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Non-invasive recording from the human olfactory bulb
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ABSTRACT

Current methods can, in a non-invasive manner, assess neural activity in all areas of the human brain but
the olfactory bulb (OB). The OB is intimately involved in a long list of olfactory tasks, has been suggested
to fulfill a role comparable to that of VV1 and the thalamus in the visual system, and have been closely linked
to a wide range of neuropathologies. Here we present a method for non-invasive recording of signals from
the human OB with millisecond precision. We demonstrate that signals obtained via recordings from EEG
electrodes at the nasal bridge represent responses from the olfactory bulb - recordings we term Electrobulb-
ogram (EBG). The EBG is localized to the OB, is reliable, and follows response patterns demonstrated in
non-human animal models. The EBG will aid future olfactory-related translational work but can also easily
be implemented as an everyday clinical tool to detect pathology-related changes in human central olfactory

processing in neurodegenerative diseases.

INTRODUCTION

Measures of neural processing can be obtained us-
ing non-invasive methods from all areas of the hu-
man brain but one, the olfactory bulb (OB). The OB
is the critical first central processing stage of the ol-
factory system, intimately involved in processing of
an ever-increasing list of olfactory tasks: odor dis-
crimination, concentration-invariant odor recogni-
tion, odor segmentation, and odor pattern recogni-
tion (Wilson and Sullivan 2011), to mention but a
few. Moreover, recent studies demonstrate that the
role of the OB is not limited to the olfactory system,
but that it impacts many brain functions (Biskamp
etal. 2017). Within the olfactory system, the OB has
been suggested to fulfill a role comparable to both
V1 (Shepherd et al. 2004) and the thalamus in the
visual system (Kay and Sherman 2007). Critically,
all our knowledge about the OB comes from animal
studies. In rodents the relative size of the OB com-
pared to the rest of the brain is very large (McGann
2017) and as such, it is not surprising that the OB is

one of the most well-studied brain areas in the mam-
malian brain.

The OB is also linked to several disabling neuro-
degenerative diseases (Murphy 2019) where a
strong link to Parkinson's disease stands out (Doty
et al. 1988). The OB is the very first cerebral area
of insult in Parkinson's disease (Halliday et al.
2011) which explains why behavioral olfactory dis-
turbances commonly precede the characteristic mo-
tor symptoms defining the disease by several years
(Ross et al. 2008) and why early occurrence of ol-
factory dysfunction is more prevalent (~91%) than
motor problems (~75%) (Haehner et al. 2009; Doty
et al. 1988). Thus, the development of a non-inva-
sive method to assess OB processing in the awake
human is a necessary and important step to fully un-
derstand the neural mechanisms of human olfactory
processing in both health and disease.

The only published data of human OB responses
dates back fifty years and was obtained from elec-
trodes placed directly on the human olfactory bulb
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during intracranial surgery (Hughes et al. 1969). At-
tempts to acquire neural signals from the human OB
using functional neuroimaging have failed either
due to poor spatial resolution of the method (Posi-
tron Emission Tomography; PET) or, in the case of
functional magnetic resonance imaging (fMRI), due
to the OB’s proximity to the sinuses where the cav-
ity creates susceptibility artifacts and reduced signal
strength in the OB area (Glover and Law 2001).
Electroencephalogram (EEG) signals do not suffer
from interferences from the sinuses and recordings
in rabbits demonstrate that OB signals can be ob-
tained from scalp electrodes placed above the OB
(Yamamoto 1961; Evans and Starr 1992). However,
until now, no attempts have been made to demon-
strate non-invasive recordings of OB function in hu-
mans using EEG.

Odor-dependent EEG recordings in humans have,
by tradition, used low-pass filters at around 30Hz
(Hummel and Kobal 2001), based partly - on the
now disputed assumption - that most human percep-
tual processes occur in lower frequency bands, and
on the observation that human cortical processing
of odors mainly operates at around 5Hz (Huart et al.
2012). In sharp contrast, odor processing within the
rodent olfactory bulb has been demonstrated to pro-
duce both beta and gamma oscillations (Kay 2014).
However, when centrifugal input to the OB is elim-
inated, only gamma oscillations remain (Martin and
Ravel 2014; Neville and Haberly 2003). Given that
gamma and gamma-like oscillations in the OB have
been related to odor processing in a range of species
(Nusser et al. 2001; Kay et al. 2009) and gamma
band responses have been observed in the only
study to date where intracranial recordings from the
human OB have been collected (Hughes et al.
1969), we hypothesized that non-invasive signals
from the OB, a so-called electrobulbogram (EBG),
should be detectable within the gamma-band range.
Specifically, this activation should occur within
100-200ms after odor onset based on the temporal
limits given by the biology of the olfactory system
(see Supplementary data) and past studies demon-
strating that down-stream areas are activated shortly
before 300ms post odor onset (Hudry et al. 2003;
Jiang et al. 2017). To this end, we addressed the hy-
pothesis that signals from the human olfactory bulb
can be assessed from the scalp using micro-ampli-
fied EEG using a four-stage approach. First, we op-
timized electrode placement by simulating how a
potential signal would be manifested on the scalp.
Second, we determined an EBG signal on the sensor

level that on the source level was located to the OB,
with a good reliability of the obtained measure.
Third, we demonstrated that while participants after
long odor exposure perceptually habituate, the EBG
signal is insensitive to odor habituation. This is a
hallmark neural signature of the OB commonly re-
ported in animal models (Wilson 1998). Finally, us-
ing a human lesion-type model - i.e., an individual
born without bilateral olfactory bulbs - we deter-
mined that absence of olfactory bulbs abolishes the
EBG signal

