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1 Abstract
2  Attempts to link the Big Five personality traits of Openness-to-Experience,
3 Conscientiousness, Extraversion, Agreeableness, and Neuroticism with variability in
4  trait-like features of brain structure have produced inconsistent results. Small sample
5 sizes and heterogeneous methodology have been suspected in driving these
6 inconsistencies. Here, we tested for associations between the Big Five personality
7  traits and multiple measures of brain structure using data from 1,107 university
8 students (636 women, mean age 19.69+1.24 years) representing the largest attempt
9 to date. In addition to replication analyses based on a prior study, we conducted
10 exploratory whole-brain analyses. Four supplementary analyses were also conducted
11 to examine 1) possible associations with lower-order facets of personality; 2)
12 modulatory effects of sex; 3) effect of controlling for non-target personality traits;
13  and 4) parcellation scheme effects. The analyses failed to identify any significant
14  associations between the Big Five personality traits and variability in measures of
15  cortical thickness, surface area, subcortical volume, or white matter microstructural
16  integrity, except for an association between greater surface area of the superior
17  temporal gyrus and lower scores on conscientiousness that explained 0.44% of the
18  morphometric measure's variance. Notably however, the latter association is largely
19  not supported by previous studies. The supplementary analyses mirrored these
20 largely null findings, suggesting they were not substantively biased by our choice of
21 analytic model. Collectively, these results indicate that if there are direct associations
22  between the Big Five personality traits and variability in brain structure, they are of

23 likely very small effect sizes and will require very large samples for reliable detection.
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25 Introduction

26 Studies regarding the basic structure of individual differences in personality traits
27  have yielded a relatively consistent five factor model, comprised of the higher-order
28 dimensions of neuroticism, extraversion, agreeableness, conscientiousness, and
29  openness-to-experience - each capturing a wide array of feelings, thoughts, and
30 behaviors (Digman, 1990). Individuals high in neuroticism tend to perceive the world
31 as distressing or threatening and frequently tend to experience negative emotions
32 such as anger and anxiety. Extraversion reflects a tendency to be outgoing and
33  assertive, to experience frequent positive moods, and to approach and explore one’s
34  environment. Agreeableness reflects a tendency to be trusting and compassionate,
35 and to prefer cooperation over conflict. Individuals high in conscientiousness tend to
36 be organized and planful, and to follow socially prescribed norms of behavior.
37 Individuals high in openness-to-experience tend to be curious and reflective, show
38 an appreciation for art and culture, and tend to be very imaginative. These five traits
39 can be further partitioned to a set of hierarchically lower-order facets, reflecting
40 narrower, yet intercorrelated, sub-components of each broad dimension. In contrast
41  to the consistency of the five factor model, studies of how the Big Five personality
42  traits relate to underlying trait-like features of the brain have yet to identify
43  consistent patterns despite a growing number of attempts (e.g., Bjgrnebekk et al.,
44  2013; Coutinho et al., 2013; DeYoung et al., 2010; Ferschmann et al., 2018; Hu et al.,

45  2011; Kapogiannis et al., 2013; Liu et al., 2013; Lu et al., 2014).

46 Unlike the studies from which the Big Five were derived, most neuroimaging

47  studies of personality traits have relied on relatively small samples (N<100).
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48 Importantly, a recent study has suggested that even samples of 300 participants may
49  be too small to reliably detect associations between psychological phenotypes and
50 brain morphometry (Kharabian Masouleh et al.,, 2019). Indeeed, consistent and
51 replicable links have yet to emerge (reviewed in Allen and DeYoung, 2017; Yarkoni,
52  2015). This lack of statistical power has been further compounded by varied
53 methodological and analytic approaches across studies. Here, we tested for
54  associations between the Big Five personality traits and multiple features of brain
55  structure in the largest sample to date (N=1,107). Notably, other than its size, our
56  sample also had the advantage of being relatively homogeneous in age (18-22 years),
57 which may affect associations between personality traits and brain structure
58  (Ferschmann et al., 2018).

59 Brain morphometry was assessed by measuring cortical thickness (CT), surface
60 area (SA), subcortical volume, and white matter microstructural integrity. Based on
61 the radial unit hypothesis (Rakic, 1988, 2009), SA is driven by the number of radial
62 columns, while CT reflects the density of cells within a column. CT and SA exhibit
63 different developmental trajectories (Wierenga et al., 2014) and are affected by
64  distinct genetic factors (Panizzon et al.,, 2009). Consequently, we examined
65  associations with CT and SA separately rather than the coarser measure of gray
66  matter volume, which is the product of these two measures.

