
1 
 

Reconsidering electrophysiological markers of response inhibition in light of trigger failures 

in the stop-signal task 

 

Skippen, P 1, 2., Fulham, W. R 1, 2., Michie, P.T 1, 2., Matzke, D 3., Heathcote, A 4., Karayanidis, F 
1,2,5. 

Affiliations: 
1Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Australia 

2Priority Research Centre for Brain and Mental Health, University of Newcastle, Australia 

3Psychological Methods, Department of Psychology, University of Amsterdam, The Netherlands 

4Discipline of Psychology, School of Medicine, The University of Tasmania, Australia 

5The Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Australia 

 

 

 

 

Corresponding author: 

Patrick Skippen 

School of Psychology, University of Newcastle, 

University Drive Callaghan NSW 2308, Australia 

Phone: +61 2 4921 5076 

Email: patrick.skippen@newcastle.edu.au 

 

 

Keywords: Stop-Signal Task, Response Inhibition, Trigger Failure, Attention, ERP, N1, N2, P3 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2019. ; https://doi.org/10.1101/658336doi: bioRxiv preprint 

https://doi.org/10.1101/658336
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

Abstract 

Although advancements in electrophysiological methods to explore response inhibition have 

been substantial, the methods to describe behavioural differences in response inhibition 

have remained relatively unchanged. Here we use a model-based neuroscience approach to 

understand the neural correlates underpinning response inhibition as estimated using a 

recently developed ex-Gaussian hierarchical Bayesian model of stop-signal task 

performance. In a large healthy sample (N=156) of community drawn participants, we show 

the model-based estimates of stop-signal reaction time (SSRT) and a “trigger failure” 

parameter reflecting lapses of attention to task goals alter previously held interpretations of 

relationships between inhibition and event-related potential (ERP) component measures. 

Our results show clear attenuation of SSRT by ≈65ms when substantial levels of trigger 

failure are accounted for. This attenuation casts doubt on previous interpretations of the P3 

as a manifestation of response inhibition. Instead, the N1, which reflects attentional 

processes, provides a better description of both SSRT and trigger failure than the P3. In 

particular, the peak N1 latency both correlated and coincided with ex-Gaussian estimated 

SSRT. Furthermore, participants with higher rates of trigger failure do not show a 

dissociation between N1 latency and the outcome of a stop trial. Our results show sufficient 

attentional control to elicit an inhibitory process is just as important, if not more so, than 

the speed of the process itself and that early ERPs provide a rich account of individual 

differences in both the speed and reliability of the inhibitory process. 
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1. Introduction 

 Response inhibition is a core component of cognitive control associated with the 

cancelation or suppression of an inappropriate behaviour (Bari & Robbins, 2013). It has been 

operationalised using paradigms such as the go/no-go (Falkenstein, Hoormann, & 

Hohnsbein, 1999) and the stop-signal task (SST; Logan & Cowan, 1984). In the SST, 

participants engage in a speeded choice response task. On a small proportion of randomly 

selected trials a stop signal occurs after the target stimulus, and participants must inhibit 

their response. The prominent horse-race model of the stop-signal task allows for what is 

usually assumed to be the main dependent variable of interest, stop-signal reaction time 

(SSRT), to be estimated. This model assumes that the construct of response inhibition is fully 

represented by the estimated latency of the ‘stop process’, a unitary process that is 

summarised by SSRT (Verbruggen & Logan, 2009). 

 It has been reported that SSRTs are slower in people with attention deficit 

hyperactivity disorder, schizophrenia, and substance use disorders, when compared to 

controls (for a review, see Lipszyc & Schachar, 2010). Increased SSRT is seen as representing 

less efficient response inhibition, resulting in reduced impulse control (but see, Sharma, 

Markon, & Clark, 2014; Skippen et al., 2019). However, the purity of SSRT as the measure of 

inhibitory cognitive control has recently been increasingly questioned (Band, Van Der Molen, 

& Logan, 2003; Logan, 1994; Matzke, Curley, Gong, & Heathcote, 2019; Matzke, Hughes, 

Badcock, Michie, & Heathcote, 2017; Matzke, Love, & Heathcote, 2016; Matzke, Love, & 

Heathcote, 2017; Skippen et al., 2019; Verbruggen, Best, Bowditch, Stevens, & McLaren, 

2014; Verbruggen, McLaren, & Chambers, 2014). 

1.1. Implications of Biased SSRT Estimations 

 The horse-race model (Logan & Cowan, 1984) attributes the outcome of any given 

stop trial to a race between two independent processes: the go process that is measured by 

go RT and the stop process that is measured by SSRT. For example, if on a given trial, the go 

process finalises before the stop process, the response will not be inhibited (i.e., stop-failure 

trial). Alternatively, if the stop process finalises before the go process, the response will be 

successfully inhibited (i.e., stop-success trial). However, if either the go or the stop process 

fails to initiate on a given trial, the original horse-race model is not applicable. The model’s 

inability to account for failures to engage the go or stop processes results in biased 

estimates of SSRT (Band et al., 2003; Matzke, Curley, et al., 2019; Skippen et al., 2019). While 

adjustments to traditional SSRT estimation methods have been developed to account for 
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omissions rates on go trials, as a close proxy for go failures (e.g., Tannock, Schachar, Carr, 

Chajczyk, & Logan, 1989), simulations suggest this method over-estimates SSRT (Verbruggen 

et al., 2019). Trigger failure (failure to initiate the stop process) has long been acknowledged 

as possible (e.g., Logan, 1994), yet it is not taken into account in non-parametric methods of 

estimating SSRT (see Verbruggen & Logan, 2009) and not accounting for trigger failure has 

been shown to bias estimates of SSRT in a growing number of studies (Band et al., 2003; 

Matzke, Curley, et al., 2019; Matzke, Hughes, et al., 2017; Matzke, Love, et al., 2017; Skippen 

et al., 2019). More generally, it is important to acknowledge that effective inhibitory control 

relies not only on fast SSRT, but also on the reliability of triggering the stop process 

(Chatham et al., 2012; Matzke, Love, et al., 2017). 

