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ABSTRACT

Long non-coding RNAs (lncRNAs) have emerged as key coordinators of biological and cellular processes. Characterizing
lncRNA expression across cells and tissues is key to understanding their role in determining phenotypes including human
diseases. We present here FC-R2, a comprehensive expression atlas across a broadly-defined human transcriptome, inclusive
of over 109,000 coding and non-coding genes, as described in the FANTOM CAGE-Associated Transcriptome (FANTOM-CAT)
study. This atlas greatly extends the gene annotation used in the original recount2 resource. We demonstrate the utility
of the FC-R2 atlas by reproducing key findings from published large studies and by generating new results across normal
and diseased human samples. In particular, we (a) identify tissue specific transcription profiles for distinct classes of coding
and non-coding genes, (b) perform differential expression analyses across thirteen cancer types, providing new insights
linking promoter and enhancer lncRNAs expression to tumor pathogenesis, and (c) confirm the prognostic value of several
enhancers in cancer. Comprised of over 70,000 samples, the FC-R2 atlas will empower other researchers to investigate
functions and biological roles of both known coding genes and novel lncRNAs. Most importantly, access to the FC-R2
atlas is available from https://jhubiostatistics.shinyapps.io/recount/, the recount Bioconductor package, and
http://marchionnilab.org/fcr2.html.
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Introduction

Long non-coding RNAs (lncRNAs) are commonly defined as transcripts devoid of open reading frames (ORFs) longer than

200 nucleotides, which are often polyadenylated. This definition is not based on their function, since lncRNAs are involved in

distinct molecular processes and biological contexts not yet fully characterized1. Over the past few years, the importance of

lncRNAs has clearly emerged, leading to an increasing focus on decoding the consequences of their modulation, studying their

involvement in the regulation of key biological mechanisms during development, normal tissue and cellular homeostasis, and in

disease1–3.

Given the emerging and previously underestimated importance of non-coding RNAs, the FANTOM consortium has initiated

the systematic characterization of their biological function. Through the use of Cap Analysis of Gene Expression sequencing

(CAGE-seq), combined with RNA-seq data from the public domain, the FANTOM consortium released a comprehensive atlas

of the human transcriptome, encompassing more accurate transcriptional start sites (TSS) for coding and non-coding genes,

including numerous novel long non-coding genes: the FANTOM CAGE Associated Transcriptome (FANTOM-CAT)4. We

hypothesized that these lncRNAs can be measured in many RNA-seq datasets from the public domain and that they have been

so far missed by the lack of a comprehensive gene annotation.

Although the systematic analysis of lncRNAs function is being addressed by the FANTOM consortium in loss of function

studies, increasing the detection rate of these transcripts combining different studies is difficult because the heterogeneity

of analytic methods employed. Current resources that apply uniform analytic methods to create expression summaries from

public data do exist but can miss several lncRNAs because their dependency on a pre-existing gene annotation for creating the

genes expression summaries5, 6. We recently created recount27, a collection of uniformly-processed human RNA-seq data,

wherein we summarized 4.4 trillion reads from over 70,000 human samples from the Sequence Reads Archive (SRA), The

Cancer Genome Atlas (TCGA)8, and the Genotype-Tissue Expression (GTEx)9 projects7. Importantly, recount2 provides

annotation-agnostic coverage files that allow re-quantification using a new annotation without having to re-process the RNA-seq

data.

Given the unique opportunity to access lastest results to the most comprehensive human transcriptome (the FANTOM-CAT

project) and the recount2 gene agnostic summaries, we addressed the previous described challenges building a comprehensive

atlas of coding and non-coding gene expression across the human genome: the FANTOM-CAT/recount2 expression atlas

(FC-R2 hereafter). Our resource contains expression profiles for 109,873 putative genes across over 70,000 samples, enabling

an unparalleled resource for the analysis of the human coding and non-coding transcriptome.