67 To measure white matter microstructural integrity, we used fractional
68  anisotropy (FA), which measures the directional diffusivity of water, with values
69 ranging from O (isotropic diffusion) to 1 (anisotropic or directional diffusion). FA

70  values have been associated with fiber diameter and density, degree of myelination,
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71  and fiber tract coherence (Basser, 1995; Basser and Pierpaoli, 1996; Beaulieu, 2002).
72 Higher values of FA reflect a more organized or regular fiber tract pattern.

73 Additionally, we conducted surface-based parcellation analyses rather than
74  traditional vertex- or voxel-based analyses to maximize spatial resolution otherwise
75 lost to smoothing across tissue types (i.e., CSF, gray matter, and white matter) and
76  anatomical regions (Coalson et al., 2018; Glasser et al., 2016). A parcellation-based
77  approach further restricts the number of tests conducted to anatomically defined
78  regions, thereby minimizing the number of comparisons conducted. We also
79  explicitly controlled for race/ethnicity, because previous research has found it to be
80 linked with brain structure (e.g., Brickman et al., 2008; Pfefferbaum et al., 2016; Xie
81 etal., 2015) and personality (Foldes et al., 2008). Lastly, we used regression analyses
82  with robust standard errors that accommodate non-normality in data, because
83  previous research has indicated that the CT and SA of some brain regions may not be
84  normally distributed (Patel et al., 2018).

85 Using the above general strategy, we conducted three related sets of analyses.
86  First, we attempted to replicate the personality associations with brain
87 morphometry reported by Hyatt et al. (2019), which represents the largest
88  previously published study of the structural brain correlates of personality based on
89 data from 1,104 participants, mostly twins and siblings, from the Human
90 Connectome Project (age range: 22-36). Second, we conducted whole-brain
91 exploratory analyses to examine all possible associations between the Big Five
92  personality traits and SA, CT, subcortical volume, and FA. Third, in the hope of
93  further informing future research in personality neuroscience, and to address

94  previous findings and the possibility of parcellation scheme effects, we also
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95  conducted four supplementary analyses: we examined whether a) lower-order facets
96 of the Big Five personality traits better correspond with brain structure (Bjgrnebekk
97 etal, 2013); b) associations differ by sex (Nostro et al., 2016); c) associations can be
98 detected when controlling for non-target traits (e.g., DeYoung et al., 2010; Liu et al.,
99  2013; Riccelli et al., 2017); and; d) a different parcellation scheme of the cortex
100  affects the findings.

101

102 Methods

103  Participants

104 1330 participants (762 women, mean age 19.70+1.25 years) successfully completed
105 the Duke Neurogenetics Study (DNS), which assessed a range of behavioral and
106  biological traits among young adult, university students. The DNS was approved by
107 the Duke University School of Medicine Institutional Review Board, and all
108  participants provided written informed consent prior to participation. All participants
109  were free of the following study exclusions: 1) medical diagnoses of cancer, stroke,
110  diabetes requiring insulin treatment, chronic kidney or liver disease, or lifetime
111  history of psychotic symptoms; 2) use of psychotropic, glucocorticoid, or
112  hypolipidemic medication; and 3) conditions affecting cerebral blood flow and
113  metabolism (e.g., hypertension). Current and lifetime DSM-IV (the Diagnostic and
114  Statistical Manual of Mental Disorders) Axis | or select Axis Il disorders (antisocial
115  personality disorder and borderline personality disorder), were assessed with the
116  electronic Mini International Neuropsychiatric Interview (Lecrubier et al., 1997) and
117  Structured Clinical Interview for the DSM-IV Axis Il subtests (First et al., 1997),

118  respectively. Importantly, neither current nor lifetime diagnosis were an exclusion
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119  criterion, as the DNS seeks to establish broad variability in multiple behavioral
120 phenotypes related to psychopathology. However, no individuals, regardless of
121  diagnosis, were taking any psychoactive medication during or at least 14 days prior
122 to their participation.

123 The current analyses of gray matter (i.e., CT, SA, and subcortical volume) were
124  conducted on a subset of 1107 participants (636 women, mean age 19.69+1.24
125  years) for whom there was T1-weighted structural imaging data available post
126 quality control procedures (see below) as well as personality questionnaire and
127  genetic race/ethnicity data. Amongst this subset, 224 participants had at least one
128  DSM-IV diagnosis. Based on self-report, there were 499 non-Hispanic Caucasians,
129 125 African Americans, 294 Asians, 71 Latino/as, 2 Pacific Islanders, and 116
130  multiracial or other participants in this subset.