  We have previously described a parametric model of the SST in which the finishing 

times of the stop and go processes follow an ex-Gaussian distribution, and for which model 

parameters may be estimated with the Bayesian Estimation of ex-Gaussian Stop-Signal 

Reaction Time Distribution (BEESTS) procedure (Matzke, Dolan, Logan, Brown, & 

Wagenmakers, 2013; Matzke, Love, et al., 2013). This model has the distinct advantage of 

estimating the entire distribution of SSRT rather than only a summary measure obtained 

using traditional non-parametric methods (see Matzke, Verbruggen, & Logan, 2019, for an 

overview of the different estimation methods). The ex-Gaussian model used here (EXG3; 

Matzke, Curley, et al., 2019) extends that original model by incorporating failure to trigger a 

response to the go (go failure) and the stop (trigger failure; see also Matzke, Love, et al., 

2013) stimulus, as well as accounting for go errors through separate racers corresponding to 

correct (matching) and error (mis-matching) responses to the go stimulus .  

 The practical importance of modelling trigger and go failures has been highlighted in 

a number of studies (Band et al., 2003; Matzke, Curley, et al., 2019; Matzke, Dolan, et al., 

2013; Matzke, Hughes, et al., 2017; Skippen et al., 2019; Weigard, Heathcote, Matzke, & 

Huang-Pollock, 2019). For example, Skippen et al. (2019) found that the SSRT estimate 

derived from the EXG3 model was reduced by ≈100ms compared to the estimate obtained 

using the traditional non-parametric integration method (e.g., Tannock et al., 1989). 

Critically, this changed the relationships between SSRT and measures of impulsivity. When 

data were analysed with the non-parametric integration technique, impulsivity was 

correlated with estimated SSRT. However, application of the EXG3 model indicated that 

impulsivity was correlated with trigger and go failures rather than SSRT. Using a similar Ex-

Gaussian model, Matzke, Hughes, et al. (2017) found both higher levels of trigger failure and 
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slower SSRT in patients with schizophrenia when compared to controls1. The distribution of 

SSRT suggested that the delay in the stop process was largely due to poor encoding of the 

stop signal, rather than a slower inhibition process per se. They argued that the increased 

probability of trigger failure and the delayed initiation of the stop process could be 

attributable to deficits in attention. Therefore, attentional factors may play a larger role in 

inhibitory ability than previously thought. In this study, we take a model-based neuroscience 

approach to better understand the stopping process and trigger failure (Sebastian, 

Forstmann, & Matzke, 2018), using electroencephalogram (EEG) activity recorded during the 

SST to capture the timeline of cognitive processes involved in stop-success and stop-failure 

trials. 

1.2. Temporal processes of response inhibition 

 Event Related Potential (ERP) components time-locked to an auditory stop signal 

typically consist of an early negative component (N1) within the first 100-200ms, a negative 

deflection (N2) occurring around 200ms, and a positive component (P3) around 300-350ms, 

all commonly measured fronto-centrally (Pires, Leitão, Guerrini, & Simões, 2014). These 

components are thought to index distinct processes that together result in the inhibition of a 

pre-potent response. 

 The N1 is thought to reflect the level of encoding of a stimulus within the auditory 

cortex (Hillyard, Hink, Schwent, & Picton, 1971; Luck, Woodman, & Vogel, 2000; Näätänen & 

Picton, 1987). The N1 is comprised of several underlying components that are influenced by 

voluntary attention to the stimulus, the physical attributes of the stimulus, and the 

conditions under which it is presented (Näätänen, 1982; Näätänen, Gaillard, & Mäntysalo, 

1978; Näätänen & Michie, 1979; Näätänen & Picton, 1987). In the response inhibition 

literature, N1 is commonly used as a measure of attentional resources allocated to the stop 

signal (Bekker, Kenemans, Hoeksma, Talsma, & Verbaten, 2005; Dimoska & Johnstone, 

2008). The commonly reported ‘stop-N1’ effect (i.e., increased N1 amplitude for stop-

success compared to stop-failure trials), suggests that N1 amplitude is associated with the 

outcome of the stop process (Bekker et al., 2005; Hughes, Fulham, Johnston, & Michie, 2012; 

Lansbergen, Böcker, Bekker, & Kenemans, 2007). This ‘stop-N1’ effect has been suggested to 

reflect a mechanism that primes the detection of the stop signal, in turn potentiating a faster 

                                                             
1 This study used the BEESTS procedure with trigger failure, and therefore did not estimate go failure. 
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connection between brain regions vital to improving the speed of inhibition (Kenemans, 

2015). 

 The role of the two later components, N2 and P3, is the subject of substantial debate. 

