bioRxiv preprint doi: https://doi.org/10.1101/658831; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

3D-printed moulds of renal tumours for image-guided tissue
sampling in the clinical setting

Mireia Crispin-Ortuzar'™?, Marcel Gehrung'®, Stephan Ursprung'?, Andrew B Gill?,
Anne Y Warren?, Ferdia A Gallagher?, Thomas J Mitchell*®, Iosif A Mendichovszky®
Andrew N Priest®2, Grant D Stewart*!, Evis Sala'?!, Florian Markowetz'"*

1 Cancer Research UK, Cambridge Institute, University of Cambridge, UK

2 Department of Radiology, University of Cambridge, UK

3 Department of Histopathology, Cambridge University Hospitals NHS Foundation
Trust, Cambridge, UK

4 Department of Surgery, University of Cambridge, UK

5 Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK

6 Department of Radiology, Cambridge University Hospitals NHS Foundation Trust,
Cambridge, UK

@These authors contributed equally to this work.
IShared senior authorship.
* mireia.crispinortuzar@cruk.cam.ac.uk, florian.markowetzQcruk.cam.ac.uk

Abstract

Spatial intratumoural heterogeneity is a major challenge in precision medicine. Progress
to better understand the relationship between genetic heterogeneity and tissue
heterogeneity depends on accurately co-registering imaging data and tissue samples. We
address this challenge in patients with renal cell carcinoma undergoing radical
nephrectomy and propose a computational approach to produce patient-specific
3D-printed moulds that can be used in the clinical setting. Our approach achieves
accurate co-registration of sampling location between tissue and imaging, and integrates
seamlessly with the clinical, imaging and pathology workflows. It also provides image
guidance for tissue sampling while respecting pathologists’ preference for specific cutting
planes, irrespective of the presence of perinephric fat. The methodology is tested on a
patient undergoing radical nephrectomy, obtaining Dice similarity coefficients between
imaging and tissue ranging from 0.75 to 0.92. Our work provides a robust and
automated interface between imaging and tissue samples, enabling the development of
clinical studies to dissect tumour heterogeneity at multiple scales.

Author summary

Cancer is a complex disease. Different parts of a single tumour often look different in
medical images; they sometimes even carry different genetic information. This
complexity may be key to understanding why some tumours respond better to therapy
than others. Once the tumour has been removed through surgery, we can obtain tissue
samples that allow us to study its spatial composition. However, matching these data to
the images that were obtained before surgery is challenging. We have developed a
computational methodology that relies on 3D printing to create tumour moulds that
help us match images and tissue accurately. In addition, unlike previous approaches,
our technology does not disrupt clinical practice, so it can be used routinely.
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Introduction

Molecular tumour profiling is used to stratify patients and identify new actionable
targets for precision therapeutics. The assessment is typically based on data from a
single tumour biopsy [1]. Often, however, tumours display such a high degree of
heterogeneity that a single tissue sample is insufficient to capture the full molecular
landscape of the disease [2]. A prime example of such spatial heterogeneity is renal cell
carcinoma (RCC), which has been shown to be radiologically, genetically, and
metabolically heterogeneous [3-5]. Macroscopic regions with distinct genotypes can be
identified within a single tumour through multiregional sampling [3,6]. In parallel,
radiological imaging provides non-invasive, three-dimensional information on phenotypic
heterogeneity [7,8]. The fact that RCC displays spatial heterogeneity at such disparate
physical scales suggests that a combined approach to integrate the relevant data sources
(genomics, transcriptomics, radiomics) is needed to unravel the complexity of the
disease [9]. This would provide the necessary tissue context and macroscopic dimension
to studies of genomic tumour evolution [4,10-12]. The foundation of a combined
analysis is the accurate spatial co-registration of imaging data and biopsies. However,
accurate multiregional tumour biopsies can only be obtained after nephrectomy, when
image-guidance is no longer a possibility.

The challenge of co-registering in vivo images to resected tumours has been
addressed in other contexts. Previous solutions included holding the specimen with a
cradle [13] or solidified agar [14]. However, these approaches had several disadvantages,
including not being clinically usable, or not providing accurate orientation. More
recently, personalised 3D moulds have been used to improve the accuracy of
co-registration in prostate cancer [15-17] and ovarian cancer studies [18].