131 White matter microstructure analyses were conducted on a further subset of
132 778 participants (443 women, mean age 19.67+1.25 years) for whom there was
133 diffusion weighted imaging data available post quality control procedures (see
134  below) as well as personality questionnaire and genetic race/ethnicity data.
135  Amongst this subset, 156 participants had at least one DSM-IV diagnosis. Based on
136  self-report, there were 351 non-Hispanic Caucasians, 92 African Americans, 213
137  Asians, 47 Latino/as, 2 Pacific Islanders, and 73 multiracial or other participants in
138  this subset.

139

140  Race/Ethnicity

141  Because self-reported race and ethnicity are not always an accurate reflection of

142  genetic ancestry, an analysis of identity by state of whole-genome SNPs was
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143  performed in PLINK (Purcell et al.,, 2007). The first four multidimensional scaling
144  components were used as covariates to reduce possible confounding effects of
145  race/ethnicity. The decision to use only the first four components was based on an
146  examination of a scree plot of eigenvalue, which showed that the eigenvalues
147  became very similar after the fourth component.

148

149  Personality

150 The 240-item NEO personality inventory revised (NEO-PI-R; Costa and McCrae,
151  1995), was used to assess the Big Five personality dimensions and their underlying
152  facets: 1) Neuroticism (based on the anxiety, angry hostility, depression, self-
153  consciousness, impulsiveness, and vulnerability facets); 2) Agreeableness (based on
154  the trust, straightforwardness, altruism, compliance, modesty, and tender-
155 mindedness facets); 3) Conscientiousness (based on the competence, order,
156  dutifulness, achievement striving, self-discipline and deliberation facets); 4)
157  Extraversion (based on the warmth, gregariousness, assertiveness, activity,
158  excitement-Seeking, and positive emotions facets); and 5) Openness-to-Experience
159 (based on the fantasy, aesthetics, feelings, actions, ideas, and values facets). Each
160  facet was a sum of 8 items, and each personality trait was a sum of the facet scores
161  (with certain items reverse coded as indicated). Participants rated the 240 items on a
162  scale ranging from (0) strongly disagree to (4) strongly agree. The 6 lower order
163  facets for each personality trait were modeled in our supplementary analyses.
164 Internal consistency of the personality traits was assessed by Cronbach's alpha as fair
165  to good, ranging between .70 to .85.

166
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167  MRI Data Acquisition

168  Each participant was scanned using one of two identical research-dedicated GE
169  MR750 3T scanners stationed at the same facility, the Duke-UNC Brain Imaging and
170  Analysis Center (891 participants on scanner 1 and 216 participants on scanner 2.
171  Additional  details on the scanners can be found elsewhere:
172 https://www.biac.duke.edu/facilities/scanners.asp). Each identical scanner was
173  equipped with high-power high-duty cycle 50-mT/m gradients at 200 T/m/s slew rate
174  and an eight-channel head coil for parallel imaging at high bandwidth up to 1 MHz.
175 T1l-weighted images were obtained using a 3D Ax FSPGR BRAVO sequence with the
176  following parameters: TR = 8.148 ms; TE = 3.22 ms; 162 axial slices; flip angle, 12°;
177  FOV, 240 mm; matrix =256x256; slice thickness = 1 mm with no gap (voxel size
178  0.9375x0.9375x1 mm); and total scan time = 4 min and 13 s. Following an ASSET
179  calibration scan, two 2-min 50-s diffusion imaging acquisitions were collected,
180  providing full brain coverage with 2-mm isotropic resolution and 15 diffusion
181  weighted directions (10-s repetition time, 84.9 ms echo time, b value 1,000 s/mm2,
182 240 mm field of view, 90° flip angle, 128x128 acquisition matrix, slice thickness=2
183 mm). A variable that indicated the scanner that was used for each participant was
184  included in all analyses as a covariate.