It is generally thought that N2 reflects conflict monitoring and cognitive control, whereas P3 

represents the inhibition process (for a review, Huster, Enriquez-Geppert, Lavallee, 

Falkenstein, & Herrmann, 2013). These attributions arise largely from the relative timing of 

the two components relative to SSRT. Supporting the argument that the P3 represents the 

inhibition process, the onset latency of the P3 has been found to coincide with SSRT latency 

(Kok, Ramautar, De Ruiter, Band, & Ridderinkhof, 2004; Wessel & Aron, 2015). Alternatively, 

others have argued that P3 peaks too late to represent inhibition, and instead is more likely 

to reflect post-inhibitory processing (González-Villar, Bonilla, & Carrillo-de-la-Peña, 2016; 

Huster et al., 2013; Ramautar, Kok, & Ridderinkhof, 2004). However, both arguments are 

based on conventional estimates of SSRT, which as discussed above, are likely biased 

because they do not account for trigger and/or go failure. As models that account for trigger 

failure produce attenuated estimates of SSRT, the temporal association between ERPs 

(especially P3) and SSRT are likely to be altered. For example, estimates of SSRT derived from 

the EXG3 model that accounts for trigger and go failures (Skippen et al., 2019) align the end 

of the stop process within the latency range of N1 and N2 components, that is, at least 

100ms before the onset of the P3. Therefore, models that include these failure parameters 

in the estimation of SSRT may challenge previous interpretations of the ERP correlates of 

response inhibition. 

 The only previous study to investigate the relationship between ERPs and parameters 

from an ex-Gaussian model of the SST reported that faster stop-N1 latency was associated 

with higher probability of trigger failure in a small group of people with schizophrenia 

(Matzke, Hughes, et al., 2017). At face value, this relationship is counterintuitive, suggesting 

that earlier processing of the stop signal (as indexed by the N1) is predictive of higher rates 

of trigger failure. However, as the N1 is comprised of a number of partially overlapping sub-

components (Näätänen & Picton, 1987), Matzke, Hughes, et al. (2017) argued that earlier N1 

peak latency may arise from attenuation of a late N1 sub-component and not necessarily 

represent faster processing of the stop signal. This would be consistent with the hypothesis 

that trigger failure results from dysfunctional encoding of the attributes of the stop signal, 

which then fails to generate the appropriate response pattern (i.e., inhibition). However, the 

Matzke, Hughes, et al. (2017) analysis was based on a relatively small group (N ≤ 13 for 
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patients and controls), and did not separately examine stop-successes and failures, so these 

findings need replication before drawing strong conclusions about the relationship between 

ERP components and model parameters. 

1.3. Current study 

 In the present study, we examine the relationships between EXG3 parameters and 

ERPs to the stop signal in a large, young, healthy cohort (N = 156). With increased statistical 

power and opportunity to examine individual variability, we aim to provide insight into the 

neural processes that underlie trigger failure, go failure, and SSRT. We expect to replicate 

the finding that trigger failure rate is negatively associated with stop signal N1 peak latency. 

We will also estimate the onset latency of the N1 component to examine whether trigger 

failure is associated with early or late N1 sub-components. Furthermore, we will examine 

whether ERP components for successful and failed stop trials correlate with the same model 

parameters. In line with the attentional account of trigger failure, we expect that lower 

levels of attention to the stop signal (i.e., reduced N1 amplitude) will be related to higher 

rates of trigger failure. 

 As SSRT latency is attenuated after accounting for trigger failure, we expect that the 

relationships between SSRT and ERP components commonly reported in the literature will 

be altered. Specifically, we expect to challenge the common interpretation of the P3 as an 

index of response inhibition process by showing that, after accounting for trigger failure, the 

commonly reported positive relationship between SSRT and P3 will be reduced. We will test 

the relationships between P3 onset and peak latency, and peak amplitude with both 

traditional and EXG3 estimations of SSRT. As theorists have recently suggested that response 

inhibition is a more automatic process than previously thought (Verbruggen, McLaren, & 

Chambers, 2014), we expect EXG3 estimated SSRT will have a stronger relationship with 

early ERP components (i.e., N1, N2) than the traditional estimation. Finally, we will run 

exploratory analyses of the relationships between the remaining model parameters and ERP 

component measures to inform future hypotheses about the neural correlates of response 

inhibition in a large healthy young sample. These include the relationships between the N2 

and all EXG3 parameters, and the relationships for both the N1 and P3 with go RT and go 

failures. 
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2. Methods 

2.1. Participants and Procedure 

 The data reported here were collected as part of a larger longitudinal study, the Age-

ility Project (Karayanidis et al., 2016). Participants were screened for self-reported 

neurological or psychiatric conditions and asked to abstain from caffeine or alcohol for 2hrs 

prior to testing. A community-based cohort aged 15-35 years (n=282) was recruited via local 

businesses, community groups, and secondary and tertiary education centres. Participants 

were paid AU$20/hr. This study conforms to the Declaration of Helsinki and was approved 

by the University of Newcastle Human Research Ethics Committee (HREC: H-2012-0157). 

 Participants attended the laboratory on two occasions. In the first session, they 

completed a neuropsychological battery and received demographic and psychometric 

questionnaires to complete at home. In the second session, participants initially practiced 

and then performed a task switching paradigm (see Cooper et al., 2015) with concurrent EEG 

recording for approximately 45 minutes before completing the SST. After loss to attrition 

between testing sessions, 208 participants attempted the stop-signal task. EEG technical 

problems resulted in the removal of 20 participants. Model constraints excluded a further 32 

participants. The final total sample was N = 156 (see 2.3.1. Data Cleaning). This sample 

overlaps with that reported by Skippen et al. (2019), with the exclusion of participants 

without clean EEG. 

2.2. Stimuli and Apparatus 

2.2.1. Stop-signal task. The primary go task was a two-choice number parity task (700 trials). 

The stimulus was a number between 2 and 9, presented for 100ms in the centre of a grey 

rectangle. On 29% of trials (≈200 trials), the go stimulus was followed after a variable stop-

signal delay by an auditory stop signal delivered binaurally through calibrated headphones 

(1000Hz, 85dB tone, 100ms duration). The stop-signal delay ranged from 50-800ms and 

decreased or increased by 50ms after every failed or successful stop trial, respectively. 

