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Abstract

Advances in fluorescence microscopy have introduced new assays to quantify live-cell
translation dynamics at single-RNA resolution. We introduce a detailed, yet efficient
sequence-based stochastic model that generates realistic synthetic data for several such
assays, including Fluorescence Correlation Spectroscopy (FCS), ribosome Run-Off
Assays (ROA) after Harringtonine application, and Fluorescence Recovery After
Photobleaching (FRAP). We simulate these experiments under multiple imaging
conditions and for thousands of human genes, and we evaluate through simulations
which experiments are most likely to provide accurate estimates of elongation kinetics.
Finding that FCS analyses are optimal for both short and long length genes, we
integrate our model with experimental FCS data to capture the nascent protein
statistics and temporal dynamics for three human genes: KDM5B, β-actin, and H2B.
Finally, we introduce a new open-source software package, RNA Sequence to NAscent
Protein Simulator (rSNAPsim), to easily simulate the single-molecule translation
dynamics of any gene sequence for any of these assays and for different assumptions
regarding synonymous codon usage, tRNA level modifications, or ribosome pauses.
rSNAPsim is implemented in Python and is available at:
https://github.com/MunskyGroup/rSNAPsim.git.

Author summary

Translation is an essential step in which ribosomes decipher mRNA sequences to 1

manufacture proteins. Recent advances in time-lapse fluorescence microscopy allow 2

live-cell quantification of translation dynamics at the resolution of single mRNA 3

molecules. Here, we develop a flexible computational framework to reproduce and 4

interpret such experiments. We use this framework to explore how well different 5

single-mRNA translation experiment designs would perform to estimate key translation 6

parameters. We then integrate experimental data from the most flexible design with our 7

stochastic model framework to reproduce the statistics and temporal dynamics of 8
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nascent protein elongation for three different human genes. Our validated 9

computational method is packaged with a simple graphical user interface that (1) starts 10

with mRNA sequences, (2) generates discrete, codon-dependent translation models, (3) 11

provides visualization of ribosome movement as trajectories or kymographs, and (4) 12

allows the user to estimate how optical single-mRNA translation experiments would be 13

affected by different genetic alterations (e.g., codon substitutions) or environmental 14

perturbations (e.g., tRNA titrations or drug treatments). 15

Introduction 16

The central dogma of molecular biology (i.e., DNA codes are transcribed into messenger 17

RNA, which are then translated to build proteins) has been a foundation of biological 18

understanding since it was stated by Francis Crick in 1958. Despite their overwhelming 19

importance to biological and biomedical science, many of the fundamental steps in the 20

gene expression process are only now becoming observable in living cells through the 21

application of real time single-molecule fluorescence imaging approaches. 22

Single-molecule imaging of transcription was first achieved two decades ago through the 23

use of the MS2 system [1], which uses bacteriophage gene sequences to encode for 24

specific and repeated stem-loop secondary structures in the transcribed mRNAs. These 25

stem-loops are subsequently recognized and bound by multiple fluorescently-tagged MS2 26

Coat Proteins (MCP), which produce bright fluorescent spots that allow for the 27

detection and spatial tracking of single-mRNA [2]. Tracking these labeled RNA has 28

made it possible to observe many aspects of RNA dynamics that were previously 29

obscured using bulk RNA measurements, such as the production of RNA from different 30

alleles [3], the movement of mRNA–protein complexes from nucleus to cytoplasm 31

through nuclear pores [4], and the association of RNA with different regions of the 32

cell [5]. 33

Even more recently, imaging single-molecule translation has also become possible 34

through the discovery of similar approaches [6–10]. In this case, the mRNA is modified 35

to encode for multiple epitopes in the open reading frame of a protein of interest (POI). 36

As the protein is translated, these epitopes are quickly recognized and bound by 37

fluorescent antibody fragment probes, Fig 1A. By combining the MS2 approach with 38

these epitope recognition sites, the co-localization of mRNA spots and nascent protein 39

spots reveal single-mRNA molecules that are undergoing active translation, as shown in 40

Fig 1B. As was the case for single-RNA tracking, precise spatiotemporal imaging of 41

translation sites within single living cells allows for multiple advances in comparison to 42

bulk or single-cell assays [11]. For example, Morisaki and Stasevich recently reviewed 43

three different approaches to track the translation dynamics for individual mRNA 44

molecules over time and then use these data to infer translation rates [12]. The first 45

design is related to Fluorescence Correlation Spectroscopy (FCS), in that the nascent 46

protein fluorescence signal is monitored over time and used to compute the 47

auto-covariance function (G(τ), Fig 1C, bottom). The time, τFCS , at which G(τ) 48

reaches zero denotes the characteristic time for a ribosome to translate the gene from 49

the tag region to the end of the protein of interest [6]. A second approach to measure 50

translation rate is to chemically block translation initiation (e.g., through the 51

application of a drug such as Harringtonine, as depicted in Fig 1D, top). In this 52

Run-Off Assay (ROA) approach, the time, τROA, at which the fluorescence signal 53

disappears corresponds to the time for a single ribosome to translate the entire coding 54

region, including the tag region itself [10]. A third technique, shown in Fig 1E, uses 55

Fluorescence Recovery After Photobleaching (FRAP) to optically eliminate the nascent 56

protein fluorescence associated with a single mRNA and then record the recovery of the 57

signal to its original level. As for the FCS approach, the time of total recovery, τFRAP , 58
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Fig 1. Translation studies with single-molecule resolution. A) Imaging
single-molecule translation dynamics is achieved by the measurement of fluorescence
spots that are produced when nascent proteins display epitopes that are recognized by
antibody fragments bound to fluorescent probes. The gene construct encodes a 10X
FLAG SM tag followed by a protein of interest (POI) and the 24X MS2 tag in the 3’
UTR region. B) Microscopy image showing translation at single-molecule resolution; red
spots represent single mRNA, and green spots represent nascent proteins. Below is a
representative trace showing the intensity fluctuation dynamics of a single-transcript
translating FLAG-10X-KDM5B. C) Simulated time courses representing the
characteristic single-molecule fluctuation dynamics. A representative trace is selected
and highlighted. At the bottom of the figure is given the normalized auto-covariance
function (G(τ)) calculated from simulated time courses. The time at which G(τ) hits
zero represents the dwell-time (τFCS). D) Harringtonine inhibits the translation
initiation step by binding to the ribosomal 60S subunit. The plot shows the average
fluorescence after Harringtonine treatment. Without new initiation events, the
fluctuations diminish causing the intensity to drop to zero at time τROA. E) FRAP
causes a rapid drop in the fluorescent intensity and a subsequent recovery that is
proportional to the time needed by ribosomes to produce new nascent proteins with
non-photobleached probes. The bottom plot shows the temporal dynamics of FRAP,
where it can be observed by the abrupt decrease in intensity and a recovery time
(τFRAP ) correlated with the gene length. All simulations correspond to KDM5B for 100
spots and a frame rate of 1 FPS. Error bars represent the standard error of the mean.

relates to the time required for a single ribosome to complete translation from the tag 59

region to the termination codon [8, 9]. 60

The temporal resolution offered by live single-mRNA, nascent translation imaging 61

makes it possible to directly visualize and quantify initiation, elongation, and 62

termination processes in live-cells [13]. Single-molecule studies have uncovered 63

previously unknown events and mechanisms taking place during translation, such as the 64

presence of active and inactive transcripts in specific locations in the cell [6, 9], different 65
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elongation rates caused by codon-optimized sequences [10], the spatiotemporal 66

translation of specific genes in specific cellular compartments [7, 8], ribosomal 67

frameshifting with bursty dynamics [14], and non-canonical forms of translation [15]. 68

As these experimental techniques rapidly evolve, they induce a growing need for 69

precise and flexible computational tools to interpret the resulting data and to design the 70

next wave of single-RNA translation experiments. To help fill this gap, we present a 71

versatile new set of computational design tools to estimate which specific single-mRNA 72

translation dynamics experiments would provide the most accurate inference of model 73

parameters. We demonstrate the generality of our analyses by simulating results for 74

several different single-molecule experiments for a large database of human genes. We 75

explore these different combinations of gene and experiment to ask which methodologies 76

are better to measure specific biophysical parameters and for which types of genes. We 77

then constrain our model by fitting it to experimental data for several genes. Finally, 78

we describe and demonstrate the use of a new open-source and user-friendly software 79

package: RNA Sequence to NAscent Protein Simulation (rSNAPsim), which allows the 80

user to easily simulate the single-molecule translation dynamics of any gene. Finally, we 81

discuss future directions and the potential limitations of the current form of this new 82

technology. 83

Modeling Single-RNA Translation Dynamics 84

To simulate translation with single-molecule resolution, we adopted a stochastic model 85

of polymerization that is similar to those developed previously in [16–18]. We then 86

extend this model to allow for variable ribosome sizes, codon- and tRNA-dependent 87

translation elongation rates, and arbitrary placement of fluorescent probe binding 88

epitopes, and we analyze these models specifically in the context of single-mRNA 89

translation as observed using time-lapse fluorescence microscopy experiments (e.g., Fig. 90

1). 91

The model consists of a set of reactions where random variables {xi} represent the 92

fluctuating occupancy of ribosomes at each specific ith codon along a single mRNA, 93