Results

Building the FANTOM-CAT/recount2 resource

The recount2 resource includes a coverage track, in the form of a BigWig file, for each processed sample. We built the

FC-R2 expression atlas by extracting expression levels from recount2 coverage tracks in regions that overlapped unambiguous
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exon coordinates for the permissive set of FANTOM-CAT transcripts, according to the pipeline shown in Figure 1. Since

recount2’s coverage tracks does not distinguish from between genomic strands, we removed ambiguous segments that presented

overlapping exon annotations from both strands (see Methods section and Supp. Methods). After such disambiguation

procedure, the remaining 1,066,515 exonic segments mapped back to 109,869 genes in FANTOM-CAT (out of the 124,047

starting ones included in the permissive set4). Overall, the FC-R2 expression atlas encompasses 2,041 studies with 71,045

RNA-seq samples, providing expression information for 22,116 coding genes and 87,763 non-coding genes, such as enhancers,

promoters, and others lncRNAs.

Figure 1. Overview of the FANTOM-CAT/recount2 resource development. FC-R2 leverages two public resources, the
FANTOM-CAT gene models and recount2. FC-R2 provides expression information for 109,873 genes, both coding (22,110)
and non-coding (87,693). This latter group encompasses enhancers, promoters, and others lncRNAs.

Validating the FANTOM-CAT/recount2 resource

We first assessed how gene expression estimates in FC-R2 compared to previous gene expression estimates from other projects.

Specifically, we considered data from the GTEx consortium (v6), spanning 9,662 samples from 551 individuals and 54 tissues

types9. First, we computed the correlation for the GTEx data between gene expression based on the FC-R2 atlas and on

GENCODE (v25) gene model in recount2, which has been already shown to be consistent with gene expression estimates

from the GTEx project7, observing a median correlation � 0.986 for the 32,922 genes in common. This result supports the

notion that our pre-processing steps to disambiguate overlapping exon regions between strands did not significantly alter gene

expression quantification.

Next, we assessed whether gene expression specificity, as measured in FC-R2, was maintained across tissue types. To

this end, we selected and compared gene expression for known tissue-specific expression patterns, such as Keratin 1 (KRT1),

Estrogen Receptor 1 (ESR1), and Neuronal Differentiation 1 (NEUROD1) (Figure 2). Overall, all analyzed tissue specific
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markers presented nearly identical expression profiles across GTEx tissue types between the alternative gene models considered

(see Figure 2 and S1), confirming the consistency between gene expression quantification in FC-R2 and those based on

GENCODE.

Figure 2. Tissue specific expression in GTEx. Log2 expression for three tissue specific genes (KRT1, NEUROD1, and
ESR1) in GTEx data stratify by tissue type using FC-R2 and GENCODE based quantification. Expression profiles are highly
correlated and expressed consistently in the expected tissue types (e.g., KRT1 is most expressed in skin, NEUROD1 in brain,
and ESR1 in estrogen sensitive tissue types like uterus, Fallopian tubes, and breast). Correlations are shown on top for each
tissue marker. Center lines, upper/lower quartiles and Whiskers represents the median, 25/75 quartiles and 1.5 interquartile
range, recpectively.

Tissue-specific expression of lncRNAs

It has been shown that, although expressed at a lower level, enhancers and promoters are not ubiquitously expressed and are

more specific for different cell types than coding genes4. In order to verify this finding, we used GTEx data to assess expression

levels and specificity profiles across samples from each of the 54 analyzed tissue types, stratified into four distinct gene

categories: coding mRNA, intergenic promoter lncRNA (ip-lncRNA), divergent promoter lncRNA (dp-lncRNA), and enhancers

lncRNA (e-lncRNA). Overall, we were able to confirm that these RNA classes are expressed at different levels, and that they

display distinct specificity patterns across tissues, as shown for primary cell types by Hon et al.4, albeit with more variability
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likely due to the increased cellular complexity present in tissues. Specifically, coding mRNAs were expressed at higher levels

than lncRNAs (log2 median expression of 6.6 for coding mRNAs, and of 4.1, 3.8 and 3.1, for ip-lncRNA, dp-lncRNA, and

e-lncRNA, respectively). In contrast, the expression of enhancers and intergenic promoters was more tissue-specific (median =

0.41 and 0.30) than what observed for divergent promoters and coding mRNAs (median = 0.13 and 0.09) (Figure 3A). Finally,

when analyzing the percentage of genes expressed across tissues by category, we observed that coding genes are, in general,

ubiquitous, while lncRNAs are more specific, with enhancers showing the lowest percentages of expressed genes (mean ranging

from 88.42% to 41.98%, see Figure 3B), in agreement with the notion that enhancer transcription is tissue specific10.