185

186  MRI Data Processing
187  To generate regional measures of brain morphometry, anatomical images for each
188  subject were first skull-stripped using ANTs (Klein et al., 2009), then submitted to

189  Freesurfer's (Version 5.3) recon-all with the “-noskullstrip” option (Dale et al., 1999;
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190  Fischl et al., 1999), using an x86_64 linux cluster running Scientific Linux. Of the 1321
191  participants who completed the high-resolution T1-weighted imaging protocol, 11
192 were excluded for the presence of motion-related or external artifacts, 4 were
193  excluded for incidental findings, and 1 was unable to be processed with FreeSurfer.
194  Additionally, the gray and white matter boundaries determined by recon-all were
195  visually inspected using FreeSurfer QA Tools
196  (https://surfer.nmr.mgh.harvard.edu/fswiki/QATools). This revealed small to
197 moderate errors in gray matter boundary detection in 51 individuals who were

198  consequently excluded.

199 CT and SA for 31 regions in each hemisphere, as defined by the Desikan-
200  Killiany-Tourville atlas (Klein and Tourville, 2012), a modified version of the Desikan-
201  Killiany atlas (Desikan et al., 2006), which was used in the Hyatt et al. (2019) study,
202  were extracted using Freesurfer. The updated version of the atlas is meant to make
203  region definitions as unambiguous as possible and define boundaries best suited to
204  FreeSurfer's classifier algorithm. To ensure that our exploratory analyses were not
205 contingent on a specific parcellation scheme, CT and SA for 74 regions per
206  hemisphere, as defined by the Destrieux atlas (Destrieux et al., 2010), were also
207  extracted using Freesurfer. Additionally, gray matter volumes from eight subcortical
208  regions (Cerebellum Cortex, Thalamus, Caudate, Putamen, Pallidum, Hippocampus,
209 Amygdala, and Accumbens area) were extracted with Freesurfer's subcortical
210 segmentation (“aseg”) pipeline (Fischl et al., 2002). Estimated Total Intracranial
211 Volume (ICV), total gray matter volume, cerebral white matter volume, and left and

212 right hemisphere mean CT were also extracted from the “aseg” pipeline, and average
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213  whole-brain CT was calculated based on the estimates for the left and right

214  hemispheres.

215 Diffusion weighted images were processed according to the Diffusion Tensor
216  Imaging (DTI) protocol developed by the Enhancing Neuro Imaging Genetics Through
217  Meta-Analysis  (ENIGMA)  consortium  (Jahanshad et al, 2013; or
218  http://enigma.ini.usc.edu/protocols/dti-protocols/). In brief, raw diffusion-weighted
219 images underwent eddy current correction and linear registration to the non-
220  diffusion weighted image in order to correct for head motion. These images were
221 skull-stripped and diffusion tensor models were fit at each voxel using FMRIB's
222  Diffusion Toolbox in FSL (FDT; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT), and the
223 resulting two fractional anisotropy (FA) maps were linearly registered to each other
224  and then averaged. Average FA images from all subjects were non-linearly registered
225  to the ENIGMA-DTI target FA map, a minimal deformation target calculated across a
226  large number of individuals (Jahanshad et al., 2013). The images were then
227  processed using the tract-based spatial statistics (TBSS) analytic method (Smith et al.,
228  2006) modified to project individual FA values onto the ENIGMA-DTI skeleton.
229  Following the extraction of the skeletonized white matter and projection of
230 individual FA values, tract-wise regions of interest, derived from the Johns Hopkins
231 University (JHU) white matter parcellation atlas (Mori et al., 2005), were transferred
232 to extract the mean FA across the full skeleton and average whole-brain FA values
233 for atotal of 24 (partially overlapping) regions across the two scans. All FA measures
234  from the right and left hemispheres were averaged. Additionally, volume-by-volume

235  head motion was quantified by calculating the root mean square (RMS) displacement
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236  of the six motion parameters (three translation and three rotation components),
237  determined during eddy current correction for each pair of consecutive diffusion-
238  weighted brain volumes. The resulting volume-by-volume RMS deviation values were
239  averaged across all images, yielding a summary statistic of head motion for each
240  participant to add to the FA analyses as a covariate, as previously recommended for