∅
w0(x1, . . . , xnf )−−−−−−−−−−→ x1

w1(x1, . . . , xnf+1)−−−−−−−−−−−−→ . . . xi
wi(xi, . . . , xnf+i)−−−−−−−−−−−→ . . .

wt−−→ xL, (1)

where L is the length of the gene in codons, nf is the ribosome footprint, and 94

x = [x1, x2, . . . , xL] ∈ BL is a binary vector of zeros and ones, known as the occupancy 95

vector, which represents the presence (xi = 1) or absence (xi = 0) of ribosomes at every 96

ith codon. The initial reaction in the model describes the initiation step, where the 97

ribosomes bind to the mRNA at the rate w0(x1, . . . , xnf ). Ribosomes are large 98

biomolecules that occupy around 20 to 30 nuclear bases (or seven to 10 codons) once 99

bound to the mRNA [19]. This is captured in the model by specifying the ribosome 100

footprint, nf = 9, which guarantees that initiation cannot occur if another downstream 101

ribosome is already present within the first nf codons, Fig 2A. This binding restriction 102

can be written simply as: 103

w0 = ki

nf∏

j=1

(1− xj), (2)

where ki is the initiation constant, and the product is equal to one if and only if there 104

are no ribosomes within the first nf codons. 105

Similarly, we represent the elongation reactions, where the ribosome moves along the 106

mRNA from codon to codon in direction 5’ to 3’ according to: 107

wi = ke(i) · xi
nf∏

j=1

(1− xi+j), for i = 1, ..., L− 1; (3)
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Fig 2. Modeling single-molecule translation. A) Translation is divided into three
main processes: initiation, elongation, and termination. The ribosome footprint
represents the physical space occluded by the ribosome, enforcing that no two ribosomes
can occupy the same space and time. B) Kymographs represent ribosome movement as
a function of time (y-axis) and position (x-axis). Each line represents a single ribosome
trajectory. The average slope is proportional to the effective ribosome elongation rate.
The plot to the right shows the relationship between ribosome movement and
fluorescence intensity, and the plot below shows the ribosome loading at each codon
position, calculated as the time-average of ribosome occupancy at the corresponding
codon. C) Comparison of the average elongation time (top) and the mean (middle) or
variance (bottom) of fluorescence intensity as calculated using the simplified model (Eqs.
18 to 21), a linear moments-based model (Eqs. 9 to 17), and a full stochastic model
(Eqs. 1 to 5). Gray area represents previously reported parameter values for ribosome
initiation. Panels B and C correspond to simulations for the β-actin. Asterisks
represent the specific parameter combination used for Table 1.

where ke(i) is the elongation rate at the ith codon, and the product again enforces 108

ribosome exclusion. To implement the effect of codon-usage bias and tRNA availability 109

during protein synthesis, we adopt a similar argument to that presented by Georgoni et 110

al., [16]: rare codons are correlated with low tRNA abundance, which cause a longer 111

waiting time for the ribosome to synthesize the given amino acid at that codon. As 112

tRNA concentrations have been related to codon usage [20], we assume each codon’s 113

elongation rate is proportional to its usage in the human genome according to: 114

ke(i) = k̄e · (u(i)/ū), (4)

where u(i) denotes the codon usage frequency in the human genome (given in S1 Table 115

from [21]), ū represents the average codon usage frequency in the human genome, and 116

the global parameter k̄e is an average elongation constant, which can be determined 117

through experiments. 118

Although simple in its specification, the above model allows for many adjustments to 119

September 17, 2019 5/35

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/659987doi: bioRxiv preprint 

https://doi.org/10.1101/659987
http://creativecommons.org/licenses/by-nc-nd/4.0/


explore different experimental circumstances. As a few examples, (i) one can represent 120

translation inhibition analyses such as those performed in [7] by making the initiation 121

rate, ki, a function of time or external input; (ii) one can analyze effects of synonymous 122

codon substitution by replacing codons with their more or less common relatives; (iii) 123

one can represent codon depletion, as studied in [16] by reducing the corresponding rates 124

ke(i) for all i corresponding to the depleted tRNA; (iv) one could explore the effects of 125

pausing or traffic jams at specific codons by reducing ke(i) at specific codons, or (v) one 126

can represent bursting kinetics by replacing the constant ki with a discrete-stochastic 127

activation/deactivation process. We will explore several of these circumstances below. 128

Kymograph representation of single-mRNA translation dynamics 129

With our simple specification of the translation initiation, elongation and termination 130

reactions, we can now simulate random trajectories, x(t), which we collect to form 131

binary occupancy trajectory matrices X =
[
x(t1)T , . . . ,x(tNt)

T
]T ∈ BNt×L, where each 132

row refers to the ith position on the gene, and each column represents a specific time tj . 133

To visualize ribosome movement trajectories, each random X can be plotted in two 134

dimensions (position v.s. time) to form kymographs similar to those extensively used to 135

represent organelle movement [22]. For example, Fig 2B shows a visualization of X for a 136

case study on the β−actin gene. Each line from left to right on the kymograph 137

corresponds to the movement of a single ribosome from initiation to termination. We 138

note that averaging along the columns of X (i.e., in the vertical direction of the 139

kymograph) yields the time-averaged loading of the ribosomes at each codon position, 140

and summing across the rows of X (i.e., in the horizontal direction of the kymograph) 141

yields the number of ribosomes for that mRNA at each instant in time. 142

Relating protein elongation dynamics to fluorescence signal intensities 143

To relate our model describing ribosome occupancy to experimental measurements of 144

translation spot fluorescence, we introduce a fluorescence intensity vector that converts 145

the instantaneous occupancy vector, x(t), to the total number of translated epitopes 146

available to bind to fluorescent markers. This intensity vector can be written as: 147

I(t) =
L∑

i=1

ci · xi(t) = cxT, (5)

where c = [c1, c2, . . . , cL] and each ci is the cumulative number of fluorescent probes 148

bound to epitopes encoded at positions (1, . . . , i) along the mRNA. For example, c 149

would be defined as c = [0, 0, 1, 1, 2, 2, 3, 3, ..., 3] for an RNA sequence with epitopes 150

encoded at positions [3, 5, 7]. We note that the random occupancy matrices, X, are 151

easily converted to intensity time traces using the simple algebraic operation 152

I = [I(t1), . . . , I(tNt)] = cXT. 153

Simplifications for combinatorial analyses of genes, parameters, 154

and experiment designs 155

The model as defined above is sufficient to simulate fluorescence dynamics for any 156

specified gene and for a vast range of potential time-lapse microscopy experiments. 157

However, these simulations become computationally intensive when studying 158

combinations of thousands of genes, using thousands of different parameters sets, and 159

for hundreds of different experiment designs. To ameliorate this concern, we next 160

introduce model simplifications that progressively remove elements from the original 161

model, such as ribosome exclusion and single-codon resolution, while retaining effects of 162
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codon-dependent translation rates and the geometric placement of fluorescent tags. We 163

then test under what conditions (i.e., parameters and gene lengths) these simplifications 164

are valid, and we compare these conditions to experimentally reported values. 165

Approximations for the means, variances, and auto-covariances of nascent 166

translation kinetics 167

When ribosome loading is sparse (e.g., for slow initiation or fast elongation such that 168

(ki/ke� 1/nf)), ribosome collisions will become negligible, and the nonlinearities in 169

Eqs. 2-3 have less effect on the overall ribosome dynamics. Under such circumstances, it 170

is possible to derive a simplified linear system model for the elongation dynamics. In 171

the linear model, the propensity of the codon-dependent elongation step (Eq. 2) is 172

simplified to wi(xi) = kixi such that the ability of a ribosome to add another amino 173

acid only depends on the current position of the ribosome, and not on the footprint of 174

other ribosomes. 175

We define the reaction stoichiometry matrix to describe the change in the ribosome
loading vector, x, for every reaction as:

Si,j =

{
1 for all i = j,

−1 for all i = j − 1,
(6)

where i corresponds to each codon in the protein of interest. The first column of S
corresponds to the initiation reaction, the next L− 1 columns refer to elongation steps
when an individual ribosome transitions from the ith to the i+ 1th codon, and the final
column corresponds to the final elongation step and termination. Maintaining the same
order of reactions, and neglecting ribosome exclusion, the propensities of all reactions
can be written in the affine linear form as:

w = w0 + W1x, (7)

where w0 is a column vector of zeros with the first entry ki, and W1 is a matrix defined
as:

[W1]i,j =

{
ke(i) for all i = j + 1,

0 otherwise .
(8)

Using the definition of the fluorescence intensity from Eq. 5, the first two uncentered
moments of the intensity I(t) can be written in terms of the ribosome position vector
x(t) as:

E{I(t)} = E{cx(t)} = cE{x(t)}, (9)

ΣI(0) = E{(I(t)− E{I(t)})2} = cΣx(0)cT, (10)

where E{x(t)} and Σx(0) are the mean and zero-lag-time variance in the ribosome
occupancy vector, respectively. For the approximate linear propensity functions in Eq.
7, the moments of the ribosome position vector are governed by the equations [23]:

dE{x}
dt

= SW1E{x}+ Sw0 (11)

dΣx

dt
= SW1Σx + ΣxW

T
1 S

T + Sdiag(W1E{x}+ w0)ST . (12)

By setting the left hand side of Eq. 11 to zero, the steady-state mean ribosome loading
vector can be found by solving the algebraic expression:

SW1E{x}+ Sw0 = 0. (13)
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Similarly, the steady-state covariance matrix, Σx, in the ribosome loading vector is
given by the solution to the Lyapunov equation (from right hand side of Eq. 12):

SW1Σx + ΣxW
T
1 S

T + Sdiag(W1E{x}+ w0)ST = 0. (14)

The auto-covariance dynamics of the nascent protein fluorescence intensity is defined:

G(τ) = E{(I(t)− E{I(t)})(I(t+ τ)− E{I(t+ τ)})} (15)

= E{c(x(t)− E{x(t)})(x(t+ τ)− E{x(t+ τ)})T cT }
= cE{(x(t)− E{x(t)})(x(t+ τ)− E{x(t+ τ)})T }cT

= cΣx(τ)cT, (16)

where Σx(τ) is the cross-covariance of the ribosome occupancies at a lag time of length 176

τ . Noting that the probe design, c, is constant with respect to τ , it is only necessary to 177

find the cross-covariances of the ribosome occupancy. Following the regression 178

theorem [24], these covariances are given by the solution to the set of ODEs, 179

dΣx(τ)

dτ
= φΣx(τ), (17)

where the initial condition is provided by steady-state covariance (i.e., the solution for 180

Σx(0) in Eq. 14) and the autonomous matrix of the process is given by φ = SW1. 181

Integrating Eq. 17, the auto-covariance of the intensity G(τ) can be found using Eq. 16. 182

We reiterate the fact that this simplification relies only on the assumption of sparse 183

loading of ribosomes on the mRNA, and the moments analyses in Eqns. 13, 14 and 17 184

retain the codon-dependent rate through the definition of the matrix W1 and the 185

specific positions of probes through the definition of the vector c. 186

Simplified algebraic expressions for nascent translation kinetics 187

In the limit of low initiation events and long genes, the probe region can be further 188

approximated by a single point, and the above model can be simplified even further to 189

allow direct estimation of steady-state translation features. First, since the average time 190

for a ribosome to move one codon is E{∆ti} = 1/ke(i), the total average time it takes a 191

ribosome to complete translation from the start codon to the end of the mRNA is: 192

E{τ} =

L∑

i=1

1

ke(i)
, (18)

where L is the gene length. Using the codon-dependent translation rates from Eq. 4, we 193

can modify Eq. 18 to 194

E{τ} =
1

k̄e

L∑

i=1

ū

u(i)
. (19)

If one could experimentally measure τExp using one of the techniques described above, 195

then k̄e could be estimated as: 196

k̄e ≈
1

τExp

L∑

i=np

ū

u(i)
, (20)

where np is the effective codon position of the fluorescent tag. In practice, the 197

specification of np will vary depending upon the type of experiment (e.g., FCS, FRAP 198

or ROA) used to estimate τExp, as will be discussed in more detail below. 199
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Given the apparent association time of a ribosome on the mRNA (τ) and the 200

initiation rate (ki), the distribution for the number of visible ribosomes on a transcript 201

at steady state can also be estimated using this simplified model. Under the assumption 202

that each initiation event is an independent and exponentially distributed random event, 203

the number of ribosomes downstream from the nthb codon, and therefore the fluorescence 204

in units of mature proteins, would be approximated by a Poisson distribution with 205

mean (and variance) equal to 206

µ ≈ σ2 ≈ ki · τ. (21)

For a more realistic treatment of the fluorescence intensity, one could assume that the
multiple probes are spread uniformly over a finite region, such that the fluorescence will
increase linearly as ribosomes pass through the probe region. To approximate this
gradual increase in fluorescence, Eq. 21 can be corrected by a multiplicative factor (see
Methods) as:

µI ≈ ki · τ
(

1− Lt

2L

)
, (22)

σ2
I ≈ ki · τ

(
1− 2

Lt

3L

)
, (23)

where Lt is the length of the tag region (e.g., Lt = 318 aa for the 10X FLAG ‘Spaghetti 207

Monster’ SM-tag used in [6]). 208

Agreement of full and simplified models for codon-dependent translation 209

kinetics 210

To demonstrate the close agreement between the full stochastic model, the reduced 211

linear moments model, and the simplified theoretical analysis, Table 1 compares the 212

model generated values for each of the quantities τ , µI , and σ2
I for three different 213

human genes H2B (L = 128aa), β-actin (L = 375aa), and KDM5B (L = 1549aa), using 214

reported parameters of ki = 0.03 s−1 and k̄e = 10 s−1 [6]. For further comparison, Fig 215

2C compares estimates of τ (top), µI (middle), and σ2
I (bottom) for the β-actin gene for 216

each of the three analyses, and as a function of different initiation and elongation rates. 217

This comparison demonstrates that, at least for fast elongation rates, the full stochastic 218

analysis and the moments-based computation are in excellent agreement to estimate the 219

effective time as well as the mean and variance in the level of nascent proteins per RNA. 220

However, when the initiation rate approaches k̄e/nf , ribosome collisions become more 221

prevalent, which substantially lengthens the effective elongation time (Fig 2C top), and 222

leads to a saturation of ribosomes (Fig 2C middle and bottom), and these nonlinear 223

behaviors are not captured by the moment-based model. For longer genes, the 224

simplified theoretical estimates from Eqs. 18-21 are also in good agreement with the 225

complete model. For shorter genes, it becomes less realistic to approximate the tag 226

region with a single point or a uniform distribution, and the error of this approximation 227

leads to poorer estimates of the elongation time and the Poisson approximation 228

over-estimates the true variance (see H2B in Table 1). However, even for short genes, 229

the linear moments-based model, which includes the exact positions of all probes and 230

the codon usage, provides a more accurate estimate of the true system behaviors. 231

Results 232

Having demonstrated close agreement of the simplified theoretical models with the full 233

stochastic simulations, we can now use the much more computationally efficient 234

theoretical analyses to explore how well different experiment designs should be expected 235

to estimate translation parameters from single-RNA translation dynamics. 236
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Table 1. Comparing model dynamics.

Stochastic Model Moments-Based Model Theoretical Model

KDM5B, L = 1867aa

mean (µ) 5.2 ± 0.02 5.07 5.01
var (σ2) 4.5 ± 0.03 4.90 4.93

period (τ) 187.78 ± 0.94 180.0 185.23

β − actin, L = 693aa

mean (µ) 1.31 ± 0.004 1.34 1.42
var (σ2) 1.08 ± 0.003 1.17 1.28

period (τ) 62.17 ± 0.27 60.0 60.94

H2B, L = 446aa

mean (µ) 0.75 ± 0.002 0.77 0.82
var (σ2) 0.56 ± 0.001 0.59 0.68

period (τ) 42.96 ± 0.07 42.0 41.80

Mean and variance of intensity are given in units of mature proteins (ump). The period
(τ) has units of seconds. Elongation and initiation rates are k̄e = 10s−1 and
k̄i = 0.03s−1, respectively. Lengths include the tag region of 318aa. Stochastic
simulations were performed for 500 simulated spots, with a frame rate of 1 sec, and for
2,000 frames. Error values represent the standard deviation of 3 repetitions of
independent simulations.

Design of Experimental Assays for Improved Quantification of 237

Translation Kinetics 238

Using the models above, and if we could experimentally estimate the average time that 239

ribosomes take to translate a single complete protein from a given gene, τ (g), we could 240

estimate k̄
(g)
e using Eq. 20. With this in mind, we next consider three approaches that 241

have been used to estimate τ (g) in recent experimental investigations (Fig 1C-E): 242

Fluorescence Correlation Spectroscopy (FCS), Run-Off Assays (ROA), and Fluorescence 243

Recovery After Photobleaching (FRAP). Using our full stochastic models to generate 244

synthetic data and the simplified theoretical model to interpret these data, we ask how 245

accurately would each of these three assays work to identify k̄
(g)
e for a comprehensive 246

list of 2,647 human genes from the PANTHER database [25] and under different 247

imaging conditions corresponding to different frame rates or numbers of mRNA spots. 248

In the FCS approach, we compute the auto-covariance function, G(τ) (defined in 249

Eqn. 15), of the simulated fluorescence intensities, and from G(τ) we estimate the time 250

lag, τFCS , at which correlations disappear (see Fig 1C and Methods). In the ROA 251

approach, we simulate the addition of a chemical compound, such as Harringtonine, 252

which binds the 60S ribosome subunit and prevents ribosome assembly [26], and we 253

record the average time, τROA, at which protein fluorescence disappears from the RNA 254

(see Fig 1D and Methods). To approximate variability in the specific time at which the 255

drug reaches the mRNA and blocks ribosome initiation, we assume that the time of 256

initiation blockage occurs at a normally distributed time of 60 ± 10 seconds [27]. In the 257

FRAP analysis, we simulate an instantaneous fluorescence bleaching of all nascent 258

proteins and then record the average time, τFRAP , at which fluorescence recovers to the 259

average steady-state level, Fig 1E [28]. To reduce the effects of stochastic sample 260

variation in these calculations, we applied a linear fit to ROA and FRAP experiments 261

and determined τROA and τFRAP when these intensities intersect defined thresholds of 262

zero intensity for ROA or the mean recovered intensity for FRAP. For FCS, we estimate 263
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τ05 as the time the auto-covariance function drops below 5% of the zero-lag covariance 264

and calculate τFCS = τ05/0.95. 265

The specific location of probes along the mRNA has different effects on the 266

fluorescence kinetics for the three experimental analyses. The characteristic 267

decorrelation time in FCS and recovery time in FRAP are both set by the time it takes 268

a single ribosome to translate from the tag region to the end of the mRNA. To reflect 269

this, we define the approximate probe location, npFCS or npFRAP in Eq. 20, as the 270

beginning of the tag region. In this case, the beginning of the tag region is at the 271

beginning of the gene, but in general, we note that moving the fluorescent tag regions 272

downstream toward the 3’ end would shorten the effective times measured using FCS or 273

