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1 Abstract

2 Whether visual categorization, i.e., specific responses to a certain class of visual events
3 across a wide range of exemplars, is graded or all-or-none in the human brain is largely
4 unknown. We address this issue with an original frequency-sweep paradigm probing the
5 evolution of responses between the minimum and optimal presentation times required to elicit
6 both neura and behavioral face categorization responses. In a first experiment, widely
7 variable natural images of nonface objects are progressively swept from 120 to 3 Hz (8.33 to
8 333 msduration) in rapid serial visual presentation sequences; variable face exemplars appear
9 every 1s, enabling an implicit frequency-tagged face-categorization electroencephal ographic
10 (EEG) response at 1 Hz. In a second experiment, faces appear non-periodically throughout
11 such sequences a fixed presentation rates, while participants explicitly categorize faces.
12  Face-categorization activity emerges with stimulus durations as brief as 17 ms for both neural
13 and behavioral measures (17 — 83 ms across individual participants neurally; 33 ms at the
14 group level). The face-categorization response amplitude increases until 83 ms stimulus
15 duration (12 Hz), implying graded categorization responses. However, a strong correlation
16 with behavioral accuracy suggests instead that dilution from missed categorizations, rather
17 than adecreased response to each face stimulus, may be responsible. This is supported in the
18 second experiment by the absence of neural responses to behaviorally uncategorized faces,
19 and equivalent amplitudes of isolated neural responses to only behaviorally categorized faces
20 across presentation rates, consistent with the otherwise stable spatio-tempora signatures of
21 face-categorization responses in both experiments. Overal, these observations provide
22 origina evidence that visual categorization of faces, while being widely variable across

23 human observers, occursin an all-or-none fashion in the human brain.
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1 Introduction

2 A fundamental function of nervous systems is to organize the flurry of sensory inputs
3 generated by their rich, dynamic, and ambiguous environment. This organization requires
4 generating distinct responses to different sensory inputs (i.e.,, discrimination), but also
5 generating a common response to different but related sensory inputs (i.e., generalization).
6 This categorization function plays a fundamental role in responding adaptively to the
7 environment, and has been considered to be the foundation of many other cognitive
8 functions, alowing us to learn, memorize, act, and communicate through language, gesture,
9 and expression (Smith & Medin, 1981; Edelman, 1987; Murphy, 2002; Goldstone, Kersten &
10 Carvaho, 2018).

11 An outstanding issue is whether neural categorization of currently experienced stimuli
12 (i.e, perceptual categorization) is graded or al-or-none. That is, does our brain progressively
13 build categorization responses, or does categorization emerge al at once from an
14 accumulation of non-categorical sensory information? This issue is important insofar as
15 perceptual categorization relates to our subjective experience of the stimulus, or perceptual
16 awareness (e.g., del Cul et al., 2007; Quiroga et a., 2008; de Gardelle et al., 2011;
17 Bachmann, 2013; Sekar et a., 2013; Navaas et al., 2014; Windey et a., 2015).
18 Understanding whether neural categorization is al-or-none may constrain psychological,
19 philosophical, and computational constructs of conscious awareness, as well as advance
20 theoretical models of brain function.

21 Studies that have addressed this issue have generally relied on vision, the dominant
22 modality in humans and other primates, and used neural measures recorded during variable
23 simulus viewing conditions. On one hand, a number of studies have found that neura
24 activity in visua cortical areas increases in an analog, continuous way with increases in

25 stimulus visbility (Kovécs, Vogels & Orban, 1995; Vanni et al, 1996; Grill-Spector et a,


https://doi.org/10.1101/658625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/658625; this version posted June 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 2000; Keysers et al, 2001; Bar et al., 2001; Moutoussis & Zeki, 2002; Bacon-Macé et al,

2 2005; Christensen et al., 2006), supporting a graded or progressive visual categorization

3 process. On the other hand, other studies have attempted to relate neural activity to explicit

4  behaviora reports and rather concluded in favor of all-or-none brain responses related to

5 perceptual awareness, more like discrete “hits” and “misses’ (Del Cul et al., 2007; Quiroga et

6 a., 2008; Harris, Wu & Woldorff, 2011; Shafto & PFitts, 2015). The abundance of evidence

7 on both sides has been difficult to reconcile, largely hindering rather than inspiring a coherent

8 theoretical framework.

9 To address this fundamental yet unresolved issue in cognitive neuroscience (Windey
10 & Cleeremans, 2015), we introduce an approach that goes beyond previous efforts to address
11 this question in a number of important ways. First, going beyond previous studies that
12 compared to detection or identification of a limited set of specific stimuli without exemplar
13 generalization, we truly measure neural categorization, i.e., responses that are specific to a
14 certain class of stimuli across a wide range of variable exemplars. To do that, we use a large
15 set of widely variable natural images of faces. Faces are used as the visua stimuli to
16 categorize for a number of reasons. From the first minutes of life, the face is arguably the
17 most important visual stimulus for human ecology. Faces are complex multidimensional
18 stimuli that are ubiquitous in our visua environment and drive many of our behaviors. Their
19 initial categorization as “aface’ (i.e., generic face categorization) unfolds into an extremely
20 rich socia categorization of the individual, allowing to categorize people according to their
21 gender, ethnicity, emotional expression, age, attractiveness, and identity. In neurotypical
22 human adults, generic face categorization evokes extensive neural activity along the (ventral)
23 occipital temporal cortex (e.g., Sergent, Ohta & MacDonald, 1992; Allison et a., 1994; Puce
24 et d., 1995; Kanwisher, McDermott & Chun, 1997; Weiner & Grill-Spector, 2010; Zhen et

25 d., 2015; Jonas et d., 2016; Jacques et a., 2016; Gao et a., 2018). As shown with face
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1 Pareidolia, generic face categorization in humans goes well beyond the identification of well-
2 defined objective physical features of real faces (Caharel et a., 2013; Omer et al., 2019),
3 providing an advantage over artificia systems in terms of generalization within natural and
4 degraded views and environments (Scheirer et al., 2014).
5 Second, we relate human's (implicit) neural and (explicit) behavioral responses always under
6 the same stimulation constraints, each face exemplar being immediately preceded and
7 followed by a nonface object, i.e. visually masked (Helmholtz, 1867; Enns & Di Loallo,
8 2000). Compared to studies that have used a backward- masking approach to probe
9 perceptua awareness (e.g., Del Cul et al., 2007; Quirogaet a., 2008; Sekar, Findley & Linas,
10 2012; Sekar et al., 2013), we use both backward- and forward-masking. Most importantly,
11 our stimuli are presented in a dynamic visual stream, i.e., variable faces embedded in a rapid
12 train of variable nonface object images for about 1 minute (Figure 1), similarly to rapid serial
13 visual presentation (RSVP) sequences (Potter & Levy, 1969; Keysers et a., 2001; 2005;
14 Potter et al., 2014). This paradigm, combined with neural frequency-tagging (Adrian &
15 Matthews, 1934; Regan, 1989; Norcia et al., 2015) is known to simultaneously measure the
16 two key aspects of generic face categorization, namely discrimination by measuring selective
17 responses to face stimuli embedded in rapid trains of non-face objects, and generalization by
18 measuring the common selective responses to widely variable exemplars of human faces
19 (Rossion et al., 2015). The neural face categorization responses obtained are devoid of low-
20 level confounds (i.e, amplitude spectrum; Rossion et al., 2015; Gao et a., 2018), and
21 associated with robust neural activity in face-selective regions of the ventral occipito-
22 temporal cortex as shown both with human intracerebral recordings (Jonas et al., 2016) and
23 functional magnetic resonance imaging (Gao et al., 2018).
24 Here, to probe the all-or-none or graded nature of face categorization, we increasingly

25 sweep stimulus duration in this paradigm, from 120 Hz stimulation rate (i.e., 8.33 ms SOA)
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1 to 3 Hz (333 ms SOA). We then track the onset, optimum and interindividual variability of
2 the neural face categorization response. Importantly, in this case categorization is measured
3 implicitly, i.e., without requiring explicit categorization judgments from the observers,
4 another significant difference with previous studies. However, we aso collect explicit
5 behavioral measures at different times under the same stimulation conditions, and relate the
6 two measureson an individual basis.
7 As we document below, our observations indicate that while general visual responses
8 can betagged at presentation rates up to 120 Hz over the medial occipital cortex (Herrmann,
9 2001), face categorization emerges significantly as early as 60 Hz (17 ms SOA/duration) for
10 afew trids, then reliably at the group level at 30 Hz (i.e., 33 ms duration in atrain of nonface
11 objects) to saturate at 12 Hz (83 ms duration) over occipito-temporal regions. However, there
12 is substantial interindividual variability in the presentation rates for face categorization
13 responses (emerging between 17 and 83 ms for different observers), and importantly, these
14 differences are correlated across behavioral and neural measures. Crucialy, our findings
15 revea that the apparent graded increase in the neural amplitudes of face-categorization
16 responsesin fact reflects an all-or-none response occurring occasionally to faces at extremely
17 short viewing times and becoming more consistent, but not more evolved, as presentation
18 duration increases. The tight relationship with explicit behavior indicates that this all-or-none

19 face categorization response corresponds to perceptual awareness.

20 Materialsand Methods

21 Participants

22 Sixteen adult participants at the University of Nevada, Reno took part in the experiment All
23 reported normal or corrected-to-normal visual acuity. Their mean age was 29 years (SE =
24 1.65; range = 22 to 44), ten identified as female and six as male, and 15 were right-handed.

