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Abstract 1 

Attempts to link the Big Five personality traits of Openness-to-Experience, 2 

Conscientiousness, Extraversion, Agreeableness, and Neuroticism with variability in 3 

trait-like features of brain structure have produced inconsistent results. Small sample 4 

sizes and heterogeneous methodology have been suspected in driving these 5 

inconsistencies.  Here, we tested for associations between the Big Five personality 6 

traits and multiple measures of brain structure using data from 1,107 university 7 

students (636 women, mean age 19.69±1.24 years) representing the largest attempt 8 

to date. In addition to replication analyses based on a prior study, we conducted 9 

exploratory whole-brain analyses. Four supplementary analyses were also conducted 10 

to examine 1) possible associations with lower-order facets of personality; 2) 11 

modulatory effects of sex; 3) effect of controlling for non-target personality traits; 12 

and 4) parcellation scheme effects. The analyses failed to identify any significant 13 

associations between the Big Five personality traits and variability in measures of 14 

cortical thickness, surface area, subcortical volume, or white matter microstructural 15 

integrity, except for an association between greater surface area of the superior 16 

temporal gyrus and lower scores on conscientiousness that explained 0.44% of the 17 

morphometric measure's variance. Notably however, the latter association is largely 18 

not supported by previous studies. The supplementary analyses mirrored these 19 

largely null findings, suggesting they were not substantively biased by our choice of 20 

analytic model. Collectively, these results indicate that if there are direct associations 21 

between the Big Five personality traits and variability in brain structure, they are of 22 

likely very small effect sizes and will require very large samples for reliable detection. 23 

  24 
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Introduction 25 

Studies regarding the basic structure of individual differences in personality traits 26 

have yielded a relatively consistent five factor model, comprised of the higher-order 27 

dimensions of neuroticism, extraversion, agreeableness, conscientiousness, and 28 

openness-to-experience - each capturing a wide array of feelings, thoughts, and 29 

behaviors (Digman, 1990). Individuals high in neuroticism tend to perceive the world 30 

as distressing or threatening and frequently tend to experience negative emotions 31 

such as anger and anxiety. Extraversion reflects a tendency to be outgoing and 32 

assertive, to experience frequent positive moods, and to approach and explore one’s 33 

environment. Agreeableness reflects a tendency to be trusting and compassionate, 34 

and to prefer cooperation over conflict. Individuals high in conscientiousness tend to 35 

be organized and planful, and to follow socially prescribed norms of behavior. 36 

Individuals high in openness-to-experience tend to be curious and reflective, show 37 

an appreciation for art and culture, and tend to be very imaginative. These five traits 38 

can be further partitioned to a set of hierarchically lower-order facets, reflecting 39 

narrower, yet intercorrelated, sub-components of each broad dimension. In contrast 40 

to the consistency of the five factor model, studies of how the Big Five personality 41 

traits relate to underlying trait-like features of the brain have yet to identify 42 

consistent patterns despite a growing number of attempts (e.g., Bjørnebekk et al., 43 

2013; Coutinho et al., 2013; DeYoung et al., 2010; Ferschmann et al., 2018; Hu et al., 44 

2011; Kapogiannis et al., 2013; Liu et al., 2013; Lu et al., 2014).   45 

Unlike the studies from which the Big Five were derived, most neuroimaging 46 

studies of personality traits have relied on relatively small samples (N<100).  47 
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Importantly, a recent study has suggested that even samples of 300 participants may 48 

be too small to reliably detect associations between psychological phenotypes and 49 

brain morphometry (Kharabian Masouleh et al., 2019). Indeeed, consistent and 50 

replicable links have yet to emerge (reviewed in Allen and DeYoung, 2017; Yarkoni, 51 

2015).  This lack of statistical power has been further compounded by varied 52 

methodological and analytic approaches across studies. Here, we tested for 53 

associations between the Big Five personality traits and multiple features of brain 54 

structure in the largest sample to date (N=1,107).  Notably, other than its size, our 55 

sample also had the advantage of being relatively homogeneous in age (18-22 years), 56 

which may affect associations between personality traits and brain structure 57 

(Ferschmann et al., 2018). 58 

Brain morphometry was assessed by measuring cortical thickness (CT), surface 59 

area (SA), subcortical volume, and white matter microstructural integrity. Based on 60 

the radial unit hypothesis (Rakic, 1988, 2009), SA is driven by the number of radial 61 

columns, while CT reflects the density of cells within a column. CT and SA exhibit 62 

different developmental trajectories (Wierenga et al., 2014) and are affected by 63 

distinct genetic factors (Panizzon et al., 2009). Consequently, we examined 64 

associations with CT and SA separately rather than the coarser measure of gray 65 

matter volume, which is the product of these two measures.  66 

To measure white matter microstructural integrity, we used fractional 67 

anisotropy (FA), which measures the directional diffusivity of water, with values 68 

ranging from 0 (isotropic diffusion) to 1 (anisotropic or directional diffusion). FA 69 

values have been associated with fiber diameter and density, degree of myelination, 70 
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and fiber tract coherence (Basser, 1995; Basser and Pierpaoli, 1996; Beaulieu, 2002). 71 