FRAP. In contrast, for the ROA, the characteristic time is defined by how long it takes 274

from when translation initiation is blocked until all ribosomes complete translation. 275

Because this time depends solely on the gene length, and not on the probe placement, 276

we assume npROA = 1, independent of probe placement. In addition to these effects on 277

average experiment timescale estimates, we note that placing probes as near as possible 278

to the 5’ end of the mRNA or using longer proteins increases the fluorescence 279

signal-to-noise ratio for all three approaches and can reduce estimation uncertainties. 280

To generate simulated data, we assumed that all 2,647 genes in the library have a 281

global average translation rate of k̄e = 10 sec−1 and an initiation rate of ki = 0.03 sec−1. 282

For each experiment type and each gene, we simulated time lapse microscopy data for 283

100 independent RNA and for 300 frames at 1/3 frames per second (FPS). We then 284

estimated τ (g) from these simulations using each of the three experimental 285

methodologies, and we estimated the corresponding average elongation rate using the 286

specific gene sequence and Eq. 4. Under these conditions, Figs 3A-C (top) show the 287

resulting distributions of estimated k̃e for long genes (> 1000 codons, n = 658, purple), 288

medium length genes (500− 1000 codons, n = 1719, blue), and short genes (< 500 289

codons, n = 270, orange) using each of the three experimental approaches. When all 290

genes were analyzed at the same imaging conditions (100 spots, 300 frames, 1/3 FPS), 291

the FCS approach was the most accurate with root mean squared (RMSE) of 0.63, 1.35, 292

and 1.60 for short, medium and long genes, respectively. For comparison, ROA had 293

RMSE of 2.22, 2.52, and 1.78 and FRAP had RMSE of 5.22, 4.58, and 2.68 for the same 294

combinations of genes and imaging conditions. 295

We next extended our analysis to consider different numbers of spots and different 296

frame rates at which to collect the data, but under the assumption that the total 297

number of frames would remain fixed at 300. Fig 3A shows the corresponding resulting 298

RMSE for different combinations of these experiment designs. As expected, we found 299

the sampling rate and number of mRNA spots to directly affect the estimated k
(FCS)
e . 300

FCS was the only technique capable to estimate the true elongation rate within a 301

RMSEFCS ≤ 2.0 sec−1 for short, medium and long genes. For short genes, this could 302

be accomplished with as few as 10 spots with a frame rate of 1/3 FPS. Medium length 303

and long genes could also be accurately quantified with 10 spots at frame rates of 1/3 304

FPS or 1/10 FPS. 305

The ROA was also capable to estimate the elongation rate to an accuracy of 306

RMSEROA < 2.0 sec−1 for medium and long genes, and for fast frame rates, the ROA 307

approach could be more accurate than FCS. However, when applying the ROA method 308

to short genes, we obtained RMSEROA > 2.0 sec−1 under all combinations of sampling 309

rates and repetition numbers at 100 or fewer spots (Fig 3B). This effect can be 310

explained in that the number of ribosomes actively translating each mRNA is small and 311

highly susceptible to stochastic effects in the case of small genes. We also note that the 312

error using ROA depends strongly on the precision of the estimate for the specific time 313

at which translation is blocked after application of Harringtonine; if the average value of 314

this time is unknown, or if variations exceed our assumed standard deviation of 10 315
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Fig 3. Comparing experimental methodologies to estimate ribosome
elongation rates. Elongation rate estimate experiments were simulated for 2,647
human genes, using (A) Fluorescence Correlation Spectroscopy (FCS), (B) Run-Off
Assays (ROA), and (C) Fluorescence Recovery After Photobleaching (FRAP). Top
panels show the distributions of estimated k̃e for long genes (> 1000 codons, n = 658,
purple), medium length genes (500− 1000 codons, n = 1719, blue), and short genes
(< 500 codons, n = 270, orange) using 100 mRNA spots for 300 frames at 1/3 FPS. The
true elongation rate is denoted by a vertical dashed line. Bottom panels show the
RMSE in elongation rate estimation as a function of the number of mRNA spots and
the sampling rate. Red boxes highlight all experimental designs that yield a RMSE
< 2.0. Asterisks represent the frame rate and number of repetitions used in panel (A).
The ‘true’ elongation rate was set at k̄e = 10, and the initiation rate was fixed at
ki = 0.03 sec−1 for all simulations.

seconds, then accuracy using ROA is severely diminished, especially for short genes. 316

We found that FRAP substantially overestimates the elongation rates for short size 317

genes, which can be observed in Fig 3C, where it is shown that recovering a 318

RMSEFRAP < 2.0 sec−1 was not possible for any of the considered combinations of the 319

number of RNA spots and sampling rates. We argue that the estimate of elongation 320

rates using FRAP is limited by the intrinsic formulation of the fluorescent probe design. 321

FRAP requires an intensity generating mechanism to reestablish the fluorescence to a 322

pre-perturbation steady state. For single-molecule translation studies, this mechanism 323

relies on ribosomal initiation events that are rare and highly susceptible to 324

variability [6–9]. This variability is reflected in the estimated τFRAP and in the final 325

estimated elongation rate. Even for the more favorable medium and long length genes, 326

our results indicate that for FRAP, a large number of mRNA spots (>100 mRNA spots) 327

would be needed to achieve accurate estimates (Fig 3C). 328
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Calibration of the Stochastic Translation Model using 329

Quantitative Data from Single-RNA Translation Experiments 330

Having determined that the FCS approach provides the most consistent estimate of 331

elongation rate for genes of different lengths, we next turn to published experimental 332

FCS data that quantified the fluctuation dynamics for three human gene constructs of 333

different lengths: KDM5B (1549 aa), β-actin (375 aa), and H2B (128 aa) [6]. Each 334

construct encodes for an N-terminal 10X FLAG ‘Spaghetti Monster’ SM-tag (318 aa) 335

followed by the specific protein of interest (POI), and the stop codon for each POI was 336

followed by 24 repetitions of the MS2 tag in the 3’ UTR region. For each construct, the 337

MS2 signal was used to track the mRNA motion in three dimensions, and the 338

co-localized fluorescence intensity of the FLAG SM-tag was quantified as a function of 339

time. These movies were collected using frame rates of 1 sec for H2B (n=10), 3 sec for 340

β-actin (n=17), and 10 sec for KDM5B (n=35), and each trajectory was tracked for up 341

to 300 frames per mRNA. Figs 4A-C (left) show example time traces (in arbitrary units 342

of fluorescence) for the nascent protein level per individual mRNA for each of the three 343

genes. To achieve long trajectories, it is necessary to use low laser power, which 344

introduces higher variability in signal intensities from one spot to another. Therefore, to 345

account for variability in imaging settings between tracking experiments, all trajectories 346

were normalized to have a variance of one prior to auto-covariance analysis. 347

To quantify the steady-state variability of nascent proteins per mRNA in units of 348

mature protein (ump), we used a second, independent calibration construct that 349

contains only a single epitope for FLAG ( [6], see Methods) and which we measured 350

using higher laser intensities. After calibration, the number of mature proteins per 351

mRNA was rounded to the nearest integer dj for a larger number of spots (1844 to 302 352

spots per frame for 50 imaging frames) for a total of 6435, 3973, and 751 spots for 353

KDM5B, β-actin and H2B, respectively. The resulting data histograms were 354

down-sampled to create an effective population of 100 translating mRNA spots for each 355

gene, and histograms of these measurements are presented by the black lines in Figs 356

4A-C, middle. 357

We explored if the full stochastic model could be fit to capture simultaneously the 358

experimentally measured steady-state histogram of nascent proteins as well as the 359

temporal dynamics of nascent protein fluctuations on single mRNA. For model 360

comparison to the steady-state histograms, we ran 300 independent simulations per 361

gene and parameter combination (Λ) and estimated the probability to observe 362

intensities corresponding to d = 1, 2, . . . mature proteins per mRNA. We denoted 363

resulting probability mass vector as P (d; Λ). Assuming that translation on each mRNA 364

is independent of the rest, we could then compute the likelihood of the steady-state 365

intensity data for each gene given the model as: 366

LDist(Data|Model) =
100∏

j=1

P (dj ; Λ), (24)

and the log-likelihood could be computed: 367

logLDist(Data|Model) =
100∑

j=1

logP (dj ; Λ). (25)

As non-translating spots could not be separated from spots below a basal FLAG 368

intensity in the experimental data measurements, comparison between simulations and 369

measured distributions ignore all spots with an intensity value less than 1/2 ump. 370