25 The study was conducted in accordance with the Code of Ethics of the World Medical
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1 Association (Declaration of Helsinki), with protocols approved by the University of Nevada

2 Institutional Review Board.

3 Stimuli and Display

4 Stimuli were 112 natural face images and 200 natural object images compiled internally (for

5 examples, seeMovie 1; Quek et al., 2018; Gao et a., 2018). Facial identities were selected to

6 represent a broad range of characteristics (e.g., age, sex, expression, head orientation). Both

7 face and object images were edited from photographs taken under variable environmental

8 conditions and perspectives (in lighting, background, orientation, etc.). Each image was

9 cropped to a square with the target face or object centered or off-center, resized to 200 x 200
10 pixels, and saved in JPEG format. Stimulus variations were not further controlled because the
11 high amount of variability within both face and object categories reduces the diagnosticity of
12  these cues to any one category (Thorpe et a., 1996; Crouzet et al., 2010; Foldiak et al., 2004;
13 Rossion et al., 2015). The stimuli were presented on a cathode ray tube (CRT) monitor (NEC
14  AccuSync 120) with a 120 Hz screen refresh rate and a resolution of 800 x 600 pixels. At the
15 viewing distance of 80 cm, stimuli subtended 7.3° by 7.3° degrees of visua angle.
16 Experiment 1 (EEG Frequency-Tagging) Procedure
17  After the setup of the EEG system, participants were positioned in front of the monitor, with
18 access to a keyboard with which to start stimulation trials and give responses. The only
19 illumination in the room came from the testing and acquisition monitors. Participants were
20 informed that they would see series of natural images presented at a high frequency rate,
21 which would reduce incrementally throughout each trial. They were not given any
22 information about the types of images they would see. Instead, they were instructed to fixate
23 on a centraly presented fixation cross throughout the experiment, and to press on the space

24 bar when the cross briefly changed luminance, from black to white, 12 times per trial.
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1 Each trial consisted of: 1) the cross to establish fixation lasting between 2-4 s; 2) a 63-

2 s seguence, consisting of nine, contiguous 7-s steps of stimulus presentation at 120, 60, 40,

3 30, 24, 20, 12, 6, and then 3 Hz; and finally, the fixation cross for another 2-4 s. Images were

4 presented continuously with a 100% duty cycle at maximum contrast (Retter et al., 2018).

5 Frequency rates followed integer multiples of the 120 Hz monitor frame rate, i.e. with 1

6 frame at 120 Hz (8.3 ms), 2 frames a 60 Hz (17 ms), 3 frames a 40 Hz (25 ms), etc.

7 Throughout each trial, image size varied randomly at each presentation between 95-105% of

8 theoriginal in five steps.

9 Crucialy, regardless of the frequency of image presentation throughout the sequence,
10 faces were embedded consistently at a rate of 1 Hz. Thus, for example, at 120 Hz, faces
11 appeared as every one out of 120 images, while at 6 Hz faces appeared as every one out of 6
12 images. The ratio of face to object images has been shown not to have an impact on the face-
13  categorization response, when as here the faces are separated by at least 400 ms (Retter &
14 Rossion, 2016a). The order of face stimuli and object stimuli was randomized for each
15 subject and trial repetition. Participants binocularly viewed 18 trial repetitions, leading to a
16 total testing time of about 30 minutes.

17 Experiment 2 (Behavior and ERP) Procedure

18 After Experiment 1, participants were asked two questions:. 1) “What did you notice about the
19 images you just saw?’; and 2) “Did you notice any periodicity within the sequences?’ In
20 response to the first, open-ended question, participants typically reported seeing a lot of
21 images, the rate of presentation decreasing, and that they noticed faces (14 participants),
22  animals (10 participants), non-living objects (8 participants), and plants/natural scenes (5
23 participants). Some participants reported one or a few specific images reoccurring: e.g., a
24 dog, elephant, clock, elderly woman, or car. Importantly, in response to the second question,

25 no participants reported noticing any periodicity of faces within the sequences.


https://doi.org/10.1101/658625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/658625; this version posted June 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 Participants were then debriefed in regards to the first experiment, including being
2 informed that faces had appeared every 1 s throughout all of the sequences. They were then
3 given instructions for the second experiment, which instead involved an explicit face
4 detection task. Participants were asked to respond to human faces, which would appear non-
5 periodically, or not a al, within shorter (30 s) sequences, each at a single frequency
6 throughout, by pressing on the key “J* with the index finger of their dominant hand. The
7 faces appeared 5-7 times in five sequences per condition, and O times in one sequence per
8 condition. This resulted in a total of about 30 face presentations for each of the nine
9 frequency conditions (M = 30.4; SD = 2.89), for atotal duration of about 40 minutes.
10 EEG Acquisition
11 EEG acquisition and anaysis modeled protocols established in previous studies (e.g.,
12 Jacques, Retter & Rossion, 2016; Retter & Rossion, 2016a; Retter et a., 2018). A BioSemi
13 ActiveTwo system (BioSemi B.V., Amsterdam, The Netherlands) with 128 Ag-AgCl Active-
14 electrodes was used to record the EEG. Electrodes were organized in the default BioSemi
15 configuration, centered around nine standard 10/20 locations on the cardinal axes (for exact
16 position coordinates, see http://www.biosemi.com/headcap.htm). For ease of comparison
17 across studies, the default electrode labels were updated to closely match the conventional
18 10/5 system (for exact relabeling, see Rossion et a., 2015, Figure S2; Oostenveld &
19 Praamstra, 2001). Additionally, vertical and horizontal electrooculogram (EOG) were
20 recorded with four flat-type Active-electrodes: two above and below the right eye and two
21 lateral to the external canthi. The offset of al electrodes was set below 50 mV, relative to the
22 additional common mode sense (CMS) and driven right leg (DRL) electrode loop. The EEG
23 and EOG were digitized at a sampling rate of 2048 Hz and subsequently downsampled
24 offlineto 512 Hz.

25 Analysis
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1 Letswave 5, an open source toolbox (http://nocions.webnode.convletswave) running over
2  MATLAB R2013b (The MathWorks, USA), was used for the data analysis.
3 Preprocessing
4 Data were bandpass filtered from 0.05 to 140 Hz with a fourth-order zero-phase
5 Butterworth filter. Sequences were coarsely segmented from 2 s before to 65 s after sequence
6 onset. To correct for blinks, an independent component analysis was applied for the six
7  participants who blinked more than 0.2 times/s on average throughout the testing sequences
8 (M =1.20 blinks/s; SD = 0.22; asin, e.g., Retter & Rossion, 2016a). Channels with abrupt
9 deflections of + 100 pV or above in more than one epoch were linearly interpolated with the
10 neighboring 3-4 channels (M = 0.75 channels; SE = 0.86 channels; range = 0-3 channels, i.e.,
11  up to no more than 3% of channels).
12 Data were rereferenced to the average of al 128 EEG channels. Each 7-s
13 presentation duration step was re-segmented in two ways: 1) beginning from -200 ms before
14 the first face stimulus onset, to capture face-categorization responses; and; 2) beginning
15 exactly at face onset, in order to isolate the stimulus-presentation response to the full 7 s of
16 each presentation duration step.
17 Regions-of-interest
18 To determine significance of the face-categorization responses, a ten-channel bilateral
19 occipito-temporal (OT) ROI was defined a priori based on previous studies with the generic
20 face categorization paradigm (e.g., Retter & Rossion, 2016b; Retter et al., 2018; see also
21 Dzhelyova & Rossion, 2014). To decompose the responses further, the average amplitude of
22 theright and left OT regions were examined separately (right: channels P10; P8; POS8; PO10;
23 PO12; and left: P9; P7; PO7; PO9; PO11). The bilateral ROI was verified to capture face-
24 categorization responses post-hoc (see Results). To provide a region-free assessment of

25 response significance, we also investigated responses across the average of al 128 EEG

10
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1 channels. Findly, to identify and quantify face-categorization responses, we used a medial-

2 occipital (MO) region consisting of the 10 following channels: O2; POI2; 12; Iz, Olz; Oz,

3 POQgz; 01, POI1; I11), as well as the 128-channel grand average.

4 Frequency Domain Analysis

5 The segmented data were averaged by presentation duration step in the time domain,

6 reducing non-phase locked (i.e., non-stimulus related) activity and thereby increasing the

7 signal-to-noiseratio. A fast Fourier transform (FFT) was applied to represent the data of each

8 channel in the temporal frequency domain, i.e., as a normalized amplitude spectrum (uV),

9 witharange of 0 to 256 Hz and a resolution of 0.14 Hz. To correct for variations in baseline
10 noise level around each frequency of interest (i.e, 1 Hz and its harmonics for face-
11 categorization responses, and the stimulus presentation rate and its harmonics), the average
12 amplitude of the neighboring six frequency bins were averaged (a range of 0.86 Hz) and
13 subtracted from each frequency bin. The harmonics of the face-categorization responses were
14 subsequently summed from the fundamental, 1 Hz, up to 20 Hz (similarly to Retter &
15 Rossion, 2016a; Retter et al., 2018), excluding harmonics that coincided with the stimulus
16 presentation frequency when present. The harmonics of stimulus-presentation responses were
17 summed from the fundamental up to 120 Hz for all presentation duration steps.
18 To assess significance of the face-categorization and stimulus-presentation responses
19 at each presentation duration condition at the group level, a Z-Score was computed on the
20 average of the bilateral OT ROI channels for face-categorization responses, and the average
21 of the MO ROI channels for the stimulus-presentation response (using the same baseline
22 frequency range as for the baseline-subtraction). Additionally, the same approach was used at
23  the individua participant level. Responses were considered to be significant when the Z-

24 Score exceeded 2.32 (p<.01, 1-tailed, i.e., predicting the signal was greater than the noise).

11
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1 To describe the data further, the amplitude and scalp topographies were assessed
2 across presentation conditions. Scalp topographies were visualized in terms of both their
3 original amplitude and their normalized amplitude (McCarthy & Wood, 1985). To assess the
4 extent of right lateralization for face categorization, a lateralization index was computed
5 using the amplitudes of the right and left OT ROIs (R and L, respectively) as follows: (R-
6 L)/(R+L)*100 (asin Retter & Rossion, 2016a). Statistical tests on response amplitudes were
7 applied independently for face-categorization and stimul us-presentation responsesin the form
8 of repeated measures analysis-of-variance tests (ANOVAs), with factors of Region and
9 Condition. A Greenhouse-Geisser correction was applied to the degrees of freedom in the
10 event that Mauchly's test of sphericity was significant. Data were grand-averaged across
11 participants for display purposes.
12 Time Domain Analysis
13 Segmented data were filtered more conservatively with a fourth-order, zero-phase
14 Butterworth low-pass filter at 30 Hz. A notch filter was applied to remove the periodic
15 responses to stimulus-presentation for each presentation condition at its fundamental and
16  harmonic frequencies up to 30 Hz. Data were then re-segmented as described previously for
17 face-categorization responses and averaged by condition. A baseline correction of voltage
18 offset was applied on the 200 msimmediately preceding face stimulus onset.
19 To test for statistical significance of the response from the baseline reference interval
20 (-200 to 0 ms) at each time point, bootstrapping was performed with a significance criterion
21 of p<.001, with 10,000 iterations. To reduce the likelihood of false positives, only groups of
22 a least 5 consecutive time bins (i.e., about 10 ms) were reported. Grand-averaging was
23 computed for display. Finally, to describe a face-categorization response independent of the
24 dimulus presentation duration, the data were averaged across all presentation-duration

25 conditionsyielding significant frequency-domain face-categorization responses.