In RCC, however, 3D-printed moulds remain comparatively underexplored [19], as it
presents unique challenges. The first challenge arises from the pathology guidelines for
assessment of radical nephrectomy specimens, which requires optimal visualisation of
the renal sinus—tumour interface. The most commonly adopted initial plane of incision
is along the long axis at midpoint, with further sectioning usually perpendicular to this
plane [20-22]. Thus, the sectioning planes are in general not the same as those used for
imaging. An additional challenge is that pathologists need to preserve the integrity of
some structures which are required for staging, such as the renal vein. Finally, the
specimen is often covered by a thick layer of perinephric fat [23], which further
complicates the procedure and can make it impossible to identify relevant structures.

Because of these restrictions, previous 3D-printing-based co-registration methods for
RCC have either been limited to pre-clinical models [24], or have only focused on
early-stage partial nephrectomy cases [25], where the fat-free resection margin can be
used as a base for sectioning. In addition, none of them addressed the issue of having
different sectioning and imaging planes. New methods are therefore needed to
accurately match macroscopic habitats defined by imaging to specific tissue regions.
Importantly, these methods need to integrate smoothly into the clinical pathway to
allow future use in clinical trials and potentially clinical practice.

Here we report the design and implementation of a method to obtain multiple tissue
samples accurately registered to a pre-surgical multiparametric magnetic resonance
imaging (MRI) in patients undergoing radical nephrectomy for suspected RCC. Our
methodology is based on a patient-specific 3D printed mould and is tailored for seamless
integration with the clinical workflow:

1. Our approach respects the orientation of sectioning required for pathology
examination;

2. Our approach transforms MRI images onto the pathology sectioning space, and
provides slice-wise image-based tumour habitat maps that guide tissue sampling;
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3. Our approach uses a landmark-based method that enables orientation of
specimens obscured by a large adipose layer.

These features make our method a substantial step forward towards creating datasets
with accurately matched imaging, histological and genomics data. Below we present the
computational details of the method, provide an in-depth protocol on how it can be
generally applied to solid human tumours, and use a RCC radical nephrectomy case as
an example.

Results

The mould is a three-dimensional block, with vertical slits that guide the sectioning,
and a cavity designed to precisely fit the resected specimen, as shown in Figure 1. The
shape of the cavity is derived from the 3D volumes drawn by a radiologist on a MR
image of the tumour, which are rotated until the tumour is oriented along the desired
direction inside the mould.

Our method therefore has four steps: (1) image segmentation, (2) image
re-orientation and clustering, (3) mould optimisation and 3D printing, and (4) habitat
sampling (Figure 1). This report focusses on the first three steps to design patient
specific moulds. The method was designed to be as robust, reproducible and automated
as possible. Steps (2) and (3) are fully automated. Step (1) requires manual
intervention, but is assisted by computational techniques. This set-up aims to minimize

experimental errors and facilitates the adoption of the method by other research groups.

Figure 2 illustrates how these steps are integrated into the clinical workflow.
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Fig 1. Overview of our approach The schematic depicts the four steps of the
method bridging from MRI scans to spatial surgical biopsies. The method starts with
the delineation of a MRI scan, which is then re-oriented, carved into a 3D-printed
mould, and used for spatially accurate surgical biopsies. The slots of the mould guide
the knife for cutting.

MRI imaging and
segmentation

Personalised 3D mould design
Step 1: Image segmentation

Our approach requires two types of regions of interest (ROIs) to be drawn on the
images: tissue segmentations and anatomic landmarks. Tissue segmentations are needed
to test the spatial accuracy of the framework; they include the tumour, normal kidney,
renal pelvis, and perinephric fat. Combined, they form the global outline of the
specimen, which defines the shape of the mould. The centroid of the outline volume is
referred to as the absolute centroid (Cj).

In addition, four anatomic landmarks are needed to determine the correct
orientation of the specimen inside the mould. The first two are the upper and lower
poles of the kidney, which are needed to ensure that the kidney can be sectioned along
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its long axis at midpoint [20]. The other two anatomic landmarks are the hilum and the
area of the tumour with the thinnest fat coverage, referred to as the ‘tumour contact’
point. They are used to ensure that the specimen is accurately positioned.
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Fig 2. Integration of the clinical and computational pipelines. Flow chart of
the different analysis steps performed by the radiology, surgery, pathology and
computational groups to ensure seamless integration between the clinical and research
arms. The yellow box highlights the computational steps of the pipeline.

Research
samples

Step 2: Image orientation

Our approach is designed to address the two key challenges explained in the
introduction, both of which can be solved by controlling the orientation of the specimen
within the mould. To achieve the correct orientation, we first apply all the necessary
transformations to the images, and then extract the volumes needed for mould design.