Following a single practice block, behavioural responses and EEG activity were recorded for 

700 trials across five blocks. 

2.2.2. Electroencephalogram recording. EEG data were recorded (2048Hz sample rate, 

bandpass filter of DC-400Hz) via a BioSemi Active Two system with 64 scalp electrodes as 

well as two mastoid, lateral ocular, and infra/supra ocular sites. Common mode sense and 

driven right leg electrodes were positioned inferior to P1 and P2, respectively. Data were 
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recorded relative to an amplifier reference voltage and re-referenced to the common 

average offline to remove common-mode signals. 

2.3. Data analysis 

2.3.1. Data Cleaning. At the start of the study, a technical issue resulted in the first 20 

participants being excluded. Another 32 participants were excluded from analysis due to 

poor or non-compliant performance on the stop-signal task. Of these, (a) nine participants 

slowed their go trial reaction time by over 300ms over the course of the experiment2, most 

likely to assist in inhibiting on a subsequent stop trial. This slowing of responses can bias 

SSRT estimates; (b) four participants responded on over 75% of stop trials, against what 

would be expect of the stop-signal delay algorithm; (c) sixteen were excluded because they 

violated the independence assumption of the horse race model. This assumption states that 

the go and stop processes are independent and is tested by confirming that mean RT on stop 

trials (i.e., stop-failure trials) is not slower than mean RT on the go task; (d) one participant 

had both independence and response rate violations; (e) one had both independence 

violations and commission error rates on go task approaching chance, and (f) one participant 

had zero errors on the go task and therefore could not be modelled with the EXG3. This 

resulted in an exclusion rate of approximately 16.5% (not including the hardware error). 

 During the quality control process, we found six participants with a block of 

behavioural data that differed from the rest of their performance. One participant made no 

responses with their right hand across the entire 5th block, and one reported forgetting to 

stop to the signal in the first block but corrected this for the remaining blocks. Three 

participants made no responses at all in one block (1st, 2nd, or, 4th, respectively), and the 

final participant made no successful stops in the first block. For each participant, these block 

with the problem performance was removed from further analysis. In all cases the SSD 

tracking recovered quickly in the following block of trials. 

2.3.2. Modelling of Response Inhibition. The ex-Gaussian distribution is a convolution of a 

Gaussian (i.e., normal) and an exponential distribution. The EXG3 model (Heathcote et al., 

2018) assumes that finishing times of the three runners (i.e., two go runners and one stop 

runner) can be described by an ex-Gaussian distribution. The model estimates the finishing 

time of both the matching (correct) and mis-matching (error) response to the go stimuli. For 

each of the go processes (matching and mis-matching) and the stop process, the ex-Gaussian 

                                                             
2 This was assessed by regressing RT on trial number and then using the slope of the fit to estimate slowing 
over the course of the task. 
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distribution has three parameters μ, σ, and τ, which characterise the mean and standard 

deviation of the normal component, and the mean of the exponential component (i.e., the 

long slow tail of the distribution), respectively. The mean and variance of each parameter 

can then be estimated as µ + τ and σ2 + τ2, respectively. The parameters quantifying the 

probability of go and trigger failures were estimated on the probit scale. 

 We used the Dynamic Models of Choice (DMC; Heathcote et al., 2018) software 

implemented in R (R Core Team, 2018) to estimate model parameters via Bayesian 

hierarchical modelling. In hierarchical modelling, the population-level mean and standard 

deviation parameters characterise the population-level distribution for each model 

parameter. Weakly informative uniform priors were set for the population-level parameters, 

which are identical to those of Skippen et al. (2019). Posterior distributions of the 

parameters were obtained using Differential Evolution Markov Chain Monte Carlo (MCMC) 

sampling (Ter Braak, 2006), with steps closely mimicking Heathcote et al. (2018). 

 To confirm the non-negligible presence of trigger failures, we ran two EXG3 models, 

one with a trigger failure parameter and one without. We ran 33 MCMC chains in the model 

with trigger failure and 30 in the model without (e.g., three times as many chains as model 

parameters). Participants were initially modelled separately until the MCMC chains reached 

convergence, with thinning of every 10th sample. Convergence was identified with visual 

inspection and Gelman-Rubin 𝑅𝑅� (Gelman & Rubin, 1992) values below 1.1. These participant 

fits were then used as the start values for the hierarchical fits. During this period, we set a 

5% probability of migration for both the participant and the hierarchical levels. Crossover 

steps were performed until chains were converged and stable. After this, an additional 200 

samples per chain were retained as the final set from which further analysis is undertaken. 

 The population distributions describe the between-subject variability of the 

parameters and are appropriate for population inference, analogous to frequentist random-

effects analysis. On the other hand, the individual participant parameters are useful for 

examining individual differences and are used here to examine the relationships between 

response inhibition and electrophysiology.  

2.3.3. Electrophysiological Data. EEG data pre-processing was performed using in house 

techniques within EEGDisplay v6.4.4 (Fulham, 2015). The continuous EEG records were firstly 

down sampled to 512Hz before being visually inspected to exclude intervals containing gross 

artefact. Bad EEG channels were replaced by interpolating between adjacent scalp 

electrodes. Eye blink artefact was corrected using a regression-based procedure (Semlitsch, 
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Anderer, Schuster, & Presslich, 1986). As a secondary control measure to visual inspection, 

gross movement or muscle artefacts were excluded with an automated procedure which 

applies amplitude thresholds within specific frequency bands. For each electrode a threshold 

of 4, 6, and 7.5 times the standard deviation in the EEG signal was set for the frequency 

bands below 2Hz, between 0.5-15Hz, and above 10Hz, respectively. EEG was then bandpass 

filtered between 0.05 and 30Hz and re-referenced to the average of the left and right 

mastoids. 