12
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1 Behavioral Face-Categorization Analysis (Experiment 2)
2 Face-categorization responses were considered correct when occurring between 0.15
3 — 2 s after face presentation onset; responses occurring outside this range were considered
4 fase podtives. This criterion rejected 3.5% of potentially correct face-categorization
5 responses, and generated a response time distribution with a similar mean and median: 509
6 (SE =117.5 ms) and 512 ms, respectively. False positives occurred on average at a rate of
7  0.24 per minute (SE = 0.087); they occurred maximally in a mid-frequency range, from 20 —
8 40 Hz, although this may be for several reasons (e.g., that participants found the task too
9 difficult to try at the highest frequencies, or that they actually did perceive faces sometimesin
10 the stream of non-face objects (pareidolia); Supplemental Figure 3). Note that this generous
11 window for correct responses was chosen in terms of the minimum and maximal expected
12 response times for any participant for any key press (the minimal time between two
13 consecutive face images was 2.6 s); however, application of a more conservative range from
14 0.2 — 1 s after face presentation only minimally affected the pattern of results across
15 participants or frequencies (e.g., Supplemental Figure 3, for the effect on false positives).
16 The total percent accuracy was defined as the percent of correct detection responses
17 minus the percent of false positives, relative to the total number of faces presented. This
18 maodification of the raw accuracy guarded against the chance that a high rate of correct
19 responses occurred as a byproduct of a high rate of false positives; this was particularly
20 important given the differences in false alarms across presentation rates. Response time (RT)
21 was considered only for correct responses.
22 Additionally, inverse efficiency (IE) was computed by dividing RT by total percent
23 accuracy for each participant (Townsend & Ashby, 1983). This IE measure, combining
24 accuracy and RT, was used to rank participants in their face-categorization ability overall, by

25 using the average of trials from all presentation conditions together. Notethat IE is thus used

13
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1 only to rank participants face-categorization ability, while in all other analyses accuracy is

2 used in order to examine whether or not faces were categorized, irrespective of the RT. The

3 relationship between behavioral face-detection ability and EEG responses was tested with

4 Pearson correlations between |IE and EEG response amplitude. Differences in correlation

5 coefficient strength were calculated according to the asymptotic z-test of Lee and Preacher

6 (2013).

7 Behavioral Fixation-Detection Analysis (Experiment 1)

8 Responses to the detection of the fixation cross luminance change were analyzed with

9 the same parameters as for the face-categorization responses. Overall, participants’ accuracy
10 was high for this easy task across all frequencies (93.4%; SE = 1.39%), with a mean correct
11 RT of 480.0 ms (SE = 16.27 ms). The rate of false positives was low: 0.15 per minute (SE =
12 0.038). The accuracy was higher at the highest frequencies (above 96% at 30 Hz and above;
13 relative to 91 — 93% at al lower frequencies), athough this could be either because the
14 luminance changes of the cross were easier to see against a more rapid (i.e., less well-
15 processed) image stream, or as an order effect, with the higher frequencies consistently
16 appearing first in the sequences. Overall, the fixation cross task results differed greatly from
17 those of the face categorization task, emphasizing the differences in these tasks and

18 jprocesses.
19 Results

20 The emergence of face-categorization responses (Section 1) was first determined at a neura
21 level from the EEG responses to periodic faces in Experiment 1 in the frequency domain, and
22 at abehavioral level from the face-categorization response accuracy to non-periodic faces in
23 Experiment 2. Then, these neural and behavioral face-categorization responses were
24 quantified across presentation rates from 120 to 3 Hz (Section 2). In Section 3, the

25 relationship between neural and behavioral face-categorization responses is characterized

14
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1 across presentation rates, and explained in terms of neural responses (event-related potentials)

2 tobehaviorally categorized vs. uncategorized faces in Experiment 2. A qualitative assessment

3 of face-categorization responses across presentation rates is presented in Section 4. Finaly,

4 individual differences in generic face categorization are investigated in Section 5.

5 1. Emergence of Face-Categorization Responses

6 1.1 Neural Responses (Experiment 1)

7 At the individual participant level, significant summed-harmonic OT face-categorization

8 responses emerged between arange of 60 to 23 Hz (17 to 83 ms; Figure 1). On the high end,

9 asingle participant had a significant response at 60 Hz, and two participants followed at 40
10 Hz. On the low end, a single participant had a significant response only up to 12 Hz, while
11 three participants had responses up to 20 Hz. The mean across participants was 29.4 Hz (SE

12 =273 Hz), and the median 30.0 Hz.

Figure 1. The number of participants (out of

=
@

[y
hJ

16 in total) with significant responses at

each frequency rate (Z > 1.64; p< .05;

=

Number of participants
[s+]

Experiment 1). At the group-level, the

(=]

120 60 40 30 24 20 12 6 3
Frequency (Hz) response was first significant at 30 Hz over

WaviOT M2 g .o the occipito-temporal ROl (Z = 35, p =
19 .0002). Key) avgOT = average across the left and right occipito-temporal ROIs; avgl28 =
20 averageof all 128 EEG channels.

21 On average across observers, face-categorization responses appeared to first emerge
22 at 40 Hz (25 ms) over occipito-temporal channels (Figure 2A), athough the response was
23 not significant until 30 Hz (33 ms) over the OT ROI (Table 1A; see aso Table 2A). When

24 considering response significance from the average of al 128 EEG channels, the highest

25 dgnificant face-categorization response was reduced to 20 Hz (50 ms). In contrast, the
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1 stimulus-presentation responses were significant at all frequencies tested at the group level,

2 both a the MO ROI and the average of all 128 channels (T able 1B).

Frequency (Hz) 120 60 40 30 24 20 1 6 3
A. Face
orT 011 -0.14 112 350 5.00 6.77 1037 887 6.92
Avgl2s 025 0.04 0.25 055 146 237 302 323 2.33
B. Stimulus
MO

14.73 24.33 49.19 72.08 50.22 98.41 71.87 328.60 63.68
Avgl28

18.16 18.68 2251 53.25 30.01 74.36 47.62 144.46 35.99

3 Table 1. Group-level Z-scores, calculated at the occipito-temporal (OT) ROI for face-
4 categorization responses (A), the medial-occipital (MO) ROI for stimulus-presentation
5 responses (B), and the average of all 128 EEG channels for both face- and stimulus-
6 presentation responses. Sgnificant responses are shown in bold (Z > 2.32, p<.01).
7 1.2 Behavioral Responses (Experiment 2)
8 At the group level (Figure 2B; Table 3A), behavioral face-categorization accuracy,
9 corrected for false-positives, emerged at 60 Hz (17 ms; M = 3.03%; SE = 1.26%), t;5 = 2.41,
10 p =.015, one-tailed, d = 0.85. At the higher frequency step, 120 Hz, accuracy did not differ
11 from 0% (-0.40%; SE = 0.50%); at the subsequent frequency step, 40 Hz, accuracy jumped to
12 22% (SE = 3.2%).
13 2. Quantization of Face-Categorization Responses Acr oss Presentation Rates
14 2.1 Neural Responses (Experiment 1)
15 The amplitude of face-categorization responses was quantified at four ROIs. over the
16 OT ROI, as well as its divisions into the right occipito-temporal (ROT) and left occipito-
17 tempora (LOT) ROIs, and the average of al 128 channels (Figure 2A). Across
18 quantification regions, the response amplitude neared zero at 120 and 60 Hz, and then
19 increased progressively until 12 Hz (83 ms; Figure 3B). After 12 Hz, it decreased but

20 remained significant until the slowest presentation rate, 3 Hz (333 ms; Table 1A). In

16


https://doi.org/10.1101/658625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/658625; this version posted June 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 comparison, the amplitude of the stimulus-presentation response decreased continuously from
2 3 to 120 Hz, but always remained above zero (Supplemental Figure 1). The face-
3 categorization response was at least about 3 times larger over the OT than average 128-
4 channel region over all conditions below 60 Hz, indicating a relatively focal response (for
5 stimulus presentation, the MO ROI captured a lesser proportion of the response, on average a

6 little over 2 times larger than the 128-channel average).

