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Abstract

Advances in fluorescence microscopy have introduced new assays to quantify live-cell
translation dynamics at single-RNA resolution. We introduce a detailed, yet efficient
sequence-based stochastic model that generates realistic synthetic data for several such
assays, including Fluorescence Correlation Spectroscopy (FCS), ribosome Run-Off
Assays (ROA) after Harringtonine application, and Fluorescence Recovery After
Photobleaching (FRAP). We simulate these experiments under multiple imaging
conditions and for thousands of human genes, and we evaluate through simulations
which experiments are most likely to provide accurate estimates of elongation kinetics.
Finding that FCS analyses are optimal for both short and long length genes, we
integrate our model with experimental FCS data to capture the nascent protein
statistics and temporal dynamics for three human genes: KDM5B, S-actin, and H2B.
Finally, we introduce a new open-source software package, RNA Sequence to NAscent
Protein Simulator (RSNAPSIM), to easily simulate the single-molecule translation
dynamics of any gene sequence for any of these assays and for different assumptions
regarding synonymous codon usage, tRNA level modifications, or ribosome pauses.
RSNAPSIM is implemented in Python and is available at:
https://github.com/MunskyGroup/rSNAPsim.git,

Author summary

Translation is an essential step in which ribosomes decipher mRNA sequences to
manufacture proteins. Recent advances in time-lapse fluorescence microscopy allow
live-cell quantification of translation dynamics at the resolution of single mRNA
molecules. Here, we develop a flexible computational framework to reproduce and
interpret such experiments. We use this framework to explore how well different
singleemRNA translation experiment designs would perform to estimate key translation
parameters. We then integrate experimental data from the most flexible design with our
stochastic model framework to reproduce the statistics and temporal dynamics of
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nascent protein elongation for three different human genes. Our validated
computational method is packaged with a simple graphical user interface that (1) starts
with mRNA sequences, (2) generates discrete, codon-dependent translation models, (3)
provides visualization of ribosome movement as trajectories or kymographs, and (4)
allows the user to estimate how optical singlemRNA translation experiments would be
affected by different genetic alterations (e.g., codon substitutions) or environmental
perturbations (e.g., tRNA titrations or drug treatments).

Introduction

The central dogma of molecular biology (i.e., DNA codes are transcribed into messenger
RNA, which are then translated to build proteins) has been a foundation of biological
understanding since it was stated by Francis Crick in 1958. Despite their overwhelming
importance to biological and biomedical science, many of the fundamental steps in the
gene expression process are only now becoming observable in living cells through the
application of real time single-molecule fluorescence imaging approaches.
Single-molecule imaging of transcription was first achieved two decades ago through the
use of the MS2 system [1], which uses bacteriophage gene sequences to encode for
specific and repeated stem-loop secondary structures in the transcribed mRNAs. These
stem-loops are subsequently recognized and bound by multiple fluorescently-tagged MS2
Coat Proteins (MCP), which produce bright fluorescent spots that allow for the
detection and spatial tracking of single-mRNA [2]. Tracking these labeled RNA has
made it possible to observe many aspects of RNA dynamics that were previously
obscured using bulk RNA measurements, such as the production of RNA from different
alleles [3], the movement of mRNA-protein complexes from nucleus to cytoplasm
through nuclear pores [4], and the association of RNA with different regions of the
cell [5].

Even more recently, imaging single-molecule translation has also become possible
through the discovery of similar approaches [6-10]. In this case, the mRNA is modified

to encode for multiple epitopes in the open reading frame of a protein of interest (POI).

As the protein is translated, these epitopes are quickly recognized and bound by
fluorescent antibody fragment probes, Fig[[JA. By combining the MS2 approach with
these epitope recognition sites, the co-localization of mRNA spots and nascent protein
spots reveal singleemRNA molecules that are undergoing active translation, as shown in
Fig [IB. As was the case for single-RNA tracking, precise spatiotemporal imaging of
translation sites within single living cells allows for multiple advances in comparison to
bulk or single-cell assays [11]. For example, Morisaki and Stasevich recently reviewed
three different approaches to track the translation dynamics for individual mRNA
molecules over time and then use these data to infer translation rates [12]. The first
design is related to Fluorescence Correlation Spectroscopy (FCS), in that the nascent
protein fluorescence signal is monitored over time and used to compute the
auto-covariance function (G(7), Fig[I[C, bottom). The time, Trcs, at which G(r)
reaches zero denotes the characteristic time for a ribosome to translate the gene from
the tag region to the end of the protein of interest [6]. A second approach to measure
translation rate is to chemically block translation initiation (e.g., through the
application of a drug such as Harringtonine, as depicted in Fig , top). In this
Run-Off Assay (ROA) approach, the time, 7rp 4, at which the fluorescence signal
disappears corresponds to the time for a single ribosome to translate the entire coding
region, including the tag region itself [10]. A third technique, shown in Fig , uses
Fluorescence Recovery After Photobleaching (FRAP) to optically eliminate the nascent
protein fluorescence associated with a single mRNA and then record the recovery of the
signal to its original level. As for the FCS approach, the time of total recovery, Trrap,
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Fig 1. Translation studies with single-molecule resolution. A) Imaging
single-molecule translation dynamics is achieved by the measurement of fluorescence
spots that are produced when nascent proteins display epitopes that are recognized by
antibody fragments bound to fluorescent probes. The gene construct encodes a 10X
FLAG SM tag followed by a protein of interest (POI) and the 24X MS2 tag in the 3’
UTR region. B) Microscopy image showing translation at single-molecule resolution; red
spots represent single mRNA, and green spots represent nascent proteins. Below is a
representative trace showing the intensity fluctuation dynamics of a single-transcript
translating FLAG-10X-KDM5B. C) Simulated time courses representing the
characteristic single-molecule fluctuation dynamics. A representative trace is selected
and highlighted. At the bottom of the figure is given the normalized auto-covariance
function (G(7)) calculated from simulated time courses. The time at which G(7) hits
zero represents the dwell-time (7pcg). D) Harringtonine inhibits the translation
initiation step by binding to the ribosomal 60S subunit. The plot shows the average
fluorescence after Harringtonine treatment. Without new initiation events, the
fluctuations diminish causing the intensity to drop to zero at time 7roa. E) FRAP
causes a rapid drop in the fluorescent intensity and a subsequent recovery that is
proportional to the time needed by ribosomes to produce new nascent proteins with
non-photobleached probes. The bottom plot shows the temporal dynamics of FRAP,
where it can be observed by the abrupt decrease in intensity and a recovery time
(Trrap) correlated with the gene length. All simulations correspond to KDM5B for 100
spots and a frame rate of 1 FPS. Error bars represent the standard error of the mean.

relates to the time required for a single ribosome to complete translation from the tag
region to the termination codon [89].

The temporal resolution offered by live single-mRNA, nascent translation imaging
makes it possible to directly visualize and quantify initiation, elongation, and
termination processes in live-cells [13]. Single-molecule studies have uncovered
previously unknown events and mechanisms taking place during translation, such as the
presence of active and inactive transcripts in specific locations in the cell |6,9], different
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elongation rates caused by codon-optimized sequences [10], the spatiotemporal
translation of specific genes in specific cellular compartments [7],8], ribosomal
frameshifting with bursty dynamics [14], and non-canonical forms of translation [15].

As these experimental techniques rapidly evolve, they induce a growing need for
precise and flexible computational tools to interpret the resulting data and to design the
next wave of single-RNA translation experiments. To help fill this gap, we present a
versatile new set of computational design tools to estimate which specific single-mRNA
translation dynamics experiments would provide the most accurate inference of model
parameters. We demonstrate the generality of our analyses by simulating results for
several different single-molecule experiments for a large database of human genes. We
explore these different combinations of gene and experiment to ask which methodologies
are better to measure specific biophysical parameters and for which types of genes. We
then constrain our model by fitting it to experimental data for several genes. Finally,
we describe and demonstrate the use of a new open-source and user-friendly software
package: RNA Sequence to NAscent Protein Simulation (RSNAPsIM), which allows the
user to easily simulate the single-molecule translation dynamics of any gene. Finally, we
discuss future directions and the potential limitations of the current form of this new
technology.

Modeling Single-RNA Translation Dynamics

To simulate translation with single-molecule resolution, we adopted a stochastic model
of polymerization that is similar to those developed previously in |16H18]. We then
extend this model to allow for variable ribosome sizes, codon- and tRNA-dependent
translation elongation rates, and arbitrary placement of fluorescent probe binding
epitopes, and we analyze these models specifically in the context of single-mRNA

translation as observed using time-lapse fluorescence microscopy experiments (e.g., Fig.