 EEG epochs were extracted between 900ms pre-event to 1400ms post-event for the 

stop signals and averaged to obtain stop-locked ERPs separately for stop-success and stop-

failure trials. Stop-locked ERPs are contaminated by the overlapping perceptual response to 

the preceding go stimulus, especially for short stop-signal delays. Assuming the underlying 

responses elicited by the go stimulus and by the stop signal combine linearly, we extracted 

the underlying stop-locked ERPs by applying level 1 ADJAR correction (Woldorff, 1993), 

which takes into account the observed distribution of stop-signal delays between the go 

stimulus and the stop signal. The ADJAR corrected stop-locked ERPs were baseline corrected 

to the 50ms peri-stop (i.e., -25 pre- to 25ms post-stop). 

 The extracted amplitude and latency measures for ERP components were calculated 

using the geterpvalues function from the ERPLAB (Lopez-Calderon & Luck, 2014) package for 

MATLAB (Mathworks, r2018b). To increase the resolution of latency estimates, we first 

interpolated waveforms by a factor of four to a 2048Hz sampling rate. Peak latency was 

estimated using fractional area latency, the latency that defines 50% of the area under the 

curve across a specified window after stop-signal onset (N1 = 80 – 185ms; P3 = 290 – 

400ms). Fractional area latency is less sensitive to noise than simple peak latency (Kiesel, 

Miller, Jolicœur, & Brisson, 2008). For N1 and P3 peak amplitude, we took an average of 

20ms around the respective peak latency values. The onset latency of N1 was estimated by 

determining the latency at which the amplitude reached 50% of the component’s peak 

amplitude. The relatively flat morphology of the P3 meant that, for some participants, the 

estimation of this component was difficult and therefore we used 60% of the peak amplitude 

to obtain more robust onset latency estimates. As the N2 component did not show a distinct 

peak in average ERPs for the majority of participants, we extracted mean amplitude over 190 

– 245ms.  

 As per the literature, we expected midline, frontal/fronto-central sites to show the 

largest effects for these components. We extracted component measures from midline sites 
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(Fz, FCz, Cz, CPz, Pz), and corresponding lateral sites (F3, F4, FC3, FC4, etc.). Figures showing 

ERPs display 95% confidence intervals appropriate for within-subject comparisons calculated 

through the adjusted Cousineau-Morey method (Morey, 2008). These figures were used in 

determining the site/s of interest. 

2.3.4. Plausible Values Analysis. Traditional tests of correlations between model parameters 

and ERP component measures ignore the uncertainty of the parameter estimates, and so 

tend to be overconfident. Here we use a plausible value analysis to evaluate these 

relationships, which calculates a distribution of correlations between covariates (e.g., N1 

latency) and model parameters (i.e., mean SSRT) using each MCMC sample from the 

posterior distribution of the parameter. Ly et al. (2018) provide a detailed rationale for this 

fully Bayesian and more conservative approach, which is more appropriate for the novel 

effects examined here. This process results in a set of ‘plausible’ values of the sample 

correlation, r, for n individuals. As described by Ly et al., the sample correlation can be 

transformed into the posterior distribution of the population correlation (rho; ρ), which is a 

function of r and n. Repeating this process for all plausible sample correlations and averaging 

each population correlation distribution yields the estimated posterior distribution of the 

population correlation. 

2.4. Statistical Procedures 

2.4.1. Stop-Signal Task Behaviour. In accordance with the recommendations of Matzke, 

Verbruggen, and Logan (2019), we describe the mean RT on both correct go and stop-failure 

trials to test the independence assumption of the horse-race model. Omission and 

commission error rates on the go task are reported, along with the mean and range of stop-

signal delays. We report the mean and standard deviation of the traditional SSRT estimate, 

SSRTint, obtained using the integration technique described in Verbruggen et al. (2019), 

where go omissions trials are replaced with the participants maximum go RT.  

2.4.2. Model Selection and Parameter Estimation. To determine the effect of incorporating 

the trigger failure parameter, we estimated two EXG3 models, one with a trigger failure 

parameter and one without. Both models included a go failure parameter, as Matzke, Curley, 

et al. (2019) demonstrated that this parameter may be included in the model without 

causing estimation problems even if go omissions are infrequent. To formally compare the 

two hierarchical models and examine whether the presence of trigger failures was non-

negligible, we used the Deviance Information Criterion (DIC; Spiegelhalter, Best, Carlin, & 

Van Der Linde, 2002). Smaller DIC values indicate a better model in terms of providing an 
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accurate yet parsimonious fit to the data. When comparing models, a difference in DIC of 10 

or more is taken as substantial evidence in favour of the model with the smaller DIC. 

Furthermore, we assessed the absolute goodness-of-fit using posterior predictive model 

checks. The process of posterior predictive checks involves randomly selecting a set of, in 

this case 100, parameter vectors from the joint posterior of the participant-level model 

parameters. Following this, 100 stop-signal data sets are generated using the parameter 

vectors. If the model provides an adequate representation of the data, these predictions 

should closely resemble the observed data3. We used the most supported EXG3 model to 

estimate mean SSRT (i.e., µstop + τstop), mean finishing time of the matching go runner (i.e., 

µgo correct + τgo correct), go failures, and trigger failures. We refer to the EXG3-based estimate of 

mean SSRT as SSRTEXG3. 

2.4.3. ERP Component Electrode Site/s of Interest. To determine the site/s of interest for 

each ERP component measure, we examined the scalp topography of the grand average ERP 

component windows and compared these with previous literature. Furthermore, we used a 

Bayesian paired t-test to determine the site/s with the largest amplitude differences 

between trial types (i.e., stop-failure vs stop-success) for each ERP component measure. 