A 25
2
215
5
El C 25
£ 12-60 Hz R2=0.97
g 05 y .
< 2 3 .
0 s
o5 120 60 40 30 24 20 12 6 3 =215 .
’ Frequency (Hz) L )’ ]
P 3 1 “.
mLOT BMROT DavgOT Mavgl28 . ¢ 3 -
g 0.5 -
B 100 < .
0 L
__ 80
R
- -0.5
60
< T N S B I 0 50 100
3 40 m Accuracy (%)
g
S ininininini
0 =1
120 60 40 30 24 20 12 6 3

Frequency (Hz)
—— Mean at highest significant frequency
7 Mean at the next insignificant frequency

8 Figure 2. Behavioral face-categorization accuracy (Experiment 2) compared with neural

9 face-categorization response amplitude (Experiment 1). A) Baseline-subtracted summed-
10 harmonic amplitudes across different ROIs. B) Behavioral mean face-categorization
11 accuracy across frequency rates. The dashed green line at 52% accuracy represents the
12 mean accuracy corresponding to highest frequency yielding a significant face categorization
13 response for each participant; the dashed red line at 27% represents the mean accuracy
14 corresponding to the frequency one step higher for each participant, at which the face
15 categorization response was not significant. C) A linear relationship between accuracy

16 (Experiment 2) and amplitude (Experiment 1) between 12 and 60 Hz. The data points from
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1 the remaining presentation rates (3, 6, and 120 Hz) are shown in light gray, but were not
2 included in this correlation. Key) LOT: left occipito-temporal ROI; ROT: right occipito-
3 temporal ROI; avgOT = average of these left and right occipito-temporal ROIs; avgl28 =
4 averageof all 128 EEG channels.
5 For statistical analyses, the amplitude of face-categorization responses was compared
6 acrossthe OT and MO ROIs (Table 2A). There was a significant main effect of Region, F1 15
7 =195, p<.001, 5,° = 0.57, reflecting the larger amplitude for the OT (M = 0.94, SE = 0.12)
8 than MO (M = 0.56, SE = 0.06) ROI in response to faces. There was aso a main effect of
9  Frequency, Fss4 = 5.94, p = .010, 7,° = 0.86, with the low frequencies (12-3 Hz) being the
10 highest and peaking at 12 Hz (M = 1.50, SE = 0.20), and then declining sharply as the
11 frequencies continued to increase, with almost no amplitude at 120 and 60 Hz (M < .02 pV).
12 Theinteraction between these two factors, Fags4 = 10.2, p = .002, 17,° = 0.91, was significant:
13  most remarkably, there was no difference in amplitude across regions from 120-40 Hz (al

14 differences < 0.02 uV), but a separation at 30 Hz and al lower frequencies (all differences >

15 0.32uV).
Frequency (Hz) | 120 60 40 30 24 20 12 6 3
A. Face (V)
oT 0.03 -0.03 0.21 0.57 0.93 143 1.95 1.66 172
(0.06) (008 (0.08) (0120 (0.23) (0.21) (0.25) (0.21) (0.19)
MO 0.008  0.07 0.22 0.26 0.47 0.78 1.06 1.05 1.10

(0.055) (0.07) (0.09) (0.08) (0.09) (0.13) (0.18) (0.12) (0.18)

B. Stimulus (LV)

oT 004 005 013 022 024 035 059 162 240
(0.005 (0.006) (0.01) (0.02) (0.03) (005 (0.06) (0.13) (0.18)
MO 003 006 016 033 045 064 111 205 335

(0.004) (0.008) (0.01) (0.03) (0.04) (008) (0.12) (0.19) (027)

16 Table 2. Mean response amplitude (1V), calculated at the occipito-temporal (OT) and
17 medial-occipital (MO) ROIs for both face-categorization (A) and stimulus-presentation (B).

18 Onestandard error, across participants, isincluded in parentheses.

18
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1 For comparison, the stimulus-presentation responses were aso evaluated over the OT
2 and MO ROls for statistical analyses (Table 2B). Here, the response was larger over the MO
3 (M =0.91, SE = 0.07) rather than OT (M = 0.63, SE = 0.04) ROI, leading to a significant
4 main effect of Region, F115 = 43.8, p <.001, ;1p2 = 0.75. The response also decreased from
5 low to high frequencies, but with a different trend than for the face-selective response
6 (compare Supplemental Figure 1 to Figure 2A). This produced a main effect of Frequency,
7 Fis»n =21.8,p<.001, npz = 0.96. The interaction between these two factors, Fig26 = 21.8, p
8 =.001, ,° = 0.92, was significant, as there was no amplitude difference across regions from
9 120-60 Hz (differences < 0.02 V), but an increasing difference as the frequency decreased:
10 at 40 Hz up slightly to 0.035 uV, at 30 Hz, 0.11 pV, and at al lower frequencies > .20 uV.
11 2.2 Behavioral Responses (Experiment 2)
12 Behavioral face-categorization responses first emerged at 60 Hz, and accuracy increased
13 steadily up to 68% at 20 Hz (50 ms; Table 3A). Beyond 20 Hz, accuracy neared ceiling
14 between 12 to 3 Hz (83 to 333 ms; all accuracies above 95.6%). Overall, the differences in

15  accuracy across frequency rates were highly significant, F2233 = 217, p<.001, ,> = 0.94.

Frequency (H2) | 120 60 40 30 24 20 12 6 3

A. Accuracy 04 30 217 429 57.9 68.0 %6 978 98.0

(%) (049) (126) (317) (559) (520) (432) (212) (086)  (1.01)

B.RT (ms) 1435 650 557 529 505 503 498 495 499
(145)  (527) (192) (189) (110) (152) (134) (153) (15.2)

C.IE 847 745 320 142 10.1 811 429 507 511
(260) (208) (485 (191) (116) (0.81) (0.26) (0.18)  (0.18)

16 Table 3. Behavioral face-detection results: percent accuracy (A), response time (RT; B), and
17 inverse€efficiency (IE; C). One standard error for each measurement is given in parentheses.

18 Response time (RT) showed less variation across presentation rates (Table 3B): from
19 3to 24 Hz, there were no significant RT differences across conditions, F460 = 0.37, p = .83,
20 5% = 0.02, reflecting a stable face detection response at these rates. However, the response

21 was slower at shorter presentation durations, and greatly delayed at 120 Hz (although note

19
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1 that only two participants had any (one or two) responses at this frequency). At the next
2 shortest presentation rate, 60 Hz, 10 participants had some correct detection responses,
3 contributing towards significant RT differences across frequency conditions from 3 to 60 Hz,
4  Fis512 =4.70, p = .040, npz = 0.37. These differences persisted when removing 60 Hz, Fs7s =
5 6.84, p<.001, 5,° = 0.35, in this case driven by slower responses at 40 Hz.
6 Inverse efficiency (IE) was aso calculated, as a way to capture an overall measure of
7 participants’ performance (Table 3C). This measure, as well as response accuracy, will be
8 used in the following section to relate behavioral and EEG face-categorization responses.
9 3. TheRelationship Between EEG and Behavioral Face-Categorization Responses
10 3.1 The Correlation of Accuracy (Experiment 2) and Amplitude (Experiment 1)
11 The face categorization accuracy (Experiment 2) and EEG amplitudes (Experiment 1)
12 seemed to show similar patterns across presentation rates (compare Panels B and C of Figure
13 1). Indeed, plotting the linear relationship between these two factors revealed a very strong
14 correlation across all nine presentation rates, R> = 0.96, p < .0001, as well as in the range
15  where amplitude consistently decreased, 60-12 Hz, R? = 0.97, p = .0002 (Figure 2C).
16 There are two possible interpretations of this observation: first, that the neura
17 amplitude at higher presentation rates is decreased in response to each face to the same extent
18 that the behavioral accuracy drops; or second, that the neural amplitude is decreased because
19 some faces were not categorized at all, in the same way that the behavioral accuracy reflects
20 the proportion of “hits” and “misses’. That is, either graded or all-or-none neura face
21 categorization responses could explain this data. To fulfill our major goal of differentiating
22 these dternative accounts, in the following sections we compare neural responses to
23 behavioraly detected and undetected faces from Experiment 2.

24 3.2 EEG Responses to Behaviorally Categorized or Uncategorized Faces (Experiment 2)

20
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1 We examined non-periodic EEG responses in the time domain from Experiment 2
2  separately for 1) behaviorally categorized faces and 2) behaviorally uncategorized faces.
3 Given that this experiment had relatively few trials per condition (about 30 on average,
4 containing a mix of categorized and uncategorized faces), we combined responses across a
5 range of presentation rates. Specifically, we used 12 to 60 Hz, in order to include a large
6 number of trials, balanced in terms of the number of categorized (M = 62, SE = 7.1) and
7 uncategorized (M = 60, SE = 5.7) faces across participants (after artifact rgection to remove
8 blink-contaminated trials). Note that this approach is supported by neural face-categorization
9 responses appearing qualitatively similar across presentation rates in Experiment 1 (see
10 Section 4). Note aso that these face-categorization responses were confounded with
11 behavioral detection (pre-)motor activity, with response times occurring on average at 535 ms
12 over these presentation rates (SE = 15.1 ms). We thus focused the analyses on the first two
13 face-selective components, the P1-face (onset at about 100 ms, 144-ms peak latency) and N1-
14 face (202-ms peak latency), as defined in Experiment 1 (Section 4.3; and reported in previous
15 studies with this paradigm, see e.g., Rossion et al., 2015; Retter & Rossion, 2016a; Quek &
16 Rossion, 2017). Finally, note that although faces appeared periodically in Experiment 1 and
17 non-periodicaly in Experiment 2, comparing neural face categorization responses across
18 experiments is valid because such responses are immune to the periodicity of the stimulus
19 (Quek & Rossion, 2017).
20 For behaviorally categorized faces, significant neural responses (event related
21 potentials) were present during the windows of the P1-face and N1-face; for uncategorized
22 faces, little to no responses were apparent, exhibiting no significance (Figure 3A).
23 Examination of the P1-face and N1-face peak-time deflections together over the bilateral OT
24 ROI also showed a significant response to behaviorally categorized faces (M = 3.12 pV, SE =

25 037 pv), tis = 847, p <001, d = 3.0, but an insignificant response to behaviorally

21
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1 uncategorized faces (M = 0.38 puV, SE = 0.30 pV), tis = 1.24, p = .12, d = 0.44 (Figure 3B).
2 The topographies of these face-selective components for behaviorally categorized faces were
3 maximal over the OT region; little activation was observed across the scalp to behaviorally

4 uncategorized faces (Figure 3C).

