No 3
16 0.28+0.012 0.62+0.19 200.0+£120.0 Yes 3

sade 1 0.31+0.0068 2.3£0.028 1000.0£0.0 No 3
16 0.28 £0.0011 3.3+£1.0 1000.0+0.0 No 3

1 0.08+£0.0043 1.8+£0.71 500.0£0.0 No 3

2 0.12£0.02 1.14+0.059 500.0£0.0 No 3

bee colony 4 0.12£0.031 1.1+0.007 500.0£0.0 No 3
8 0.098 +0.008 1.1£0.023 500.0+0.0 No 3

16 0.089£0.0073 1.1+£0.034 500.0+0.0 No 3

1 0.086£0.0074 0.76 +£0.027 500.0+0.0 No 3

2 0.076£0.0051 0.84+0.067 500.0£0.0 No 3

de 4 0.07+0.006 0.84+£0.061 500.0£0.0 No 3
8 0.06740.0034 0.63+£0.35 380.0£200.0 Yes 3

16 0.069 £ 0.0069 0.47£0.34 290.0+£200.0 Yes 3

1 0.089£0.0046 0.78+0.035 500.0+0.0 No 3

2 0.11+0.015 0.82+£0.062 500.0£0.0 No 3

de+nelder mead 4 0.074+£0.0091 0.75+£0.091 490.0£15.0 Yes 3
8 0.084£0.0034 0.7940.008 500.0+0.0 No 3

16 0.076 £0.011 0.58+£0.37 370.0£220.0 Yes 3

1 0.085£0.0031 0.77+0.032 500.0+0.0 No 3

2 0.11+0.0053 0.98+0.31 500.0+0.0 No 3

B4 de+praxis 4 0.09+£0.013 0.82+£0.045 500.0£0.0 No 3
8 0.088+£0.02 0.81£0.056 500.0£3.0 No 3

16 0.072+£0.0098 0.64+£0.29 410.0£160.0 Yes 3

1 0.088£0.0028 0.76+0.034 500.0+0.0 No 3

2 0.084£0.0074 0.82£0.0099 500.0+0.0 No 3

de+sade 4 0.066 £ 0.0024 0.51+£0.27 330.0£150.0 Yes 3
8 0.071£0.007 0.67£0.29 410.0£150.0 Yes 3

16 0.07+0.0098 0.41+0.34 260.0£210.0 Yes 3

1 0.083£0.0064 0.7140.0091 500.0+0.0 No 3

2 0.074£0.0075 0.8+0.024 500.0+0.0 No 3

del1220 4 0.07+£0.0086 0.21+0.11 140.0£74.0 Yes 3
8 0.067£0.0034 0.47£0.28 300.0£170.0 Yes 3

16 0.066 £ 0.00095 0.67+£0.31 400.0£170.0 Yes 3

1 0.088£0.0051 0.78+0.085 500.0+0.0 No 3

2 0.099£0.032 0.63£0.033 500.0+0.0 No 3

sade 4 0.073£0.01 0.42+0.3 280.0+190.0 Yes 3
8 0.072£0.006 0.83£0.043 500.0£0.0 No 3

16 0.07+0.0067 0.64+£0.31 390.0£190.0 Yes 3

Medley etal. | libsbmljs bioRxiv | 9

https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Table 2. Topology presets included with our implementation. These presets can
be used to generate a topology for any number of islands (except the hypercube,
which requires that the number of islands be a power of two).More detailed in-
formation, including topology illustrations, is available at https://sabaody.
readthedocs.io/en/latest/topologies.html

Topology

One-way Ring

Bidirectional ring

Bidirectional chain

Lollipop

Rim

1-2 Ring

1-2-3 Ring

Fully Connected (Complete Graph)
Broadcast

Hypercube

Watts-Strogats

Erdos-Rényi

Barabasi-Albert

Extended Barabasi-Albert
Extended Ageing Barabdsi-Albert

10 | bioRxiv

Medley et al.

libsbmljs

https://sabaody.readthedocs.io/en/latest/topologies.html
https://sabaody.readthedocs.io/en/latest/topologies.html
https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

Table 3. Ranking of the elimination benchmark problems. The bottom row shows

the mean difference between the highest and lowest ranking

Topology Range ‘ Algorithm Range
Hypercube 1-9 | del220 2-4
Rim 2-8 | de+nelder mead 1-8
Bidirectional ring 4-7 | bee colony 1-10
Bidirectional chain 1-11 | de+praxis 2-9
Barabasi—Albert (26) 1-13 | de+sade 4-7
1-2 Ring 3-12 | sade 2-9
Broadcast 1-14 | de+del220 4-9
Fully Connected 2-13 | de 6-8
One-way ring 7-8 | de+pso 7-10
1-2-3 Ring 4-12 | de+nsga2 8-10
Ageing Extended Bardbasi—Albert ~ 6-10 | pso 11-14
Erdos—Rényi (27) 3-14 | ihs 11-14
Extended Barabasi—Albert 5-12 | xnes 11-14
Watts—Strogatz (28) 5-14 | nsga2 12-14
Avg. diff. 8.00 | Avg. diff. 3.81

Medley etal. | libsbmljs

bioRxiv | 11

https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/660522; this version posted October 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

-10

2 S
& % o> o

=200

-0.2M

-400

-0.4M -600

-800
-0.6M

-1000

-0.8M -1200

-1400

-1600

S % s %
Fig. 7. Two—dimensional plots of our five elimination benchmark functions. These functions are analytical, and hence allow for testing a much larger number of combinations

than our biochemical model benchmarks. The functions are analytic closed—form expressions: Ackley (A) (29), Griewank (B) (30), Rastrigin (C) (31), Rosenbrock (D) (32),
and Schwefel (E) (33) functions. The plots are inverted so that the minimum value of the function is at the highest elevation, which allows for better visualization.

12 | bioRxiv Medley etal. | libsbmljs

https://doi.org/10.1101/660522
http://creativecommons.org/licenses/by/4.0/