Higher values of FA reflect a more organized or regular fiber tract pattern. 72 

Additionally, we conducted surface-based parcellation analyses rather than 73 

traditional vertex- or voxel-based analyses to maximize spatial resolution otherwise 74 

lost to smoothing across tissue types (i.e., CSF, gray matter, and white matter) and 75 

anatomical regions (Coalson et al., 2018; Glasser et al., 2016).  A parcellation-based 76 

approach further restricts the number of tests conducted to anatomically defined 77 

regions, thereby minimizing the number of comparisons conducted. We also 78 

explicitly controlled for race/ethnicity, because previous research has found it to be 79 

linked with brain structure (e.g., Brickman et al., 2008; Pfefferbaum et al., 2016; Xie 80 

et al., 2015) and personality (Foldes et al., 2008).  Lastly, we used regression analyses 81 

with robust standard errors that accommodate non-normality in data, because 82 

previous research has indicated that the CT and SA of some brain regions may not be 83 

normally distributed (Patel et al., 2018). 84 

Using the above general strategy, we conducted three related sets of analyses.  85 

First, we attempted to replicate the personality associations with brain 86 

morphometry reported by Hyatt et al. (2019), which represents the largest 87 

previously published study of the structural brain correlates of personality based on 88 

data from 1,104 participants, mostly twins and siblings, from the Human 89 

Connectome Project (age range: 22-36). Second, we conducted whole-brain 90 

exploratory analyses to examine all possible associations between the Big Five 91 

personality traits and SA, CT, subcortical volume, and FA. Third, in the hope of 92 

further informing future research in personality neuroscience, and to address 93 

previous findings and the possibility of parcellation scheme effects, we also 94 
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conducted four supplementary analyses: we examined whether a) lower-order facets 95 

of the Big Five personality traits better correspond with brain structure (Bjørnebekk 96 

et al., 2013); b) associations differ by sex (Nostro et al., 2016); c) associations can be 97 

detected when controlling for non-target traits (e.g., DeYoung et al., 2010; Liu et al., 98 

2013; Riccelli et al., 2017); and; d) a different parcellation scheme of the cortex 99 

affects the findings.   100 

 101 

Methods 102 

Participants 103 

1330 participants (762 women, mean age 19.70±1.25 years) successfully completed 104 

the Duke Neurogenetics Study (DNS), which assessed a range of behavioral and 105 

biological traits among young adult, university students. The DNS was approved by 106 

the Duke University School of Medicine Institutional Review Board, and all 107 

participants provided written informed consent prior to participation. All participants 108 

were free of the following study exclusions: 1) medical diagnoses of cancer, stroke, 109 

diabetes requiring insulin treatment, chronic kidney or liver disease, or lifetime 110 

history of psychotic symptoms; 2) use of psychotropic, glucocorticoid, or 111 

hypolipidemic medication; and 3) conditions affecting cerebral blood flow and 112 

metabolism (e.g., hypertension). Current and lifetime DSM-IV (the Diagnostic and 113 

Statistical Manual of Mental Disorders) Axis I or select Axis II disorders (antisocial 114 

personality disorder and borderline personality disorder), were assessed with the 115 

electronic Mini International Neuropsychiatric Interview (Lecrubier et al., 1997) and 116 

Structured Clinical Interview for the DSM-IV Axis II subtests (First et al., 1997), 117 

respectively.  Importantly, neither current nor lifetime diagnosis were an exclusion 118 
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criterion, as the DNS seeks to establish broad variability in multiple behavioral 119 

phenotypes related to psychopathology. However, no individuals, regardless of 120 

diagnosis, were taking any psychoactive medication during or at least 14 days prior 121 

to their participation.  122 

The current analyses of gray matter (i.e., CT, SA, and subcortical volume) were 123 

conducted on a subset of 1107 participants (636 women, mean age 19.69±1.24 124 

years) for whom there was T1-weighted structural imaging data available post 125 

quality control procedures (see below) as well as personality questionnaire and 126 

genetic race/ethnicity data.  Amongst this subset, 224 participants had at least one 127 