A 212'50 Hz Pl_fﬂgface B piface and N1face Figure 3. Time-domain responses (N = 16)
4 #
Z 2 across 12-60 Hz to al behaviorally
£ g, .
£ = - categorized faces. A) Waveforms over the
e e T 5 ipito-temporal ROI, to behaviorally
Time (s)
— Behaviorally categorized faces categorized (in red) and uncategorized (in
=— Behaviorally uncategorized faces j.:+,
C ' | ; 35

black) faces. Sgnificant time points

N1-face

(p<.001) are indicated below for

12 categorized faces (in red) and uncategorized faces (none). B) The amplitude across the P1-
13 face and N1-face components, as defined in Experiment 1 (see Figure 6A), at the occipito-
14 temporal ROI. Responses to behaviorally categorized faces (red) are significantly above
15 zero, while those to behaviorally uncategorized faces (black) are not significant. C) Posterior
16 topographies at the peak times of the P1-face and N1-face, for behaviorally categorized (red
17 outline) and uncategorized (black outline) faces. Component times, taken from Experiment 1,
18 areindicated in Pand A.

19 3.3 Behavioral Face Categorization Predicts EEG Face-Categorization Amplitude
20 (Experiment 2)

21 All-or-none neural responses, as reported in the previous section, could thus explain the
22 gradient of response amplitudes reported in Experiment 1. this gradient reflects the
23 proportion of absent neural responses to uncategorized faces and full neural responses to

24 categorized faces. To further test this hypothesis, we examined whether the neural face-
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1 categorization amplitude would be reduced at higher relative to lower rates in the same
2 proportion that the behavioral face-categorization accuracy was reduced.
3 To this end, we examined the neural responses to non-periodically presented faces in
4 Experiment 2 in the time domain, for behaviorally categorized and uncategorized faces
5 together. Specifically, we examined neural responses across two relatively high presentation
6 rates (24 and 30 Hz) with fewer correct detections, and compared them to two relatively low
7 presentation rates (12 and 20 Hz) with more correct detections, for nine participants meeting
8 a minimum behavioral accuracy threshold (see Methods). Again, we combined responses
9 across multiple rates given the limits from the number of face presentaions in this
10 experiment. As before, we constrained the analysisto the first two face-sel ective components.
11 The amplitude of the neural responses to behaviorally categorized and uncategorized
12 facestogether appeared reduced at 24-30 Hz, relative to 12-20 Hz, at the times of the P1-face
13 and N1-face; in contrast, the response to behaviorally categorized faces only did not appear to
14 differ across presentation rates (Figure 4A). This was evident over the bilateral occipito-
15 temporal ROI, which appropriately captured face-categorization responses for both
16 conditions (Figure 4B).
17
18
19
20
21
22
23

24

23
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— Behaviorally categorized and uncategorized faces : ' 1 Figure 4. Time-domain responses from

== Behaviorally categorized faces only
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90 22130 ® 12030 2ais0 0 om0 2a03 behaviorally categorized faces only (red)
14 and behaviorally categorized and uncategorized faces combined (blue). The indicated times
15 of the P1-face (144 ms) and N1-face (202 ms) components are taken from Experiment 1 (see
16 Figure 6A). B) Scalp topographies of these two components; outlines indicating condition
17 arecolored asin the previous panels. C) The combined amplitude of the P1-face and N1-face
18 components, at the OT ROI. Responses to behaviorally categorized faces alone did not differ
19 across these conditions (left), but responses to behaviorally categorized and uncategorized
20 facestogether were significantly larger at 12 and 20 Hz than at 24 and 30 Hz (right). D) The
21 percent accuracy dropped from 12 and 20 Hz to 24 and 30 Hz by about 32%; note the
22 correspondence with the 31% decreased EEG amplitude across these conditions in Panel C
23 for to behaviorally categorized and uncategorized faces.

24 When behaviorally categorized faces were considered alone, a significant difference

25 in the combined amplitude of the P1-face and N1-face components was not found across 12


https://doi.org/10.1101/658625
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/658625; this version posted June 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1 and20Hz, (M =3.12 uV; SE=0.47 pV) vs. 24 and 30 Hz (M =3.38 uV; SE=0.72 uV), tg
2 =-0.06, p=.48, d=0.02 replicating the finding in the previous section (Figure 4C, left
3 panel). However, the combined amplitude was significantly larger at 12 and 20 Hz (M = 2.80
4 pV; SE=0.53 pV) than at 24 and 30 Hz (M = 1.95 pV; SE = 0.48 pV) when behaviorally
5 categorized and uncategorized faces were considered together, tg = 2.29, p = .026, d = 0.56
6 (Figure4C, middle panel).
7 Behaviorally, the accuracy was reduced by 32.2% from 12 and 20 Hz to 24 and 30 Hz
8 (from 85.8%, SE = 3.27%, to 58.1%, SE = 6.44%) for these participants, ts = 6.35, p = .0001,
9 d=1.80 (Figure 4D). The EEG amplitude across the P1-face and N1-face components was
10 decreased similarly, by 30.6%, from 12 and 20 Hz to 24 and 30 Hz (from 2.80 pV to 1.95
11 uV), when responses to behaviorally categorized and uncategorized faces were combined.
12 This corresponding decrease of behavioral accuracy and amplitude supports the hypothesis
13 that missed face categorizations contribute proportionally to decreased neural response
14 amplitudes at shorter presentation durations.
15 4. Qualitative I nvestigation of Face-Categorization Responses
16 4.1 Multi-Harmonic Response Distributions (Experiment 1)
17 In the temporal frequency-domain amplitude spectrum, face-categorization responses were
18 distributed across 1 Hz and its harmonics below 20 Hz (Figure 5A). Harmonic responses
19 were generaly higher at lower frequencies, and strongest between 1 and 10 Hz, with a local
20 peak typically around 6 Hz. Stimulus-presentation responses, which occurred at higher
21 frequencies, were spread across fewer harmonics (Figure 5C). In contrast to face-
22 categorization harmonic responses, they were typically dominated by the amplitude of the

23 first harmonic frequency and decayed exponentially as harmonic frequency increased.

25
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2 Figure 5. Face-categorization responses characterized in the frequency domain, and

3 compared to stimulus-presentation responses. A) Face-categorization baseline-subtracted
4 amplitude spectra. Face-selective responses were tagged at F (= 1 Hz) in every condition,
5 with higher harmonics occurring at 2F (2 Hz), 3F (3 Hz), etc. (the first two harmonics are
6 labeled above the spectra). The data are shown over the region of the scalp (bilateral
7 occipito-temporal ROI) and frequency range (up to 20 Hz) that wer e selected to capture face-
8 sdective responses. Higher harmonic frequencies coinciding with stimulus-presentation are
9 drawn in very light yellow, and may surpass the plotted amplitude range. For ease of
10 comparison across conditions, all graphs are plotted with common axes. B) Face-
11 categorization response topographies. Top row: grand-averaged baseline-subtracted
12 summed-harmonic topographies. Bottom row: the same responses normalized. C) Simulus-
13 presentation responses are tagged at the frequency of presentation (F) corresponding to the
14 condition name. As in Panel A, the first two harmonic frequencies are labeled above the
15 gspectra for each condition. The data is shown over the region of the scalp (medial-occipital
16 ROI) and frequency range (up to 120 Hz) that were used to capture stimulus-presentation

17 responses. All graphs are plotted with common axes, although different from those in Panel
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=

A. D) Stimulus-presentation topographies. Top row: grand-averaged baseline-subtracted
2 summed-harmonic topographies. Bottom row: the same responses nor malized.
3 Note that in the previous sections, given the ranges of the distributed harmonic
4 responses, as well as expected ranges from previous studies (e.g., Jacques, Retter & Rossion,
5 2016; Retter & Rossion, 2016a; Retter et al., 2018), baseline-subtracted harmonics were
6 summed from 1 to 20 Hz for face categorization responses (Retter & Rossion, 2016a). For
7 stimulus presentation responses, in order to encapsulate the full range of presentation
8 frequencies used across conditions, baseline-subtracted harmonic responses were summed up
9 to 120 Hz (see Methods). The face-categorization amplitudes across presentation rates were
10 shown in Figure 2A, and can be compared to the corresponding stimulus-presentation
11  amplitudesin Supplemental Figure 1.
12 4.2 Response Topographies (Experiment 1)
13 The apriori bilatera occipito-tempora (OT) region of interest was verified for its ability
14  represent face-categorization responses. Indeed, the OT ROI represented 7 to 9 out of the 10
15 channels displaying the maximal face-categorization response amplitudes across presentation
16 conditions from 3 to 40 Hz, although only 2 at 60 Hz and 0 at 120 Hz (Figure 5B: top row).
17 For further verification, we controlled for differences in response amplitude across
18 presentation duration conditions by normalizing the response topographies: this shows
19 occipito-temporally dominated responses again from about 40 to 3 Hz (Figure 5B: bottom
20 row). Note that for response quantification, this region was also broken into the right and left
21 hemispheres to assess potential right lateralization effects generally predicted for face
22 perception.
23 In terms of lateralization, the ROT appeared to consistently have a higher amplitude
24 than the LOT, except at 3 Hz. Indeed, the lateralization index (see Methods) revealed a right