1).
The model consists of a set of reactions where random variables {x;} represent the
fluctuating occupancy of ribosomes at each specific i'" codon along a single mRNA,

wo(T1, ..., Tnf) w1 (@1, .. Tnfi1) Wi (@5 Tnppi) wy
1 T zr, (1)
where L is the length of the gene in codons, ny is the ribosome footprint, and
X = [z1,72,...,71] € BE is a binary vector of zeros and ones, known as the occupancy
vector, which represents the presence (x; = 1) or absence (x; = 0) of ribosomes at every
i*® codon. The initial reaction in the model describes the initiation step, where the
ribosomes bind to the mRNA at the rate wo(z1,...,2ny). Ribosomes are large
biomolecules that occupy around 20 to 30 nuclear bases (or seven to 10 codons) once
bound to the mRNA [19]. This is captured in the model by specifying the ribosome
footprint, ny = 9, which guarantees that initiation cannot occur if another downstream
ribosome is already present within the first ny codons, Fig |2|A This binding restriction
can be written simply as:
nf
wo = k; [J(1 =), (2)
j=1

where k; is the initiation constant, and the product is equal to one if and only if there
are no ribosomes within the first ny codons.

Similarly, we represent the elongation reactions, where the ribosome moves along the
mRNA from codon to codon in direction 5’ to 3’ according to:

nf
w; = ke(i) - @i [[(1 = wiyy), fori=1,.,L-1; (3)

Jj=1
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Fig 2. Modeling single-molecule translation. A) Translation is divided into three
main processes: initiation, elongation, and termination. The ribosome footprint
represents the physical space occluded by the ribosome, enforcing that no two ribosomes
can occupy the same space and time. B) Kymographs represent ribosome movement as
a function of time (y-axis) and position (x-axis). Each line represents a single ribosome
trajectory. The average slope is proportional to the effective ribosome elongation rate.
The plot to the right shows the relationship between ribosome movement and
fluorescence intensity, and the plot below shows the ribosome loading at each codon
position, calculated as the time-average of ribosome occupancy at the corresponding
codon. C) Comparison of the average elongation time (top) and the mean (middle) or
variance (bottom) of fluorescence intensity as calculated using the simplified model (Egs.
to , a linear moments-based model (Egs. @] to , and a full stochastic model
(Egs. |1 to . Gray area represents previously reported parameter values for ribosome
initiation. Panels B and C correspond to simulations for the p-actin. Asterisks
represent the specific parameter combination used for Table

where k(i) is the elongation rate at the i*" codon, and the product again enforces
ribosome exclusion. To implement the effect of codon-usage bias and tRNA availability
during protein synthesis, we adopt a similar argument to that presented by Georgoni et
al., |16]: rare codons are correlated with low tRNA abundance, which cause a longer
waiting time for the ribosome to synthesize the given amino acid at that codon. As
tRNA concentrations have been related to codon usage [20], we assume each codon’s
elongation rate is proportional to its usage in the human genome according to:

ke (i) = ke - (u(i)/a), (4)

where u(7) denotes the codon usage frequency in the human genome (given in
from [21]), @ represents the average codon usage frequency in the human genome, and
the global parameter k. is an average elongation constant, which can be determined
through experiments.

Although simple in its specification, the above model allows for many adjustments to
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explore different experimental circumstances. As a few examples, (i) one can represent
translation inhibition analyses such as those performed in [7] by making the initiation
rate, k;, a function of time or external input; (ii) one can analyze effects of synonymous
codon substitution by replacing codons with their more or less common relatives; (i)
one can represent codon depletion, as studied in [16] by reducing the corresponding rates
ke(7) for all 4 corresponding to the depleted tRNA; (iv) one could explore the effects of
pausing or traffic jams at specific codons by reducing k. (%) at specific codons, or (v) one
can represent bursting kinetics by replacing the constant k; with a discrete-stochastic
activation/deactivation process. We will explore several of these circumstances below.

Kymograph representation of single-mRINA translation dynamics

With our simple specification of the translation initiation, elongation and termination
reactions, we can now simulate random trajectories, x(t), which we collect to form

binary occupancy trajectory matrices X = [X(tl)T, e ,x(tNt)T]T € BY+*L where each

row refers to the " position on the gene, and each column represents a specific time t;.

To visualize ribosome movement trajectories, each random X can be plotted in two
dimensions (position v.s. time) to form kymographs similar to those extensively used to
represent organelle movement [22|. For example, Fig shows a visualization of X for a
case study on the S—actin gene. Each line from left to right on the kymograph
corresponds to the movement of a single ribosome from initiation to termination. We
note that averaging along the columns of X (i.e., in the vertical direction of the
kymograph) yields the time-averaged loading of the ribosomes at each codon position,
and summing across the rows of X (i.e., in the horizontal direction of the kymograph)
yields the number of ribosomes for that mRNA at each instant in time.

Relating protein elongation dynamics to fluorescence signal intensities

To relate our model describing ribosome occupancy to experimental measurements of
translation spot fluorescence, we introduce a fluorescence intensity vector that converts
the instantaneous occupancy vector, x(t), to the total number of translated epitopes
available to bind to fluorescent markers. This intensity vector can be written as:

L
I(t) = Zci xi(t) = ex?, (5)
i=1

where ¢ = [¢1, ¢a, ..., cp] and each ¢; is the cumulative number of fluorescent probes
bound to epitopes encoded at positions (1,...,%) along the mRNA. For example, c
would be defined as ¢ = [0,0,1,1,2,2,3,3,...,3] for an RNA sequence with epitopes
encoded at positions [3, 5, 7]. We note that the random occupancy matrices, X, are
easily converted to intensity time traces using the simple algebraic operation
I=1[I(t1),...,1(tn,)] = cXT.

Simplifications for combinatorial analyses of genes, parameters,
and experiment designs

The model as defined above is sufficient to simulate fluorescence dynamics for any
specified gene and for a vast range of potential time-lapse microscopy experiments.
However, these simulations become computationally intensive when studying
combinations of thousands of genes, using thousands of different parameters sets, and
for hundreds of different experiment designs. To ameliorate this concern, we next
introduce model simplifications that progressively remove elements from the original
model, such as ribosome exclusion and single-codon resolution, while retaining effects of
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codon-dependent translation rates and the geometric placement of fluorescent tags. We
then test under what conditions (i.e., parameters and gene lengths) these simplifications
are valid, and we compare these conditions to experimentally reported values.

Approximations for the means, variances, and auto-covariances of nascent
translation kinetics

When ribosome loading is sparse (e.g., for slow initiation or fast elongation such that
(ki/ke < 1/nf)), ribosome collisions will become negligible, and the nonlinearities in
Egs. have less effect on the overall ribosome dynamics. Under such circumstances, it
is possible to derive a simplified linear system model for the elongation dynamics. In
the linear model, the propensity of the codon-dependent elongation step (Eq. [2)) is
simplified to w;(x;) = k;x; such that the ability of a ribosome to add another amino
acid only depends on the current position of the ribosome, and not on the footprint of
other ribosomes.

We define the reaction stoichiometry matrix to describe the change in the ribosome
loading vector, x, for every reaction as:

_{1 for all i = 7,

= 6
—1forall i=j5—1, (©)

4,J
where i corresponds to each codon in the protein of interest. The first column of S
corresponds to the initiation reaction, the next L — 1 columns refer to elongation steps
when an individual ribosome transitions from the i*" to the i + 1** codon, and the final
column corresponds to the final elongation step and termination. Maintaining the same
order of reactions, and neglecting ribosome exclusion, the propensities of all reactions
can be written in the affine linear form as:

w = wy + WX, (7)

where wq is a column vector of zeros with the first entry k;, and W is a matrix defined
as:

ke(i) for all i=j+1,
(Wili; = . (8)
0 otherwise .