To compare temporal dynamics of the experiments to those of the model, we 371

assumed that errors in the measurement of the average auto-covariances would be 372
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Fig 4. Fitting single-molecule data with the full stochastic model.
Experimental data show the fluctuation dynamics of gene constructs encoding an
N-terminal 10X FLAG ‘Spaghetti Monster’ SM-tag (green) followed by a protein of
interest and finally a 24X MS2 tag (red) in the 3’ UTR region. Three proteins were
studied: A) H2B (orange), B) β-actin (blue) and C) KDM5B (violet). Middle figures
show the simulated (colors) and measured (black) probability distributions for an
mRNA to have a fluorescence intensity corresponding to i units of mature proteins
(ump). Right images show the normalized auto-covariance function (G) calculated from
experimentally measured (black error bars) and computationally simulated (colors)
autocorrelation functions. Error bars in the experimental data and shadow bars in the
simulated auto-covariance plots represent the standard errors of the mean. Elongation
and initiation rates were obtained by parameter optimization, using the Hooke and
Jeeves Algorithm ( [29]). Optimized parameters and their uncertainties (see Methods)
are provided in Eq. 29.

approximately normally distributed with variances equal to the measured standard error 373

of the mean [30]. Under this assumption, the probability to measure an auto-covariance 374

of GD(τi) at lag time τi according to a model that predicts GM (τi; Λ) for parameter set 375

Λ is: 376

LAC(GD|GM (Λ)) =

Nt∏

i=1

1√
2πσ(τi)2

exp

(
− (GD(τi)−GM (τi; Λ))2

2σ(τi)2

)
, (26)

where σ(τi) is approximated by the measured SEM auto-covariance at each τi. The 377

logarithm of this likelihood function can then be written as: 378

logLAC(GD|GM (Λ)) = C −
Nt∑

i=1

(GD(τi)−GM (τi; Λ))2

2σ(τi)2
, (27)

where C is a constant that does not depend upon the parameter set Λ, and the second 379

term is the definition of χ2 [30] for the comparison of experimental and model-derived 380
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autocorrelation analyses. 381

Because the steady-state distributions and the temporal dynamics were measured 382

using independent experiments, the total likelihood function to match both datasets is 383

the product of the individual functions, and the total log-likelihood is the sum of the 384

individual log-likelihoods: 385

logLtotal(Dist,G|M) =
∑

g

(logL(Distg|Mg) + logL(Gg|Mg)) , (28)

for g = KDM5B, H2B and β-actin. Now, that we have defined a log-likelihood function 386

to compare the data to the model under different parameter combinations, we can 387

explore parameter space, first to maximize this likelihood and then quantify what is the 388

uncertainty in parameters given the data. 389

Codon-dependent translation rates were assumed to be consistent among the three 390

genes, as defined in Eq. 4, but the three genes were allowed to have different initiation 391

rates, {k(g)i }. Under this assumption, the model has a total of four parameters. Upon 392

fitting these parameters to maximize Eq. 28, we found that the model could capture 393

both the experimental distributions of nascent proteins per mRNA and the 394

auto-covariance plots for all three genes, as shown in Fig 4A-C (middle and right). 395

Optimized parameters and their uncertainties (see Methods) were found to be: 396





k̄e = 10.6± 0.72sec−1,

k
(KDM5B)
i = 0.022± 0.004sec−1,

k
(β−actin)
i = 0.05± 0.01sec−1,

k
(H2B)
i = 0.066± 0.019sec−1.

(29)

Exploring How Translation Dynamics Vary With Different 397

Parameters 398

After determining that our model was sufficient to reproduce the experimentally 399

measured fluctuation dynamics for H2B, β-actin, and KDM5B, we next extended our 400

analyses to consider a broader range of translation parameters. Specifically, we sought 401

to explore the effects of variations to initiation and elongation rates as well as effects of 402

synonymous codon substitutions or modulation of tRNA concentrations. 403

Ribosome Collisions are Rare at Most Experimentally Observed 404

Translation Initiation and Elongation Rates 405

Previous experimental reports [6–10] estimated a range of values from 0.01 to 0.08 sec−1
406

for the translation initiation rate, ki, and range from 3 to 13 aa/sec for the average 407

elongation rate, k̄e. Using β-actin gene as a reference, Fig 5-A depicts the variation in 408

ribosome density as a function of the base parameters ki and k̄e, and Fig 5B shows the 409

number of times an average ribosome would collide with an upstream neighboring 410

ribosome during a single round of translation. For most parameter combinations, 411

ribosome loading was predicted to be very low (i.e., fewer than one ribosome per 100 412

codons) and collisions were rare (i.e., fewer than 10 collisions in an average round of 413

translation). However, for slow elongation and fast initiation, such as those measured by 414

Wang et al. [7]), a ribosome could collide with other ribosomes an average of ∼ 20 times 415

for a gene the length of β-actin. To further illustrate the effects that these initiation 416

and elongation rates would have on ribosome dynamics on different genes, Fig. 5C 417

shows simulated kymographs for SunTag-24X-Kif18b [10], FLAG-10X-KDM5B [6], and 418

SunTag-56X-Ki67 [9], each with their previously reported initiation and elongation rates. 419

In addition, S1 Fig and S2 Fig provide more detailed results of the translation 420
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Fig 5. Ribosome dynamics under experimentally reported initiation and
elongation rates. A) Simulated mean number of codons between ribosomes for the
β-actin gene as function of initiation and elongation constants. In the plot, previous
literature initiation and elongation values are highlighted by the squares [6–10], and
values estimated in this study are denoted by asterisks. B) Simulated number of
collisions per ribosome as a function of initiation and elongation constants. C) Top
panel, kymograph showing the ribosomal dynamics for SunTag-24X-Kif18b using
experimentally determined parameters ki = 1/100 sec−1 and k̄e = 3.1 aa/sec [10].
Center panel, kymograph showing the ribosomal dynamics for FLAG-10X-KDM5B
using experimentally determined parameters ki = 1/30 sec−1 and k̄e = 10 aa/sec [6].
Bottom panel, kymograph showing the ribosomal dynamics for SunTag-56X-Ki67 using
experimentally determined parameters ki = 1/13 sec−1 and k̄e = 13.2 aa/sec [9]. White
lines in kymographs represent single ribosome positions, and green spots represent
ribosome collisions.

elongation simulations for β-actin translation at multiple initiation rates and elongation 421

rates, respectively. Each of these kymographs indicates that ribosome dynamics can 422

vary from collision-free dynamics (SunTag-24X-Kif18b and FLAG-10X-KDM5B) to 423

dynamics with multiple collisions (SunTag-56X-Ki67) and that collisions can become 424

more prevalent at high initiation rates or low elongation rates. 425

Codon Usage Affects Translation Speed and Ribosome Loading 426

Simulations of genes H2B, β-actin, and KDM5B showed that each gene’s codon order 427

influences the overall ribosome traffic dynamics, creating a non-uniform distribution of 428

ribosomes along the mRNA (S3 Fig). This observation of codon dependence led us to 429

look more deeply into possible effects that optimization could have on observable 430

translation dynamics. S4 Fig depicts simulated kymographs for the β-actin protein for 431

three synonymous sequences containing: (i) natural codons, (ii) most frequent 432
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synonymous codon (optimized), and (iii) least frequent synonymous codon 433

(de-optimized). For each case, S4 FigB illustrates the corresponding ribosome loading 434

profiles; S4 FigC shows the simulated distribution of FLAG intensities in units of 435

mature proteins, and S4 FigD presents the corresponding simulated fluorescence 436

auto-covariance functions. S5 Fig and S6 Fig show similar results for the H2B and 437

KDM5B genes, respectively. 438

In all cases, optimized gene sequences speed-up ribosome dynamics, and 439

de-optimized sequences cause a slower elongation rate that is observed in the 440

auto-covariance plots given in S4 FigD, S5 FigD, and S6 FigD. Moreover, for constant 441

initiation rates, faster elongation would lead to lower ribosome loading (S4 FigB, S5 442

FigB, S6 FigB) and therefore lower fluorescence intensities, as shown in the distributions 443

given in S4 FigC, S5 FigC, and S6 FigC. All three genes under consideration had 444

natural codon usage that was enriched for the most common codons (i.e., the natural 445

and common codon usage dynamics are very similar), such that the translation rate, 446

ribosome loading, and fluorescence intensity could be substantially altered only by 447

substitution to rare codons. We note that the substitution of rare codons would lead to 448

slower elongation and substantially higher numbers of ribosome collisions. 449

Depletion of tRNA Levels can Induce Ribosome Traffic Jams 450

In addition to modulating translation speed through codon substitution, it is possible to 451

perturb these dynamics through experimental modulation of tRNA concentrations. For 452

example, Gorgoni et al., [16] used a mutated allele to the gene for tRNACUG to reduce 453

the concentration of the glutamine tRNA. To study how ribosome dynamics can be 454

affected by the removal or addition of specific tRNA, we simulated the translation 455

dynamics of H2B, β-actin, and KDM5B at several different concentrations for 456

tRNACTC . S7 Fig shows the effect of decreasing tRNACTC concentration on the 457

ribosome association time (left) and elongation rate (right). The simulations show that 458

ribosome dynamics are relatively unchanged provided that the tRNACTC concentration 459

remains above approximately 10% of the native level. In contrast, depleting tRNACTC 460

concentration below 10% of wild-type levels could lead to ribosome stalling, which was 461

reflected in long ribosome association times and low effective elongation rates. 462

Ribosome traffic-jams are observed under very low tRNACTC concentration as shown in 463