METHOD

Participants

In Study 1, 29 individuals participated (age = 27.07
15.30, 18 women); in Study 2, 18 individuals (age
= 28.89 +4.80, 7 women) participated in three sep-
arate testing sessions on different days; in Study 3,
21 individuals participated (age = 29.55 +5.59, 11
women); in Study 4, a 27 years old male, otherwise
healthy, individual with the diagnosis of isolated
congenital anosmia participated. The diagnosis was
confirmed by an ENT physician within the Swedish
healthcare system and further supported by our own
assessments that indicated that he scored at random
when his ability to identify, discriminate, and detect
odors was assessed with the standardized clinical
odor test Sniffin Sticks (Hummel et al. 2007; Kobal
et al. 2000). Moreover, both his parents, as well as
himself, reported no recollection of him ever having
an odor sensation and T1-weighted and T2-
weighted MR images indicated total absence of bi-
lateral olfactory bulb and having an average olfac-
tory sulcus depth of 1.12mm, both morphological
measures are indicative of congenital anosmia
(Huart et al. 2011). All other participants had a
functional olfactory sense with no history of head
trauma leading to unconsciousness, did not use any
prescription drugs, were not habitual smokers, and
declared themselves as generally healthy. Func-
tional sense of smell was assessed both by verbal
confirmation from the participant and a 5-item 4-al-
ternative cued odor identification test comprising of
odors from the Sniffin Sticks odor identification test
(Kobal et al. 2000). A minimum of 3 correct an-
swers were required to participate (mean correct
over Studies 1-4: 4.5). Given the low rate of func-
tional anosmia in our tested age group and the
known chance score, the likelihood of erroneously
labeling an individual with anosmia as having a
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functional sense of smell is about 0.05%. Partici-
pants were recruited through the Karolinska Insti-
tutet’s participant recruiting site and signed in-
formed consent was obtained before participants
enrolled in the respective study. A unique set of par-
ticipants was used for each study. All aspects were
approved by the local ethical permission board
(EPN: 2017/2332-31/1).

Odor stimuli and odor presentation methods
We used different sets of odors in the studies to

demonstrate the generalizability of results. In Study
1, Orange (Sigma Aldrich, # W282510, CAS 8008-
57-9), Chocolate (Givaudan, VE00185273), and n-
Butanol (Merck, CAS 71-36-3) were diluted to
30%, 15%, and 20%, respectively, in neat diethyl
phthalate (99.5% pure, Sigma Aldrich, CAS 84-66-
2). In Study 2, we used Linalool (Sigma Aldrich,
CAS 78-70-6), Ethyl Butyrate (Sigma Aldrich,
CAS 105-54-4), 2-Phenyl-Ethanol (Sigma Aldrich,
CAS 60-12-8), 1-Oceten-3-OL (Sigma Aldrich,
CAS 3391-86-4), Octanole Acid (Sigma Aldrich,
CAS 124-07-2), and Deithyl Disulfide (Sigma Al-
drich, CAS 110-81-6) diluted in neat diethyl
phthalate to 0.14%, 0.25%, 0.1%, 0.2%, 1%, 0.25%,
respectively. In Study 3, we used 1% isopropyl al-
cohol (99% pure, Fisher Scientific, CAS 67-63-0)
diluted in Propylene Glycol (99% pure, Sigma Al-
drich, CAS 57-55-6). In Study 4, Chocolate (Givau-
dan, VE00185273), n-Butanol (Merck, CAS 71-36-
3), and 1-Oceten-3-OL were diluted to 30%, 15%,
and 1%, respectively, in neat diethyl phthalate. All
dilution values above are given as volume/volume
from neat concentration.

In all studies, odors were delivered birhinally using
a computer-controlled olfactometer with a known
rise-time (time to reach 90% of max concentration
from triggering) of about 200 ms (Lundstrém et al.
2010) and a total flow-rate of 3 liter/minute (I/min)
per channel and inserted into an ongoing 0.3 I/min
constant flow to avoid tactile sensation of the odor
onset. This means that total airflow per nostril was
never higher than 1.65 I/min, a flow significantly
lower than airflows known to elicit nasal irritation
(Lundstrom et al. 2010).

The olfactory and respiratory system are tightly in-
tertwined. To remove potential effects of respiration
from the measure, we used a sniff-triggered design:
in Study 1, 2, and 4, all trials were initiated at the
onset of inhalation. This was achieved by monitor-
ing the sniff pattern by means of temperature pod
attached close to the right nostril sampling at rate of
400 Hz (Powerlab 16/35, ADInstruments, Colo-
rado) and processed in LabChart Pro version 8.1.13.
As the individual breathes in, the cold air lower the
temperature and as the person breathes out, warm
air elevates the temperature. The change of temper-
ature therefore indicates the respiration cycle. An
individual threshold was set to trigger the olfactom-
eter slightly before the nadir of the respiratory cycle
to synchronize odor presentation with nasal inspira-
tion. In Study 3, we employed a different strategy to
remove the effect of respiration by instructing the
participant to breathe through their mouth through-
out the study, thus abolishing the sniff cycle, and the
odor stimuli were passively presented.

Stimulus triggering and timing was achieved using
E-prime 2 (Psychology Software Tools, Pennsylva-
nia). To avoid participants predicting the onset of
the trial, a jittered pre-stimulus interval (600~2000
ms) was inserted before each trial. Moreover, to
minimize habituation, a long inter-trial-interval
(ITI) was initiated after odor offset (14000 ms), ex-
cept in Study 3 where habituation was sought.
Moreover, to minimize potential redundant disturb-
ances, participants were tested in a sound attenuated
recording booth with good ventilation and potential
sounds from the olfactometer and odor mixing man-
ifold, which might give away odor onset, was
masked with low volume white noise presented via
headphones throughout the whole experiment. The
volume of noise was adjusted for each individual to
keep them comfortable through the full experiment.