Using the definition of the fluorescence intensity from Eq.[5] the first two uncentered
moments of the intensity I(¢) can be written in terms of the ribosome position vector
x(t) as:

E{I(t)} = Efex(t)} = cE{x(1)}, 9)
21(0) = E{(I(t) - E{I(t)})*} = cXx(0)c", (10)
where E{x(¢)} and X«(0) are the mean and zero-lag-time variance in the ribosome

occupancy vector, respectively. For the approximate linear propensity functions in Eq.
m the moments of the ribosome position vector are governed by the equations [23]:

dE{x}

e SW,E{x} + Swy (11)
d¥y .
— = SWiS, + Y, WT'ST + Sdiag(WE{x} + wo)S”. (12)

By setting the left hand side of Eq. [L1] to zero, the steady-state mean ribosome loading
vector can be found by solving the algebraic expression:

SW,E{x} 4+ Swy = 0. (13)
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Similarly, the steady-state covariance matrix, ¥, in the ribosome loading vector is
given by the solution to the Lyapunov equation (from right hand side of Eq. :

SW, 3, + B, WTST + Sdiag(WE{x} + wo)S” = 0. (14)
The auto-covariance dynamics of the nascent protein fluorescence intensity is defined:

G(r) = E{((t) —E{I(O) U (t +7) —E{I(t+7)})} (15)
= E{c(x(t) - E{x(t)})(x(t + 7) — E{x(t + 7)})Tc"}
) — E{x(t)})(x(t +7) — E{x(t + 7)})"}e"
= ey (7)ct, (16)
where Y (7) is the cross-covariance of the ribosome occupancies at a lag time of length
7. Noting that the probe design, c, is constant with respect to 7, it is only necessary to

find the cross-covariances of the ribosome occupancy. Following the regression
theorem [24], these covariances are given by the solution to the set of ODEs,

dE;T(T) = ¢k (T) ’ (17)

where the initial condition is provided by steady-state covariance (i.e., the solution for
Y% (0) in Eq. [14]) and the autonomous matrix of the process is given by ¢ = SWj.
Integrating E the auto-covariance of the intensity G(7) can be found using Eq.
We reiterate the fact that this simplification relies only on the assumption of sparse
loading of ribosomes on the mRNA, and the moments analyses in Eqns. and
retain the codon-dependent rate through the definition of the matrix W and the
specific positions of probes through the definition of the vector c.

Simplified algebraic expressions for nascent translation kinetics

In the limit of low initiation events and long genes, the probe region can be further
approximated by a single point, and the above model can be simplified even further to
allow direct estimation of steady-state translation features. First, since the average time
for a ribosome to move one codon is E{At;} = 1/k.(i), the total average time it takes a
ribosome to complete translation from the start codon to the end of the mRNA is:

L

E{r} = (18)

where L is the gene length. Using the codon-dependent translation rates from Eq. [ we
can modify Eq. [I§] to

1 L m
B{r} =+ Z (19)

If one could experimentally measure Ty, using one of the techniques described above,
then k. could be estimated as:

U

— 20

TEX Z u(i)’ (20)
i=nyp

where n,, is the effective codon position of the fluorescent tag. In practice, the

specification of n, will vary depending upon the type of experiment (e.g., FCS, FRAP
or ROA) used to estimate Tgxp, as will be discussed in more detail below.
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Given the apparent association time of a ribosome on the mRNA (7) and the
initiation rate (k;), the distribution for the number of visible ribosomes on a transcript
at steady state can also be estimated using this simplified model. Under the assumption
that each initiation event is an independent and exponentially distributed random event,
the number of ribosomes downstream from the n,t)h codon, and therefore the fluorescence
in units of mature proteins, would be approximated by a Poisson distribution with
mean (and variance) equal to

p otk T (21)
For a more realistic treatment of the fluorescence intensity, one could assume that the
multiple probes are spread uniformly over a finite region, such that the fluorescence will
increase linearly as ribosomes pass through the probe region. To approximate this
gradual increase in fluorescence, Eq. 21| can be corrected by a multiplicative factor (see
Methods) as:

L
Mlzki'T(l—Qz>; (22)

L
a?%ki-7<1—23£>, (23)

where Ly is the length of the tag region (e.g., Ly = 318 aa for the 10X FLAG ‘Spaghetti
Monster’ SM-tag used in [6]).

Agreement of full and simplified models for codon-dependent translation
kinetics

To demonstrate the close agreement between the full stochastic model, the reduced
linear moments model, and the simplified theoretical analysis, Table [1| compares the
model generated values for each of the quantities 7, 7, and 0% for three different
human genes H2B (L = 128aa), -actin (L = 375aa), and KDM5B (L = 1549aa), using
reported parameters of k; = 0.03 s~! and k. = 10 s~! [6]. For further comparison, Fig
compares estimates of 7 (top), y; (middle), and o2 (bottom) for the -actin gene for

each of the three analyses, and as a function of different initiation and elongation rates.

This comparison demonstrates that, at least for fast elongation rates, the full stochastic
analysis and the moments-based computation are in excellent agreement to estimate the

effective time as well as the mean and variance in the level of nascent proteins per RNA.

However, when the initiation rate approaches k. /nf, ribosome collisions become more
prevalent, which substantially lengthens the effective elongation time (Fig top), and
leads to a saturation of ribosomes (Fig middle and bottom), and these nonlinear
behaviors are not captured by the moment-based model. For longer genes, the
simplified theoretical estimates from FEgs. are also in good agreement with the
complete model. For shorter genes, it becomes less realistic to approximate the tag
region with a single point or a uniform distribution, and the error of this approximation
leads to poorer estimates of the elongation time and the Poisson approximation
over-estimates the true variance (see H2B in Table . However, even for short genes,
the linear moments-based model, which includes the exact positions of all probes and
the codon usage, provides a more accurate estimate of the true system behaviors.

Results

Having demonstrated close agreement of the simplified theoretical models with the full
stochastic simulations, we can now use the much more computationally efficient
theoretical analyses to explore how well different experiment designs should be expected
to estimate translation parameters from single-RNA translation dynamics.
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Table 1. Comparing model dynamics.

| Stochastic Model | Moments-Based Model | Theoretical Model

KDMb5B, L = 1867aa
mean ({) 5.2 £ 0.02 5.07 5.01
var (02) 45+ 0.03 4.90 4.93
period (1) 187.78 £+ 0.94 180.0 185.23
B — actin, L = 693aa
mean () 1.31 £ 0.004 1.34 1.42
var (02) 1.08 + 0.003 1.17 1.28
period (7) 62.17 £ 0.27 60.0 60.94
H2B, L = 446aa
mean (f) 0.75 = 0.002 0.77 0.82
var (o2) 0.56 £ 0.001 0.59 0.68
period () 42.96 + 0.07 42.0 41.80

Mean and variance of intensity are given in units of mature proteins (ump). The period
(7) has units of seconds. Elongation and initiation rates are k. = 10s~! and

k; = 0.03s7 1, respectively. Lengths include the tag region of 318aa. Stochastic
simulations were performed for 500 simulated spots, with a frame rate of 1 sec, and for
2,000 frames. Error values represent the standard deviation of 3 repetitions of
independent simulations.

Design of Experimental Assays for Improved Quantification of
Translation Kinetics

Using the models above, and if we could experimentally estimate the average time that
ribosomes take to translate a single complete protein from a given gene, 7(9), we could
estimate Eég ) using Eq. With this in mind, we next consider three approaches that
have been used to estimate 7(9) in recent experimental investigations (Fig -E):
Fluorescence Correlation Spectroscopy (FCS), Run-Off Assays (ROA), and Fluorescence
Recovery After Photobleaching (FRAP). Using our full stochastic models to generate
synthetic data and the simplified theoretical model to interpret these data, we ask how
accurately would each of these three assays work to identify l%ég ) for a comprehensive
list of 2,647 human genes from the PANTHER database [25] and under different
imaging conditions corresponding to different frame rates or numbers of mRNA spots.
In the FCS approach, we compute the auto-covariance function, G(7) (defined in
Eqn. [15), of the simulated fluorescence intensities, and from G(7) we estimate the time
lag, Tros, at which correlations disappear (see Fig and Methods). In the ROA
approach, we simulate the addition of a chemical compound, such as Harringtonine,
which binds the 60S ribosome subunit and prevents ribosome assembly [26], and we
record the average time, Tro 4, at which protein fluorescence disappears from the RNA
(see Fig and Methods). To approximate variability in the specific time at which the
drug reaches the mRNA and blocks ribosome initiation, we assume that the time of
initiation blockage occurs at a normally distributed time of 60 £+ 10 seconds [27]. In the
FRAP analysis, we simulate an instantaneous fluorescence bleaching of all nascent
proteins and then record the average time, Tprap, at which fluorescence recovers to the
average steady-state level, Fig [28]. To reduce the effects of stochastic sample
variation in these calculations, we applied a linear fit to ROA and FRAP experiments
and determined Tro4 and Trrap when these intensities intersect defined thresholds of
zero intensity for ROA or the mean recovered intensity for FRAP. For FCS, we estimate
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Tos as the time the auto-covariance function drops below 5% of the zero-lag covariance
and calculate Trcs = 705/0.95.