DSM-IV diagnosis.  Based on self-report, there were 499 non-Hispanic Caucasians, 128 

125 African Americans, 294 Asians, 71 Latino/as, 2 Pacific Islanders, and 116 129 

multiracial or other participants in this subset. 130 

White matter microstructure analyses were conducted on a further subset of 131 

778 participants (443 women, mean age 19.67±1.25 years) for whom there was 132 

diffusion weighted imaging data available post quality control procedures (see 133 

below) as well as personality questionnaire and genetic race/ethnicity data.  134 

Amongst this subset, 156 participants had at least one DSM-IV diagnosis.  Based on 135 

self-report, there were 351 non-Hispanic Caucasians, 92 African Americans, 213 136 

Asians, 47 Latino/as, 2 Pacific Islanders, and 73 multiracial or other participants in 137 

this subset.  138 

 139 

Race/Ethnicity 140 

Because self-reported race and ethnicity are not always an accurate reflection of 141 

genetic ancestry, an analysis of identity by state of whole-genome SNPs was 142 
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performed in PLINK (Purcell et al., 2007).  The first four multidimensional scaling 143 

components were used as covariates to reduce possible confounding effects of 144 

race/ethnicity.  The decision to use only the first four components was based on an 145 

examination of a scree plot of eigenvalue, which showed that the eigenvalues 146 

became very similar after the fourth component. 147 

 148 

Personality 149 

The 240-item NEO personality inventory revised (NEO-PI-R; Costa and McCrae, 150 

1995), was used to assess the  Big Five personality dimensions and their underlying 151 

facets: 1) Neuroticism (based on the anxiety, angry hostility, depression, self-152 

consciousness, impulsiveness, and vulnerability facets); 2) Agreeableness (based on 153 

the trust, straightforwardness, altruism, compliance, modesty, and tender-154 

mindedness facets); 3) Conscientiousness (based on the competence, order, 155 

dutifulness, achievement striving, self-discipline and deliberation facets); 4) 156 

Extraversion (based on the warmth, gregariousness, assertiveness, activity, 157 

excitement-Seeking, and positive emotions facets); and 5) Openness-to-Experience 158 

(based on the fantasy, aesthetics, feelings, actions, ideas, and values facets). Each 159 

facet was a sum of 8 items, and each personality trait was a sum of the facet scores 160 

(with certain items reverse coded as indicated). Participants rated the 240 items on a 161 

scale ranging from (0) strongly disagree to (4) strongly agree. The 6 lower order 162 

facets for each personality trait were modeled in our supplementary analyses.  163 

Internal consistency of the personality traits was assessed by Cronbach's alpha as fair 164 

to good, ranging between .70 to .85. 165 

 166 
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MRI Data Acquisition 167 

Each participant was scanned using one of two identical research-dedicated GE 168 

MR750 3T scanners stationed at the same facility, the Duke-UNC Brain Imaging and 169 

Analysis Center (891 participants on scanner 1 and 216 participants on scanner 2. 170 

Additional details on the scanners can be found elsewhere: 171 

https://www.biac.duke.edu/facilities/scanners.asp). Each identical scanner was 172 

equipped with high-power high-duty cycle 50-mT/m gradients at 200 T/m/s slew rate 173 

and an eight-channel head coil for parallel imaging at high bandwidth up to 1 MHz.  174 

T1-weighted images were obtained using a 3D Ax FSPGR BRAVO sequence with the 175 

following parameters: TR = 8.148 ms; TE = 3.22 ms; 162 axial slices; flip angle, 12°; 176 

FOV, 240 mm; matrix =256×256; slice thickness = 1 mm with no gap (voxel size 177 

0.9375×0.9375×1 mm); and total scan time = 4 min and 13 s. Following an ASSET 178 

calibration scan, two 2-min 50-s diffusion imaging acquisitions were collected, 179 

providing full brain coverage with 2-mm isotropic resolution and 15 diffusion 180 

weighted directions (10-s repetition time, 84.9 ms echo time, b value 1,000 s/mm2, 181 

240 mm field of view, 90° flip angle, 128×128 acquisition matrix, slice thickness=2 182 

mm). A variable that indicated the scanner that was used for each participant was 183 

included in all analyses as a covariate. 184 

 185 

MRI Data Processing 186 

To generate regional measures of brain morphometry, anatomical images for each 187 

subject were first skull-stripped using ANTs (Klein et al., 2009), then submitted to 188 