Electrode placement- Electrobulbogram

The optimal location of the Electrobulbogram
(EBG) channels were determined based on simu-
lated lead-field. The scalp lead-field were simulated
for two dipoles placed in left and right olfactory
bulb. The left and right OB location were deter-
mined on the native space of individual T2 weighted
images in ACPC coordinate system and converted
to the MNI coordinate system; left OB (x -6, y 30,
z -32) and right OB (x 6, y 30, z -32).
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Fig.1 Overview of the methodological procedure to extract signal from olfactory bulbs. A) Flowchart of the procedures. B)
A lead field simulation of olfactory bulb activity projected on the scalp using a symmetrically located dipole in each olfactory
bulb (left/right). C) Electrode placement for the electrobulbogram (EBG) on the forehead and exemplary recordings. D) Multi-
taper time frequency decomposition using two Slepian tapers. E) Cross-spectral density between scalp electrodes and EBG chan-
nels. F) Four concentric spheres used to construct the head model. G) The undetermined source model of every voxel of brain
with gray matter probability more than 40% together with the digitalized sensor position of each individual and head model fed
into dynamical imaging of coherent source to localize the cortical sources.

The dipoles momentum was assumed to face radi-
ally outward and the same head model as the main
analysis was used to project the lead-field on the
scalp level (Fig. 1B). The simulation suggested that
the majority of the OB’s energy concentrate on the
forehead; therefore, optimal placement of the 4
electrodes were determined to be a curved configu-
ration on the forehead slightly above the eyebrows,
bilaterally, in addition to two mastoid electrodes as
the reference electrodes (Fig. 1C; mastoid elec-
trodes are not shown in the figure).

Electroencephalography, Electrobulbogram,
and neuronavigation measurement

In all studies, the EEG/EBG signal was sampled at
512 Hz using active electrodes (ActiveTwo, Bio-
Semi, Amsterdam, The Netherland) and band-pass
filtered at 0.01-100 Hz during recording within the
ActiView software (BioSemi, Amsterdam, The
Netherland). Before the actual EEG/EBG record-
ing, electrode offset of each electrode was visually
checked and electrodes with offset above 40mV
was adjusted until the offset reached below the ac-
cepted threshold value. EEG electrode placement
followed the international 10/20 standard in all

4
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studies and two mastoids electrodes were used as
reference.

In Study 1 and 2, the EEG/EBG recording included
64 EEG scalp electrodes and 4 EBG electrodes. Af-
ter the attachment of all electrodes, the positions of
each electrode in stereotactic space were digitalized
using an optical neuro-navigation system (Brain-
Sight, Rogue Research, Montreal, Canada). The
digitalization protocol comprised of localizing fidu-
cial landmarks such as the nasion and left/right
preauricular as well as the central point of each elec-
trode. These landmarks were next used to co-regis-
ter each electrode to the standard MNI space. The
digitalized electrode positions were later used in the
Beamforming algorithm to enable the localization
of cortical sources. In Study 3 data were recorded
from 32 EEG scalp electrodes and 4 EBG electrodes
and Study 4 used 64 EEG scalp electrodes and 4
EBG electrodes

EEG/EBG Data Analysis

Preprocessing

EEG/EBG signals were preprocessed by epoching
data from 500 ms pre-stimulus to 1500 ms post
stimulus. Next, data were re-referenced to the aver-
age of left and right mastoids electrodes, band-pass
filtered at 1 Hz - 100 Hz, and line-filtered at electri-
cal frequency. The line filtering was performed with
discrete Fourier transform (DFT) filters in which we
applied a notch filter to the data to remove power
line noise. The notch filter was implemented by fit-
ting a sine and cosine function to the data at power
line frequency with subsequent subtraction of the
noise component. The epoch length in all analysis
was at least 2 seconds, covering 100 to 120 cycles
of power line noise component and led to sharp
spectral of the notch filter. This sharp spectral fea-
ture of the notch filter increases the specificity of
removing the noise component (Oppenheim 1981,
Percival and Walden 1993). Furthermore, trials
with different types of artifacts (i.e. muscle and eye
blinks) were identified with automatic algorithms.
Identifying muscle artifacts was performed by band
pass filtering the raw data using Butterworth filter
order of 8 and Hilbert transformed to extract ampli-
tude values, followed by z-score. Trials with z-
value above 6 were identified as trials contaminated
by muscle artifact and removed from further analy-
sis.

Trials with eye blinks were identified by band-pass-
ing the raw data by Butterworth filter order of 4 and

Hilbert transformed to extract amplitude values, fol-
lowed by z-score. The major concern for EBG sig-
nal is eye blinks and eye movements therefore, a
lower z-value of 4 was used to increase the detec-
tion sensitivity of the algorithm. Trials with value
exceeding 4 were removed from further analysis.
Finally, a manual inspection was carried out and tri-
als with comparative high variance were removed.