The first challenge concerns the direction along which the specimen has to be
sectioned, following pathology protocols for renal cancer staging. To address it, we
apply a 3D rotation to the images and create new slices that align with the preferred
sectioning plane, which is defined by Cy and the upper and lower pole ROlIs.

The second challenge concerns the need to accurately place the specimen in the
mould, even when it is covered in perinephric fat. We overcome this problem by
defining reference landmarks that are expected to be exposed and identifiable in the
specimen, and placing them at the base of the mould. These points act as anchors that
ensure that the specimen is correctly positioned. The points are marked by carving
2 cm holes in the base of the mould that enable the pathologist to see and feel them, as
shown in Figure 3. The two landmark points used for this purpose are the hilum and
the tumour contact point.

Once the image has been rotated as desired, we extract the outline volume needed
for the mould, and treat it as a set 3D structure with fixed orientation during the rest
of the modelling process.
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Step 3: Mould optimisation and 3D printing

The volumetric matrix obtained after the re-orientation step is subsequently processed
by applying a marching cubes algorithm. The resulting mesh is then reduced in its
complexity by face reduction (target number of 5000), adaptive remeshing, three
iterations of Laplacian smoothing, Taubin smoothing and several operations to ensure a
closed mesh. Once the volume is smooth, it is carved off from a solid block-shaped base,
and vertical slots are created to guide the knife during sectioning. The location of the
inter-slot spaces is designed to match the exact location of the imaging slices. Finally,
we carve holes with a diameter of 2cm at the contact and hilum landmark points. This
entire process is automated [26].

Fig 3. Optimised, patient-specific tumour mould. 3D rendering of the tumour
mould viewed from three different angles showing the reference holes, sectioning slots
and overall shape of the specimen.

Validation

The methodology was validated using a specimen from a 69-year-old man who
underwent a laparoscopic radical nephrectomy. The tumour was a clear cell RCC (65
mm) with minimal tumour necrosis, invasion of the renal sinus fat and renal vein
tributaries. Tumour stage was pT3a pNX, and Leibovich score of 6, meaning high risk
of disease recurrence. MRI images were obtained 12 days before resection. The total
volume of the lesion was 146 cm®. Tumour, normal kidney and perinephric fat were
delineated on a pre-surgical T1w MR image, as well as the hilum, renal pelvis, tumour
contact point and kidney poles. The segmentations were checked by a radiologist with
15 years of experience in genitourinary imaging (ES). Images and landmarks were
re-oriented using a MATLAB implementation of the method explained above, and a
mould was automatically generated and 3D-printed [26]. The mould measured

8 x 18.6 cm and 3D printing took 18 hours. Reference points were marked with holes, as
illustrated in Figure 3.

Habitats

Multiparametric MR images were co-registered and used to define spatial habitats
inside the tumour using k-means clustering. In particular, we used T1lw and T2w
images, T1 map, K% from dynamic contrast enhanced (DCE) MRI as a measure of
tumour vascular leakage, the diffusion coefficient and perfusion fraction from IVIM MRI
imaging (f) as a measure of cellularity and tumour perfusion, and R2*, as a measure of
oxygenation. We found three distinct habitats, as shown in Figure 4(e).
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Dissection and sectioning 138

The specimen was placed in the mould and sectioned 20 minutes after laparoscopic 139
nephrectomy. The resection margin was inked for R-staging and all the perinephric fat 1o
was preserved. A slice with significant presence of all the habitats of the tumour, as well  1a
as being sufficiently separated from the hilum, was chosen for sectioning. The cut was 1
made with a 12-inch CellPath Brain Knife. 143

Anatomical landmark validation 144

The slice provided a clean longitudinal cut of the kidney, including the renal pelvis and s
a cross section of the tumour, as illustrated in Figure 4(a). The tumour presented two 14
hemorrhagic areas and a necrotic core. 147

The slice was photographed and reference tissues (tumour, kidney and renal pelvis) s
were manually contoured. The co-registration between MRI segmentations and tissue 140
contours yielded Dice Similarity Coefficients (DSCs) [27] of 0.92 for the tumour, 0.75 for 15

the renal pelvis and 0.76 for the kidney, as shown in Figure 4(c). 151
(c)
Tumour ) Renal pelvis
DSC =0.92 DSC =0.75
—— Specimen boundaries Kidney
[ Imaging ROIs DSC =0.76
1000 1500 1000 2000 3000 4000 1000 2000 3000
T1W AU] T2W [A.U] T1 map [ms]
i P 5, o ) o o i .
Do (IVIM) ™™ favimy - ™ K'"s(DCE) ™"’