S8 Fig to S10 Fig. The prevalence of the CTC codon was found to be important in that 464

the effect of tRNACTC depletion occurs at higher tRNACTC concentrations for the 465

CTC codon rich KDM5B gene than for the other two constructs. 466

RNA Sequence to NAscent Protein Simulation (rSNAPsim) 467

To facilitate the simulation of single-molecule translation dynamics, all models and 468

analyses described above have been incorporated into a user-friendly Python toolbox, 469

which we have called rSNAPsim. This toolbox combines a graphical user interface 470

(GUI) divided into multiple tabs, graphical visualizations, and tables to present 471

calculated biophysical parameters (see Fig 6). This simulator performs stochastic 472

simulations considering the widely accepted mechanisms affecting ribosome elongation, 473

such as codon usage and ribosome interference. The toolbox is available in Python 474

2.7/3.5+ and wrappers for optimized C++ code are provided with installation 475

instructions. 476

rSNAPsim takes as an input the gene sequence in Fasta format or an NCBI 477

accession number. The user can decide on the type (FLAG, SunTag, or Hemagglutinin), 478

number, and placement of different epitopes upstream, downstream or within the 479

protein of interest. The toolbox provides the user with a visualization of the gene 480

sequence and the overall gene construct including the position of the POI and the 481
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A B

C

Fig 6. RNA Sequence to NAscent Protein Simulation (rSNAPsim). A)
rSNAPsim is divided into four upper tabs and three lower tabs. Upper tabs allow the
user to select and adjust sequences and then run simulations under varying conditions.
Sequence selector allows the user to load a raw text file or GenBank file for their
simulation needs. An option to pull from GenBank via accession number is available.
All simulation parameters are also set on this tab. B) After a file is loaded, rSNAPsim
allows the user to change the tRNA copy numbers and codon types under the Codon
Adjustment tab. Post simulation, the lower tabs display simulation information such as
average intensity over time of N simulations. C) Screen-shot of a kymograph. The
kymograph tab allows the user to create their kymographs with varying display options.
The Stochastic Simulation tab shows the time course data from the selected simulations.
The Fluorescence Correlation Spectroscopy tab displays and compared simulated and
experimental single-molecule translation dynamics, the auto-covariance function, and
biophysical parameters, such as the elongation constant or ribosomal density. All
functionality in the GUI is also available in a command-line module for Python included
with rSNAPsim.

positions of the Tag epitopes. From the concatenated tags and POI sequences, 482

rSNAPsim automatically generates a discrete single-RNA translation model with single 483

amino acid resolution and codon-dependent translation rates. Once generated, these 484

models can be simulated using stochastic dynamics, and the results can be quantified in 485

terms of predicted translation spot intensity fluctuations (i.e., single-RNA translation 486

time traces or kymographs), ribosomal density profiles, and fluorescence signal 487

auto-covariance. The graphical user interface also provides for easy generation of 488

simulated results for several different experimental assays, including FCS, FRAP, and 489

ROA. From these simulation results, biophysical parameters such as the overall 490

elongation rate or ribosome association rate are automatically calculated and returned 491

to the user. The toolbox provides additional interfaces for the user to design and 492

simulate gene sequences with substitution between natural, common, or rare codons for 493

any combination of amino acids or to manually adjust the concentration of tRNA for 494

specific codons. Simulations are saved automatically so that the user can compare 495

translation dynamics for multiple different gene constructs. The toolbox allows for the 496

user to load experimental single-mRNA fluorescence trajectories, compute 497

auto-covariance functions with various normalization assumptions and compare these to 498

September 17, 2019 18/35

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/659987doi: bioRxiv preprint 

https://doi.org/10.1101/659987
http://creativecommons.org/licenses/by-nc-nd/4.0/


model results. For example, the rSNAPsim screenshot in Fig. 6A shows a comparison 499

of model and experimental normalized auto-covariances for KDM5B. 500

The open-source toolbox was tested in Mac, Windows, and Linux operating systems 501

and is available at: https://github.com/MunskyGroup/rSNAPsim.git. Simulating a 502

gene with 1567 codons for 100 repetitions of 5000 seconds each takes less than 1 minute 503

using a laptop computer with a Core i7 and 32GB of RAM. 504

Discussion 505

Imaging translation in living cells at single-molecule resolution is a new experimental 506

technology that has been applied to only a few genes so far [6–10,14,15], but the 507

number of such studies is expected to grow considerably in the near future [12]. 508

Computational models can aid in this research by extracting improved biophysical 509

understanding and parameters from single-molecule data. For example, in related 510

analyses of transcription dynamics, Rodriguez et al., [18] used a coarse grained 511

stochastic model to capture the polymerase elongation process and reproduce 512

transcription dynamics for a multi-state promoter. Here, we extended that theoretical 513

framework to include the most widely accepted mechanisms affecting nascent protein 514

translation, including codon-dependent elongation and ribosome interference [17] and 515

with specific attention to the placement of fluorescent probes. To complement previous 516

models that have sought to reproduce data from earlier bulk cellular assays [16], and 517

ribosome profiling data [31,32], our focus has been to integrate single-mRNA stochastic 518

dynamics models with data from in vivo single-RNA translation dynamics experiments. 519

We developed a general codon-dependent model, where nascent protein distributions 520

and auto-covariance functions were generated by detailed stochastic simulations that 521

tracked the positions of ribosomes relative to their neighbors. However, in the absence 522

of perturbations to change initiation and elongation rates, most ribosomes do not 523

encounter others during elongation (Fig 2), at least not at currently accepted elongation 524

and initiation rates from the literature [6–10]. This observation justifies an assumption 525

of sparse ribosome loading and independent ribosome motion, which allow the linear 526

reaction rate reformulation of the codon-dependent translation model into a simplified 527

stochastic moment model and further reduction led to analytical expressions for the 528

steady-state mean and variance of fluorescence in units of mature protein levels per 529

mRNA (Eq. 21) and for the decorrelation time (Eq. 18). For initiation rates at or below 530

reported experimental values, the simplified analytical model and the full model are in 531

strong agreement (Fig 2). However, increasing initiation rates relative to the base 532

elongation rate, inserting more rare codons into the sequence, or depleting tRNA levels 533

for some codons will increase the number of ribosome collisions and violate the 534

simplifying assumptions (Figs 2C, 5). In such circumstances, the full stochastic model 535

predicts slower effective elongation rates, longer ribosome association times, and 536

accumulation of more ribosomes per mRNA. 537

With the full and reduced models in hand, it becomes possible to predict how well 538

three modern methodologies would estimate elongation rates from single-molecule 539

measurements: Fluorescence Correlation Spectroscopy (FCS) [12], Fluorescence 540

Recovery After Photobleaching (FRAP) [8, 9, 12], and Run-Off Assays (ROA) after 541

perturbation with inhibitory drugs [7, 10]. Through simulations on 2,647 genes, we 542

demonstrated that estimating elongation rates for long genes (>1000 codons) could be 543

achieved with great accuracy using any of these methodologies, provided that a minimal 544

number of mRNA spots are considered and with an appropriate temporal resolution as 545

demonstrated in Fig 3. However, our results suggest that FCS would be the most likely 546

method to provide an accurate elongation rate estimate (Fig 3A), especially for small 547

and medium size genes. Although our simulation results suggest that FCS is the best 548
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single-molecule option to estimate elongation rates, it is important to remark that FCS 549

analysis requires the tracking and measurement of intensity for single spots over long 550

periods of time, and such measurements are susceptible to photobleaching and 551

molecular motion. The former issue has been addressed through the application of 552

optical techniques such as highly inclined thin illumination microscopy [33] and the 553

latter could be addressed through the application of molecular tethers to reduce 554

motion [10]. On the computational side, one could potentially address concerns of 555

bleaching or motion relative to the imaging plane by including hyper-parameters to 556

describe these dynamics and then fit these hyper-parameters concurrently with model 557

parameters using Bayesian analyses. 558

Run-off assays using Harringtonine to prevent translation initiation can give 559

accurate estimates when genes are long, but the accuracy of such an approach is highly 560

diminished for shorter genes (Fig 3B) or if the precise time of drug action on the mRNA 561

is not known. Our analyses suggest that run-off assays directly depend on the number 562

of ribosomes actively translating the mRNA at the time of perturbation, and since this 563

number is highly susceptible to stochasticity on small genes, the ROA would require 564

analysis of a much larger number of spots to achieve accurate results. 565

Our analyses show that FRAP gives poor estimates for all genes of all sizes, and for 566

all tested experimental designs, Fig 3C. The recovery of the intensity after 567

photobleaching depends heavily on the initiation rate, which has been found to be an 568

order of magnitude smaller than the elongation rate, making the recovery a highly 569

stochastic process as well. We directly compared the error size for the studied methods, 570

obtaining that the error in FRAP and ROA is two times larger than in FCS, S11 Fig. 571

Using FCS data, we demonstrated that a codon-dependent translation model 572

containing one universal average elongation rate and one gene-dependent initiation rate 573

could capture quantitatively the distribution of nascent proteins per actively translating 574

mRNA, as well as the temporal dynamics, for three different genes expressed in human 575

U2OS cells (Fig 4). Combining these estimates of initiation and elongation rates with 576

reported values for the same rates identified using other methods and for other genes, 577

we could predict ribosome dynamics and nascent protein intensities for reported gene 578

sequences [6–10,14,15], (Fig 5). Those results allowed us to conclude that relatively fast 579

elongation rates help maintain substantial space between ribosomes on a single mRNA. 580