Freesurfer's (Version 5.3) recon-all with the “-noskullstrip” option (Dale et al., 1999; 189 
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Fischl et al., 1999), using an x86_64 linux cluster running Scientific Linux.  Of the 1321 190 

participants who completed the high-resolution T1-weighted imaging protocol, 11 191 

were excluded for the presence of motion-related or external artifacts, 4 were 192 

excluded for incidental findings, and 1 was unable to be processed with FreeSurfer. 193 

Additionally, the gray and white matter boundaries determined by recon-all were 194 

visually inspected using FreeSurfer QA Tools 195 

(https://surfer.nmr.mgh.harvard.edu/fswiki/QATools). This revealed small to 196 

moderate errors in gray matter boundary detection in 51 individuals who were 197 

consequently excluded.   198 

CT and SA for 31 regions in each hemisphere, as defined by the Desikan-199 

Killiany-Tourville atlas (Klein and Tourville, 2012), a modified version of the Desikan-200 

Killiany atlas (Desikan et al., 2006), which was used in the Hyatt et al. (2019) study, 201 

were extracted using Freesurfer. The updated version of the atlas is meant to make 202 

region definitions as unambiguous as possible and define boundaries best suited to 203 

FreeSurfer's classifier algorithm. To ensure that our exploratory analyses were not 204 

contingent on a specific parcellation scheme, CT and SA for 74 regions per 205 

hemisphere, as defined by the Destrieux atlas (Destrieux et al., 2010), were also 206 

extracted using Freesurfer. Additionally, gray matter volumes from eight subcortical 207 

regions (Cerebellum Cortex, Thalamus, Caudate, Putamen, Pallidum, Hippocampus, 208 

Amygdala, and Accumbens area) were extracted with Freesurfer's subcortical 209 

segmentation (“aseg”) pipeline (Fischl et al., 2002).  Estimated Total Intracranial 210 

Volume (ICV), total gray matter volume, cerebral white matter volume, and left and 211 

right hemisphere mean CT were also extracted from the “aseg” pipeline, and average 212 
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whole-brain CT was calculated based on the estimates for the left and right 213 

hemispheres. 214 

Diffusion weighted images were processed according to the Diffusion Tensor 215 

Imaging (DTI) protocol developed by the Enhancing Neuro Imaging Genetics Through 216 

Meta-Analysis (ENIGMA) consortium (Jahanshad et al., 2013; or 217 

http://enigma.ini.usc.edu/protocols/dti-protocols/).  In brief, raw diffusion-weighted 218 

images underwent eddy current correction and linear registration to the non-219 

diffusion weighted image in order to correct for head motion.  These images were 220 

skull-stripped and diffusion tensor models were fit at each voxel using FMRIB's 221 

Diffusion Toolbox in FSL (FDT; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT), and the 222 

resulting two fractional anisotropy (FA) maps were linearly registered to each other 223 

and then averaged. Average FA images from all subjects were non-linearly registered 224 

to the ENIGMA-DTI target FA map, a minimal deformation target calculated across a 225 

large number of individuals (Jahanshad et al., 2013). The images were then 226 

processed using the tract-based spatial statistics (TBSS) analytic method (Smith et al., 227 

2006) modified to project individual FA values onto the ENIGMA-DTI skeleton.  228 

Following the extraction of the skeletonized white matter and projection of 229 

individual FA values, tract-wise regions of interest, derived from the Johns Hopkins 230 

University (JHU) white matter parcellation atlas (Mori et al., 2005), were transferred 231 

to extract the mean FA across the full skeleton and average whole-brain FA values 232 

for a total of 24 (partially overlapping) regions across the two scans.  All FA measures 233 

from the right and left hemispheres were averaged.  Additionally, volume-by-volume 234 

head motion was quantified by calculating the root mean square (RMS) displacement 235 
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of the six motion parameters (three translation and three rotation components), 236 

determined during eddy current correction for each pair of consecutive diffusion-237 

weighted brain volumes. The resulting volume-by-volume RMS deviation values were 238 

averaged across all images, yielding a summary statistic of head motion for each 239 

participant to add to the FA analyses as a covariate, as previously recommended for 240 

DTI analyses (Yendiki et al., 2014). 241 

 242 

Statistical Analyses 243 

We first attempted to replicate the significant associations between personality and 244 

brain morphometry reported by Hyatt et al. (2019; Table 1) at p<.005 (i.e., the 245 

significance threshold used in their paper). We next proceeded to conduct 246 

exploratory parcellation-based analyses across the whole-brain (31 SA regions, 31 CT 247 

regions, 8 subcortical regions, 24 FA measures, and total gray matter volume, 248 

cerebral white matter volume, whole-brain average FA, and whole-brain average CT) 249 

for each of the Big Five personality traits (a total of 5*98=490 tests).  Lastly, to assess 250 

the robustness of our findings, we conducted four supplementary analyses: 1) 251 

whole-brain parcellation-based analyses of the Big Five personality facets; 2) whole-252 

brain parcellation-based analyses of the Big Five personality traits for men and 253 

women, separately; 3) whole-brain parcellation-based analyses of each Big Five 254 

personality trait while controlling for the other four traits; and 4) whole-brain 255 

parcellation-based analyses of each Big Five personality trait, while using a different 256 

parcellation scheme of the cortex, specifically, the Destrieux atlas (Destrieux et al., 257 