25 lateralization (values > 0) across all significant conditions (30 — 3 Hz), except 3 Hz (M = -
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1 3.3, SE = 4.33; see Figure 3A for data at each the right and left OT ROI). The right
2 lateralization was typically low, ranging from 2.18 to 16.1 across 30 to 6 Hz; it was maximal
3 a 20 Hz (SE = 11.6). Yet, a the group level, there were no significant differences in
4 |ateralization across conditions, Fi411=1.35, p=.31, npz =0.38.
5 The responses to stimulus presentation were shown to contrast with the face-
6 categorization responses. These stimulus-presentation responses typically occurred
7 maximally over the medial occipital (MO) scalp region (Figure 5D: top row). Their response
8 topographies varied somewhat as the presentation frequency varied, being most different at
9 60 and 120 Hz, where a centro-parieta region dominated the responses (Figure 5D: top row).
10 4.3 Spatio-Temporal Dynamics (Experiment 1)
11 The face-categorization responses from the previous section were re-examined in the
12 time domain to explore potential qualitative differences across presentation rates. The
13 following analyses use data selectively filtering out the stimulus-presentation frequency (see
14 Methods; for unfiltered data, see Supplemental Figure 2). Four prominent time-windows of
15 interest appeared across conditions, corresponding to those reported previously as P1-face,
16 N1-face, P2-face, and P3-face (at a 12.5-Hz stimulus-presentation rate; Retter & Rossion,
17 2016a). These time-windows encompassed nearly all significant deviations over the bilateral
18 OT ROI (Figure 6A). Each of these deflections, or “components’, was significant across
19 three to six frequency conditions, without any clear trend of component differences as
20 stimulus presentation duration varied. Across significant conditions, these four components
21 peaked over the OT ROI at: 144 ms (SE = 1.95 ms); 202 ms (SE = 5.09 ms); 281 ms (SE =

22 5.34 ms); and 463 ms (SE = 12.8 ms) post face-stimulus onset.
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2 Figure6. Time-domain responses to face presentation, with each frequency condition filtered
3 to remove the response at its respective stimulus-presentation frequency. Four components
4 were present repeatedly across conditions: P1-face, N1-face, P2-face, and P3-face, and are
5 indicated by a vertical line showing the average peak time, and shading depicting the range,
6 across significant conditions. A) Waveforms of the bilateral OT ROI in response to face
7 timulus onset (0 s). For each condition, significant time periods (p<.001) are plotted in red,
8 while those insignificant are plotted in black. B) Scalp topographies, plotted from 0.1-0.6 s
9 post-stimulus onset, every 0.05 s. Significant response periods are underlined in the color of
10 their respective component for each condition; significant periods not corresponding to one
11 of these four components are indicated in gray. C) An average of all conditions with
12 dignificant face-categorization responses in the frequency domain. The bilateral occipito-
13 temporal ROI is plotted in thick black, superimposed above the data from all 128 EEG

14 channels, colored accordingly to the adjacent 2D scalp topography (F: frontal; R: right; O:
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1 occipital; L: left). The topographies are plotted to the right at the peaks of the P1-face (142
2 ms), N1-face (202 ms), P2-face (286 ms), and P3-face (519 ms) for this waveform.
3 These deflections, and responses more generally across time, occurred mainly over
4 the bilateral OT ROI, with some coverage of the occipito-inferior, occipito-parietal, and
5 medial-occipital regions (Figure 6B). In concurrence with the frequency-domain analysis, no
6 dSignificant deflections were found for the conditions at 120 or 60 Hz, however, one
7 sgnificant time-window was found for 40 Hz at the P2-face time, perhaps contributing to the
8 non-significant amplitude in the frequency domain over the OT region for this condition (see
9 again Figure 4B). To characterize a frequency-independent face-categorization response, an
10 average of all conditions with significant face-categorization responses as determined from
11 the frequency domain (3 — 30 Hz) was created (Figure 6C). Over the OT ROl, this response
12 first reached significance at 103 ms post-stimulus onset, and retained significance for 460 ms:
13 it was consistently significant at the times of the P1-face (103 to 159 ms), N1-face (175 to
14 234 ms), P2- and P3-face (247 to 560 ms).
15 In addition to the four main time-windows, a significant time period emerged in the 6
16 Hz condition between 366 — 398 ms, peaking at 380 ms. This 6-Hz OT positive deflection
17 was accompanied by alarge medial parieto-occipital negativity, peaking about 15 ms earlier,
18 which was previously described as the “N2-face” (with a 5.88-Hz sinewave presentation;
19 Jacques, Retter & Raossion, 2016). This response signature is also apparent when stimuli are
20 presented at 3 Hz, and perhaps at 12 Hz and 24 Hz, although not reaching significance over
21 the OT scalp ROI in these conditions (see again Figure 6B).
22 4.4 Summary
23 In sum, face-categorization responses were qualitatively similar in terms of their harmonic
24 response distributions in the frequency domain, their summed-harmonic topographies, and

25 their spatio-temporal dynamics.
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1 5. Individual Differencesin Generic Face Categorization

2 5.1 The Diagnosticity of Presentation Rate (Experiments 1 and 2)

3 Here, we aimed to investigate whether individuals EEG amplitudes (Experiment 1) were

4 related to their behavioral face-categorization performance (Experiment 2) overall. As afirst

5 step, we checked what effect presentation rate had on the range of individual differences,

6 both behaviorally and neurally. Individual participants were ranked for their behavioral face-

7  categorization performance based on their inverse efficiency (IE) score across all presentation

8 rates(range=0.65t0 1.36; M = 0.97; SE = 0.054; see Table 3C).

9 The best participant at behavioral face detection (S07) was contrasted to the worst
10 (S01), in terms of percent accuracy and EEG amplitude. (Note that the same participants
11  would have been ranked as the best and worst if accuracy alone was used as a metric.) Large
12 differences between these participants in both behavioral and EEG amplitude responses were
13 apparent in the mid-frequency range, from 20 — 30 Hz (50 — 33.3 ms; Figure 7A). No
14 differences were apparent across these participants at the lowest three presentation rates (3 —
15 12 Hz, i.e, 333 -83.3 ms) in either measure, and differences were greatly reduced by 40 and
16 60 Hz (25 and 16.7 ms, respectively) until they were abolished at 120 Hz (8.33 ms). The data
17 of all participants, grouped into quartiles, followed these trends, at least between the best

18 25% and worst 25% of participants (Figure 7B).
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1 Figure 7. Individual differences in behavioral performance related to EEG amplitude for
2 face categorization. A) Presentation rates diagnostic of individual differences. A comparison
3 of the participant with the best vs. worst behavioral (inverse efficiency; |E) responses across
4  presentation rates. The highlighted sections indicate data ranges used in panels C and D.
5 Above: Accuracy; Below: Summed baseline-subtracted harmonic amplitude over the bilateral
6 OT ROIL. B) As in Part A, except the 16 participants were split into quartiles of four
7 participants each, ranked 1%-4" behaviorally (Group 1), 5"-8" (Group 2), 9™-12" (Group 3),
8 and 13"16" (Group 4). C) The non-significant correlation of individuals' IE (across all
9 presentation rates) with their OT ROl EEG amplitudes at 3 Hz (highlighted in blue in the
10 previous two panels). D) The significant correlation between individuals' mid-frequency OT
11 EEG amplitudes (averaged over 20, 24, and 30 Hz, highlighted in orange in the previous two
12 pands), weighted by the amplitude at 3 Hz. In both panels C and D, the data from the
13 participants yielding the best and worst behavioral performance are labeled, respectively.
14 The lack of significant EEG responses in the high presentation rates (40 — 120 Hz)
15 would prevent a relationship between individuals EEG and behavior at this range. At low
16 frequencies (3 — 12 Hz), behavior near ceiling would prevent a relationship between
17 individuals EEG and behavior. The best separation in EEG response amplitudes was
18 produced at 20 Hz, and behavioral responses seemed well-separated across the mid-frequency
19 range (from 20 — 30 Hz; 50 — 33.3 ms). In the following section, therefore, we will relate
20 individuals EEG response amplitudes to their behavioral performance using this mid-
21 frequency range.
22 5.2 The Correlation of I ndividual Participant’s EEG Amplitudes (Experiment 1)
23 and Behavioral Accuracy (Experiment 2)
24 To examine whether there was an inherent relationship between individuals behavioral face-

25 categorization performance (IE scores, computed across presentation rates) and EEG face-
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1 categorization amplitudes, we correlated these measures at the slowest presentation rate, 3 Hz
2 (333 ms). This correlation was not significant, without any apparent trend, R?> = .0006; p =
3 0.93 (Figure 7C), which is likely explained by variable physiological factors influencing the
4 EEG response across participants (see Discussion).
5 When correlating individuals' behavior and amplitudes in the mid-frequency range,
6 from 20 to 30 Hz, as defined in the previous section, the correlation was improved but still
7 not significant, R* = 0.22; p = .067. However, when weighting the individuals mid-
8 frequency range EEG amplitudes by their baseline amplitudes at 3 Hz, a significant
9 correlation was found, R? = 0.32, p = .043 (Figure 9D). This measurement is reflective of the
10 change in amplitude of the EEG response from its amplitude at a presentation rate with
11 ceiling-level behavioral face-categorization performance, and thus likely reflects the percent
12 change in behavioral performance as presentation rate decreases. Y e, note that the weighted
13 correlation was not significantly stronger than the unweighted correlation, Z = 0.99, p = .16
14 (one-tailed).
15 Discussion
16  With anovel sweep frequency-tagging visual categorization paradigm, we (1) determined the
17 minima and optimal presentation duration necessary to elicit both behavioral and neural
18 face-categorization responses in human observers, (2) related these responses at the group
19 and individual levels, and (3) determined whether visual categorization is graded or all-or-
20 none. In a first experiment, we presented faces periodically within non-face object RSVP
21 sequences, and investigated implicit response in the EEG frequency domain. In a second
22 experiment, we presented faces non-periodically within non-face object RSVP sequences,
23 and investigated explicit behavioral categorization responses, as well as their associated
24 electrophysiological responses.