Habitat 3

[ ] Habitat 1 [[] Habitat2 [] Habitat 3
0 002 ';.‘024* 0.06 ﬁvgg]
Fig 4. Image-guided sectioning. (a) Central slice of the resected specimen.
(b) Overlay of the resected specimen and the anatomical structures delineated on the
T1w scan. (c) Dice coefficients between the T1w-based segmentations and the observed
tissue boundaries. (d) Overlay of the tumour habitats and the resected specimen.

(e) Relative distributions of imaging parameters for the three tumour habitats.

Functional signal validation 152

All three habitats present with distinct distributions with respect to perfusion fraction 1ss
f, K215 and R2* maps, as shown in Figure 4(e). Habitat 1 was found to be poorly 154
perfused and have a high diffusivity, T1w hypointensity and T2w hyperintensity. This  1ss
habitat was found to overlap with the necrotic area found in the resected specimen, as  1ss

shown in Figure 4(d). 157

Habitats 2 and 3 showed similar parametric distributions. Habitat 2 was adjacent to  1ss
the kidney and showed the highest levels of K1, Habitat 3 showed the lowest 150
diffusivity levels, as well as high R2*. 160
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Discussion

Capturing the full complexity of the disease is very challenging in cases like RCC, where
tumours typically display a high degree of spatial heterogeneity both at the imaging and
genomics level. In this paper we have presented a new methodology that overcomes one
of the key problems in this area, namely the need to accurately match macroscopic
habitats defined by imaging to specific tissue regions, without disrupting routine clinical
practices. By integrating smoothly into clinical practice, our methodology has the
potential to be widely applicable in clinical trials and therefore enable the creation of
unprecedented datasets with matched imaging, histological and genomics data.

Mapping imaging and sectioning planes. Our approach was designed to address
one of the limitations of previous 3D-printing-based co-registration methods, which
assumed that tumours can be sectioned along the same plane that was used for MR
imaging. This assumption generally interferes with pathology protocols. Commandeur
et al. proposed a methodology to co-register histological planes to MRI slices for
prostate cancer [28]. However, this co-registration has to be performed a posteriori and
therefore the surgical biopsies would need to be obtained without image guidance, which
might result in sub-optimal tumour sampling [10].

Instead, our approach uses a landmark system based on the definition of two
reference points drawn by the radiologist on the MR scan (the upper and lower poles of
the kidney). These points are then used to define the rotation to be applied to the
images. We found that the rotation provided a longitudinal cut of the kidney, as
expected.

Accurate co-registration in the presence of perinephric fat. The second
challenge addressed by our approach is the presence of perinephric fat, which adds two
complications to the tissue co-registration process: the difficulty in predicting the exact
shape of the resected specimen, as the definition of optimal margins is controversial [29];
and the lack of an anatomical frame of reference to correctly position the specimen in
the mould. Removing or trimming the fat may interfere with clinical practice, as it
could compromise the surgical margins, which need to be evaluated for the presence of
tumour cells [30]. A solution has been previously proposed for partial nephrectomy

cases, using the inner parenchymal surface of the tumour as the base of the mould [25].

This method involved the surgeon inserting fiducial markers into the tumour during
surgery, which interrupts the routine clinical pathway. In addition, partial nephrectomy
is only recommended to treat small renal masses [31], so more advanced cases, which
have typically poorer outcomes and are therefore of particular clinical relevance [32]
would not be tractable with this approach.

Our methodology instead relies on a second set of key landmarks that can be used to
orient the specimen even when there is a large component of fat. The landmarks used
are the hilum, which can be identified by the presence of major blood vessels and the
ureter emerging from the kidney, and a tumour or kidney area with thin or absent fat
coverage. These reference points are placed at the base of the mould and marked with
holes that allow the pathologist to confirm their correct positioning. This approach

—combined with the first part of the re-orientation mechanism, which ensures that the
sectioning is performed in the desired direction— resulted in an accurate co-registration
between imaging and resected specimen. In particular, anatomical image segmentations
were found to agree with the corresponding tissue outlines after mould-assisted
sectioning, with DSCs ranging between 0.75 and 0.92. In addition, we observed that the
tumour habitats identified from multiparametric MRI coincided with observable
features of the tissue. For example, habitat 1 presented all the characteristics of necrotic

May 29, 2019

7/14

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209


https://doi.org/10.1101/658831
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/658831; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

tissue (poor perfusion, high diffusion, T1w hypointensity and T2w hyperintensity), and
indeed coincided with the necrotic core of the tumour [33]. Similarly, habitat 3, which
was closest to the normal kidney and therefore potentially could have better vascular
access, was found to have high Ktrars,

As expected, there was a thick layer of fat surrounding the kidney (see Figure 4),
which made it impossible to see the kidney or identify its orientation by simple visual
inspection. This would have been a challenge even in the standard clinical setting, and
the pathologist found that the mould provided useful support and assistance aside from
its research goals.