Figure 3. Expression profiles across GTEx tissues. A) Expression level and tissue specificity across four distinct RNA
categories. The Y-axis shows log2 expression levels representing each gene using its maximum expression in GTEx tissues
expressed as transcripts per million (TMP). The X-axis shows expression specificity based on entropy computed from median
expression of each gene across the GTEx tissue types. Individual genes are highlighted in the figure panels. B) Percentage of
genes expressed for each RNA category stratified by GTEx tissue facets. The dots represent the mean among samples within a
facet and the error bars represent 99.99% confidence intervals. Dashed lines represent the means among all samples.

Differential expression analysis of coding and non-coding genes in cancer

We analyzed coding and non-coding genes expression in cancer using TCGA data. To this end, we compared cancer to normal

samples separately for 13 tumor types, using FC-R2 re-quantified data. We further identified the differentially expressed genes

(DEG) in common across the distinct cancer types (see Figure 4). Overall, the number of DEG varied across cancer types

and by gene class, with a higher number of significant coding than non-coding genes (FDR < 0.01, see table 1). Importantly,
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a substantial fraction of these genes was exclusively annotated in the FANTOM-CAT, suggesting that relying on other gene

models would result in missing many potential important genes (see Table 1). We then analyzed the consensus among cancer

types. A total of 41 coding mRNAs were differentially expressed across all the 13 tumor types after global correction for

multiple testing (FDR < 10-6, see Supplementary table S1). For lncRNAs, a total of 28 divergent promoters, four intergenic

promoters, and three enhancers were consistently up- or down-regulated across all the 13 tumor types after global correction for

multiple testing (FDR < 0.1, see Supplementary tables S2, S3, S4, respectively).

dp-lncRNA e-lncRNA ip-lncRNA mRNA

Cancer type Total Up Down Up Down Up Down Up Down

Bile 7010 200 (60) 313 (90) 186 (89) 203 (99) 47 (12) 84 (17) 2658 (106) 3319 (97)

Bladder 7680 344 (125) 319 (87) 140 (68) 149 (67) 65 (19) 82 (7) 3112 (201) 3469 (61)

Breast 15290 753 (291) 721 (202) 656 (377) 583 (305) 207 (50) 178 (32) 6109 (296) 6083 (244)

Colorectal 13685 490 (164) 592 (168) 381 (203) 400 (196) 130 (32) 160 (28) 5538 (371) 5994 (132)

Esophagus 4883 87 (21) 193 (50) 90 (38) 184 (103) 40 (11) 48 (2) 1921 (83) 2320 (77)

Head and Neck 10517 442 (138) 401 (96) 267 (139) 251 (112) 100 (23) 109 (18) 4329 (256) 4618 (53)

Kidney 15697 734 (238) 820 (281) 535 (299) 486 (209) 203 (45) 200 (48) 6349 (525) 6370 (114)

Liver 10554 346 (94) 395 (106) 230 (102) 248 (123) 90 (16) 112 (19) 4164 (174) 4969 (95)

Lung 17143 864 (338) 835 (304) 893 (512) 729 (396) 242 (76) 213 (39) 7523 (532) 5844 (212)

Prostate 13183 686 (287) 654 (218) 418 (254) 452 (214) 175 (55) 167 (30) 5153 (489) 5478 (128)

Stomach 11309 528 (213) 518 (164) 462 (291) 436 (240) 144 (51) 129 (22) 4509 (558) 4583 (89)