EBG time frequency analysis: detecting the OERS
Development of power across time and frequency
of the EBG channel in the gamma frequency was
determined by employing a multi-taper sliding win-
dow (range 30-100 Hz with step 0.1 Hz). Power was
estimated at each bin using wavelet with two tapers
from discrete prolate spheroidal sequences (DPSS).
The window length was adjusted to capture 3 cycles
of the signal at each frequency bin. For lower fre-
quencies, we considered a wider window and as the
frequencies reaches higher value the window also
becomes narrower. A narrower window at the
higher frequencies increases the sensitive of the
power estimation by implementation of a higher
time resolution but also lower frequency resolution.
In the gamma band, lower frequency resolution is
not a significant confound because the gamma band
is considered to be broadband (i.e., 30-100 Hz).
Wavelets transformation at each time bin was car-
ried out by two sets of wavelet function that was de-
rived from the two DPSS tapers. To perform the
wavelet transformation, the wavelet function had to
convolve with the EEG/EBG signal (Fig. 1D). The
convolution was implemented in the frequency do-
main as a multiplication of fast Fourier coefficients
of the signal and the wavelets. Next, the estimated
power of the epochs was demeaned by normalizing
to the average power of the whole epoch and con-
verted to decibel values (dB).

Beamforming source reconstruction: localizing the
OERS’ cortical source

To localize the cortical source of the detected
OERS, spectral density of the signal at the time pe-
riod of 100 to 250 ms post-stimuls were estimated
using fast Fourier algorithm with central frequency
60 Hz (i.e. the central frequency of the OERS) and
taper smoothing parameter 5 Hz, meaning that the
range from 55 Hz to 65 Hz were taken into the com-
putation of cross spectral density for source locali-
zation (Fig. 1E). The number of tapers was esti-
mated as the time half bandwidth (Percival and
Walden 1993). Prior to cross-spectral density esti-
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mation noisy electrodes were identified by examin-
ing the power of power line noise (50 Hz) of the
electrodes for given time window, those electrodes
with z-value more than 3.5 were interpolated using
weight average of the adjacent electrodes. Then, the
cross-spectral density between pairs of electrodes
was derived by multiplying the spectral density of a
channel with conjugated spectral density of other
channels. To solve the inverse problem on a trial
level, a linear transformation of Dynamic Imaging
of Coherent Sources (DICS) was used (Gross et al.
2001). Given the associations among electrodes, a
unique configuration of cortical sources can be es-
timated by DICS that explains the scalp potential.
Association among electrodes was measured by co-
herence derived from cross-spectral density be-
tween pairs of channels at the central frequency (i.e.
60 + 5 HZ). We also assigned the regularization pa-
rameter to 10% in order to reduce the effect of nui-
sance parameter.

Digitalized electrode-positions of each participant
were co-registered to the default MNI brain. Co-
registration was performed automatically with 6 pa-
rameters affine transformation followed by manual
inspection for any misalignment. Subsequently, a
head model was created based on a multi-shell
spherical head model. Construction of the head
model was initiated by tissue segmentation on the
default MNI T1-weighted image. The segmentation
procedure included scalp, skull, gray matter, and
white matter. Next, spherical volume conductors
with the conductivity of 0.43, 0.01, 0.33 and 0.14
were assigned to scalp, skull, gray matter, and white
matter respectively (Fig. 1F). An underdetermined
source model was used in which distributed sources
were equally spread over the full brain. The brain
was divided into a three dimensional grid, covering
the whole brain with at least 10mm spacing between
two points on the grid. We constructed the source
model on each grid-point depending on the gray
matter probability of that particular point. A dipole
was placed on the points with the gray matter prob-
ability larger than 40% (Fig. 1G). The DICS algo-
rithm looks for a weighted summation of the scalp
electrodes in order to reconstruct the cortical
sources on trial level. We used the balanced com-
mon filter approach: here, sources for both condi-
tions (i.e. Odor and Air) were concatenated and a
common solution for the inverse problem was com-
puted. Therefore, the difference of the cortical
sources between two conditions is free from biases
originating from different solutions estimated by

DICS. Subsequently, Odor trials and Air trials were
averaged within individuals. Moreover, to quantita-
tively investigate the goodness of fit for the inverse
model, we used the dipole fitting approach (deter-
mined source model) to assess the amount of power
each hypothetical sources can explain. Multiple
sites of the brain selected including olfactory bulb,
anterior piriform cortex, orbitofrontal cortex, and a
non-olfactory related area, primary auditor cortex,
as the underlying sources. Two symmetric dipole
place in each of these sites bi-hemispherically.
Then, the forward problem was solved with the
same head model as inverse problem within time
frequency of the interest for each scenario and the
explained power and error estimated. DICS analysis
were carried out in the open source Fieldtrip toolbox
(Oostenveld et al. 2011).

Statistical analysis

All statistical analyses were performed within the
MATLAB (version 2018a) environment with Sig-
nal Processing and Fieldtrip toolboxes. The spectral
density of the four EBG electrodes were averaged
on the participant level. Then, Monte Carol permu-
tation tests was used to examine if the power of av-
eraged EBG spectral density was significantly
higher in Odor compared with Air on the group
level. Non-parametric permutation tests were used
to assess statistical significance rather than para-
metric statistics given the tests ability to assess a
sharp null hypothesis (i.e. no difference between
conditions), its ability to provide exact control of
false positives, because the EBG measure is produc-
ing an unknown distribution, and the increase in
generalization of obtained results. A 1000 permuta-
tions were performed on the averaged EBG spectral
density so that in each permutation, 50% of condi-
tions where shuffled and the difference between
Odor and Air calculated by means of two tailed t-
test between the actual data and shuffled data. The
exact p-value was derived by the average number of
the times that the actual data is bigger than shuffle
data out of 1000 permutations. For purpose of illus-
tration, t-maps where smoothed while maintaining
the shape of the observation. Standard conservative
corrections for multi-comparison could not be em-
ployed due to extensive number of test elicited by
the high resolution of the spectral density maps. We
therefore reduced the risk of false positive results
induced by the many statistical tests by replicating
the main EBG finding in independent experiments
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(Study 1, 2, and 3). Test-retest reliability was as-
sessed by bivariate Pearson correlations and inter-
class correlation determined with ICC(2, k), a meas-
ure widely used to quantify the agreement of the tar-
get measure (i.e. OERS power) between individuals
across different sessions(Shrout and Fleiss 1979).
All tests, when applicable, are two-sided.