2010). 258 
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Analyses were conducted in R version 3.5.1 (R Core Team, 2018), with the 259 

packages "broom" (Robinson and Hayes, 2018), "tidyr" (Wickham and Henry, 2018), 260 

"dplyr" (Wickham et al., 2019), "lmtest" (Zeileis and Hothorn, 2002), "readr" 261 

(Wickham et al., 2018), and "sandwich" (Zeileis, 2004). Linear regression analyses 262 

with robust standard errors were performed with brain measures as outcomes, 263 

personality measures as independent variables, and sex, age, scanner, and four 264 

ancestry-informative genetic principal components as covariates of no interest. 265 

Notably, for all analyses, except the Hyatt et al., (2019) replication analyses, all brain 266 

morphometry measures were averaged across the two hemispheres, as there is no 267 

strong evidence to support a lateralization effect of personality on brain structure. 268 

ICV, average CT, and average FA, were used as additional covariates for analyses of 269 

subcortical volume and surface area, CT, and FA, respectively.  For the FA analyses, 270 

which can be particularly sensitive to motion, head motion was also included as a 271 

covariate. The Big Five personality traits were standardized  (M=0, SD=1) in SPSS 272 

version 25 before analyses. Variance explained (i.e., R2) by the independent variable 273 

of interest, when it is last in the regression, was calculated in R with the package 274 

"relaimpo" (Grömping, 2006). The "false discovery rate" (FDR) adjustment (Benjamini 275 

and Hochberg, 1995) was applied to correct for multiple comparisons with the 276 

p.adjust function in R. 277 

 278 

Results 279 

Descriptive statistics for the personality and brain morphometry variables are 280 

available in Supplementary Table 1. 281 
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Replication of Hyatt et al. (2019) 282 

As reported in Table 2, none of the 15 associations that were significant at p<.005 in 283 

Hyatt et al. (2019) were significant in our analyses, even without correcting for 284 

multiple comparisons (i.e., using an uncorrected p<.05 threshold).  As Hyatt et al. did 285 

not control for race/ethnicity, we also ran analyses without the genetic principal 286 

components to test whether these could account for the different results.  Again, 287 

none of the associations remained significant after correcting for multiple 288 

comparisons, but three associations were significant at an uncorrected p<.05, 289 

although not necessarily in the same direction as found in Hyatt et al.: a positive 290 

association between the right supramarginal gyrus SA and neuroticism (b=24.047, 291 

SD=11.43, p=.036, R2=0.23%; this association was negative in Hyatt et al.); a negative 292 

association between the left pars orbitalis CT and neuroticism (b=-.013, SD=.005, 293 

p=.021, R2=0.33%; this association was positive in Hyatt et al.,), and a positive 294 

association between the left superior frontal gyrus CT and neuroticism (b=.0072, 295 

SD=.003, p=.02, R2=0.21%; this association was also positive in Hyatt et al.). When 296 

comparing the analyses with and without controlling for race/ethnicity (Table 2), it is 297 

noticeable that race/ethnicity can affect the obtained results. 298 

As the race/ethnic composition of our sample differed from the race/ethnic 299 

composition of the Human Connectome Project (HCP) sample on which the analyses 300 

of Hyatt et al. were based (i.e., 44.6% vs. 74.8% of non-Hispanic Caucasians, 11.4% 301 

vs. 15.1% of African-Americans, and 27% vs. 5.7% of Asian-Americans, which also 302 

included Native Hawaiian, or other Pacific Islander in the HCP), we also separately 303 

present the results from our three largest ethnic subsamples, as determined based 304 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 19, 2019. ; https://doi.org/10.1101/658567doi: bioRxiv preprint 

https://doi.org/10.1101/658567
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

on self-reports and genetic ancestry components, when available.  Here, the sample 305 

sizes are larger because individuals with missing genetic data were also included 306 

based on self-reported race/ethnicity: non-Hispanic Caucasians (n=559), Asians 307 