Thyroid 14264 752 (284) 804 (318) 527 (295) 594 (332) 161 (39) 174 (47) 5403 (189) 5849 (308)

Uterus 12906 641 (285) 713 (235) 454 (263) 612 (341) 210 (79) 225 (54) 5135 (335) 4916 (181)

Mean 11855 528 (195) 560 (178) 403 (225) 410 (211) 140 (39) 145 (28) 4762 (317) 4909 (138)

St. Dev 3650 237 (102) 218 (89) 225 (137) 189 (107) 67 (23) 55 (16) 1557 (167) 1234 (77)

Table 1. Differentially expressed genes in cancer. The table below summarizes the number of significant DEG
(FDR  0.01) between tumor and normal samples across the 13 cancer types analyzed for each gene class considered (coding
mRNA, ip-lncRNA, dp-lncRNA, and e-lncRNA). Counts are reported separately for DEG up- and down-regulated in cancer,
and values in parenthesis represents the number of genes exclusively annotated in the FANTOM-CAT gene model. Mean and
standard deviation across cancer types is shown at the bottom.

Next, we reviewed the literature to assess functional correlates for such consensus genes. Most of the up-regulated coding

genes (Supplementary Table S1) participate in cell cycle regulation, cell division, DNA replication and repair, chromosome

segregation, and mitotic spindle checkpoints. Most of the consensus down-regulated mRNAs (Supplementary Table S1) are

associated with metabolism and oxidative stress, transcriptional regulation, cell migration and adhesion, and with modulation

of DNA damage repair and apoptosis.

Three down-regulated dp-lncRNA genes, RP11-276H19, RPL34-AS1, and RAP2C-AS1, were reported to be implicated

in cancer (Supplementary Table S2). The first one controls epithelial-mesenchymal transition, the second is associated with
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tumor size increase, while the third is associated with urothelial cancer after kidney cancer transplantation11–13. Among

the up-regulated dp-lncRNAs (Supplementary Table S2), SNHG1 has been implicated in cellular proliferation, migration

and invasion of different cancer types, and to be strongly up-regulated in osteosarcoma, non-small lung cancer, and gastric

cancer14, 15.

Figure 4. Differential expression for selected transcripts from distinct RNA classes across tumor types. Boxplots for
selected differential expressed genes between tumor and normal samples across all 13 tumor types analyzed. For each tissue of
origin, the most up-regulated (on the left) and down-regulated (on the right) gene for each RNA class is shown. Center lines,
upper/lower hinges, and the whiskers respectively represent the median, the upper and lower quartiles, and 1.5 extensions of the
interquartile range. Color coding on top of the figure indicates the RNA classes (red for mRNA, purple for dp-lncRNA, cyan
ip-lncRNA, and green for e-lncRNA. These genes were select after global multiple testing correction across all 13 tumor types
(see Supplementary Tables S1, S2, S3, and S4)

Among the ip-lncRNAs ubiquitously down-regulated (see Supplementary Table S3), LINC00478 has been identified in many

different tumors types including leukemia, breast, vulvar, prostate, and bladder cancer16–20. For instance, in vulvar squamous

cell carcinoma, LINC00478 and MIR31HG expressions are correlated and associated with tumor differentiation17. Similarly,

LINC00478 down-regulation in ER positive breast cancer is associated with progression, recurrence, and metastasis18. In

contrast, increased expression of SNHG17 (an ip-lncRNA, see Supplementary Table S3), was associated with short term survival

in breast cancer, and with tumor size, stage, and lymph node metastasis in colorectal cancer21, 22. In addition, AC004463,

another ip-lncRNA (Supplementary Table S3), was found to be up-regulated in liver cancer and metastatic prostate cancer23.