RESULTS

Determining and localizing the electrobulb-
ogram

We first assessed optimal electrode positions by
performing a lead field simulation where bilateral
dipoles where placed in the olfactory bulb of an an-
atomical head model (Fig. 1B). Optimal electrode
position for signal acquisition was determined on
each side of the nasal bridge, just above the eye-
brows. In Study 1, we therefore placed four micro-
amplified EEG electrodes (ActiveTwo, BioSemi,
Amsterdam, The Netherlands), two on each side of
the nasal bridge (Fig. 1C) to capture the dipole
spread and to reduce potential influence of artifacts
from single electrodes. Analyses (Fig. 1A, D-F —
see Material and Methods for details) were based on
averaged responses to 1s odor or clean air presenta-
tions, presented by a computer-controlled olfactom-
eter (Lundstrom et al. 2010). Spectral density of the
signal was time-locked to stimulus onset, assessed
and adjusted by a photoionization detector (Ohla
and Lundstrém 2013) and averaged across the four
electrodes and trials to optimize signal-to-noise ra-
tio.

Stimuli were triggered shortly after the nadir of the
sniff cycle to optimize odor stimulus perception and
to eliminate sniff-cycle dependent effects. We
therefore first determined whether the motor task of
sniffing produced any signal within the designated
time and frequency band at the sensor level. To this
end, we assessed sniff onset-related responses in the
time frequency map (TFR) within the clean air only
condition (Air). Minor and non-significant sniff-re-
lated activity was indicated in the lower frequency
range (~38-45 Hz) around stimulus onset (Fig 2A);
however, this activity did not differ from baseline
(Fig. 2B; Monte Carlo permutation test with 1000
permutations). We then determined the TFR for
odor trials within the designated time and frequency
band. To exclude contamination by sniffing and
other motor-related artifacts that were not observa-
ble, we contrasted the Odor against the Air condi-
tion. An odor event-related synchronization

(OERS) was observed in the gamma band (~55-65
Hz) around ~100-150 ms post stimulus (Fig. 2D).
Subsequent permutation testing (1000 permuta-
tions) revealed significant differences between
Odor vs. Air conditions. To directly determine the
direction of the effect, we compared the averaged
power within the time/frequency of interest for each
condition against their baseline. Power during the
Odor condition (Fig 2F) was significantly larger
than during the Air condition (Fig 2C), t(28) = 3.62,
p < .01, CI [.23, .91] providing further evidence
that the effect is mediated by the presence of an
odor, and not de-synchronization during presenta-
tion of air.

Due to the proximity to the eyes and facial muscles,
the EBG measure is artifact sensitive. In Study 1, an
average of 52% of all trials were removed from
analyses due to artifacts. Thus, to determine the
number of trials needed to detect a reliable signal
from the EBG with the same statistical power as
demonstrated in Study 1, trials were stepwise added
to power analyses. Only 7 clean trials were required
to reach full statistical power (Supplementary Fig-
ure S1). From this, we conclude that with the aver-
age trial rejection rate, a simple experimental ses-
sion with one condition would need a minimum of
15 trials to detect a robust EBG signal.

The above detailed power analyses demonstrated
that odor stimuli produce a significant EBG signal
in the predicted time and frequency domain on the
sensor level, and that this was not a function of po-
tential motor and attention-related confounds pro-
duced by sniffing. We next asked if the olfactory
bulb is the specific source of this signal. We did this
by applying a multi-taper time-frequency decompo-
sition (Fig 1D) on the signal from all EBG and scalp
electrodes in the time/frequency area of interest and
localized the signal at single trial level. Importantly,
the individual EEG data was co-registered to a mul-
tiple-tissue head (Fig 1F) and a source model (Fig
1G) using a neuronavigation system (Brainsight,
Rogue Research, Montreal, Canada) for improved
spatial precision. The reconstructed source of the
OERS revealed elevated power in the OB, with a
8% increase in power in Odor compared with Air
condition (Fig. 2G). No other major sources were
detected in the time and frequency domain of inter-
est suggesting the OB is, in fact, the underlying
source of the EBG signal.

The undetermined source model indicated the OB
as the underlying source of the EBG but this does
.
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not directly compare competing solutions. To di-
rectly compare different hypothetical potential sig-
nal sources, we used a constrained source-model
(quided dipole placement; Supplementary Figure
S2A) to compare the OB, the anterior piriform cor-
tex, the medial orbitofrontal cortex, and, as a non-

olfactory control, the primary auditory cortex. The
OB solution explained more than twice the amount
of the total variance of the signal source space pa-
rameters than did dipole solutions in piriform-, or-
bitofrontal-, and auditory cortex (Supplementary
Figure S2B).
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Fig.2 Localization of odor-evoked response in sensor and source space. A) Sensor time-frequency decomposition of difference
in power for Air vs. Baseline condition for the EBG electrodes. B) T-statistics derived from 1000 Monte Carlo permutations
demonstrating no change in power for inhalation of Air only condition for the EBG electrodes. Circles show individual values.
C) Averaged power change for Air across 100-125 ms with standard error of the mean (SEM). D) Sensor time frequency
decomposition for Odor against Air conditions. E) T-statistics derived from 1000 Monte Carlo permutations contrasting Odor
with Air conditions (p <.01). Orange color marks significant change in power for Odor against Air and the black horizontal line
on the color-bar marks the threshold for displayed t-values. F) Averaged power change for Odor condition across 100-125 ms
with SEM. Circles show individual values. G) Reconstructed sources of the olfactory evoked synchronization indicating olfactory
bulb as the source. Color bars denote relative change in power and x, y, z coordinates in figures indicate coordinates of slice in
Talairach space according to the MNI stereotactile reference system.
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Reliability and precision of the electrobulb-
ogram