Limatations of the approach. Our approach shares some limitations with most
other co-registration approaches. First of all, there is a time constraint between imaging
and surgery. In this study imaging occurred 2 weeks before surgery, which could have
resulted in anatomical changes and therefore an inadequate mould design. Shape-wise,
additional uncertainty may arise from the segmentation of the structures on the MR
images. Although several approaches for semi-automatic segmentation of kidney
tumours exist [34-36], the preferred option is still manual contouring. Our methodology
requires the additional delineation of perinephric fat, for which manual contouring, after
discussion with the surgeon, is preferred. Although placing the point with the least fat
coverage at the bottom of the mould helps reduce the uncertainty, intra-operative
decisions may result in a different fat distribution. Having a single-sided mould
(without an upper half) means that changes in the upper side of the specimen do not
impact the accuracy, but any variations in the other half might. Finally, the
methodology also requires validation in a larger patient cohort.

Impact and future work. The methodology we have presented here will be a core
element of the WIRE renal cancer trial [37]. Future improvements to the mould design
will include a cutting guide that directs the knife before it gets to the tumour, and an
extension of the habitat definition to include radiomics features. By tightly integrating
into the workflows of clinical trials, our methodology will enable the creation of large

spatially-matched multiscale datasets including radiomics, genomics and histology data.

Material and Methods
Code

All the code necessary to reproduce these results, including volume orientation, 3D
mould design, 3D printing, and habitat generation, can be found in
d0i:10.5281 /zenodo.3066304.

Ethics

The method was designed as part of a physiological study currently being undertaken at
the University of Cambridge with the aim of exploiting the integration of imaging and
tissue based biomarkers to unravel tumor heterogeneity in renal cancer. The patient
included in the present work received a laparoscopic radical nephrectomy. Informed
consent was obtained for the Molecular Imaging and Spectroscopy with Stable Isotopes
in Oncology and Neurology - substudy in renal cancer (MISSION) after prior approval
by the East of England - Cambridge South ethics committee (REC: 15/EE/0378).
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MRI data acquisition

The 3D model of the tumour was designed based on a T1-weighted (T1w) MRI scan
acquired using a Dixon imaging sequence (Table 1) acquired two weeks before surgery
on a clinical 3T MRI (Discovery MR750, GE Healthcare, Waukesha, WI). Regions of
interest (ROIs) were manually delineated by a radiologist on each slice of the MRI scan,
using OsiriX (Version 10.0.0 [38]). The contours were drawn on coronal unenhanced
T1w images using registered T2w and post-contrast T1w images to verify the accuracy
of the ROIs. The segmentation was independently reviewed by a second radiologist.
ROIs were exported from OsiriX to comma separated value files (.csv) encoding the
coordinates of the edges of the ROI on each slice using the Export ROIs plugin (Version
1.9). The centroid of each ROI was calculated as the mean of all x, y and z coordinates
of the voxels within it.

Sequence TR [ms] TE [ms] Flip Angle [/] | Voxel size [mm?] | Spacing [mm] Comment
T1w Lava-Flex 3.7 1.1,2.2 10 1.6 x1.8 x4 2 BH
T2w HyperCUBE 6000 96.8 90 1.6 x1.8x4 2 RT
DWI (IVIM) 6666 78.9 90 3.0x3.0x4 2 RT
b = 0, 10, 20, 30,
50, 100, 300, 500,
700, 900 s/mm?
R2*mapping 110 2.3-36.2 30 1.6 x 1.8 x4 4 multiple BH
(12 echoes)
T1 mapping 3.7 1.1, 2.2 2,3,5, 2.0x 23 x4 2 BH
Lava-Flex 8, 14
DCE-MRI 3.8 1.1, 2.2 18 20x23 x4 2 multiple BH,
Lava-Flex 10 mins duration

TR: Repetition Time, TE: Echo Time, BH: Breath Hold, RT: Respiratory Triggering, DWI: Diffusion Weighted Imaging, IVIM:
Intravoxel Incoherent Motion, DCE: Dynamic Contrast Enhanced. Voxel sizes give acquired resolutions.