(n=336), and African-Americans (n=143). As shown in Table 2, there were differences 308 

in the regression estimates between the groups, further supporting our decision to 309 

control for race/ethnicity (e.g., in Asians the association between the left superior 310 

frontal gyrus CT and neuroticism was positive and significant at an FDR corrected p 311 

value<.05, but it was somewhat negative in African Americans. This association was 312 

also significant at an uncorrected p<.05 in the mixed race/ethnicity sample, when 313 

race/ethnicity was not included as a covariate). 314 

 315 

Exploratory whole-brain analyses 316 

The top associations (i.e., uncorrected p<.005) are reported in Table 3 along with 317 

their R2. Of all the associations between the Big Five personality traits and brain 318 

morphometry (CT, SA, subcortical volume, or FA) only one remained significant after 319 

the FDR correction for multiple comparisons: the association between the SA of the 320 

superior temporal gyrus and conscientiousness (b=-33.91, SE=8.66, p=9.55e-05, FDR 321 

adjusted p=0.047, R2=0.44%). All associations and related variance explained (R2) are 322 

further presented in Supplementary Table 2. 323 

 324 

Supplementary analyses 325 

Our supplementary analyses (i.e., testing  personality facets instead of the Big Five 326 

personality traits, conducting sex-specific analyses, using non-target personality 327 
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traits as covariates or using a different cortex parcellation scheme; reported in 328 

Supplementary Tables 3-7) revealed that these generally null findings were not 329 

biased by our choice of analytic model.  Only one association remained significant 330 

after the FDR correction for multiple comparisons across all the tests conducted in 331 

the current study (N=5640) - the association between the SA of the superior 332 

temporal gyrus and the dutifulness facet of conscientiousness (b=-39.50, SE=8.79, 333 

p=7.76e-06, FDR adjusted p=0.044; R2=0.62%), such that higher dutifulness was 334 

associated with reduced superior temporal gyrus SA.   335 

 336 

Discussion 337 

In the current study, with the largest sample to date, we failed to identify robust 338 

links between the Big Five personality traits and multiple, trait-like features of brain 339 

structure. Several supplementary analyses, in which we tested the facets of 340 

personality, conducted separate analyses for men and women, included the non-341 

target personality traits as covariates, and used a different parcellation scheme, 342 

confirmed these primary null findings. There was one exception: an association 343 

between greater SA of the superior temporal gyrus, an area involved in language 344 

perception and production, and lower scores on conscientiousness, and, more 345 

specifically, dutifulness. However, Bjørnebekk et al. (2013) who reported an 346 

association with the caudal part of the superior temporal gyrus, did so for scores on 347 

different facets of conscientiousness (achievement striving and self-discipline), and 348 

this association was not replicated in other studies (Hyatt et al., 2019; Lewis et al., 349 

2018; Nostro et al., 2016), although an association with CT in this area was found to 350 
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correlate with conscientiousness in Lewis et al., (2018).  Consequently, this singular 351 

association in our current analyses should be treated with caution.  Generally, the 352 

supplementary analyses suggested that the largely null results of the primary 353 

analyses did not depend on specific analytical or methodological choices. This is 354 

further supported by a recent large study which applied a voxel-wise approach and 355 

also did not find robust associations between personality traits and brain 356 

morphometry (Kharabian Masouleh et al., 2019).  357 

There are several possible reasons for the lack of replicable associations 358 

between personality and brain structure, including the current failure to replicate 359 

associations identified by Hyatt and colleagues (2019).  With regard to this specific 360 

failure, it is possible that unaccounted-for effects of family structure in the data 361 

derived primarily from twins and siblings (Van Essen et al., 2013), biased their 362 

observed associations. Additionally, even though we used a similar atlas (original 363 

study: the Desikan-Killiany atlas; our study: the updated Desikan-Killiany-Tourville 364 

atlas), a similar personality measure (original study: the 60-item NEO-FFI; our study: 365 

the 240-item NEO-PI-R), and a similar scanner (original study: the 3T Siemens Skyra; 366 

our study: the 3T GE MR750), it is possible that these small differences in data 367 

collection affected our results. However, if such differences account for the lack of 368 

replicability, this raises questions regarding the robustness of the original findings. 369 

More generally, most of the correlations reported by Hyatt et al. were smaller than 370 