Having established the EBG measure, we next de-
termined its reliability and precision by comparing
the EBG in the same individuals across repeated
testing sessions spanning multiple days. In Study 2,
participants completed three identical testing ses-
sions that were at least one day and at most one
month apart. The EBG was acquired using the
above described method and analysis focused on the
same time and frequency window of interest. First,
to determine test-retest reliability, we assessed both
intra-class correlation [ICC(2,k)], a measure of
agreement (Shrout and Fleiss 1979), as well as pair-
wise similarities (i.e. correlation coefficient) be-
tween gamma-band power from both sessions. The
ICC(2,k) showed agreement between measure-
ments (ri = 0.47) and subsequent F-test showed that
the agreement was statistically significant, F(2,
26.65) = 3.99 p < .03, indicating a low spread
among individuals’ EBG values and therefore high
agreement (Shrout and Fleiss 1979). Test-retest cor-
relations ranged between r = .76 to r = .81 (Fig 3A),
thereby indicating high test-retest reliability.

A)

session 1

session 2}

session 3}

session 1
session 2
session 3

Although test-retest correlation is a widely used
measure of reliability, the magnitude of a correla-
tion is, to some degree, dependent on the amount of
true variability among participants that is in turn de-
pendent on within-participant homogeneity. So, to
assess the precision of the EBG measure, we also
assessed the mean effect size and the standard error
of the mean (SEM), an estimate of the standard de-
viation of the single-trial EBG across an infinite
number of sessions. The mean effect size across the
three sessions demonstrated a medium effect (Co-
hen’s d = .44, Fig 3B) and the SEM value across the
three sessions (+ 0.067), compared to a mean power
of 0.75, indicate that the EBG measure has good
precision. Finally, we assessed dispersion rate using
a within experiment meta-regression estimate (Q).
The dispersion rate indicates whether the distribu-
tion is squeezed or stretched compared to an ideal
distribution. Assessing the dispersion rate of the
three sessions, as determined by help of meta-re-
gression, we found a Q value of 0.04 that is smaller
than the experimental degrees of freedom (2) and
indicate that the EBG measure has a low dispersion
rate (Fig 3B). Taken together, these data suggest
that the EBG measure is both reliable and precise.

B) Q=0.04 |
@-dfy<o| |
session 3t

session 2f
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Fig.3 Test-retest reliability and dispersion rate of the EBG. A) Pairwise correlation matrix across the three sessions. Values
indicate bivariate Pearson correlation coefficients and black dots within scatter plots shows individual values for each com-
parison. Colors indicate mean dispersion with colors indicating smoothed underlying distribution based on bootstrapping of
the test data. B) Effect size and 95% confidence interval for EBG detection within each testing session (Clsession1 = [.16 .68],
Clsession2 = [.27 .80] and Clsession3 = [.10 .62]). Overall effect showed medium effect size (Cohen's d = .44) and meta-regression

showed insignificant dispersion among the three sessions.
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Validating the electrobulbogram

The signal source analyses (Fig 2G) support the
conclusion that the EBG signal originates from the
OB. However, the signal source solution is merely
the most likely given the acquired data, and not a
validation of the method per se. Because no estab-
lished measure of signal from the human olfactory
bulb exists short of direct and invasive recording
from the OB — a measure that is uniquely difficult
to obtain due to the ethical dilemma of placing in-
tracranial electrodes that are not strictly needed
from a clinical perspective — validation of the
measure needs to be indirect. We therefore assessed
whether the EBG signal displayed a hallmark signa-
ture demonstrated in OB data obtained in several
non-human animal models, namely insensitivity to
habituation. Importantly, the piriform cortex is
known to demonstrate a rapid habituation to re-
peated or prolonged odor exposure resulting in a
clearly diminished neural signal (Poellinger et al.
2001; Wilson 1998). This habituation can be clearly
observed in ERPs of the scalp where a short inter
trial interval between odor stimuli greatly reduce
the signal. In contrast, the signal generated by the
OB shows reduced sensitivity to habituation: even
after repeated exposure, the OB in rats displays only
a minimal reduction in odor-evoked activity (Wil-
son 1998; Zhao et al. 2016). Thus, a lack of a sig-
nificant modulation after rapid, repeated odor
presentation would suggest the OB as a primary
origin whereas a marked decline of the EBG would
indicate that the signal has a major cortical source.

In Study 3, we determined the effect of odor habit-
uation on the EBG response from rapid repetition of
odor exposures with long duration, a paradigm that
is known to introduce fast and sustained odor habit-
uation (Rankin et al. 2009). We measured responses
from EBG electrodes as well as scalp EEG elec-
trodes. After each trial, participants rated the per-
ceived intensity of the odor on a 10 step computer-
ized visual analogue scale. We first assessed
whether our experimental paradigm rendered per-
ceptual odor habituation. As expected, participants
experienced a rapid decline in perceived intensity of
the odor on repeated exposure (Supplementary Fig
S3). We then assessed whether the EBG signal
demonstrated a similar decline or whether the signal
is uncoupled from the perceived intensity of the
odor. As predicted by the hypothesis that the EBG
signal originates from the OB, a mixed effect model
(with trials as fixed effect and subjects as random