Image pre-processing

Before generation of parameter maps, deformable motion correction was applied in
MATLAB (Mathworks, Natick, MA) and utilizing ANTs/ITK [39]. In the case of
DWI-MRI this was applied across acquisitions with differing b-values; in the case of
DCE-MRI, this was applied across acquisition time-points and the associated T1 maps
were transformed accordingly. Parameter maps were then generated using MATLAB in
the case of DWI-IVIM, and using MIStar (Apollo Medical Imaging Technology,
Melbourne, Australia) in the case of DCE-MRI, employing the Tofts model [40] and a
model arterial input function. R2* maps were generated at source on the MR scanner
using standard manufacturer software. All parameter map volumes were then aligned to
the T1-weighted reference series used to prepare the mould. This was performed in two
stages: first each parameter map volume was resampled into the space of the T1w
reference series. Finally, and only if necessary, a rigid registration transform to more
closely align the map with the reference image was determined manually using the
software package ITK-SNAP; this transform was then applied to the parameter map
volume.
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Mould orientation

The method proceeds as follows. First, the MR scan is re-sampled to achieve an
isotropic resolution of 1 x 1 x 1 mm? using nearest neighbour interpolation, as
implemented in CERR [41]. Then, two three-dimensional rotations are applied. Several
vectors connecting the structure centroids are defined to guide the re-orientation
process, as follows:

L = 0.5 x ('Uhilum + Vtumour contact); (1)
vLc = UCO — L, (2)
Upoles = Vupper — Vlower (3

where v; indicates the coordinates of the centroid of structure ¢, with vypper representing
the centroid of the upper pole, and vjower the centroid of the lower pole. The first
rotation aligns vy,c with the z axis. The second rotation aligns vpoles With the z — 2

plane. Combined, the two rotations ensure that the orientation conditions are satisfied.

Before extracting and exporting the re-oriented volume for mould design, the surface
is smoothed using 3D Gaussian filtering with a convolution kernel of size 9 x 9 x 9
voxels and standard deviation of 3 voxels. Finally, the MR images are sliced along the
x — z plane with a spacing of 1 cm. These are used to build reference maps that will
later guide the tissue sampling process; they also coincide with the location of the
mould’s slots.

3D printing

The model was sliced using Slic3r (Prusa Research, Czech) and printed with 0.2 mm
layer height on a Prusa i3 MK3 printer loaded with RS PRO PLA filament (RS
Components, UK).

Habitat clustering

In order to guide the process of tissue sampling, imaging maps were created for each
tumour slice. The maps were obtained by combining multiparametric MR, images and
clustering them into several spatial clusters.

Along with the reference T1w images, additional sequences were acquired to define
the phenotypic habitats. In particular, the images used for clustering were the T1w and
T2w images, T1 map, K*#* from DCE MRI, the diffusion coefficient and perfusion
fraction from IVIM MRI imaging (f), and R2*. Images were obtained on a 3T MR
scanner, in coronal orientation with a slice thickness of 4 mm. Scans were corrected for
motion artefacts and co-registered using rigid transformations. Additional details on the
images, parameter maps, and methods can be found in Table 1 and the supplementary
materials.

Habitats were obtained by applying k-means clustering on the set of co-registered
images as well as the (x,y,z) coordinates corresponding to each voxel, to ensure spatial
cohesion. The number of clusters was set to the maximum number that would allow
taking three samples from each habitat. In practice, this translated into increasing the
number of clusters until any of the habitats had an area smaller than approximately
3 cm?.

Evaluation of spatial accuracy

The slice was placed on a flat, white surface and photographed. Tissue contours were
drawn on the image, being completely blinded to the MRI segmentations. The resulting
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outline and the shape predicted after reorientation of the MR-segmentation were then
overlayed and co-registered using manual rigid registration, maximising the overlap
between the tumour contours. The accuracy of slice position recovery was assessed
post-resection by comparing the DSC of MRI segmentations and the corresponding
tissue contours. This coefficient is defined as:

2| X NY|

DSC = ————.
X+ Y]

where the overlap of two binary masks X and Y (segmentations originating from
different image sources) can be calcuated. The higher the DSC, the larger the overlap
between the two binary masks.
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