Despite we did not identify any cancer association for common e-lncRNAs, one among those we identified, RP5-965F6, has

been previously reported to be up-regulated in late-onset Alzheimer’s disease24. Furthermore, the enhancers lncRNA class also

yielded the lowest number of genes in common among all cancer types, reinforcing the concept that enhancers are expressed in

a tissue specific manner (See Figure 3A and Supplementary Table S4).
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Finally, we focused more in depth on prostate cancer (PCa) as a prototypical example, and we were able to confirm previous

findings for both coding and non-coding genes (see Supplementary Figure S2). For coding genes, we confirmed differential

expression for known markers of PCa progression and mortality, like ERG, FOXA1, RNASEL, ARVCF, and SLC43A125, 26.

Similarly, we also confirmed differential expression for non-coding genes, like PCA3, the first clinically approved lncRNA

marker for PCa27, 28, PCAT1, a prostate-specific lncRNA involved in disease progression29, MALAT1, which is associated

with PCa poor prognosis30, CDKN2B-AS1, an anti-sense lncRNA up-regulated in PCa that inhibits tumor suppressor genes

activity31, 32, and the MIR135 host gene, which is associated with castration-resistant PCa33.

Enhancer expression levels hold prognostic value

The number of lncRNAs involved in cancer development and progression is rapidly increasing, we therefore analyzed the

prognostic value of the lncRNAs we identified in our gene expression differential analysis in TCGA, as well as those previously

reported in other studies. To this end, Chen and collaborators have recently surveyed enhancers expression in nearly 9,000

patients from TCGA34, using genomic coordinates from the FANTOM5 project35, identifying 4,803 enhancers with prognostic

potential in one or more TCGA tumor types. We therefore leveraged the FC-R2 atlas to identify prognostic coding and

non-coding genes using Univariate Cox proportional hazard models, comparing our results for e-lncRNAs with those reported

by Chen and colleagues.

When we considered e-lncRNA expression, we identified a total of 5,382 prognostic e-lncRNAs (FDR  0.05), and no

single one was associated with survival across all cancer types. Overall, the number of significant prognostic e-lncRNAs varied

across tumor types, ranging from 3 in head and neck cancer to 3,850 in kidney cancers (see Supplementary Table S6). Notably,

two (out of three) e-lncRNAs from our differential gene expression consensus list across all tumor types were also prognostic.

Higher expression of CATG00000107122 gene was associated with worse prognosis in kidney cancer (Supplementary figure

S4b) Overall, despite differences in annotation and quantification (see Supplementary Table S5), we were able to confirm

prognostic value for 2,765 e-lncRNAs out of the 4,803 reported by Chen et al34, including “enhancer 22” (ENSG00000272666),

which was highlighted as a promising prognostic marker for kidney cancer (Supplementary Figure S3).

Finally, we analyzed the prognostic value for dp-lncRNAs, ip-lncRNAs, and mRNAs (See Supplementary Tables S7, S8,

and S9, respectively), and assessed the survival prognostic potential of our consensus genes across tumor types. Thirty-seven of

the 41 coding mRNAs, 22 of the 28 differentially expressed dp-lncRNAs, and two out of the four DE ip-lncRNAs, respectively,

were found to be prognostic (See Supplementary Tables S10, S11, S12, and S13). Kaplan-Meier survival curves for one selected

DE gene on each RNA subtype evaluated here are shown in supplementary figure S4.

Discussion

The importance of lncRNAs in cell biology and disease has clearly emerged in the past few years and different classes of

lncRNAs have been shown to play crucial roles in cell regulation and homeostasis36. For instance, enhancers – a major category

of gene regulatory elements, which has been shown to be expressed35, 37 – play a prominent role in oncogenic processes38, 39
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and other human diseases40, 41. Despite their importance, however, there is a scarcity of large-scale datasets investigating

enhancers and other lncRNA classes, in part due to the technical difficulty in applying high-throughput techniques such as

ChIP-seq and Hi-C over large cohorts, and to the use of gene models that do not account for them in transcriptomics analyses.

Furthermore, the large majority of the lncRNAs that are already known – and that have been shown to be associated with some

phenotype – are still lacking functional annotation.