241 DTl analyses (Yendiki et al., 2014).

242

243 Statistical Analyses

244  We first attempted to replicate the significant associations between personality and
245  brain morphometry reported by Hyatt et al. (2019; Table 1) at p<.005 (i.e., the
246  significance threshold used in their paper). We next proceeded to conduct
247  exploratory parcellation-based analyses across the whole-brain (31 SA regions, 31 CT
248  regions, 8 subcortical regions, 24 FA measures, and total gray matter volume,
249  cerebral white matter volume, whole-brain average FA, and whole-brain average CT)
250 for each of the Big Five personality traits (a total of 5*98=490 tests). Lastly, to assess
251  the robustness of our findings, we conducted four supplementary analyses: 1)
252  whole-brain parcellation-based analyses of the Big Five personality facets; 2) whole-
253  brain parcellation-based analyses of the Big Five personality traits for men and
254  women, separately; 3) whole-brain parcellation-based analyses of each Big Five
255  personality trait while controlling for the other four traits; and 4) whole-brain
256  parcellation-based analyses of each Big Five personality trait, while using a different
257  parcellation scheme of the cortex, specifically, the Destrieux atlas (Destrieux et al.,

258 2010).
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259 Analyses were conducted in R version 3.5.1 (R Core Team, 2018), with the
260  packages "broom" (Robinson and Hayes, 2018), "tidyr" (Wickham and Henry, 2018),
261 "dplyr" (Wickham et al., 2019), "Imtest" (Zeileis and Hothorn, 2002), "readr"
262  (Wickham et al., 2018), and "sandwich" (Zeileis, 2004). Linear regression analyses
263  with robust standard errors were performed with brain measures as outcomes,
264  personality measures as independent variables, and sex, age, scanner, and four
265  ancestry-informative genetic principal components as covariates of no interest.
266  Notably, for all analyses, except the Hyatt et al., (2019) replication analyses, all brain
267 morphometry measures were averaged across the two hemispheres, as there is no
268  strong evidence to support a lateralization effect of personality on brain structure.
269 ICV, average CT, and average FA, were used as additional covariates for analyses of
270  subcortical volume and surface area, CT, and FA, respectively. For the FA analyses,
271  which can be particularly sensitive to motion, head motion was also included as a
272  covariate. The Big Five personality traits were standardized (M=0, SD=1) in SPSS
273  version 25 before analyses. Variance explained (i.e., R?) by the independent variable
274  of interest, when it is last in the regression, was calculated in R with the package
275  "relaimpo" (Gromping, 2006). The "false discovery rate" (FDR) adjustment (Benjamini
276  and Hochberg, 1995) was applied to correct for multiple comparisons with the
277  p.adjust functionin R.

278
279 Results

280 Descriptive statistics for the personality and brain morphometry variables are

281  available in Supplementary Table 1.
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282  Replication of Hyatt et al. (2019)

283  Asreported in Table 2, none of the 15 associations that were significant at p<.005 in
284  Hyatt et al. (2019) were significant in our analyses, even without correcting for
285  multiple comparisons (i.e., using an uncorrected p<.05 threshold). As Hyatt et al. did
286  not control for race/ethnicity, we also ran analyses without the genetic principal
287 components to test whether these could account for the different results. Again,
288 none of the associations remained significant after correcting for multiple
289  comparisons, but three associations were significant at an uncorrected p<.05,
290  although not necessarily in the same direction as found in Hyatt et al.: a positive
291  association between the right supramarginal gyrus SA and neuroticism (b=24.047,
292  SD=11.43, p=.036, R’=0.23%; this association was negative in Hyatt et al.); a negative
293  association between the left pars orbitalis CT and neuroticism (b=-.013, SD=.005,
294  p=.021, R?=0.33%; this association was positive in Hyatt et al.,), and a positive
295  association between the left superior frontal gyrus CT and neuroticism (b=.0072,
296  SD=.003, p=.02, R?=0.21%; this association was also positive in Hyatt et al.). When
297 comparing the analyses with and without controlling for race/ethnicity (Table 2), it is

298  noticeable that race/ethnicity can affect the obtained results.

299 As the race/ethnic composition of our sample differed from the race/ethnic
300 composition of the Human Connectome Project (HCP) sample on which the analyses
301  of Hyatt et al. were based (i.e., 44.6% vs. 74.8% of non-Hispanic Caucasians, 11.4%
302 vs. 15.1% of African-Americans, and 27% vs. 5.7% of Asian-Americans, which also
303 included Native Hawaiian, or other Pacific Islander in the HCP), we also separately