.1, and, similarly, in our study almost all the R2 were smaller than 1%. This suggests 371 

that effect sizes for associations between personality traits and brain structure are 372 

likely to be very small and will require very large sample sizes to be reliably detected. 373 
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Furthermore, differences between and within samples may also limit 374 

replicability in personality neuroscience.  Age is known to affect brain structure, and 375 

indeed has been shown to moderate associations between brain structure and 376 

personality (Ferschmann et al., 2018). Sex differences may also be relevant as has 377 

been shown by Nostro et al., (2016) and in our supplementary results, where, 378 

although an interaction by sex was not formally tested, the pattern of association 379 

between men and women were inconsistent. Our results also suggest that 380 

accounting for race/ethnicity may be advised when testing for personality-brain 381 

structure associations.  Indeed, previous research has shown differences in brain 382 

structure as a function of race/ethnicity (e.g., Brickman et al., 2008; Pfefferbaum et 383 

al., 2016; Xie et al., 2015). For example, a different brain atlas than the one 384 

constructed based on Caucasians may be needed to accurately identify variability in 385 

structure from a different racial/ethnic population (Tang et al., 2010).  Thus, it may 386 

be insufficient to simply control for race/ethnicity in analytic models. 387 

Although we used the largest sample to date, included 240 items to assess 388 

personality, and employed different methodologies to test for the associations 389 

between the Big Five personality traits and brain structure, our study does have 390 

several limitations. First, we did not exhaust all the possible ways to assess 391 

personality. For example, an alternative classification approach is represented by 392 

personality “types,” which defines categories of individuals based on similar 393 

configurations of interacting traits.  A large analysis of personality types indicated 394 

that there are 4 personality types that can be clustered based on scores on the Big 395 

Five personality traits (Gerlach et al., 2018).  Thus, for example, someone low on 396 

neuroticism may also have an average or a high conscientiousness score, which may 397 
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correspond differently with brain structure.  Future studies could focus on such 398 

“types” in examining personality-brain structure associations. Second, our 399 

acquisition protocol precluded the application of more anatomically precise 400 

parcellation schemes (e.g., Glasser et al., 2016). Third, our sample of volunteer 401 

students at a top university may not be representative of the general population. 402 

Lastly, we did not examine brain function. The brain correlates of personality may be 403 

more readily identified in functional measures, such as functional connectivity. 404 

However, as functional MRI studies are often characterized by small sample sizes, 405 

here as well caution will be needed in the interpretation of findings until replicable 406 

findings emerge in large samples. 407 

Our largely null findings echo comments made by Yarkoni (2015): "There is no 408 

guarantee that any particular psychometric model of individual differences in 409 

personality will map onto underlying biological process models in any 410 

straightforward way. In fact…a clear-cut relationship between the two is likely to be 411 

the exception rather than the rule."  As well as those by Kharabian Masouleh et al., 412 

(2019) that associations between psychological measures (including personality) and 413 

specific brain structures in a healthy sample are "highly unlikely" (Kharabian 414 

Masouleh et al., 2019).  That said, small effect sizes and possible moderating effects 415 

of sex, age, and race/ethnicity suggest the possibility that with ever larger and more 416 

homogeneous samples reliable links between personality and trait-like features of 417 

the brain may yet emerge.  The field of personality neuroscience may benefit from 418 

following the lead of genome-wide association studies that have, after many failed 419 

attempts with candidate gene studies and small samples (e.g., Avinun et al., 2018; 420 

Bosker et al., 2011), begun to reveal the genetic architecture of complex traits 421 
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through massive samples (Plomin and von Stumm, 2018). The growth of shared 422 

imaging data through research consortia (e.g., the "enhancing neuroimaging genetics 423 

through meta-analysis" project [ENIGMA]) may allow for such gains in personality 424 

neuroscience sooner than later. 425 

  426 
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Table 1.  Significant personality and brain structure (SA and CT) associations reported by Hyatt et al. 2019. 

  CT  SA Subcortical volume 

Neuroticism Left caudal middle frontal gyrus (+)  Left cuneus (-)  

 
Left pars orbitalis (+)  Left pars triangularis (-)  

 
Left pars triangularis (+)  Left superior parietal lobule (-)  

 
Left superior frontal gyrus (+)  Right supramarginal gyrus (-)  

  
 Superior frontal gyrus (-)  

Openness  Left rostral middle frontal gyrus (-)  Left inferior temporal gyrus (+) Left caudate (+) 

  Left superior parietal lobule (-)  
 

 

Agreeableness  Left caudal middle frontal gyrus (-)     

Extraversion     Right superior frontal gyrus (+)  

Note. +/- indicate the direction of the associations (i.e., positive or negative respectively) 
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Table 2.  Regression estimates and standard errors from our attempt to replicate the associations reported by Hyatt et al. (2019) in all 

participants and within the three largest racial/ethnic subgroups from the Duke Neurogenetics Study. 