intercepts) showed no significant slope in OERS
power as a function of trial (Fig. 4A). Furthermore,
to reduce variability and increase the chance of de-
tecting a potential change, we split the session into
two halves (i.e. first half and second half of the ses-
sion), and statistically tested for potential signifi-
cant difference between early and late trials in
power by 1000 permutations. Although a small
nominal decrease in power in the area of interest
was observed, there was no statistical change in
power between early and late trials (Fig. 4B). We
next assessed habitation effects for the scalp ERP
signal were we hypothesized that the effect would
be large. An established scalp ERP correlate of per-
ceived odor intensity is the difference (delta) in am-
plitudes between the N1 and P2/3 ERP components
over the parietal cortex (Pause and Krauel 2000).
The N1-P2/3 difference in power over parietal areas
(Pz scalp electrode) demonstrated a characteristic
habituation slope with initial large responses that
subsequently progressed over trials towards zero.
Specifically, the linear trend (linear mixed model)
of the effect demonstrated a significant slope across
trials, t(971) = -3.15, p < .002, CI [-.010, -.002].
Together, the results show that the EBG signal pos-
sesses the hallmark signature of insensitivity to-
wards odor habituation.

Validating the EBG response with a human le-
sion-type model

Finally, we assessed whether unknown non-olfac-
tory related factors might mediate the EGB re-
sponse seen in Study 1-3. Although unlikely given
the consistency of the EBG signal across experi-
mental conditions, there is a possibility that the
EBG signal is mediated by some spurious effect that
our experimental designs cannot account for, such
as a systematic imbalance in attentional load, task-
demands, sniff-related motor activity, micro sac-
cades etc. Therefore, in Study 4, we ruled out these
factors by applying the technique to a human lesion-
like model by testing whether an EBG signal would
emerge when there is no bulb to produce it. We did
this by testing one individual with isolated idio-
pathic congenital anosmia (ICA), i.e., born without
the sense of smell. Critically, this individual was
without bilateral olfactory bulbs but otherwise
healthy. A magnetic resonance image examination
using an OB sensitive image sequence indicated a
complete absence of the OB in both hemispheres
(Fig. 5A).
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Fig 4. Lack of habituation of the EBG measure. A) Linear mixed model demonstrate that an odor habitation paradigm produce
no significant change in power of the olfactory evoked synchronization across trials, slope =.008, t(437) = 1.58 p > .11 Cl = [-
.002 .02]). Blue circles in figure represent the first half and rust colored cubes the second half of the total number of trials.
Unfilled circles and cubes represent individual values and dashed line indicate the slope as a function of trials. B) T-statistics
with 1000 Monte Carlo permutations demonstrating no significant change in power (p > .05). Positive values indicate larger
signal for early trials. Circles indicate individual values C) Mean difference and 95% confidence interval of olfactory event-
related potentials (ERPs) of N1-P2/P3 for Pz as a function of trials. The mean curve is smoothed for presentation purposes. Blue
line represent the slope revealed by the linear model and indicate an decrease in amplitude difference between N1-P2/P3 ERP

components at electrode Pz across trials

Although there is no definitive test that can distin-
guish between acquired anosmia, bulb degeneration
at very young age, and ICA due to congenital ab-
sence of OB, recent studies have reported that an
olfactory sulcus depth of less than 8mm is much
more prevalent in ICA patients compared to healthy
controls (Huart et al. 2011). The ICA subject tested
in Study 4 had a mean olfactory depth of 1.12mm;
a value more than 3SD away from an age-compara-
ble control population (Fig. 6C) and, as expected
from an individual with anosmia, performed at
chance level in a standardized olfactory identifica-
tion test.

Using an identical experimental protocol as Study
1, we demonstrate that the ICA subject did not ex-
hibit an EBG response following odor stimulation.
Specifically, within the time and frequency window
of interest, no significant EBG signal was observed
for Odors compared with Air condition, Fig 6B. Im-
portantly, the mean EBG signal was 2.5SD below
that of the mean of participants in Study 1 (Fig. 5C).
This is yet further evidence that the EBG is sensitive
to OB responsiveness.
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Fig. 5 Lack of EBG from one individual with isolated congenital anosmia (ICA) missing both OBs. A) Coronal view of T2
weighted image of the brain of an individual with ICA, lacking bilateral OB (marked with red). In the left corner is an example
of OB from a healthy individual using identical MR examination with the yellow outline in the green circle delineating the OB.
B) Monte Carlo permutation test with 1000 permutations demonstrating no change in the OERS signal between Odor vs. Air.
C) Distribution of EBG power for the normosmic cohort from Study 1 represented by the green area, the observed sulcus depth
(OS) and OB power (OERS) of the individual with isolated congenital anosmia is represented by an open red circle and square,

respectively

DISCUSSION

Even though the OB is the first and, arguably, a crit-
ical processing stage of the olfactory neural net-
work, this is the first non-invasive measure of OB
processing proposed in humans. The vast majority
of olfactory-related electrophysiological recordings
targeting odor perception in non-human animal fo-
cus on the OB and these explorations have deter-
mined that the OB is an important hub for funda-
mental neural mechanisms across a wide set of top-
ics, including, but not restricted to, memory, learn-
ing, social behavior, and motor function (Sullivan
et al. 2015). Whether the OB serves the same im-
portant role in humans is not known. Using multiple
approaches, we demonstrate that the neural pro-
cessing within the human olfactory bulb (OB) can
be noninvasively and robustly measured with elec-
trodes placed at the base of the nose to obtain an
electrobulbogram (EBG). We show that the meas-
ure can be obtained with only four EBG and two
reference electrodes. The EBG measure requires
relatively cheap and off-the-shelf equipment and as
such, can be easily implemented even with limited
financial or computational resources. This method
allows for a direct comparison of future studies with
humans and already existing non-human animal
data. Moreover, the OB is the neural area of initia-
tion of Parkinson's disease (Halliday et al. 2011)
and clear behavioral olfactory disturbances precede
the characteristic motor symptoms defining the dis-
ease by several years (Ross et al. 2008). Because a
large portion of the OB needs to be destroyed before

significant behavioral reduction in olfactory perfor-
mance is detected (Lu and Slotnick 1998), record-
ing of EBG signal could potentially serve as a very
early marker of PD.