304 present the results from our three largest ethnic subsamples, as determined based
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305 on self-reports and genetic ancestry components, when available. Here, the sample
306  sizes are larger because individuals with missing genetic data were also included
307 based on self-reported race/ethnicity: non-Hispanic Caucasians (n=559), Asians
308 (n=336), and African-Americans (n=143). As shown in Table 2, there were differences
309 in the regression estimates between the groups, further supporting our decision to
310 control for race/ethnicity (e.g., in Asians the association between the left superior
311  frontal gyrus CT and neuroticism was positive and significant at an FDR corrected p
312  value<.05, but it was somewhat negative in African Americans. This association was
313  also significant at an uncorrected p<.05 in the mixed race/ethnicity sample, when

314  race/ethnicity was not included as a covariate).
315
316  Exploratory whole-brain analyses

317 The top associations (i.e., uncorrected p<.005) are reported in Table 3 along with
318  their R’ Of all the associations between the Big Five personality traits and brain
319  morphometry (CT, SA, subcortical volume, or FA) only one remained significant after
320 the FDR correction for multiple comparisons: the association between the SA of the
321  superior temporal gyrus and conscientiousness (b=-33.91, SE=8.66, p=9.55e-05, FDR
322 adjusted p=0.047, R’=0.44%). All associations and related variance explained (R?) are

323  further presented in Supplementary Table 2.
324
325  Supplementary analyses

326  Our supplementary analyses (i.e., testing personality facets instead of the Big Five

327 personality traits, conducting sex-specific analyses, using non-target personality
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328 traits as covariates or using a different cortex parcellation scheme; reported in
329  Supplementary Tables 3-7) revealed that these generally null findings were not
330 biased by our choice of analytic model. Only one association remained significant
331  after the FDR correction for multiple comparisons across all the tests conducted in
332  the current study (N=5640) - the association between the SA of the superior
333  temporal gyrus and the dutifulness facet of conscientiousness (b=-39.50, SE=8.79,
334 p=7.76e-06, FDR adjusted p=0.044; R’=0.62%), such that higher dutifulness was

335 associated with reduced superior temporal gyrus SA.
336
337  Discussion

338 In the current study, with the largest sample to date, we failed to identify robust
339 links between the Big Five personality traits and multiple, trait-like features of brain
340  structure. Several supplementary analyses, in which we tested the facets of
341  personality, conducted separate analyses for men and women, included the non-
342  target personality traits as covariates, and used a different parcellation scheme,
343  confirmed these primary null findings. There was one exception: an association
344  between greater SA of the superior temporal gyrus, an area involved in language
345  perception and production, and lower scores on conscientiousness, and, more
346  specifically, dutifulness. However, Bjgrnebekk et al. (2013) who reported an
347  association with the caudal part of the superior temporal gyrus, did so for scores on
348 different facets of conscientiousness (achievement striving and self-discipline), and
349 this association was not replicated in other studies (Hyatt et al., 2019; Lewis et al.,

350 2018; Nostro et al., 2016), although an association with CT in this area was found to
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351 correlate with conscientiousness in Lewis et al., (2018). Consequently, this singular
352  association in our current analyses should be treated with caution. Generally, the
353  supplementary analyses suggested that the largely null results of the primary
354 analyses did not depend on specific analytical or methodological choices. This is
355  further supported by a recent large study which applied a voxel-wise approach and
356 also did not find robust associations between personality traits and brain

357  morphometry (Kharabian Masouleh et al., 2019).

358 There are several possible reasons for the lack of replicable associations
359  between personality and brain structure, including the current failure to replicate
360 associations identified by Hyatt and colleagues (2019). With regard to this specific
361 failure, it is possible that unaccounted-for effects of family structure in the data
362  derived primarily from twins and siblings (Van Essen et al., 2013), biased their
363 observed associations. Additionally, even though we used a similar atlas (original
364  study: the Desikan-Killiany atlas; our study: the updated Desikan-Killiany-Tourville
365 atlas), a similar personality measure (original study: the 60-item NEO-FFI; our study:
366  the 240-item NEO-PI-R), and a similar scanner (original study: the 3T Siemens Skyra;
367 our study: the 3T GE MR750), it is possible that these small differences in data
368 collection affected our results. However, if such differences account for the lack of
369 replicability, this raises questions regarding the robustness of the original findings.
370 More generally, most of the correlations reported by Hyatt et al. were smaller than
371 .1, and, similarly, in our study almost all the R* were smaller than 1%. This suggests
372  that effect sizes for associations between personality traits and brain structure are