Two-sided Bayesian t-tests were computed using the BayesFactor package (Morey & Rouder, 

2018) in R (R Core Team, 2018), with effect sizes given as the posterior median effect size 

(δ). Priors for the t-test on trial type were default “medium” Cauchy priors with r =√2
2� . 

2.4.4. Traditional Correlational Analysis. Correlations between SSRTint and ERP component 

measures were undertaken using Pearson product moment correlations. Inference was 

conducted using Bayes factors. Correlation tests were completed with a prior on ρ centred 

around zero, assigning equal likelihood for all values between -1 and 1. A default “medium” r 

scale arguments of 1 3�  were used. We use the Kass and Raftery (1995) conventions to 

describe the strength of evidence that the data provide for the alternative hypothesis. For 

the null and alternative, a Bayes factor between 1/3 and 3 is considered ‘equivocal’ (i.e., 

indicating more data are needed to obtain a clear outcome), between 1/3-1/20 or 3-20 is 

                                                             
3 We report a small but systematic tendency for the inhibition function predicted by the EXG3 model to be 
steeper than the observed inhibition function (see also, Skippen et al., 2019). This effect was most prominent in 
participants with less stable RT (i.e., speeding or slowing across the task). Therefore, we ran two further 
hierarchical models containing the 50 and 100 most stable participants. Details of these analyses are found 
online at osf.io/rhktj. Most importantly for this study, fits to inhibitions functions were greatly improved in 
these models, and inferences based on the plausible values analysis was consistent across all models. 
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considered ‘positive’, between 1/20-1/150 or 20-150 ‘strong’, and Bayes factors less than 

1/150 or greater than 150 are considered ‘very strong’. 

2.4.5. Plausible Values Analysis. To first examine the overlap between traditional and model 

estimates of response inhibition on the stop-signal task, we examined the relationship 

between the posterior distributions of the mean SSRTEXG3, probit transformed trigger and go 

failure parameters and SSRTint using plausible values analysis. We also report plausible value 

correlations between model parameters and ERP component measures from both stop-

success and stop-failure trials. All plausible values relationships are accompanied by 

associated Bayesian p-values, which denote the proportion of the distribution shifted away 

from zero. For example, a Bayesian p value of .05 denotes that 95% of the resulting 

distribution is above (for positive relationships) or below (for negative relationships) zero. In 

acknowledgement of the large number of plausible values tests, we take a Bayesian p value 

<.01 as reliable. This method also allows for the comparisons of two sets of plausible values 

relationships. For each relationship we can take differences between samples from each 

plausible value distribution and if the resulting difference distribution returns a Bayesian p 

value <.01, we have evidence so say that the difference in relationships is reliably greater 

than zero. This method was used to test whether relationships between SSRTEXG3 and the N1 

are stronger than between SSRTEXG3 and P3. Code for this analysis can be found in the 

materials at osf.io/rhktj (made public at acceptance). 

3. Results 

3.1. Stop-Signal Task Behavioural Summary 

 Of the 198 ± .85 stop trials (mean ± SEM), participants responded on average to 

49.14% ± .45% of stop trials, showing the efficacy of the tracking algorithm. Of the 479 ± 2.7 

go trials, errors of omission and commission occurred on 2.99 ± .31 % and 7.41 ± 0.51% of 

trials, respectively. The mean stop-signal delay was 354.24 ± 9.63ms (range = 89.42 – 

705.29ms). Mean RT on correct go trials was 585.56 ± 7.37ms. Mean RT on stop-failure trials 

was 521.69 ± 6.09ms, faster than the average go RT. The slope of a regression of RT against 

trial number indicated that participants slowed their responses by an average of only 43.58 ± 

7.63ms between the start and end of the test session. Lastly, traditional estimation via the 

integration technique returned a mean SSRTint of 196.91 o± 7.43ms. 

3.2. Model Selection and Parameter Estimation 

 Both models achieved convergence, as determined by visual inspection and a 

Gelman-Rubin 𝑅𝑅� <1.1. The fit generated from the EXG3 model with trigger failure was more 
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closely matched to the observed data than the model without trigger failure (DIC difference 

= 1685). Hence, we selected the EXG3 model with trigger failure for use in all further 

analyses. A visualisation of the posterior distributions of the parameter estimates from the 

EXG3 model that included trigger failure is presented in Figure 1. The EXG3-based estimate 

of mean SSRTEXG3 has a mean of 132.35ms with a 95% credible interval of [124.55, 140.17], 

which was around 65ms faster than SSRTint. Trigger failure rates were 22.27% [21.43, 24.82], 

suggesting that across participants, an average of 22% of stop-failure trials were due to a 

failure to trigger an inhibitory response. Go failures occurred on 3.06% [2.83, 3.76] of trials. 

Lastly, the mean finishing time of the matching go runner was 596.51ms [581.13, 611.84].  

 
Figure 1. Posterior distributions of the individual (gray density lines) and group-level mean (black boldface 

density lines) parameters. Mean Stop Signal Reaction Time (Milliseconds; Panel A). Probability of Trigger 

Failure (Panel B). Mean finishing time for the matching go runner (Milliseconds; Panel C). Probability of Go 

Failure (Panel D). Each grey shaded distribution represents the posterior of a single participant. The black 

boldface distribution represents the posterior distribution of the population-level mean parameter. 