25  All-or-None Categorization Responses
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1 Our results suggest that stimuli are either categorized as faces and dlicit full responses, even
2 at very brief presentation durations (e.g., 17 ms), or they are not categorized, even sometimes
3 at relatively low presentation durations (e.g., 50 ms), and no face-selective responses are
4 dlicited. Indeed, no significant neural responses to behaviorally uncategorized faces were
5 present in the categorical, or differential, neural responses of Experiment 2. However, across
6 presentation rates from 12 to 60 Hz (83.3 to 17.6 ms), large deflections were present at the
7 times of the P1-face and N1-face in response only to behaviorally categorized faces (Figure
8 3). Additionally, these face-categorization responses obtained at 12 and 20 Hz were no larger
9 than at 24 and 30 Hz when only behaviorally categorized faces were taken into account
10 (Figure 4).
11 All-or-none categorization responses are not inconsistent with the apparent gradient
12 of response amplitude observed as presentation rate changed in Experiment 1 (Figure 2A).
13 Instead, we propose that the proportion of categorized to uncategorized faces drives graded
14 amplitude differences, similar to how behavioral categorization of “hits’ and “misses” drives
15 graded behavioral response accuracies. Suggesting such an explanation, the behavioral and
16 frequency-tagged neural face-categorization responses were strongly correlated across
17 Experiments 2 and 1, respectively (Figure 2C). Moreover, the decrease in the percent of faces
18 that were categorized behaviorally (a drop of 31% when comparing 24 and 30 Hz to 12 and
19 20 Hz) matched the decrease in the amplitude (32%) of the neural face-categorization
20 response as quantified in the same experiment (Figure 4C and D).
21 It should be noted that the correspondence of neural and behavioral measures as
22 image processing time varies (as a function of presentation duration and/or backward-mask
23 latency) is areplication of a number of previous studies (e.g., Rolls & Tovee, 1994; Kovacs,
24  Voges & Orban, 1995; Vanni et al., 1996; Grill-Spector et al., 2000; Keysers et a., 2001;

25 Bacon-Macé et d., 2005). Note that such studies, if interpreted in this light at al, have been
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1 taken as evidence for graded perceptua effects, attributing the decrease in response as a
2 decrease in the response to each stimulus presented (e.g., see Keysers et al., 2001; Bacon-
3 Mace et a., 2005). Our account and evidence of this relationship as variations in the
4 proportion of all-or-none neural responses, isto our knowledge novel and suggests a different
5 underlying process.
6 Further in line with al-or-none categorization, even as neural amplitude varied with
7 presentation rate in Experiment 1, face-categorization responses remained qualitatively
8 dsmilar in terms of scalp topography (consistent maximal responses over the right occipto-
9 temporal region: Figure 5B), time course (no trends by presentation speed affecting the P1-
10 face, N1-face, P2-face, or P3-face deflections: Figure 6), and the distribution of amplitude
11 across face-categorization harmonic frequencies (Figure 5A). Qualitatively similar face-
12  categorization responses in both the frequency and time domain have also been reported with
13 this frequency-tagging categorization paradigm across studies using different stimulus-
14 presentation rates from about 6 to 20 Hz (e.g., Rossion et al., 2015; Retter & Rossion, 2016a;
15 Quek & Rossion, 2017; Retter et al., 2018) and across variations of stimulus visibility (i.e.,
16 low-pass filtering, Quek et al., 2018). Moreover, raw responses to faces or other visual
17 objects appear similar both quantitatively and qualitatively when using variable image
18 presentation durations, for example from about 40 to 500 ms (Cichy, Pantazis & Oliva,
19 2014).
20 While many arguments have been made for a progressively increasing response
21 amplitude enabling stimulus recognition in the visual cortex (e.g., Kleinschmidt et al., 1998;
22 Bar et d., 2001; Moutoussis & Zeki, 2002; Jemel et al., 2003), all-or-none neural responses
23 have been proposed previously for stimulus detection or identification (e.g., Del Cul, Baillet
24 & Dehaene, 2007; Quiroga et al., 2008; see also Navajas et a., 2013; Sekar, Findley &

25 Llinas, 2012; Sekar et al., 2013 for unmasked stimuli). However, the stimuli used in these
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1 previous studies are limited in range and well-segmented (e.g., a few letters, numbers or
2 words in Del Cul et al., 2007; Sekar, Findley & Llinas, 2012; Sekar et a., 2013; a few
3 repeated exemplar imagesin Quirogaet a., 2008; full front ssgmented facesin Navajas et al.,
4 2013). Moreover, the timing of these all-or-none neural responses is unclear, with relatively
5 late all-or-none responses often reported (e.g., more than 270 ms in widespread regions in
6 Del Cul et al., 2007; more than 300 ms in Quiroga et a., 2008 for neurons in the human
7 media temporal lobe). Compared to these studies, our study provides origina evidence for
8 all-or-none neural categorization responses, given that: 1) it directly measures categorization
9 (i.e, adifferential and generalizable response across widely variable exemplars); 2) through
10 frequency tagging, the neural response is objectively identified and quantified relative to
11 surrounding noise level in the frequency domain; 3) the neural markers of face categorization
12 in this paradigm are known to originate from face-selective neurona populations in the
13 ventra occipito-tempora cortex (see Jonas et a., 2016; Gao et al., 2018); and 4) it shows
14 unambiguous face categorization responses emerging at a 17 ms duration/SOA, and with a
15 latency of 100 msfollowing stimulus onset.
16 Finally, the interpretation of all-or-none categorization responses does not imply that
17 at very short presentation durations the perception of a face stimulus is full, i.e., that al the
18 potential visual information, such as age, gender, and identity, has been extracted from the
19 image. Thus, perception may be graded in the sense that a face may be recognized as a face
20 beforeitsidentity is recognized. However, we suggest that the categorization process itself is
21 dl-or-none: if neural responses differentiating faces from objects and generalizing across face
22  exemplarsare icited at all, they are eicited fully.
23 Why Are Some Stimuli Not Categorized?
24 While high-level (i.e., category-selective) visual processes are all-or-none, they may still be

25 reliant on the gradual accumulation of low-level visua information in early visua areas of
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1 the brain (e.g., Windey et al., 2014). At an early stage, we theorize that if enough visual
2 information is assembled from the stimulus within about 20 ms, it goes on to develop and
3 trigger a full category-selective response after approximately 100-ms post-stimulus onset
4 (eg., Crouzet et a., 2010; Crouzet & Thorpe, 2011; Liu et a., 2009; Jacques et a., 2016;
5 Retter & Rossion, 2016a; see Carandini et al., 2005 for a review of this process up to V1).
6 Indeed, in previous studies, the minimum duration to evoke a neural response was between
7 about 12-20 ms when images were backward-masked (e.g., with scrambled images; see
8 Breitmeyer, 1984); this measure was replicated with a wide variety of recording techniques,
9 including single unit in monkeys (Rolls & Tovee, 1994; Kovacs, Vogels & Orban, 1995;
10 Keyserset a., 2001), MEG (Vanni et a., 1996), fMRI (Grill-Spector et a., 2000), and EEG
11 (Bacon-Mace et a., 2005) in humans. Here, a highly sensitive 20 ms window is consistent
12 with responses occurring rarely when interrupted with a backward-mask after 17 ms, and
13 large increases in the amount of categorization with the next durations (SOAS) of 25 and 30
14 ms.
15 However, if early visual processing is interrupted after about 20 ms but before the
16 category-selective response onset (at approximately 100 ms here, and also in Retter &
17 Rossion, 2016a), perceptual categorization may still not occur. Beyond its initiation, visual
18 information persists in the visual system, e.g., for about 60-100 ms, in early (e.g., V1) brain
19 areas (e.g., see the Discussions of Rolls & Tovee, 1994; Keysers et a., 2001). At these stages,
20 the accumulation of visua information may still be disrupted from masking producing
21 competition in early visual areas (see the “neural competition” theory of Keysers and Perrett,
22 2002; see also the discussion of Potter, 2012). In these experiments, the earlier a mask is
23 presented following a face, the shorter the sensory processing time, and the more likely that
24 the face will not be categorized. In our experiment, missed face categorizations occurred

25 more often at shorter presentation durations, and even up to SOAs of 50 ms (20 Hz; Figure
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1 2). At each face presentation, whether or not the image is categorized or not likely depends
2 on many factors, including: properties of the face image (e.g., how centra or high-contrast
3 the face is, or the face's head orientation), the overlap of low-level properties with its
4 flanking images (Crouzet & Thorpe, 2011; see again Potter, 2012; but also Maguire & Howe,
5 2016; Broers et a., 2018), the loca context (e.g., whether the preceding face has been
6 categorized), and the neural representation of faces in the stimulated brain.
7 Note that in this case, a strong effect of masking is not predicted in high-level visual
8 areas, because stimuli temporally flanking the faces consist of non-face objects for at least 1 s
9 before and after (in contrast, see Retter & Rossion, 2016a for a case of high-level face
10 competition when face stimuli are presented with less than about 400 ms SOAS). In previous
11 forward- and backward-masking studies, early competition from masking stimuli was shown
12  to contribute to reduce mean response amplitude when target stimuli were shown for as low
13 as 28 ms; in contrast, with a “gap” between stimuli resulting in SOAs of at least 100 ms, a
14 reduction in amplitude was not produced (Keysers et al., 2005; Retter et a., 2018).
15 Nevertheless, we suggest that if a face is not categorized because of low-level interference
16  before about 100 ms, it does not enter perceptual awareness (see also Edelman, 1978, pp. 81-
17  88).
18 TheMinimal Speed for Conscious Face Categorization
19 A minimum duration of 17 ms (60 Hz presentation rate) was required to elicit occasional face
20 categorization responses in both neural and behavioral measures. This minimal duration is
21 conservative in that it results from highly variable images: the faces varied in size,
22 eccentricity, head orientation, gaze direction, expression, etc. Nevertheless, behaviora face
23 categorization responses were present significantly, but minimally, with 17 ms of image
24 presentation (60 Hz; M = 3.03%, SE = 1.26%, with more frequent responses than false alarms