The specific location of probes along the mRNA has different effects on the
fluorescence kinetics for the three experimental analyses. The characteristic
decorrelation time in FCS and recovery time in FRAP are both set by the time it takes
a single ribosome to translate from the tag region to the end of the mRNA. To reflect
this, we define the approximate probe location, nprcg or nprrap in Eq. as the
beginning of the tag region. In this case, the beginning of the tag region is at the
beginning of the gene, but in general, we note that moving the fluorescent tag regions
downstream toward the 3’ end would shorten the effective times measured using FCS or
FRAP. In contrast, for the ROA, the characteristic time is defined by how long it takes
from when translation initiation is blocked until all ribosomes complete translation.
Because this time depends solely on the gene length, and not on the probe placement,
we assume nproa = 1, independent of probe placement. In addition to these effects on
average experiment timescale estimates, we note that placing probes as near as possible
to the 5’ end of the mRNA or using longer proteins increases the fluorescence
signal-to-noise ratio for all three approaches and can reduce estimation uncertainties.

To generate simulated data, we assumed that all 2,647 genes in the library have a
1

global average translation rate of k. = 10 sec™! and an initiation rate of k; = 0.03 sec™!.

For each experiment type and each gene, we simulated time lapse microscopy data for
100 independent RNA and for 300 frames at 1/3 frames per second (FPS). We then
estimated 7(9) from these simulations using each of the three experimental
methodologies, and we estimated the corresponding average elongation rate using the
specific gene sequence and Eq. {4, Under these conditions, Figs —C (top) show the
resulting distributions of estimated k. for long genes (> 1000 codons, n = 658, purple),
medium length genes (500 — 1000 codons, n = 1719, blue), and short genes (< 500
codons, n = 270, orange) using each of the three experimental approaches. When all
genes were analyzed at the same imaging conditions (100 spots, 300 frames, 1/3 FPS),
the FCS approach was the most accurate with root mean squared (RMSE) of 0.63, 1.35,
and 1.60 for short, medium and long genes, respectively. For comparison, ROA had
RMSE of 2.22; 2.52, and 1.78 and FRAP had RMSE of 5.22, 4.58, and 2.68 for the same
combinations of genes and imaging conditions.

We next extended our analysis to consider different numbers of spots and different
frame rates at which to collect the data, but under the assumption that the total
number of frames would remain fixed at 300. Fig[3A shows the corresponding resulting
RMSE for different combinations of these experiment designs. As expected, we found
the sampling rate and number of mRNA spots to directly affect the estimated kéch).
FCS was the only technique capable to estimate the true elongation rate within a
RM SFErcg < 2.0 sec™ ! for short, medium and long genes. For short genes, this could
be accomplished with as few as 10 spots with a frame rate of 1/3 FPS. Medium length
and long genes could also be accurately quantified with 10 spots at frame rates of 1/3
FPS or 1/10 FPS.

The ROA was also capable to estimate the elongation rate to an accuracy of
RMSFEroa < 2.0 sec™! for medium and long genes, and for fast frame rates, the ROA
approach could be more accurate than FCS. However, when applying the ROA method
to short genes, we obtained RM SERroa > 2.0 sec™! under all combinations of sampling
rates and repetition numbers at 100 or fewer spots (Fig ) This effect can be
explained in that the number of ribosomes actively translating each mRNA is small and
highly susceptible to stochastic effects in the case of small genes. We also note that the
error using ROA depends strongly on the precision of the estimate for the specific time
at which translation is blocked after application of Harringtonine; if the average value of
this time is unknown, or if variations exceed our assumed standard deviation of 10
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Fig 3. Comparing experimental methodologies to estimate ribosome

elongation rates. Elongation rate estimate experiments were simulated for 2,647
human genes, using (A) Fluorescence Correlation Spectroscopy (FCS), (B) Run-Off
Assays (ROA), and (C) Fluorescence Recovery After Photobleaching (FRAP). Top
panels show the distributions of estimated k. for long genes (> 1000 codons, n = 658,
purple), medium length genes (500 — 1000 codons, n = 1719, blue), and short genes
(< 500 codons, n = 270, orange) using 100 mRNA spots for 300 frames at 1/3 FPS. The
true elongation rate is denoted by a vertical dashed line. Bottom panels show the
RMSE in elongation rate estimation as a function of the number of mRNA spots and
the sampling rate. Red boxes highlight all experimental designs that yield a RMSE

< 2.0. Asterisks represent the frame rate and number of repetitions used in panel (A).

The ‘true’ elongation rate was set at k. = 10, and the initiation rate was fixed at

k; = 0.03 sec™! for all simulations.

seconds, then accuracy using ROA is severely diminished, especially for short genes.
We found that FRAP substantially overestimates the elongation rates for short size
genes, which can be observed in Fig[B[C, where it is shown that recovering a
RM SEpgrap < 2.0 sec™! was not possible for any of the considered combinations of the
number of RNA spots and sampling rates. We argue that the estimate of elongation
rates using FRAP is limited by the intrinsic formulation of the fluorescent probe design.
FRAP requires an intensity generating mechanism to reestablish the fluorescence to a
pre-perturbation steady state. For single-molecule translation studies, this mechanism
relies on ribosomal initiation events that are rare and highly susceptible to
variability . This variability is reflected in the estimated Tprap and in the final
estimated elongation rate. Even for the more favorable medium and long length genes,
our results indicate that for FRAP, a large number of mRNA spots (>100 mRNA spots)
would be needed to achieve accurate estimates (Fig )
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Calibration of the Stochastic Translation Model using
Quantitative Data from Single-RNA Translation Experiments

Having determined that the FCS approach provides the most consistent estimate of
elongation rate for genes of different lengths, we next turn to published experimental
FCS data that quantified the fluctuation dynamics for three human gene constructs of
different lengths: KDM5B (1549 aa), S-actin (375 aa), and H2B (128 aa) [6]. Each
construct encodes for an N-terminal 10X FLAG ‘Spaghetti Monster’ SM-tag (318 aa)
followed by the specific protein of interest (POI), and the stop codon for each POI was
followed by 24 repetitions of the MS2 tag in the 3’ UTR region. For each construct, the
MS2 signal was used to track the mRNA motion in three dimensions, and the
co-localized fluorescence intensity of the FLAG SM-tag was quantified as a function of
time. These movies were collected using frame rates of 1 sec for H2B (n=10), 3 sec for
B-actin (n=17), and 10 sec for KDM5B (n=35), and each trajectory was tracked for up
to 300 frames per mRNA. Figs —C (left) show example time traces (in arbitrary units
of fluorescence) for the nascent protein level per individual mRNA for each of the three
genes. To achieve long trajectories, it is necessary to use low laser power, which
introduces higher variability in signal intensities from one spot to another. Therefore, to
account for variability in imaging settings between tracking experiments, all trajectories
were normalized to have a variance of one prior to auto-covariance analysis.

To quantify the steady-state variability of nascent proteins per mRNA in units of
mature protein (ump), we used a second, independent calibration construct that
contains only a single epitope for FLAG ( [6], see Methods) and which we measured
using higher laser intensities. After calibration, the number of mature proteins per
mRNA was rounded to the nearest integer d; for a larger number of spots (1844 to 302
spots per frame for 50 imaging frames) for a total of 6435, 3973, and 751 spots for
KDMS5B, p-actin and H2B, respectively. The resulting data histograms were
down-sampled to create an effective population of 100 translating mRNA spots for each
gene, and histograms of these measurements are presented by the black lines in Figs
[MA-C, middle.

We explored if the full stochastic model could be fit to capture simultaneously the
experimentally measured steady-state histogram of nascent proteins as well as the
temporal dynamics of nascent protein fluctuations on single mRNA. For model
comparison to the steady-state histograms, we ran 300 independent simulations per
gene and parameter combination (A) and estimated the probability to observe
intensities corresponding to d = 1,2, ... mature proteins per mRNA. We denoted
resulting probability mass vector as P(d; A). Assuming that translation on each mRNA
is independent of the rest, we could then compute the likelihood of the steady-state
intensity data for each gene given the model as:

100
Lpist(Data|Model) = [ [ P(d;; A), (24)
j=1
and the log-likelihood could be computed:
100
log Lpi«t(Data|Model) = " log P(dj; A). (25)
j=1

As non-translating spots could not be separated from spots below a basal FLAG
intensity in the experimental data measurements, comparison between simulations and
measured distributions ignore all spots with an intensity value less than 1/2 ump.