 All participants (N=1107) Without controlling for 
ethnicity (N=1107) 

Caucasians (n=559) Asians (n=336)  Africans Americans 
(n=143) 

 
b SD R2 b SD R2 b SD R2 b SD R2 b SD R2 

Left cuneus (SA) on Neuroticism -4.263 7.610 0.02% -0.787 6.977 0.00% 5.879 11.276 0.04% -9.265 12.485 0.13% -26.246 18.164 1.11% 

Left pars triangularis (SA) on Neuroticism 6.955 6.536 0.07% 9.857 6.095 0.14% 15.075 10.201 0.29% -6.948 11.284 0.08% 35.2212^ 17.922 2.06% 

Left superior parietal lobule (SA) on Neuroticism 12.858 13.331 0.05% 14.002 12.589 0.06% 1.494 19.656 0.00% 3.814 24.208 0.01% 55.496 33.263 1.02% 

Right supramarginal gyrus (SA) on Neuroticism 20.087 12.314 0.16% 24.0470* 11.431 0.23% 12.800 18.403 0.05% 21.931 19.676 0.24% 13.398 40.240 0.08% 

Superior frontal gyrus (SA) on Neuroticism 6.484 16.093 0.00% 5.956 14.653 0.00% 13.210 22.515 0.02% 9.396 25.668 0.01% 23.617 47.999 0.06% 

Left inferior temporal gyrus (SA) on Openness 14.579 11.062 0.09% 16.364 10.347 0.11% 28.9129^ 15.301 0.38% -9.463 20.097 0.04% 57.3691^ 29.662 1.48% 

Right superior frontal gyrus (SA) on Extraversion 19.777 18.350 0.03% 19.780 17.327 0.03% 4.725 26.898 0.00% -57.200 34.859 0.29% 79.808 55.550 0.44% 

Left caudate on Openness -17.406 12.350 0.11% -17.243 11.604 0.11% -39.6542* 16.342 0.60% -2.500 25.816 0.00% 27.527 44.681 0.21% 

Left caudal middle frontal gyrus (CT) on Neuroticism 0.003 0.004 0.03% 0.004 0.004 0.07% 0.007 0.006 0.17% 0.006 0.008 0.13% 0.001 0.015 0.00% 

Left pars orbitalis (CT) on Neuroticism -0.008 0.006 0.14% -0.0126* 0.005 0.33% -0.0162^ 0.008 0.54% -0.006 0.010 0.08% -0.018 0.019 0.55% 

Left pars triangularis (CT) on Neuroticism -0.003 0.004 0.02% -0.004 0.004 0.07% -0.005 0.006 0.08% 0.004 0.007 0.06% -0.010 0.012 0.34% 

Left superior frontal gyrus (CT) on Neuroticism 0.005 0.003 0.11% 0.0072* 0.003 0.21% 0.001 0.004 0.01% 0.0164** 0.005 1.22% -0.004 0.009 0.06% 

Left rostral middle frontal gyrus (CT) on Openness -0.002 0.004 0.02% -0.001 0.003 0.01% 0.000 0.005 0.00% 0.002 0.007 0.01% -0.012 0.012 0.42% 

Left superior parietal lobule (CT) on Openness -0.001 0.003 0.01% -0.002 0.003 0.02% 0.000 0.004 0.00% -0.001 0.006 0.00% -0.011 0.008 0.79% 

Left caudal middle frontal gyrus (CT) on Agreeableness -0.002 0.004 0.01% -0.003 0.004 0.03% -0.005 0.005 0.11% -0.002 0.008 0.01% 0.011 0.014 0.31% 

Note. CT=cortical thickness; SA=surface area; All participants=entire sample, controlling for 4 genetic principal components. In all analyses, sex, 

age and either mean CT or intracranial volume were included as covariates.  ^uncorrected p<.06, * uncorrected p<.05, **uncorrected p<.01 and 

FDR corrected p<.05 
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Table 3. Top results (p<.005) from whole-brain exploratory analyses between the Big Five personality traits and structural brain measures in 

the Duke Neurogenetics Study. 

  b SE p value 
FDR adjusted 

p value R2 

Superior temporal gyrus (SA) on Conscientiousness -33.9125 8.659488 9.55E-05 0.047 0.44% 

Thalamus Proper on Conscientiousness -54.9215 15.69009 0.000483 0.12 0.49% 

Postcentral gyrus (CT) on Openness 0.007176 0.002243 0.001413 0.23 0.45% 

Cerebral peduncle on Neuroticism -0.00165 0.000546 0.002643 0.32 0.82% 

Transverse temporal gyrus (SA) on Conscientiousness -3.85793 1.32717 0.003724 0.36 0.44% 
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