The EBG appears in the gamma band. It is very
likely that other signals indicative of OB processing
also appears in the alpha, beta, and theta bands at a
later time. However, here we focus on the gamma
band due to our aim of producing a measure that is
localized to the OB and primarily represents pro-
cessing of the incoming signal with a lesser focus
on centrifugal information. Gamma band pro-
cessing within the OB seems tightly linked to initial
intra-bulb processing with limited to no centrifugal
influence (Kay 2014; Martin and Ravel 2014). In-
deed, when centrifugal input to the OB is severed,
only gamma oscillations can be detected within the
OB in response to odors (Neville and Haberly 2003;
Martin et al. 2006) whereas beta oscillations are
more likely to be modulated by context of odor as-
sociations (Frederick et al. 2016). Similarly, gamma
oscillations in the anterior piriform cortex, the area
immediately upstream from the OB, are reduced
when gamma oscillation is reduced in the OB
(Osinski et al. 2018). Beta oscillations in the ante-
rior piriform cortex are not, however, affected by
manipulating gamma in the OB, thus providing fur-
ther support that gamma activity within the OB re-
flects within-bulbar processing and potentially OB
output — the target of the EBG measure. That said,
a plethora of studies in non-human animals have
demonstrated that beta oscillations in the OB is very
important for the final odor percept. Future studies
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should thus use the EGB measure to assess the role
of beta and alpha oscillations in the human olfactory
bulb.

Our measure is dependent on several key methodo-
logical aspects that are required to enhance the EBG
signal-to-noise ratio. First, participants were always
tested when they were in a nutrition deprived state.
This is because in non-human animals, the OB is
decidedly more responsive to odors when the indi-
vidual is in a hungry compared to a satiated state
(Pager et al. 1972; Royet and Pager 1981). Past
studies have demonstrated that more mitral/tufted
(M/T) cells are odor responsive when the animal has
not been fed, whereas a significant portion of the
M/T cells are inhibited during satiation. Second, in
all studies but Study 3, odors were presented syn-
chronized to onset of the inhalation phase of the
breathing cycle and without a detectable onset cue.
About 50% of all M/T cells in the OB are locked to
respiration (Bhalla and Bower 1997; Kay 2014) and
oscillations in the olfactory system, and beyond
(Perl et al. 2019), seem specifically attuned to the
respiration cycle. However, note that respiration-
locked oscillations normally occur in the theta band
and should not be prominently expressed in the
gamma band (Bhalla and Bower 1997). Third, odors
should not have a clear trigeminal perception.
Given the automatic motor response of facial
frowning elicited by the trigeminal nerve, a part of
the pain system, use of trigeminal odors could po-
tentially mask the EBG response (Albrecht et al.
2010). Finally, the measure is dependent on a tem-
porally reliable olfactometer (Lundstrom et al.
2010) with precise stimuli onset given the depend-
ence on averaging across trails. Jittered onsets
would significantly reduce the sensitivity of the
EBG measure.

A measure is only useful if it can produce reliable
and consistent values that are relatively stable
across similar sessions. The EBG measure produced
test-retest r-values between .76 to .81; results that
are in the same range as established event-related
based olfactory and non-olfactory EEG measures.
Test-retest of olfactory-derived scalp ERPs nor-
mally produce values between as low as .05
(Welge-Lussen et al. 2003) to as high as .81 (Thesen
and Murphy 2002), dependent on manipulation.
Similarly, test-retest coefficients for auditory and
visual ERPs are commonly in the .48 to .80 range
(Nordin et al. 2011). However, given the very low
number of trials needed — 7 clean trials — future

development of the measure should consider this
potential by including synchronization between an
automatic online artifact detection and olfactometer
triggering where trials are only initiated when no
muscle activity is detected.

Only one publication has presented data originating
from surface recordings of the human olfactory
bulb. Hughes and colleagues(1969) recorded OB re-
sponses to odor stimuli and reported, as do we, pre-
dominantly gamma band responses to a range of
odors. It could be argued that a weakness of our ap-
proach was to base our EBG development on infor-
mation mostly drawn from studies in non-human
animal models. However, access to direct recording
from the human OB is restricted because measures
of OB processing in humans are only possible from
recordings done from surgically implanted intracra-
nial electrodes in patients undergoing elected resec-
tion surgery for intractable epilepsy where clinical
need direct placement. It is our hope that the EBG
measure will produce a richer literature on the role
the human olfactory bulb serves in creating an odor
percept, and to delineate similarities and differences
of odor processing in human and non-human animal
models.

In conclusion, the EBG measure is a valid and reli-
able measure of signals from the human olfactory
bulb. All needed components are commonly availa-
ble in most neuroscience institutions and clinical es-
tablishments with the one exception being availabil-
ity of a temporally precise olfactometer. It is our
hope that the EBG measures will enable detailed in-
vestigations into the role of the OB in the human
olfactory system. Specifically, the measure allows
the exploration of fundamental mechanistic ques-
tions, such as what role the human OB plays in pro-
cessing odor pleasantness, quality coding, and odor
fear learning. Moreover, this method will allow fur-
ther investigation of a wide variety of clinical disor-
ders known to affect olfactory processing, such as
neurodegenerative, eating disorders, as well as
schizophrenia.
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