373  likely to be very small and will require very large sample sizes to be reliably detected.
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374 Furthermore, differences between and within samples may also limit
375 replicability in personality neuroscience. Age is known to affect brain structure, and
376 indeed has been shown to moderate associations between brain structure and
377  personality (Ferschmann et al., 2018). Sex differences may also be relevant as has
378 been shown by Nostro et al., (2016) and in our supplementary results, where,
379 although an interaction by sex was not formally tested, the pattern of association
380 between men and women were inconsistent. Our results also suggest that
381 accounting for race/ethnicity may be advised when testing for personality-brain
382  structure associations. Indeed, previous research has shown differences in brain
383  structure as a function of race/ethnicity (e.g., Brickman et al., 2008; Pfefferbaum et
384 al., 2016; Xie et al., 2015). For example, a different brain atlas than the one
385  constructed based on Caucasians may be needed to accurately identify variability in
386  structure from a different racial/ethnic population (Tang et al., 2010). Thus, it may

387  be insufficient to simply control for race/ethnicity in analytic models.

388 Although we used the largest sample to date, included 240 items to assess
389  personality, and employed different methodologies to test for the associations
390 between the Big Five personality traits and brain structure, our study does have
391 several limitations. First, we did not exhaust all the possible ways to assess
392  personality. For example, an alternative classification approach is represented by
393  personality “types,” which defines categories of individuals based on similar
394  configurations of interacting traits. A large analysis of personality types indicated
395 that there are 4 personality types that can be clustered based on scores on the Big
396  Five personality traits (Gerlach et al., 2018). Thus, for example, someone low on

397 neuroticism may also have an average or a high conscientiousness score, which may
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398 correspond differently with brain structure. Future studies could focus on such
399 “types” in examining personality-brain structure associations. Second, our
400 acquisition protocol precluded the application of more anatomically precise
401  parcellation schemes (e.g., Glasser et al., 2016). Third, our sample of volunteer
402 students at a top university may not be representative of the general population.
403  Lastly, we did not examine brain function. The brain correlates of personality may be
404 more readily identified in functional measures, such as functional connectivity.
405 However, as functional MRI studies are often characterized by small sample sizes,
406  here as well caution will be needed in the interpretation of findings until replicable

407  findings emerge in large samples.

408 Our largely null findings echo comments made by Yarkoni (2015): "There is no
409 guarantee that any particular psychometric model of individual differences in
410 personality will map onto underlying biological process models in any
411  straightforward way. In fact...a clear-cut relationship between the two is likely to be

412  the exception rather than the rule." As well as those by Kharabian Masouleh et al.,
413  (2019) that associations between psychological measures (including personality) and
414  specific brain structures in a healthy sample are "highly unlikely" (Kharabian
415 Masouleh et al., 2019). That said, small effect sizes and possible moderating effects
416  of sex, age, and race/ethnicity suggest the possibility that with ever larger and more
417 homogeneous samples reliable links between personality and trait-like features of
418  the brain may yet emerge. The field of personality neuroscience may benefit from
419 following the lead of genome-wide association studies that have, after many failed

420 attempts with candidate gene studies and small samples (e.g., Avinun et al., 2018;

421  Bosker et al.,, 2011), begun to reveal the genetic architecture of complex traits
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through massive samples (Plomin and von Stumm, 2018). The growth of shared
imaging data through research consortia (e.g., the "enhancing neuroimaging genetics
through meta-analysis" project [ENIGMA]) may allow for such gains in personality

neuroscience sooner than later.
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Table 1. Significant personality and brain structure (SA and CT) associations reported by Hyatt et al. 2019.

CT

SA

Subcortical volume

29

Neuroticism Left caudal middle frontal gyrus (+)
Left pars orbitalis (+)
Left pars triangularis (+)
Left superior frontal gyrus (+)

Left cuneus (-)

Left pars triangularis (-)

Left superior parietal lobule (-)
Right supramarginal gyrus (-)
Superior frontal gyrus (-)

Openness Left rostral middle frontal gyrus (-)
Left superior parietal lobule (-)

Left inferior temporal gyrus (+)

Left caudate (+)

Agreeableness Left caudal middle frontal gyrus (-)

Extraversion

Right superior frontal gyrus (+)

Note. +/- indicate the direction of the associations (i.e., positive or negative respectively)
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Table 2. Regression estimates and standard errors from our attempt to replicate the associations reported by Hyatt et al. (2019) in all

participants and within the three largest racial/ethnic subgroups from the Duke Neurogenetics Study.