To compare temporal dynamics of the experiments to those of the model, we
assumed that errors in the measurement of the average auto-covariances would be
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Fig 4. Fitting single-molecule data with the full stochastic model.
Experimental data show the fluctuation dynamics of gene constructs encoding an
N-terminal 10X FLAG ‘Spaghetti Monster’ SM-tag (green) followed by a protein of
interest and finally a 24X MS2 tag (red) in the 3’ UTR region. Three proteins were
studied: A) H2B (orange), B) S-actin (blue) and C) KDM5B (violet). Middle figures
show the simulated (colors) and measured (black) probability distributions for an
mRNA to have a fluorescence intensity corresponding to 4 units of mature proteins
(ump). Right images show the normalized auto-covariance function (G) calculated from
experimentally measured (black error bars) and computationally simulated (colors)
autocorrelation functions. Error bars in the experimental data and shadow bars in the
simulated auto-covariance plots represent the standard errors of the mean. Elongation
and initiation rates were obtained by parameter optimization, using the Hooke and
Jeeves Algorithm ( [29]). Optimized parameters and their uncertainties (see Methods)

are provided in Eq.

approximately normally distributed with variances equal to the measured standard error
of the mean . Under this assumption, the probability to measure an auto-covariance
of Gp(m;) at lag time 7; according to a model that predicts G (7;; A) for parameter set
A is:

< (Gp(mi) — GM(Ti%A))Z) . (26)

Lac(GplGu(A 2002

D=1l e

where o(7;) is approximated by the measured SEM auto-covariance at each 7;,. The
logarithm of this likelihood function can then be written as:

G 3 i;A 2
log Lac(Gp|Gar(A)) = C — Z p(7i) A)g(T )" (27)

where C' is a constant that does not depend upon the parameter set A, and the second
term is the definition of y? for the comparison of experimental and model-derived
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autocorrelation analyses.

Because the steady-state distributions and the temporal dynamics were measured
using independent experiments, the total likelihood function to match both datasets is
the product of the individual functions, and the total log-likelihood is the sum of the
individual log-likelihoods:

10g Liotar(Dist, G|M) = > (log L(Disty|M,) + log L(Gy|M,)) , (28)
g

for ¢ = KDM5B, H2B and S-actin. Now, that we have defined a log-likelihood function
to compare the data to the model under different parameter combinations, we can
explore parameter space, first to maximize this likelihood and then quantify what is the
uncertainty in parameters given the data.

Codon-dependent translation rates were assumed to be consistent among the three
genes, as defined in Eq. [4] but the three genes were allowed to have different initiation
rates, {kgg)}. Under this assumption, the model has a total of four parameters. Upon
fitting these parameters to maximize Eq. we found that the model could capture
both the experimental distributions of nascent proteins per mRNA and the
auto-covariance plots for all three genes, as shown in Fig —C (middle and right).
Optimized parameters and their uncertainties (see Methods) were found to be:

ke =10.6 £ 0.72sec™ !,
= 0.022 4 0.004sec™ !,
E{P7a) — 0,05 4 0.01sec
k(P = 0.066 £ 0.019sec .

j,(KDM5B)

Exploring How Translation Dynamics Vary With Different
Parameters

After determining that our model was sufficient to reproduce the experimentally
measured fluctuation dynamics for H2B, S-actin, and KDM5B, we next extended our
analyses to consider a broader range of translation parameters. Specifically, we sought
to explore the effects of variations to initiation and elongation rates as well as effects of
synonymous codon substitutions or modulation of tRNA concentrations.

Ribosome Collisions are Rare at Most Experimentally Observed
Translation Initiation and Elongation Rates

Previous experimental reports [6-10] estimated a range of values from 0.01 to 0.08 sec™?

for the translation initiation rate, k;, and range from 3 to 13 aa/sec for the average
elongation rate, k.. Using -actin gene as a reference, Fig A depicts the variation in
ribosome density as a function of the base parameters k; and k., and Fig shows the
number of times an average ribosome would collide with an upstream neighboring
ribosome during a single round of translation. For most parameter combinations,
ribosome loading was predicted to be very low (i.e., fewer than one ribosome per 100
codons) and collisions were rare (i.e., fewer than 10 collisions in an average round of
translation). However, for slow elongation and fast initiation, such as those measured by
Wang et al. [7]), a ribosome could collide with other ribosomes an average of ~ 20 times
for a gene the length of B-actin. To further illustrate the effects that these initiation
and elongation rates would have on ribosome dynamics on different genes, Fig.
shows simulated kymographs for SunTag-24X-Kif18b [10], FLAG-10X-KDMS5B |[6], and

SunTag-56X-Ki67 |9], each with their previously reported initiation and elongation rates.

In addition, [ST Figl and [S2 Fig provide more detailed results of the translation
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Fig 5. Ribosome dynamics under experimentally reported initiation and
elongation rates. A) Simulated mean number of codons between ribosomes for the
[B-actin gene as function of initiation and elongation constants. In the plot, previous
literature initiation and elongation values are highlighted by the squares [6-10], and
values estimated in this study are denoted by asterisks. B) Simulated number of
collisions per ribosome as a function of initiation and elongation constants. C) Top
panel, kymograph showing the ribosomal dynamics for SunTag-24X-Kif18b using
experimentally determined parameters k; = 1/100 sec™! and k. = 3.1 aa/sec [10].
Center panel, kymograph showing the ribosomal dynamics for FLAG-10X-KDM5B
using experimentally determined parameters k; = 1/30 sec™! and k. = 10 aa/sec [6].
Bottom panel, kymograph showing the ribosomal dynamics for SunTag-56X-Ki67 using
experimentally determined parameters k; = 1/13 sec™! and k. = 13.2 aa/sec [9]. White
lines in kymographs represent single ribosome positions, and green spots represent
ribosome collisions.

elongation simulations for S-actin translation at multiple initiation rates and elongation
rates, respectively. Each of these kymographs indicates that ribosome dynamics can
vary from collision-free dynamics (SunTag-24X-Kif18b and FLAG-10X-KDM5B) to
dynamics with multiple collisions (SunTag-56X-Ki67) and that collisions can become
more prevalent at high initiation rates or low elongation rates.

Codon Usage Affects Translation Speed and Ribosome Loading

Simulations of genes H2B, S-actin, and KDM5B showed that each gene’s codon order
influences the overall ribosome traffic dynamics, creating a non-uniform distribution of
ribosomes along the mRNA . This observation of codon dependence led us to
look more deeply into possible effects that optimization could have on observable
translation dynamics. depicts simulated kymographs for the S-actin protein for
three synonymous sequences containing: (i) natural codons, (ii) most frequent
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synonymous codon (optimized), and (iii) least frequent synonymous codon
(de-optimized). For each case, illustrates the corresponding ribosome loading
profiles; [S4 FiglC shows the simulated distribution of FLAG intensities in units of
mature proteins, and presents the corresponding simulated fluorescence
auto-covariance functions. [S5 Figl and [S6 Fig] show similar results for the H2B and
KDMG5B genes, respectively.

In all cases, optimized gene sequences speed-up ribosome dynamics, and
de-optimized sequences cause a slower elongation rate that is observed in the

auto-covariance plots given in[S4 FigD, [S5 FigD, and [S6 FigD. Moreover, for constant
initiation rates, faster elongation would lead to lower ribosome loading ,
, ) and therefore lower fluorescence intensities, as shown in the distributions
given in [S4 FiglC, [S5 FiglC, and [S6 FiglC. All three genes under consideration had
natural codon usage that was enriched for the most common codons (i.e., the natural
and common codon usage dynamics are very similar), such that the translation rate,
ribosome loading, and fluorescence intensity could be substantially altered only by
substitution to rare codons. We note that the substitution of rare codons would lead to
slower elongation and substantially higher numbers of ribosome collisions.

Depletion of tRNA Levels can Induce Ribosome Traffic Jams

In addition to modulating translation speed through codon substitution, it is possible to
perturb these dynamics through experimental modulation of tRNA concentrations. For
example, Gorgoni et al., [16] used a mutated allele to the gene for tRNAspy g to reduce
the concentration of the glutamine tRNA. To study how ribosome dynamics can be
affected by the removal or addition of specific tRNA, we simulated the translation
dynamics of H2B, $-actin, and KDM5B at several different concentrations for
tRNAcrc. shows the effect of decreasing tRNAcr¢ concentration on the
ribosome association time (left) and elongation rate (right). The simulations show that
ribosome dynamics are relatively unchanged provided that the tRNAgrc concentration
remains above approximately 10% of the native level. In contrast, depleting tRNAcrc
concentration below 10% of wild-type levels could lead to ribosome stalling, which was
reflected in long ribosome association times and low effective elongation rates.
Ribosome traffic-jams are observed under very low tRNA oo concentration as shown in
[S8Fig to [S10 Figl The prevalence of the CTC codon was found to be important in that
the effect of tRNA ¢ depletion occurs at higher tRNA e concentrations for the
CTC codon rich KDM5B gene than for the other two constructs.