To address these needs, the FANTOM consortium has first constructed the FANTOM-CAT meta-transcriptome, a compre-

hensive atlas of coding and non-coding genes with robust support from CAGE-seq data4, then it has undertaken a large scale

project to systematically target lncRNAs and characterize their function using a multi-pronged approach (Ramilowski J, et al.,

manuscript in review42). In a complementary effort, we have leveraged public domain gene expression data from recount27, 43

to create a comprehensive gene expression compendium across human cells and tissues based on the FANTOM-CAT gene

model, with the ultimate goal of facilitating lncRNAs annotation through association studies. To this end, the FC-R2 atlas

is already in use in the FANTOM6 project (http://fantom.gsc.riken.jp/6/) to successfully characterize lncRNA

expression in human samples (Ramilowski J, et al., manuscript in review42).

In order to validate our resource, we have compared the gene expression summaries based on FANTOM-CAT gene models

with previous, well-established gene expression quantifications, demonstrating virtually identical profiles across tissue types

overall and for specific tissue markers. We have then confirmed that distinct classes of coding and non-coding genes differ in

terms of overall expression levels and specificity patterns across cell types and tissues. Furthermore, with this approach, we

were also able to identify mRNAs, promoters, enhancers, and other lncRNAs that are differentially expressed in cancer, both

confirming previously reported findings, and identifying novel cancer genes exclusively annotated in the FANTOM-CAT gene

model, which have been therefore missed in prior analyses with TCGA data. Finally, we also analyzed the prognostic value of

the coding and non-coding genes we identified, and confirmed survival associations in TCGA for measurable enhancers.

Collectively, by confirming findings reported in previous studies, our results demonstrate that the FC-R2 gene expression

atlas is a reliable and powerful resource for exploring both the coding and non-coding transcriptome, providing compelling

evidence and robust support to the notion that lncRNA gene classes, including enhancers and promoters, despite not being

yet fully understood, portend significant biological functions. Our resource, therefore, constitutes a suitable and promising

platform for future large scales studies in cancer and other human diseases, which in turn hold the potential to reveal important

cues to the understanding of their biological, physiological, and pathological roles, potentially leading to improved diagnostic

and therapeutic interventions.

Finally, all results, data, and code from the FC-R2 atlas are available as a public tool. With uniformly processed expression

data for over 70,000 samples and 109,873 genes ready to analyze, we want to encourage researchers to dive deeper into the

study of ncRNAs, their interaction with coding and non-coding genes, and their influence on normal and disease tissues. We

hope this new resource will help paving the way to develop new hypotheses that can be followed to unwind the biological role

of the transcriptome as a whole.
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Methods

Figure 5. Processing the FANTOM-CAT genomic ranges. This figure summarizes the disjoining and exon disambiguation
processes performed before extracting expression information from recount2 using the FANTOM-CAT gene models. A)
Representation of a genomic segment containing 3 distinct, hypothetical genes: gene A having two isoforms, and genes B and
C with one isoform each. Each box can be interpreted as one nucleotide along the genome. Colors indicate the 3 different
genes. B) Representation of disjoint exon ranges from example in Panel A. Each feature is reduced to a set of non-overlapping
genomic ranges. The disjoint genomic ranges mapping back to two or more distinct genes are removed (crossed grey boxes).
After removal of ambiguous ranges, the expression information for remaining ones is extracted from recount2 and summarized
at the gene level.

Data and pre-processing.

The FANTOM CAT gene catalog (permissive set) was obtained from the FANTOM consortium within the frame of the

FANTOM6 project (Ramilowski J, et al., manuscript in review42). This catalog accounts for 124,245 genes supported by CAGE

peaks and it includes those described by Hon et al.4. In order to remove ambiguity due to overlapping among exons from distinct

genes, the BED files containing the coordinates for all genes and exons were processed with the GenomicRanges R/Bioconductor

package44 to obtain exon coordinates disjoining. To avoid losing strand information from annotation we processed data using a

two-step approach by first disjoining overlapping segments on the same strand and then across strands (Figure 5). The genomic

ranges (disjoint exons segments) that mapped back to more than one gene were discarded. The expression values for these ranges
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were then quantified using recount.bwtool45 (code at https://github.com/LieberInstitute/marchionni_

projects). The resulting expression quantification were processed to generate RangedSummarizedExperiment

objects compatible with the recount2 framework7, 43 (code available from https://github.com/eddieimada/fcr2).