 

3.3. ERP Summary 

 The summary statistics of ERP components are found in Table 1. Based on previous 

literature, as well as the morphology and topography of ERP waveforms, and the strength of 

trial-type differences, we selected FCz for measurement of the N1 and N2 component 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2019. ; https://doi.org/10.1101/658336doi: bioRxiv preprint 

https://doi.org/10.1101/658336
http://creativecommons.org/licenses/by-nc/4.0/


16 
 
(Figure 2). The N1 was larger, peaked earlier, and had an earlier onset on stop-success, 

compared to stop-failure trials (Table 1). However, the evidence for a trial type difference 

and the effect size was much larger for peak latency (BF10 = 5.25𝑒𝑒13, δ = -.77) than amplitude 

(BF10 = 10.59, δ = -.14). The N2 was generally under the baseline (Figure 2), but stop-failure 

trials had larger (i.e., less positive) N2 amplitude than stop-success trials (Table 1, BF10 = 

2.7𝑒𝑒17, δ = .9).  

Table 1. Summary statistics for and differences between trial types for each component 

measure at FCz.  

 
Measure Stop Success (SD) Stop Failure (SD) 

Trial Difference 
(BF10) 

Effect Size 
(δ) 

N1      

 Latency (ms) 127.86 (8.97) 133.22 (10.81) 5.25𝑒𝑒13 -.77 

 Amp (μV) -13.50 (5.99) -12.67 (6.04) 10.589 -.14 

 Onset (ms) 93.39 (11.71) 96.64 (14.16) 188.985 -.29 

N2      

 Amp (μV) 4.64 (5.89) 1.00 (5.01) 2.66𝑒𝑒17 .9 

P3      

 Latency (ms) 313.56 (23.22) 312.60 (27.14) .093 -.30 

 Amp (μV) 7.28 (4.29) 6.03 (4.00) 2.38𝑒𝑒5 .74 

 Onset (ms) 291.04 (29.19) 291.43 (34.07) .758 -.44 

Note. Effect sizes are for the success – failure trial type difference. Shading indicates at least weak 
evidence in favour of the trial type difference. Cross-hatching indicates at least weak evidence in 
favour of a null difference. 

Figure 2 shows that the P3 component spread anteriorly from Pz to FCz. Interestingly, 

while trial type effects were equally large at FCz and Pz, the peak latency difference between 

these sites suggests a P3a/P3b dissociation (Figure 2). As we focus on the inhibition-related 

P3, we measured it at FCz to be consistent with prior literature (results of analysis at Pz can 

be found in the supplementary materials). There was very strong support for a trial type 

difference in P3 amplitude (BF10 = 2.38𝑒𝑒5, δ = .74), showing that stop success trials had a 

larger amplitude. Howevr, there was equivocal support for a difference in onset latency, and 

positive support for a null difference in peak latency (Table 1).
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Figure 2. ERP waveforms for stop-success and stop-failure trials, and their difference are presented at midline fronto-central, central, and parietal sites (middle). The scalp 

topography for each component measure is presented for stop-success trials (left) and stop-failure trials (right).  
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3.4. Relationships between Traditional SSRT estimates and ERP measures 

Table 2 provides summary statistics for the Pearson correlation analysis between 

SSRTint and ERP component measures. Participants with faster SSRTint showed increased N1 

amplitude on both trial types (Table 2). However, latency and onset were only found to 

relate on stop-failure trials. Furthermore, there was weak evidence for a null relationship 

between N1 onset on stop success trials and SSRTint (BF10 = .211). Delayed onset and latency 

of the stop-failure N1 was found to correlate with faster SSRTint. This paradoxical result 

suggests that participants with later encoding and attention to the stop-signal have faster 

SSRT. 

 

 

 

 

 

 

Table 2. Pearson product moment correlations and associated Bayes factors for the 

relationships between event-related potential component measures and SSRTint.  

  r BF10 

Stop 
Success 

 
  

N1    

 Onset .042 .211 

 Latency -.102 .401 

 Amp .405 1.08𝑒𝑒5 

N2    

 Amp -.311 355.522 

P3    

 Onset .181 .916 

 Latency .239 14.716 

 Amp -.347 2.55𝑒𝑒3 
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Stop 
Failure 

 
  

N1    

 Onset -.266 43.028 

 Latency -.476 3.39𝑒𝑒7 

 Amp .350 2.95𝑒𝑒3 

N2    

 Amp .031 .2 

P3    

 Onset .169 .898 

 Latency .177 1.881 

 Amp -.388 3.39𝑒𝑒4 

Note. Shading indicates at least weak evidence in favour of the correlation. Cross-hatching 

indicates at least weak evidence in favour of a null correlation. 

Mean N2 amplitude showed a negative correlation to SSRTint on stop-success trials, 

suggesting larger N2 amplitude was related to slower SSRT. Conversely, on stop-failure trials 

there was weak evidence in favour of a null relationship between N2 mean amplitude and 

SSRTint (BF10 = .2). Consistent with the literature, amplitude of the P3 was negatively 

correlated with SSRTint on both trial types (Raud & Huster, 2017). Greater P3 amplitude was 

generated by participants with faster SSRT. Peak latency of the P3 on stop-success trials was 

also found to correlate with SSRTint, suggesting that earlier peaking P3 is associated with 

reduced SSRT. We were unable to find relationships between P3 onset and SSRTint on either 

which has also been reported elsewhere (Raud & Huster, 2017; but see Wessel & Aron, 

2015), with Bayes factor evidence for the relationships equivocal for both trial types (Table 

2). 

3.5. Plausible Values Relationships  

 We first present the results of the plausible values relationships between SSRTint and 

EXG3 model parameters in text. These are described by their median ρ, Bayesian p value, 

and 95% credible intervals. We then summarise the plausible values relationships between 

ERP component measures and EXG3 model parameters in Table 3. Small Bayesian p-values 

suggest the distributions are shifted away from zero. The smaller the credible interval, the 
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more peaked the distribution and the greater the confidence we can have in the median ρ 

values. 