RNA Sequence to NAscent Protein Simulation (rSNAPsim)

To facilitate the simulation of single-molecule translation dynamics, all models and
analyses described above have been incorporated into a user-friendly Python toolbox,
which we have called RSNAPsIM. This toolbox combines a graphical user interface
(GUI) divided into multiple tabs, graphical visualizations, and tables to present
calculated biophysical parameters (see Fig @ This simulator performs stochastic
simulations considering the widely accepted mechanisms affecting ribosome elongation,
such as codon usage and ribosome interference. The toolbox is available in Python
2.7/3.5+ and wrappers for optimized C++ code are provided with installation
instructions.

RSNAPsIM takes as an input the gene sequence in Fasta format or an NCBI
accession number. The user can decide on the type (FLAG, SunTag, or Hemagglutinin),
number, and placement of different epitopes upstream, downstream or within the
protein of interest. The toolbox provides the user with a visualization of the gene
sequence and the overall gene construct including the position of the POI and the
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Fig 6. RN A Sequence to NAscent Protein Simulation (rSNAPsim). A)
RSNAPSsIM is divided into four upper tabs and three lower tabs. Upper tabs allow the
user to select and adjust sequences and then run simulations under varying conditions.
Sequence selector allows the user to load a raw text file or GenBank file for their
simulation needs. An option to pull from GenBank via accession number is available.
All simulation parameters are also set on this tab. B) After a file is loaded, RSNAPSIM
allows the user to change the tRNA copy numbers and codon types under the Codon
Adjustment tab. Post simulation, the lower tabs display simulation information such as
average intensity over time of N simulations. C) Screen-shot of a kymograph. The

kymograph tab allows the user to create their kymographs with varying display options.
The Stochastic Simulation tab shows the time course data from the selected simulations.

The Fluorescence Correlation Spectroscopy tab displays and compared simulated and
experimental single-molecule translation dynamics, the auto-covariance function, and
biophysical parameters, such as the elongation constant or ribosomal density. All
functionality in the GUI is also available in a command-line module for Python included
with RSNAPSIM.

positions of the Tag epitopes. From the concatenated tags and POI sequences,
RSNAPSIM automatically generates a discrete single-RNA translation model with single
amino acid resolution and codon-dependent translation rates. Once generated, these
models can be simulated using stochastic dynamics, and the results can be quantified in
terms of predicted translation spot intensity fluctuations (i.e., single-RNA translation
time traces or kymographs), ribosomal density profiles, and fluorescence signal
auto-covariance. The graphical user interface also provides for easy generation of
simulated results for several different experimental assays, including FCS, FRAP, and
ROA. From these simulation results, biophysical parameters such as the overall
elongation rate or ribosome association rate are automatically calculated and returned
to the user. The toolbox provides additional interfaces for the user to design and
simulate gene sequences with substitution between natural, common, or rare codons for
any combination of amino acids or to manually adjust the concentration of tRNA for
specific codons. Simulations are saved automatically so that the user can compare
translation dynamics for multiple different gene constructs. The toolbox allows for the
user to load experimental singleemRNA fluorescence trajectories, compute
auto-covariance functions with various normalization assumptions and compare these to
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model results. For example, the RSNAPSIM screenshot in Fig. [(JA shows a comparison
of model and experimental normalized auto-covariances for KDM5B.

The open-source toolbox was tested in Mac, Windows, and Linux operating systems
and is available at: https://github.com/MunskyGroup/rSNAPsim.git. Simulating a
gene with 1567 codons for 100 repetitions of 5000 seconds each takes less than 1 minute
using a laptop computer with a Core i7 and 32GB of RAM.

Discussion

Imaging translation in living cells at single-molecule resolution is a new experimental
technology that has been applied to only a few genes so far [6-10,/14,/15], but the
number of such studies is expected to grow considerably in the near future [12].
Computational models can aid in this research by extracting improved biophysical
understanding and parameters from single-molecule data. For example, in related
analyses of transcription dynamics, Rodriguez et al., [18] used a coarse grained
stochastic model to capture the polymerase elongation process and reproduce
transcription dynamics for a multi-state promoter. Here, we extended that theoretical
framework to include the most widely accepted mechanisms affecting nascent protein
translation, including codon-dependent elongation and ribosome interference [17] and
with specific attention to the placement of fluorescent probes. To complement previous
models that have sought to reproduce data from earlier bulk cellular assays |16], and
ribosome profiling data [31,/32], our focus has been to integrate single-mRNA stochastic

dynamics models with data from in vivo single-RNA translation dynamics experiments.

We developed a general codon-dependent model, where nascent protein distributions
and auto-covariance functions were generated by detailed stochastic simulations that
tracked the positions of ribosomes relative to their neighbors. However, in the absence
of perturbations to change initiation and elongation rates, most ribosomes do not
encounter others during elongation (Fig[2)), at least not at currently accepted elongation
and initiation rates from the literature |[6H10]. This observation justifies an assumption
of sparse ribosome loading and independent ribosome motion, which allow the linear
reaction rate reformulation of the codon-dependent translation model into a simplified
stochastic moment model and further reduction led to analytical expressions for the
steady-state mean and variance of fluorescence in units of mature protein levels per
mRNA (Eq. and for the decorrelation time (Eq.[I8)). For initiation rates at or below
reported experimental values, the simplified analytical model and the full model are in
strong agreement (Fig|[2). However, increasing initiation rates relative to the base
elongation rate, inserting more rare codons into the sequence, or depleting tRNA levels
for some codons will increase the number of ribosome collisions and violate the
simplifying assumptions (Figs , . In such circumstances, the full stochastic model
predicts slower effective elongation rates, longer ribosome association times, and
accumulation of more ribosomes per mRNA.

With the full and reduced models in hand, it becomes possible to predict how well
three modern methodologies would estimate elongation rates from single-molecule
measurements: Fluorescence Correlation Spectroscopy (FCS) [12], Fluorescence
Recovery After Photobleaching (FRAP) [8,9,[12], and Run-Off Assays (ROA) after
perturbation with inhibitory drugs [7,/10]. Through simulations on 2,647 genes, we
demonstrated that estimating elongation rates for long genes (>1000 codons) could be
achieved with great accuracy using any of these methodologies, provided that a minimal
number of mRNA spots are considered and with an appropriate temporal resolution as
demonstrated in Fig[3] However, our results suggest that FCS would be the most likely
method to provide an accurate elongation rate estimate (Fig ), especially for small
and medium size genes. Although our simulation results suggest that FCS is the best
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single-molecule option to estimate elongation rates, it is important to remark that FCS
analysis requires the tracking and measurement of intensity for single spots over long
periods of time, and such measurements are susceptible to photobleaching and
molecular motion. The former issue has been addressed through the application of
optical techniques such as highly inclined thin illumination microscopy [33] and the
latter could be addressed through the application of molecular tethers to reduce
motion [10]. On the computational side, one could potentially address concerns of
bleaching or motion relative to the imaging plane by including hyper-parameters to
describe these dynamics and then fit these hyper-parameters concurrently with model
parameters using Bayesian analyses.

Run-off assays using Harringtonine to prevent translation initiation can give
accurate estimates when genes are long, but the accuracy of such an approach is highly
diminished for shorter genes (Fig ) or if the precise time of drug action on the mRNA
is not known. Our analyses suggest that run-off assays directly depend on the number
of ribosomes actively translating the mRNA at the time of perturbation, and since this
number is highly susceptible to stochasticity on small genes, the ROA would require
analysis of a much larger number of spots to achieve accurate results.

Our analyses show that FRAP gives poor estimates for all genes of all sizes, and for
all tested experimental designs, Fig [BC. The recovery of the intensity after
photobleaching depends heavily on the initiation rate, which has been found to be an
order of magnitude smaller than the elongation rate, making the recovery a highly
stochastic process as well. We directly compared the error size for the studied methods,
obtaining that the error in FRAP and ROA is two times larger than in FCS,

Using FCS data, we demonstrated that a codon-dependent translation model
containing one universal average elongation rate and one gene-dependent initiation rate
could capture quantitatively the distribution of nascent proteins per actively translating
mRNA, as well as the temporal dynamics, for three different genes expressed in human
U20S cells (Fig . Combining these estimates of initiation and elongation rates with
reported values for the same rates identified using other methods and for other genes,
we could predict ribosome dynamics and nascent protein intensities for reported gene
sequences [6HLOL[L4L[15], (Fig[p). Those results allowed us to conclude that relatively fast

elongation rates help maintain substantial space between ribosomes on a single mRNA.