As a result, these ribosomes should not often collide, and the final ribosome-mRNA 581

association times should remain unchanged for typical initiation rates, natural codon 582

usage, and normal tRNA availability, as shown in S3 Fig. Nevertheless, ribosome 583

dynamics may be affected by genetic or environmental perturbations, such as increased 584

initiation rates (S1 Fig), reduction of elongation rates (S2 Fig), enrichment for rare 585

codons (S4 Fig to S6 Fig), or depletion of tRNA (S7 Fig to S10 Fig). 586

The present model and rSNAPsim toolkit have intentionally been made as general 587

and adaptable as possible to efficiently simulate and capture the most accepted 588

mechanisms taking place during translation, i.e. codon-dependent elongation and 589

ribosome interference. At present, the specific rates of codon-dependent elongation are 590

only approximate and based on the prevalence of the corresponding tRNA in the human 591

genome [16]. By modifying this assumption, it is possible to further improve fits for the 592

elongation dynamics shown in Fig 4, and one could find codon dependent rates to 593

explain the diversity of experimentally measured elongation rates depicted in Fig 5. For 594

now, we argue that data from fewer than a dozen genes (and in different cell lines) is as 595

yet insufficient to fully constrain codon dependent rates for all 64 codons. However, as 596

new data is collected for more and more genes, we envision that it will become possible 597

to tune these parameters with greater precision and to capture a greater complement of 598

genes. 599

In addition to variation in initiation, elongation, codon usage, and tRNA 600
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concentrations, many other factors have been described to affect ribosome dynamics. 601

These include, but are not limited to, ribosome stalling or drop-off, pauses due to 602

secondary structures of the specific mRNA, and the electrostatic and hydrophobic 603

interactions between the mRNA and the ribosome [17,32]. We expect that the increased 604

prevalence of single-RNA translation experiments will add to the current understanding 605

and reveal additional mechanisms taking place during translation. At the same time, 606

such discoveries are bound to create new layers of model complexity. Although these 607

mechanisms have not yet been implemented in our present model, they can be captured 608

easily through modification of the set of elongation parameters, ke(i). For example, the 609

rSNAPsim toolbox allows for direct modification of elongation rates at a specific codon, 610

which can be used to mimic pauses at certain locations. Furthermore, all of the 611

computational analyses described above are easily adapted to allow for analysis of 612

simultaneous multi-frame translation dynamics (e.g., when translation occurs on 613

overlapping open reading frames as is the case during frame-shifted translation), as we 614

implemented and described in [14]. Similarly, the code is easily extended to analyze 615

translation of genes that contain more than one set of fluorescence tags in multiple 616

colors, as has been explored experimentally in [15]. 617

A main limitation in the experimental determination and quantification of 618

translation mechanisms is the specific design of the experiment to make that 619

quantification. For example, in its current form, the introduction of tag regions in the 620

open reading frame of the gene of interest can dramatically alter the overall translation 621

dynamics. As depicted in Fig 1B, the tag region is around 300 codons in length, and 622

this added length can substantially bias the measurement biophysical parameters, 623

especially when quantified using FRAP or run-off assays (see Fig 3). On the one hand, 624

our model can help to explain these differences (S11 Fig), but more importantly, the 625

models themselves can be used to simulate and evaluate different computational designs 626

to determine which are more likely to reveal important biophysical mechanisms or 627

parameters. We envision that user-friendly simulations, such as those provided by 628

rSNAPsim, can be used to optimize combinations of probe placement, gene length, 629

codon usage differences, video frame rates, drug-based perturbations, or specifications of 630

movie length. 631

Such simulation-based designs can be conducted prior to any new experimental 632

analysis and then used again to fit the results of those experiments, to pinpoint 633

discrepancies that may reveal new mechanisms, and to refine model parameters and 634

mechanisms. Such integration of experiment and computational model can help set the 635

stage for more efficient experiments that specifically target and quantify the full 636

complement of factors that modulate translation dynamics in living cells. 637

Materials and Methods 638

Studied gene constructs 639

To constrain our analyses, we use published gene sequences used on single-molecule 640

translation studies. An initial set of sequences were obtained from Morisaki et al., [6], 641

these constructs encode an N-terminal region with 10 repeats of FLAG-SM-tag (318aa) 642

followed by one of three different genes of interest: KDM5B (1549 aa), β-actin (375 aa) 643

and H2B (128 aa), the 3’ UTR region contains 24 repetitions of the MS2 stem-loops. A 644

second source of gene sequences comes from Yan, et al., [10], this gene construct 645

encodes 24 repeats of SunTag followed by the gene of interest kif18b (1800 aa), and the 646

3’ UTR contains 24 repeats of the PP7 bacteriophage coat protein. A sequence 647

encoding 56 SunTag repeats, the gene of interest Ki67 (3177 aa), and the 3’ UTR 648

containing 132 repeats of MS2 stem-loops was obtained from Pichon et al., [9]. Finally, 649
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multiple gene constructs were build using 10 repeats of FLAG-SM-tag followed by a 650

human gene. The studied human genes come from a comprehensive list of 2,647 gene 651

sequences obtained from the PANTHER database [25]. 652

Correction to mean and variance of fluorescence intensity for 653

the theoretical model 654

Neglecting ribosome exclusion, and under an assumption of memory-less initiation with 655

exponential rate ki, the number of ribosomes to initiate translation in a fixed time, τ , is 656

described by a Poisson distribution with mean and variance equal to kiτ . For a single 657

probe site, we can fix τ as the time it takes a ribosome to move from that site to the 658

end of the mRNA, and the mean and variance of nascent protein fluorescence can be 659

estimated in terms of units of mature protein fluorescence according to Eq. 21. 660

However, for probes that are spread out across a finite tag region, this distribution 661

requires a slight correction to account for ribosomes within the probe region that only 662

exhibit partial protein fluorescence. Let α(s) denote the intensity, scaled in units of 663

mature protein, exhibited by a ribosome at the position, s, along the mRNA as follows: 664

α(s) =

{
s/Lt for 0 ≤ s < Lt

1 for Lt ≤ s ≤ L
(30)

Under an assumption of uniform codon usage, a given ribosome on the mRNA has equal
probability to be at any site along the mRNA. If there are an average of µ mRNA total
on the mRNA, then the number at each location is approximated by a Poisson
distribution with mean and variance both equal to µ/L · ds. Recall that the mean of the
sum of two independent random variables is the sum of two means. Therefore, to find
the total mean intensity contribution for all ribosomes on an average mRNA (Eq. 22),
we can integrate along the length of the mRNA to find:

µI =

∫ L

0

µ

L
α(s)ds, (31)

=

(
1− Lt

2L

)
µ. (32)

Similarly, we recall that the variance of a random variable with variance σ2 and scaled
by α is equal to α2σ2 and the variance for the sum of two such variables is the sum of
the corresponding variances. Therefor, by noting that µ = σ2, we can find the total
variance of intensity on a single mRNA (Eq. 23) as:

σ2
I =

∫ L

0

µ

L
α(s)2ds, (33)

=

(
1− 2Lt

3L

)
µ. (34)

Fluorescence Correlation Spectroscopy (FCS) 665

FCS is usually implemented by computing and comparing the auto-covariances (or 666

autocorrelations) of fluorescence intensities of one or more particles within small fixed 667

volumes [34,35], but similar correlation analyses have been used to quantify intensity 668

fluctuations for tracked single particles [2]. For our analysis, we compute the temporal 669

auto-covariance times of the FLAG fluorescence signal intensity for a moving volume 670

that is centered around the moving RNA spot. 671

To estimate the rate of translation elongation, we took the following approach: first, 672

each experimental and simulated intensity time courses were centered to have zero mean 673
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by subtracting the average intensity of the time series, and then we normalize with 674

respect to the standard deviation. Next, we computed the covariance function of the 675

fluorescence intensity for each intensity spot according to the standard formula: 676

G(τ) = E{(It − µt)(It+τ − µt+τ )}, (35)

where τ denotes the time delay and E{v} denotes the expectation of some arbitrary 677

value v. 678

To reduce the effects of high-frequency shot noise and tracking errors that are not 679

considered in the model, the zero-lag covariance G(0) was removed from the 680

analysis [36]. For simulated data, we normalize the auto-covariance function by the 681

simulated variance, G(0), which we can compute directly. For the experimental data, we 682

cannot measure G(0) directly because it is dominated by shot noise, so we instead 683

interpolate G(0) using a linear interpolation of the first four points of the measured 684

auto-covariance function. For statistical purposes, auto-covariances for multiple 685

intensity time courses were calculated, and their value was averaged. Final results are 686

reported as mean values and standard error of the mean (SEM). This signal analysis 687

allowed us to measure the dwell time (τFCS) at which G(τ) = 0, from which the average 688

ribosome elongation rate can be calculated as: 689

k(FCS)e = L/τFCS . (36)

Parameter Uncertainty 690

Parameter uncertainty analyses were calculated by building parameter distributions 691

that reproduce results within a 10% error, calculated from 1,000 independent 692

simulations using randomly selected parameter values. Simulations were performed on 693

the W. M. Keck High-Performance Computing Cluster at Colorado State University. 694

Numerical Methods 695

For solving the model under stochastic dynamics we used the direct method from 696