All participants (N=1107)

Without controlling for

Caucasians (n=559)

Asians (n=336)

Africans Americans

ethnicity (N=1107) (n=143)
b SD R’ b ) R’ b ) R’ b sD R’ b SD R’
Left cuneus (SA) on Neuroticism -4.263 7.610 0.02% -0.787 6.977 0.00% 5.879 11.276 0.04% -9.265 12485 0.13% -26.246  18.164 1.11%
Left pars triangularis (SA) on Neuroticism 6.955 6.536 0.07% 9.857 6.095 0.14% 15.075 10.201 0.29% -6.948 11.284 0.08% 35.2212" 17.922 2.06%
Left superior parietal lobule (SA) on Neuroticism 12.858 13.331 0.05% 14.002 12.589 0.06% 1.494 19.656 0.00% 3.814 24.208 0.01% 55.496 33.263 1.02%
Right supramarginal gyrus (SA) on Neuroticism 20.087 12.314 0.16% 24.0470* 11.431 0.23% 12.800 18.403 0.05% 21931 19.676 0.24% 13.398 40.240 0.08%
Superior frontal gyrus (SA) on Neuroticism 6.484 16.093 0.00% 5956 14.653 0.00% 13.210 22.515 0.02% 9.396 25.668 0.01% 23.617 47.999 0.06%
Left inferior temporal gyrus (SA) on Openness 14.579 11.062 0.09% 16.364 10.347 0.11% 28.91290 15.301 0.38% -9.463 20.097 0.04% 57.3691" 29.662 1.48%
Right superior frontal gyrus (SA) on Extraversion 19.777 18350 0.03% 19.780 17.327 0.03% 4.725 26.898 0.00% -57.200 34.859 0.29% 79.808 55.550 0.44%
Left caudate on Openness -17.406 12.350 0.11% -17.243 11.604 0.11% -39.6542* 16.342 0.60% -2.500 25.816 0.00% 27.527 44681 0.21%
Left caudal middle frontal gyrus (CT) on Neuroticism 0.003 0.004 0.03% 0.004 0.004 0.07% 0.007 0.006 0.17% 0.006  0.008 0.13% 0.001 0.015 0.00%
Left pars orbitalis (CT) on Neuroticism -0.008 0.006 0.14% -0.0126* 0.005 0.33% -0.01627 0.008 0.54% -0.006 0.010 0.08% -0.018 0.019 0.55%
Left pars triangularis (CT) on Neuroticism -0.003 0.004 0.02% -0.004 0.004 0.07% -0.005 0.006 0.08% 0.004 0.007 0.06% -0.010 0.012 0.34%
Left superior frontal gyrus (CT) on Neuroticism 0.005 0.003 0.11% 0.0072* 0.003 0.21% 0.001 0.004 0.01% 0.0164** 0.005 1.22% -0.004 0.009 0.06%
Left rostral middle frontal gyrus (CT) on Openness -0.002 0.004 0.02% -0.001 0.003 0.01% 0.000 0.005 0.00% 0.002  0.007 0.01% -0.012 0.012 0.42%
Left superior parietal lobule (CT) on Openness -0.001 0.003 0.01% -0.002 0.003 0.02% 0.000 0.004 0.00% -0.001 0.006 0.00% -0.011 0.008 0.79%
Left caudal middle frontal gyrus (CT) on Agreeableness -0.002 0.004 0.01% -0.003 0.004 0.03% -0.005 0.005 0.11% -0.002  0.008 0.01% 0.011 0.014 0.31%

Note. CT=cortical thickness; SA=surface area; All participants=entire sample, controlling for 4 genetic principal components. In all analyses, sex,

age and either mean CT or intracranial volume were included as covariates. “uncorrected p<.06, * uncorrected p<.05, **uncorrected p<.01 and

FDR corrected p<.05
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Table 3. Top results (p<.005) from whole-brain exploratory analyses between the Big Five personality traits and structural brain measures in

the Duke Neurogenetics Study.

FDR adjusted

b SE p value p value R?
Superior temporal gyrus (SA) on Conscientiousness -33.9125 8.659488 9.55E-05 0.047 0.44%
Thalamus Proper on Conscientiousness -54.9215 15.69009 0.000483 0.12 0.49%
Postcentral gyrus (CT) on Openness 0.007176 0.002243 0.001413 0.23 0.45%
Cerebral peduncle on Neuroticism -0.00165 0.000546 0.002643 0.32 0.82%

Transverse temporal gyrus (SA) on Conscientiousness -3.85793 1.32717 0.003724 0.36 0.44%
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