Thus, the FC-R2 atlas provides expression information for coding and non-coding genes (including enhancers, divergent

promoters, and intergenic lncRNAs) for 9,662 samples from the Genotype-Tissue Expression (GTEx) project, 11,350 samples

from TCGA, and over 50,000 samples from the Sequence Read Archive (SRA).

Correlation with other studies.

To test if the pre-processing steps used for FC-R2 had a major impact on gene expression quantification, we compared

our data to the published GTEx expression values obtained from recount2 (version 2, https://jhubiostatistics.

shinyapps.io/recount/). Specifically, we first compared the expression distribution of tissue specific genes across

different tissue types and then computed the Pearson correlation for each gene in common across the original recount2 gene

expression estimates based on GENCODE and our version based on the FANTOM-CAT transcriptome.

Expression specificity of tissue facets.

We analyzed the expression level and specificity of each gene stratified by RNA class (i.e. mRNA, e-lncRNA, dp-lncRNA,

ip-lncRNA) using the same approach described by Hon et al.4 (see Supplementary Methods). Briefly, overall expression levels

for each gene were represented by the maximum transcript per million (TPM) values observed across all samples within each

tissue type in GTEx. Gene specificity was based on the empirical entropy computed using the mean expression value across

tissue types. The 99.99 percent confidence intervals for the expression of each category by tissue type were calculated based on

TPM values. Genes with a TPM greater than 0.01 were considered expressed.

Identification of differentially expressed genes.

We analyzed differential gene expression in 13 cancer types, comparing primary tumor with normal samples using TCGA data

from the FC-R2 atlas. Gene expression summaries for each cancer type were split by RNA class (coding mRNA, intergenic

promoter lncRNA, divergent promoter lncRNA, and enhancer lncRNA) and then analyzed independently. A generalized linear

model approach coupled with empirical Bayes moderation of standard errors46 was used to identify differentially expressed

genes between groups. The model was adjusted for the three most relevant coefficients for data heterogeneity as estimated

by surrogate variable analysis (SVA)47. Correction for multiple testing was performed across RNA classes by merging the

resulting p-values for each cancer type and applying the Benjamini-Hochberg method48.

Prognostic analysis.

To evaluate the prognostic potential of the genes in FC-R2, we performed univariate Cox proportional regression analysis

separately for each RNA classes (22106 mRNAs, 17,404 e-lncRNAs, 6,204 dp-lncRNAs, and 1,948 ip-lncRNAs) across each

of the 13 TCGA cancer types with available survival follow-up. Genes with FDR equal or less than 0.05, using Benjamini-
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Hochberg correction48 within the cancer type and RNA class, were deemed as significant prognostic factors. We further

analyzed the prognostic value of the consensus genes we identified comparing tumors to normal samples by intersecting the

corresponding gene lists with those obtained by Cox proportional regression. Finally, in order to compare the results from

prognostic analyses, we obtained data on enhancers position and prognostic potential from Chen et al. original publication34

and performed a liftover to the hg38 genome assembly to match FC-R2 coordinates.

Data Availability

All data is available from http://marchionnilab.org/fcr2.html. Expression data can be directly accessed through

https://jhubiostatistics.shinyapps.io/recount/ and the recount Bioconductor package (v1.9.5 or newer)

at https://bioconductor.org/packages/recount as RangedSummarizedExperiment objects organized by The

Sequence Read Archive (SRA) study ID. The data can be loaded using R-programming language and is ready to be analyzed

using Bioconductor packages or the data can be exported to other formats for use in another environment.

Code Availability

All code used in this manuscript is available for reproducibility and transparency at: https://github.com/eddieimada/

fcr2 and https://github.com/LieberInstitute/marchionni_projects.
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