Gillespie’s algorithm [37] coded in Matlab 2018b and Python 2.7. ODE models were 697

solved in Python 2.7. 698

Codes and Experimental Data 699

All codes and experimental data are available at: 700

https://github.com/MunskyGroup/Aguilera_PLoS_CompBio_2019.git. 701
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S1 Fig. Effect of initiation rate on ribosome dynamics. Translation was 704

simulated using the β-actin gene, varying initiations rates from 0.03 to 0.6, a constant 705

elongation (ke =10 aa/sec), and a ribosomal footprint of 9 codons. Top panels show a 706

kymograph of the ribosome movement. Lower panels show the distribution of collisions 707

for each ki. 708
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S2 Fig. Effect of elongation rate on ribosome dynamics. Translation was 710

simulated using the β-actin gene, varying elongation rates, a constant initiation (ki = 711

0.06 sec−1), and a ribosomal footprint of 9 codons. Top panels show a kymograph of 712

the ribosome movement. Lower panels show the distribution of collisions per each ke. 713
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Codon Usage Bias

Ribosome Occupancy
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714

S3 Fig. Codon usage and ribosome occupancy. Translation was simulated 715

using the a β-actin gene, varying initiations rates from 0.03 to 0.6, a constant elongation 716

(ke =10 aa/sec), and a ribosomal footprint of 9 codons. Top panels show a kymograph 717

of the ribosome movement. Lower panels show the distribution of collisions for each ki. 718
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S4 Fig. Codon optimization designs for β-actin. A) Ribosome dynamics for 720

β-actin under different codon optimization constructs (natural sequence, using only 721

common codons, and using only rare codons). In the kymographs, white lines represent 722

the ribosome positions, green spots represent ribosome collisions. The average and 723

standard deviation for the number of collisions is 3.2 ± 0.9 for the natural sequence, 2.4 724

± 0.8 collisions for the optimized sequence (common codons), and 6.9 ± 1.5 collisions 725

on the de-optimized sequence (rare codons). B) Ribosome loading for the three codon 726

optimization constructs. D) Auto-covariances calculated for the natural gene sequence, 727

a sequence where all codons are replaced by their most frequent synonymous codon 728

(optimized), and a sequence where all codons are replaced by their less frequent 729
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synonymous codon (de-optimized). Simulations were performed using the optimized 730

parameter values given in Eq. 29. 731
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732

S5 Fig. Codon optimization designs for H2B. A) Ribosomal dynamics for H2B 733

under different codon optimization constructs (natural sequence, using only common 734

codons, and using only rare codons). In the kymographs, white lines represent the 735

ribosome placement, green spots represent ribosome collisions. The average and 736

standard deviation for the number of collisions is 2.9 ± 0.7 for the natural sequence, 2.0 737

± 0.6 collisions for the optimized sequence (common codons), and 6.0 ± 1.1 collisions 738

on the de-optimized sequence (rare codons). B) Ribosome loading for the three codon 739

optimization constructs. D) Auto-covariances calculated for the natural gene sequence, 740

a sequence where all codons are replaced by their most frequent synonymous codon 741

(common), and a sequence where all codons are replaced by their less frequent 742

synonymous codon (rare). Simulations were performed using the optimized parameter 743

values given in Eq. 29. 744
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745

S6 Fig. Codon optimization designs for KDM5B. A)Ribosome dynamics for 746

KDM5B under different codon optimization constructs (natural sequence, using only 747

common codons, and using only rare codons). In the kymographs, white lines represent 748

the ribosome placement, green spots represent ribosome collisions. The average and 749

standard deviation for the number of collisions is 4.3 ± 2.0 for the natural sequence, 2.8 750

± 1.7 collisions for the optimized sequence (common codons), and 7.8 ± 3.1 collisions 751

on the de-optimized sequence (rare codons). B) Ribosome loading for the three codon 752

optimization constructs. D) Auto-covariances calculated for the natural gene sequence, 753

a sequence where all codons are replaced by their most frequent synonymous codon 754

(common), and a sequence where all codons are replaced by their less frequent 755

synonymous codon (rare). Simulations were performed using the optimized parameter 756

values given in Eq. 29. 757
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S7 Fig. Effects of tRNA depletion on ribosomal dynamics. A) Three 759

different genes were studied: KDM5B (magenta), β-actin (cyan) and H2B (orange). 760

Left plot shows the ribosome association time as a function of the tRNACTC 761

concentration. Right plot, shows the calculated elongation rates estimated by dividing 762

the gene length by the average time needed by the ribosome to complete a round of 763

translation. B) Kymographs show the ribosomal dynamics without depletion (upper 764

panels) and with 99% depletion of tRNACTC (lower panels). Above the kymographs, 765

the bar represents the studied gene, and the gray area represents the tag region, black 766

lines denote the positions CTC codons. The frequency of the CTC codon is 29 for 767

KDM5B, 8 for β-actin and 2 for H2B. Simulations were performed using the optimized 768

parameter values given in Eq. 29. 769

September 17, 2019 28/35

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 18, 2019. ; https://doi.org/10.1101/659987doi: bioRxiv preprint 

https://doi.org/10.1101/659987
http://creativecommons.org/licenses/by-nc-nd/4.0/


0%

90%

99%

99.9%

Ti
m

e 
(s

ec
)

Codon Position

Ti
m

e 
(s

ec
)

Ti
m

e 
(s

ec
)

Ti
m

e 
(s

ec
)

Pr
ob

ab
ilit

y

No. Collisions

Pr
ob

ab
ilit

y
Pr

ob
ab

ilit
y

Pr
ob

ab
ilit

y

tR
N

A C
TC

de
pl

et
io

n

770

S8 Fig. Depletion of specific tRNACTC for H2B. Kymographs (left) show the 771

simulated ribosomal dynamics under different percentages of depletion of tRNACTC . At 772

the top of the kymographs, the bar represents the studied gene, the gray area represents 773

the tag region, and black lines denote the positions of CTC codons. Histograms (right) 774

show the probability of ribosomal collision. Simulations were performed using the 775

optimized parameter values given in Eq. 29. 776
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777

S9 Fig. Depletion of specific tRNACTC for β-actin. Kymographs (left) show 778

the simulated ribosomal dynamics under different percentages of depletion of tRNACTC . 779

At the top of the kymographs, the bar represents the studied gene, the gray area 780

represents the tag region, and black lines denote the positions of CTC codons. 781

Histograms (right) show the probability of ribosomal collision. Simulations were 782

performed using the optimized parameter values given in Eq. 29. 783
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S10 Fig. Depletion of specific tRNACTC for KDM5B. Kymographs (left) 785

show the simulated ribosomal dynamics under different percentages of depletion of 786

tRNACTC . At the top of the kymographs, the bar represents the studied gene, the gray 787

area represents the tag region, and black lines denote the positions of CTC codons. 788

Histograms (right) show the probability of ribosomal collision. Simulations were 789

performed using the optimized parameter values given in Eq. 29. 790
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791

S11 Fig. Error size for the different methodologies used to calculate 792

elongation rates. Translation was simulated using the a β-actin gene with the 793

optimized parameter values given in Eq. 29. Error bars represent the standard deviation 794

(SD) of the number of repetitions given at the top of each plot. Vertical red lines 795

represent the application of Harringtonine for ROA. Vertical red line represents the time 796

of photobleaching for FRAP. 797

Computational design and interpretation of
single-RNA translation experiments.

Luis U. Aguilera, William Raymond, Zachary R. Fox, Michael May, Elliot Djokic, Tat-
suya Morisaki, Timothy J. Stasevich, Brian Munsky.

Supplementary Table 1.

Table S1. Codon usage table calculated from the Homo sapiens genome. Table is
computed using 93,487 CDS (Coding DNA Sequence), that represent a total of
40,662,582 codons, Nakamura, et al., 2000. Reference [21] in main Text.

TTT 17.6 TCT 15.2 TAT 12.2 TGT 10.6
TTC 20.3 TCC 17.7 TAC 15.3 TGC 12.6
TTA 7.7 TCA 12.2 TAA 1.0 TGA 1.6
TTG 12.9 TCG 4.4 TAG 0.8 TGG 13.2
CTT 13.2 CCT 17.5 CAT 10.9 CGT 4.5
CTC 19.6 CCC 19.8 CAC 15.1 CGC 10.4
CTA 7.2 CCA 16.9 CAA 12.3 CGA 6.2
CTG 39.6 CCG 6.9 CAG 34.2 CGG 11.4
ATT 16.0 ACT 13.1 AAT 17.0 AGT 12.1
ATC 20.8 ACC 18.9 AAC 19.1 AGC 19.5
ATA 7.5 ACA 15.1 AAA 24.4 AGA 12.2
ATG 22.0 ACG 6.1 AAG 31.9 AGG 12.0
GTT 11.0 GCT 18.4 GAT 21.8 GGT 10.8
GTC 14.5 GCC 27.7 GAC 25.1 GGC 22.2
GTA 7.1 GCA 15.8 GAA 29.0 GGA 16.5
GTG 28.1 GCG 7.4 GAG 39.6 GGG 16.5

1

798

S1 Table. Codon Usage Codon usage table calculated from the Homo sapiens 799

genome. Table is computed using 93,487 CDS (Coding DNA Sequence), representing a 800

total of 40,662,582 codons [21] 801
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