As a result, these ribosomes should not often collide, and the final ribosome-mRNA
association times should remain unchanged for typical initiation rates, natural codon
usage, and normal tRNA availability, as shown in Nevertheless, ribosome
dynamics may be affected by genetic or environmental perturbations, such as increased
initiation rates (S1 Fig)), reduction of elongation rates (S2 Fig)), enrichment for rare
codons ([S4 Figl to [S6 Fig)), or depletion of tRNA (S7 Fig to [S10 Fig).

The present model and RSNAPSIM toolkit have intentionally been made as general
and adaptable as possible to efficiently simulate and capture the most accepted
mechanisms taking place during translation, i.e. codon-dependent elongation and
ribosome interference. At present, the specific rates of codon-dependent elongation are
only approximate and based on the prevalence of the corresponding tRNA in the human
genome [16]. By modifying this assumption, it is possible to further improve fits for the
elongation dynamics shown in Fig[d] and one could find codon dependent rates to
explain the diversity of experimentally measured elongation rates depicted in Fig[5| For
now, we argue that data from fewer than a dozen genes (and in different cell lines) is as
yet insufficient to fully constrain codon dependent rates for all 64 codons. However, as
new data is collected for more and more genes, we envision that it will become possible
to tune these parameters with greater precision and to capture a greater complement of
genes.

In addition to variation in initiation, elongation, codon usage, and tRNA
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concentrations, many other factors have been described to affect ribosome dynamics.
These include, but are not limited to, ribosome stalling or drop-off, pauses due to
secondary structures of the specific mRNA, and the electrostatic and hydrophobic
interactions between the mRNA and the ribosome |17,/32]. We expect that the increased
prevalence of single-RNA translation experiments will add to the current understanding
and reveal additional mechanisms taking place during translation. At the same time,
such discoveries are bound to create new layers of model complexity. Although these
mechanisms have not yet been implemented in our present model, they can be captured
easily through modification of the set of elongation parameters, k. (i). For example, the
RSNAPSIM toolbox allows for direct modification of elongation rates at a specific codon,
which can be used to mimic pauses at certain locations. Furthermore, all of the
computational analyses described above are easily adapted to allow for analysis of
simultaneous multi-frame translation dynamics (e.g., when translation occurs on
overlapping open reading frames as is the case during frame-shifted translation), as we
implemented and described in [14]. Similarly, the code is easily extended to analyze
translation of genes that contain more than one set of fluorescence tags in multiple
colors, as has been explored experimentally in [15].

A main limitation in the experimental determination and quantification of
translation mechanisms is the specific design of the experiment to make that
quantification. For example, in its current form, the introduction of tag regions in the
open reading frame of the gene of interest can dramatically alter the overall translation
dynamics. As depicted in Fig[IB, the tag region is around 300 codons in length, and
this added length can substantially bias the measurement biophysical parameters,
especially when quantified using FRAP or run-off assays (see Fig . On the one hand,
our model can help to explain these differences , but more importantly, the
models themselves can be used to simulate and evaluate different computational designs
to determine which are more likely to reveal important biophysical mechanisms or
parameters. We envision that user-friendly simulations, such as those provided by
RSNAPSIM, can be used to optimize combinations of probe placement, gene length,
codon usage differences, video frame rates, drug-based perturbations, or specifications of
movie length.

Such simulation-based designs can be conducted prior to any new experimental
analysis and then used again to fit the results of those experiments, to pinpoint
discrepancies that may reveal new mechanisms, and to refine model parameters and
mechanisms. Such integration of experiment and computational model can help set the
stage for more efficient experiments that specifically target and quantify the full
complement of factors that modulate translation dynamics in living cells.

Materials and Methods

Studied gene constructs

To constrain our analyses, we use published gene sequences used on single-molecule
translation studies. An initial set of sequences were obtained from Morisaki et al., [6],
these constructs encode an N-terminal region with 10 repeats of FLAG-SM-tag (318aa)
followed by one of three different genes of interest: KDM5B (1549 aa), -actin (375 aa)
and H2B (128 aa), the 3’ UTR region contains 24 repetitions of the MS2 stem-loops. A
second source of gene sequences comes from Yan, et al., [10], this gene construct
encodes 24 repeats of SunTag followed by the gene of interest kif18b (1800 aa), and the
3’ UTR contains 24 repeats of the PP7 bacteriophage coat protein. A sequence
encoding 56 SunTag repeats, the gene of interest Ki67 (3177 aa), and the 3’ UTR
containing 132 repeats of MS2 stem-loops was obtained from Pichon et al., [9]. Finally,
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multiple gene constructs were build using 10 repeats of FLAG-SM-tag followed by a
human gene. The studied human genes come from a comprehensive list of 2,647 gene
sequences obtained from the PANTHER database [25].

Correction to mean and variance of fluorescence intensity for
the theoretical model

Neglecting ribosome exclusion, and under an assumption of memory-less initiation with
exponential rate k;, the number of ribosomes to initiate translation in a fixed time, 7, is
described by a Poisson distribution with mean and variance equal to k;7. For a single
probe site, we can fix 7 as the time it takes a ribosome to move from that site to the
end of the mRNA, and the mean and variance of nascent protein fluorescence can be
estimated in terms of units of mature protein fluorescence according to Eq.
However, for probes that are spread out across a finite tag region, this distribution
requires a slight correction to account for ribosomes within the probe region that only
exhibit partial protein fluorescence. Let «(s) denote the intensity, scaled in units of
mature protein, exhibited by a ribosome at the position, s, along the mRNA as follows:

<
a(s)—{ s/Ly for 0 <s< L

] 1 for Ly <s <L (30)

Under an assumption of uniform codon usage, a given ribosome on the mRNA has equal
probability to be at any site along the mRNA. If there are an average of © mRNA total
on the mRNA, then the number at each location is approximated by a Poisson
distribution with mean and variance both equal to /L - ds. Recall that the mean of the
sum of two independent random variables is the sum of two means. Therefore, to find
the total mean intensity contribution for all ribosomes on an average mRNA (Eq. ,
we can integrate along the length of the mRNA to find:

it = / La(s)ds, (31)

= (1—-;2)/L (32)

Similarly, we recall that the variance of a random variable with variance o and scaled
by « is equal to a?0? and the variance for the sum of two such variables is the sum of
the corresponding variances. Therefor, by noting that ;= 02, we can find the total
variance of intensity on a single mRNA (Eq. as:

L
O’%:/ %a(s)gds, (33)
0

:(1—2%)M. (34)

Fluorescence Correlation Spectroscopy (FCS)

FCS is usually implemented by computing and comparing the auto-covariances (or
autocorrelations) of fluorescence intensities of one or more particles within small fixed
volumes [341[35], but similar correlation analyses have been used to quantify intensity
fluctuations for tracked single particles [2]. For our analysis, we compute the temporal
auto-covariance times of the FLAG fluorescence signal intensity for a moving volume
that is centered around the moving RNA spot.

To estimate the rate of translation elongation, we took the following approach: first,
each experimental and simulated intensity time courses were centered to have zero mean
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by subtracting the average intensity of the time series, and then we normalize with
respect to the standard deviation. Next, we computed the covariance function of the
fluorescence intensity for each intensity spot according to the standard formula:

G(1) = B{(Ls — pe) (L4 — pre41)}, (35)

where 7 denotes the time delay and E{v} denotes the expectation of some arbitrary
value v.

To reduce the effects of high-frequency shot noise and tracking errors that are not
considered in the model, the zero-lag covariance G(0) was removed from the
analysis [36]. For simulated data, we normalize the auto-covariance function by the
simulated variance, G(0), which we can compute directly. For the experimental data, we
cannot measure G(0) directly because it is dominated by shot noise, so we instead
interpolate G(0) using a linear interpolation of the first four points of the measured
auto-covariance function. For statistical purposes, auto-covariances for multiple
intensity time courses were calculated, and their value was averaged. Final results are
reported as mean values and standard error of the mean (SEM). This signal analysis
allowed us to measure the dwell time (7pcg) at which G(7) = 0, from which the average
ribosome elongation rate can be calculated as:

KOS = Lirpes. (36)

Parameter Uncertainty

Parameter uncertainty analyses were calculated by building parameter distributions
that reproduce results within a 10% error, calculated from 1,000 independent
simulations using randomly selected parameter values. Simulations were performed on
the W. M. Keck High-Performance Computing Cluster at Colorado State University.

Numerical Methods

For solving the model under stochastic dynamics we used the direct method from
Gillespie’s algorithm [37] coded in Matlab 2018b and Python 2.7. ODE models were
solved in Python 2.7.