25 evident at this rate in haf (8/16) of the individual participants). In contrast, face
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1 categorization was clearly not possible at the shortest presentation duration tested, 8 ms (120
2 Hz), a which only one participant had one categorization, albeit with no false alarms.
3 At aneural level, face-categorization responses occurred occasionally at 17 ms over
4 thebilateral occipito-temporal ROI (evident in Experiment 2; data not shown), although these
5 were significant for only one participant in Experiment 1, who had the highest accuracy at
6 this presentation rate. Neural responses were instead not significant a 17 ms for most
7 participants in Experiment 1, likely due to an insufficient number and proportion of detected
8 trialsto separate EEG signal from noise: e.g., a participant detecting the average 3% of faces
9 inthe second experiment would only have detected about 4 of 126 faces presented in the first
10 experiment at 17 ms. In comparison, the best participant behaviorally detected 12.5% of faces
11 inthe second experiment, predicting about 16 faces detected in the first experiment at 17 ms.
12 Note that these 16 responses to faces presumably compete for amplitude with the 110 faces
13 that were not detected, such that recording any significant response is notable, and likely due
14 to the high signal-to-noise ratio afforded from frequency-domain analyses of periodic
15 responses (Norciaet al., 2015).
16 Perhaps due to such factors, group-level significance was not evident here until 33
17 ms, when group mean accuracy was 22% (predicting about 28/126 faces detected in the first
18 experiment; Figure 1; Table 1). Across participants, the minimum presentation duration
19 required for a significant EEG face-categorization response over the bilateral OT ROI ranged
20 from 17 to 83 ms (Figure 1). Note that while a linear relation between behavior and neural
21 responses was significant across all presentation rates here, a threshold for recording neura
22 responses predicts a non-linear relationship between behavior and neura responses a the
23 fastest presentation rates (i.e., below about 17 ms here; see Figure 2C).
24 Although very short, the minimum duration of 17 ms for face categorization is

25 consistent with the results of several previous studies, both at behavioral and neural levels.
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1 Notably, in a study by Keysers and colleagues (2001; 2005; see also Perrett et al., 2009), the
2 temporal tuning of the responses of single cells and populations in macague monkeys was
3 investigated in response to monkey heads presented at varying orientations in RSVP
4 sequences. Neural firing rates were shown to decrease at faster presentation rates, but
5 responses to non-periodic target stimuli could still be detected at up to 14 ms (with 300-400
6 trials), the fastest rate in that experiment. Behavioral accuracy was measured separately with
7 human participants, which also decreased with presentation speed and remained significant
8 up to 14 ms. A later behaviora study using RSVP closely replicated this presentation
9 duration limit for high-level visual perception: Potter et al. (2014) showed recognition of
10 various natural images (e.g., people or flowers) by human participants at 13 ms, the fastest
11 ratein their experiment. Further, additional studies have confirmed the presence of face (and
12  object) detection responses at 16-17 ms with behavior, ECoG, and MEG, in masked or short
13  RSVP sequences (Grill-Spector & Kanwisher, 2005; Fisch et al., 2009; Mohsenzadeh et al.,
14 2018). The common limit of approximately 15 ms across these studies perhaps reflects
15 something general in visual perception: the minimum amount of time required for a visual
16 stimulus to be coherently processed in early visual areas, before triggering a high-level
17 classification response.
18 It should be noted that our study was limited in its ability to present stimuli at many
19 durations near potential thresholds, due to the constraints of monitor refresh rates. For
20 example, durations between 17 and 8 ms could not be tested, since these durations consist of
21 two and one screen display frames, respectively, on a 120 Hz monitor. This limitation in
22 available presentation durations has similarly affected many previous studies, and for
23 example limits pinpointing whether a limit is at 13 (Potter et al., 2014), 14 (Keysers et al.,
24 2001), 16 (Fisch et a., 2009), or 17 ms (Grill-Spector & Kanwisher, 2005; Mohsenzadeh et

25 4., 2018). Accordingly, it would also be difficult to assess subtler questions, such as whether
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1 faces may be identified faster than other objects around such upper limits (after 17 ms, three

2 display frames at 120 Hz determined the next available duration at 25 ms; but see Fisch et al.,

3 2009; and for a different approach, see Rousselet et al., 2003). Such questions require faster

4 framerates than most current displays afford.

5 TheOptimal Speed of Face-Categorization

6 The maximal behavioral accuracy and neural amplitude occurred at the same time, around 80

7 ms (12 Hz; Figure 2). This optimum time aligns well with ranges from previous studies: for

8 example, maximum accuracy and EEG responses were reported at 81 ms for categorizing

9 anima images followed by dynamic visua masks (adjacent durations of 44 and 106 ms;
10 Bacon-Mace et al., 2005). Additionally, a rough plateau of fMRI and behavioral responses
11 between two duration steps of 120 to 500 ms was reported for stimulus naming (reduced
12 responses at the adjacent lower step of 40 ms; see Fig. 3 of Grill-Spector et al., 2000). While
13 we expect variation by the type of visual process targeted, our results suggest that 80 ms is
14 sufficient for neurotypical adult observers to categorize any natural view of a face in the
15 visual scene (exempting the cases that faces are occluded, artificially degraded, etc.). A
16 practical implication is that studies measuring neural as well as behavioral generic face (vs.
17 object) categorization responses need not present stimuli longer than 80 ms.
18 Above 80 ms, behavioral accuracy remains at ceiling (above 97% at 6 and 3 Hz;
19 Table 3). Neural amplitude does not increase at these rates: if anything, it decreases (Figure
20 2A). In the section “Why Are Some Stimuli Not Categorized?’, we discussed how early
21 visual responses may produce masking effects, or competition at a neural level, across
22 neighboring images in RSVP streams. These responses were not specifically represented in
23 the targeted face-categorization responses of the present experiments, which reflect the
24 contrast of faces with non-face objects. However, we also measured genera visual responses

25 to stimulus presentation, maximal over the medial occipital cortex, and increasing in
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1 amplitude exponentially as stimulus presentation duration increased (Supplementary Figure
2 1). It is possible these visual responses were more developed as presentation duration
3 increased, being more likely to reach higher-level general visual processing that nevertheless
4 might have interfered more with face-selective processing. Indeed, these stimulus-
5 presentation responses showed some variance in topography across presentation duration,
6 with aparticularly distinct response localization at 60 and 120 Hz (Figure 5D), although these
7 latter responses may have been contaminated by noise from the power line frequency at 60
8 Hz. Thus, one possible explanation for lower amplitudes at longer presentation durations
9 could be an interaction between face and non-face object processing at rates below 12 Hz
10 (compare Supplemental Figure 1 with Figure 2A; and Figure 5B with 5D).
11 Individual Differencesin Generic Face Categorization
12 Finding reliable correlations between neural amplitudes and behavioral measures of visua
13 categorization, even when using frequency-tagging with well quantified measures, remains a
14 challenge (e.g., Retter & Rossion, 2016b; Retter & Rossion, 2017; Xu et al., 2017). Thisis
15 likely because neural responses are heavily influenced by physiological factors: in particular,
16 for EEG the orientation of dipole generators, influenced by individual differences in cortical
17 folding, is thought to play a large role; additional factors include skull thickness and the
18 conductivity of tissue in between the generators and captors (Luck, 2005; Nunez &
19  Srinivasan, 2006; Woodman, 2010).
20 Here, we developed a method to identify the relationship between individual
21 participants behavioral and neural measures. We were able to show a significant correlation
22  between participants behavior (measured in Experiment 2 across all presentation rates in
23 terms of inverse efficiency) and face-categorization EEG amplitude (measured in Experiment
24 1 by weighting the mid-frequency responses from 20 — 30 Hz (30 — 50 ms) by that of 3 Hz

25 (333 ms), over the OT ROI; Figure 7D).
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1 This correlation relies on two elements: first, we used a range of presentation rates
2 that accentuated individual differences in generic face categorization. While a great amount
3 of research is being done in terms of individual differences in individual face recognition,
4  differences in generic face vs. object categorization have not been reported to our knowledge,
5 likely due to the high level of expertise that human adults have at performing this function
6 (Crouzet et a., 2010; Herschler & Hochstein, 2005; Scheirer et al., 2014). Here, at
7 presentation rates from 20 to 30 Hz (30 to 50 ms; see Figure 7A and B), we were able to
8 make this function challenging enough to keep all participants below a behavioral ceiling (at
9 80ms,i.e, 12 Hz, and later; Figure 2B) and yet above the threshold for measuring significant
10 neural responsesin most individual participants (Figure 1).
11 Second, we used a relative measure of neural activity, weighting individuals' neural
12 amplitudes in this mid-frequency range by their amplitudes at the lowest presentation rate. At
13 thisrate, 3 Hz, individua differences had no relationship to behavioral performance (Figure
14 7C), again likely due to physiologica influences on the neural amplitudes. Using a relative
15 neural measure likely assisted in cancelling out such influences, enabling a more diagnostic
16 signature of individuals' EEG response amplitudes relative to behavior (again, Figure 7D).
17 Note again that this relationship is found when comparing explicit behavioral face
18 categorization (Experiment 2, face detection task) to implicit neural face-categorization
19 responses (Experiment 1, naive, fixation-cross task). Although most (14/16) participants
20 spontaneously reported perceiving faces when describing the sequences after Experiment 1,
21 none reported observing their periodic presentation. Note also that the responses to stimulus-
22 presentation duration showed very different trends, being significant at all durations but
23 decreasing exponentialy as duration increased (Supplemental Figure 1), suggesting that the
24 targeted responses are truly specific to face categorization.

25 Summary
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1 We have shown that widely variable natural images of faces can be categorized in contrast to
2 non-face objects at presentation rates as short as 17 ms, and optimally at 80 ms. Individual
3 differences were evident within this range, such that individuals' relative neural amplitudes
4  (across 30-50 ms) were significantly correlated with their behavioral performance (across all
5 presentation rates). While overall the amplitude of face-categorization responses appeared to
6 increase gradually as presentation duration increased, this was completely accounted for by
7 the proportion of discrete “hits” and “misses’ in categorization, with categorized faces
8 producing full neural face-categorization responses and uncategorized faces producing no
9 neural face-categorization responses. This provides convergent neura and behavioral

10 evidencethat human perceptual (face) categorization is all-or-none.
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