Codes and Experimental Data

All codes and experimental data are available at:
https://github.com/MunskyGroup/Aguilera_PLoS_CompBio_2019.gitl

September 17, 2019

23/335)

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

695

696

697

698

699

700

701


https://github.com/MunskyGroup/Aguilera_PLoS_CompBio_2019.git
https://doi.org/10.1101/659987
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/659987; this version posted September 18, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

Supporting information

k= 0.03

200 300 400 500 600 700

Codon Position

Time (sec)

100 200 300 400 500 600

Codon Position

700

Time (sec)

200 300
Codon Position

400 500 600

700

1 0.4 0.1
0.8 0.08
> 503 >
£ 06 £ £ 0.06
© 0.2
S04 s S 0.04
o o
0.2 0.1 0.02
0 0 0
0 100 200 0 100 200 0 100 200
No Collisions No Collisions No Collisions
S1 Fig. Effect of initiation rate on ribosome dynamics. Translation was

simulated using the S-actin gene, varying initiations rates from 0.03 to 0.6, a constant
elongation (k. =10 aa/sec), and a ribosomal footprint of 9 codons. Top panels show a
kymograph of the ribosome movement. Lower panels show the distribution of collisions

for each k;.
s T
Q Q
) 8
o} (]
£ £
= =
100 200 300 00 500 10 200 300 400 500 60 700
Codon Position Codon Position Codon Position
0.1 0.1 0.1
0.08 0.08 0.08
z z z
F 0.06 Z 0.06 3 0.06
8 8 2
S 0.04 S 0.04 S 0.04
o o o
0.02 0.02 0.02
0 0 0
0 50 100 0 50 100 0 50 100
No Collisions No Collisions No Collisions
S2 Fig. Effect of elongation rate on ribosome dynamics. Translation was

simulated using the §-actin gene, varying elongation rates, a constant initiation (k; =
0.06 sec—1), and a ribosomal footprint of 9 codons. Top panels show a kymograph of
the ribosome movement. Lower panels show the distribution of collisions per each k..
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S3 Fig. Codon usage and ribosome occupancy. Translation was simulated

using the a [-actin gene, varying initiations rates from 0.03 to 0.6, a constant elongation
(ke =10 aa/sec), and a ribosomal footprint of 9 codons. Top panels show a kymograph
of the ribosome movement. Lower panels show the distribution of collisions for each k;.
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S4 Fig. Codon optimization designs for S-actin. A) Ribosome dynamics for
B-actin under different codon optimization constructs (natural sequence, using only
common codons, and using only rare codons). In the kymographs, white lines represent
the ribosome positions, green spots represent ribosome collisions. The average and
standard deviation for the number of collisions is 3.2 £ 0.9 for the natural sequence, 2.4
=+ 0.8 collisions for the optimized sequence (common codons), and 6.9 £ 1.5 collisions
on the de-optimized sequence (rare codons). B) Ribosome loading for the three codon
optimization constructs. D) Auto-covariances calculated for the natural gene sequence,
a sequence where all codons are replaced by their most frequent synonymous codon
(optimized), and a sequence where all codons are replaced by their less frequent
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synonymous codon (de-optimized). Simulations were performed using the optimized
parameter values given in Eq.
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S5 Fig.

Codon optimization designs for H2B. A) Ribosomal dynamics for H2B

under different codon optimization constructs (natural sequence, using only common
codons, and using only rare codons). In the kymographs, white lines represent the
ribosome placement, green spots represent ribosome collisions. The average and
standard deviation for the number of collisions is 2.9 + 0.7 for the natural sequence, 2.0
=+ 0.6 collisions for the optimized sequence (common codons), and 6.0 £ 1.1 collisions
on the de-optimized sequence (rare codons). B) Ribosome loading for the three codon
optimization constructs. D) Auto-covariances calculated for the natural gene sequence,
a sequence where all codons are replaced by their most frequent synonymous codon
(common), and a sequence where all codons are replaced by their less frequent
synonymous codon (rare). Simulations were performed using the optimized parameter

values given in Eq.
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S6 Fig. Codon optimization designs for KDM5B. A)Ribosome dynamics for 746

KDMS5B under different codon optimization constructs (natural sequence, using only 747
common codons, and using only rare codons). In the kymographs, white lines represent s
the ribosome placement, green spots represent ribosome collisions. The average and 749

standard deviation for the number of collisions is 4.3 £ 2.0 for the natural sequence, 2.8 750
+ 1.7 collisions for the optimized sequence (common codons), and 7.8 + 3.1 collisions
on the de-optimized sequence (rare codons). B) Ribosome loading for the three codon s
optimization constructs. D) Auto-covariances calculated for the natural gene sequence, 7s3

a sequence where all codons are replaced by their most frequent synonymous codon 754
(common), and a sequence where all codons are replaced by their less frequent 755
synonymous codon (rare). Simulations were performed using the optimized parameter — 7ss
values given in Eq. 757
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S7 Fig. Effects of tRNA depletion on ribosomal dynamics. A) Three
different genes were studied: KDM5B (magenta), S-actin (cyan) and H2B (orange).
Left plot shows the ribosome association time as a function of the tRNAcrc
concentration. Right plot, shows the calculated elongation rates estimated by dividing
the gene length by the average time needed by the ribosome to complete a round of
translation. B) Kymographs show the ribosomal dynamics without depletion (upper
panels) and with 99% depletion of tRNAcre (lower panels). Above the kymographs,
the bar represents the studied gene, and the gray area represents the tag region, black
lines denote the positions CTC codons. The frequency of the CTC codon is 29 for
KDMS5B, 8 for g-actin and 2 for H2B. Simulations were performed using the optimized
parameter values given in Eq.
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S8 Fig. Depletion of specific tRNA cr¢ for H2B. Kymographs (left) show the
simulated ribosomal dynamics under different percentages of depletion of tRNAcre. At
the top of the kymographs, the bar represents the studied gene, the gray area represents
the tag region, and black lines denote the positions of CTC codons. Histograms (right)
show the probability of ribosomal collision. Simulations were performed using the

optimized parameter values given in Eq.
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S9 Fig. Depletion of specific tRNAcre for S-actin. Kymographs (left) show

the simulated ribosomal dynamics under different percentages of depletion of tRNAc7¢.

At the top of the kymographs, the bar represents the studied gene, the gray area
represents the tag region, and black lines denote the positions of CTC codons.
Histograms (right) show the probability of ribosomal collision. Simulations were

performed using the optimized parameter values given in Eq.
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S10 Fig. Depletion of specific tRNAcrc for KDM5B. Kymographs (left)
show the simulated ribosomal dynamics under different percentages of depletion of
tRNAcre. At the top of the kymographs, the bar represents the studied gene, the gray
area represents the tag region, and black lines denote the positions of CTC codons.
Histograms (right) show the probability of ribosomal collision. Simulations were
performed using the optimized parameter values given in Eq.
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S11 Fig.

Error size for the different methodologies used to calculate
elongation rates. Translation was simulated using the a S-actin gene with the
optimized parameter values given in Eq. Error bars represent the standard deviation
(SD) of the number of repetitions given at the top of each plot. Vertical red lines
represent the application of Harringtonine for ROA. Vertical red line represents the time
of photobleaching for FRAP.

S1 Table.
genome. Table is computed using 93,487 CDS (Coding DNA Sequence), representing a
total of 40,662,582 codons

TTT 17.6 TCT 15.2 || TAT 12.2 TGT 10.6
TTC 20.3 TCC 17.7 || TAC 15.3 TGC 12.6
TTA 7.7 TCA 12.2 || TAA 1.0 TGA 1.6

TTG 12.9 || TCG 4.4 TAG 0.8 TGG 13.2
CTT 13.2 CCT 17.5 CAT 10.9 CGT 4.5

CTC 19.6 CCC 19.8 || CAC 15.1 CGC 104
CTA 7.2 CCA 16.9 || CAA 123 || CGA 6.2

CTG 39.6 || CCG 6.9 CAG 34.2 | CGG 11.4
ATT 16.0 ACT 13.1 AAT 17.0 AGT 12.1
ATC 20.8 ACC 18.9 || AAC 19.1 AGC 19.5
ATA 7.5 ACA 151 || AAA 244 || AGA 12.2
ATG 22.0 || ACG 6.1 AAG 31.9 || AGG 12.0
GTT 11.0 || GCT 184 || GAT 21.8 GGT 10.8
GTC 14.5 || GCC 27.7 || GAC 25.1 || GGC 22.2
GTA 7.1 GCA 15.8 || GAA 29.0 | GGA 16.5
GTG 28.1 || GCG 74 GAG 39.6 || GGG 16.5

Codon Usage Codon usage table calculated from the Homo sapiens
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