 

3.5.1. Relationships between Traditional SSRT estimates and Model Parameters. We 

examined the plausible values relationships between SSRTint and key parameters estimated 

by the EXG3 model (e.g., SSRTEXG3, trigger failure, go failure etc.). The two SSRT estimates, 

SSRTint and SSRTEXG3, were moderately related, ρ = .537, pBayes < .001 [95% CI: .373, .670). In 

contrast, slower traditional SSRTint was strongly correlated with higher trigger failure rates, ρ 

= .846, pBayes < .001 [.787, .89], but only weakly with higher rates of go failure, ρ = .246, pBayes 

= .001 [.088, .391]. Importantly, we can show that the plausible values distributions for the 

relationship between SSRTint and SSRTEXG3 is weaker than the relationship between SSRTint 

and trigger failure. The resulting distribution after taking the difference between the 

plausible values distributions had a Bayesian p-value = .002, showing that only ≈.2% of the 

difference overlaps zero. In sum, the novel trigger failure parameter was a better predictor 

of traditional SSRT than the EXG3 estimation of SSRT. 

  

3.5.2. Relationships between Model Estimated SSRT and ERP measures. As was found with 

SSRTint, delayed N1 peak latency was related to faster SSRTEXG3 on stop-failure trials, ρ 

= -.362, pBayes <.001 [-.51, -.19], but not on stop-success trials (Table 3). In addition, larger N1 

was associated with faster SSRTEXG3 on both stop-failure (ρ = .314, pBayes <.001 [.15, .46]) and 

stop-success trials (ρ = .35, pBayes <.001 [.18, .5]). However, unlike what was found with 

SSRTint, there was no reliable relationship between stop-failure N1 onset and SSRTEXG3. In 

summary, faster SSRTEXG3 was associated with larger, but delayed N1 peak, but not with N1 

onset latency (Table 3). 

Larger stop-success N2 amplitude was associated with slower SSRTEXG3, ρ = -.34, pBayes 

<.001 [-.49, -.17]. This relationship was also found with SSRTint with a similar correlational 

strength. Larger P3 amplitude was associated with faster SSRTEXG3 across both trial types 

(Table 3), with both ρ > -.31. For stop-failure trials, later P3 onset and peak latency were 

both reliably associated with slower SSRTEXG3 (Table 3). These relationships were not found 

with traditional SSRTint. In fact, the relationship between P3 onset and SSRTint was found for 

stop-success trials, not stop-failure trials as was found with SSRTEXG3.  

Although the strength of the relationship between SSRTEXG3 and N1 latency was 

larger than with P3 latency, this difference was not reliably different from zero (pBayes = .22). 
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Likewise, there was no reliable difference between the plausible values distributions of the 

N1 and P3 amplitude for either trial type (pBayes >.01). Therefore, we cannot support our 

prediction that relationships with SSRTEXG3 would be stronger with N1, as compared to P3. 

The plausible value analysis with variance of SSRTEXG3 can be found in the supplementary 

materials. Overall, there was no reliable relationships between the variability of SSRTEXG3 and 

the ERP component measures.  
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Table 3. Results of the plausible values analysis. Median ρ, Bayesian p-values, and 95% credible intervals for the relationship between model 

estimated response inhibition parameters and event-related potential component measures. 

  Stop Signal Reaction Time Probability of Trigger Failure Probability of Go Failure Matching Go Finishing Time 
  ρ pBayes CI ρ pBayes CI ρ pBayes CI ρ pBayes CI 
Stop Success             
N1 Onset 0 .501 [-.18, .18] .055 .255 [-.11, .22] .165 .021 [.01, .32] .141 .04 [-.02, .29] 
 Latency -.09 .174 [-.26, .09] -.07 .219 [-.23, .1] .014 .432 [-.15, .17] .137 .044 [-.02, .29] 
 Amp .35 <.001 [.18, .5] .289 <.001 [.13, .43] -.064 .234 [-.22, .1] -.149 .036 [-.3, .01] 
N2              
 Amp -.34 <.001 [-.49, -.17] -.182 .016 [-.34, -.02] .081 .16 [-.08, .24] .333 <.001 [.19, .47] 
P3              
 Onset .186 .065 [-.06, .41] .076 .249 [-.14, .29] .089 .208 [-.13, .3] .123 .127 [-.09, .32] 
 Latency .194 .014 [.02, .36] .127 .064 [-.04, .28] .021 .401 [-.14, .18] .029 .361 [-.13, .18] 
 Amp -.342 <.001 [-.49, -.18] -.207 .007 [-.36, -.05] -.076 .192 [-.23, .08] .117 .073 [-.04, .27] 
Stop Failure             
N1 Onset -.145 .06 [-.31, .03] -.257 .001 [-.4, -.1] .013 .436 [-.15, .17] .211 .004 [.06, .36] 
 Latency -.362 <.001 [-.51, -.19] -.412 <.001 [-.54, -.26] -.097 .129 [-.25, .06] .263 .001 [.11, .4] 
 Amp .314 <.001 [.15, .46] .206 .006 [.05, .36] -.119 .082 [-.27, .04] -.156 .03 [-.31, 0] 
N2              
 Amp -.095 .166 [-.27, .09] .106 .102 [-.06, .26] .132 .052 [-.03, .29] .202 .006 [.05, .35] 
P3              
 Onset .26 .01 [.04, .45] .067 .257 [-.14, .26] .083 .206 [-.12, .27] -.037 .374 [-.23, .16] 
 Latency .249 .003 [.07, .41] .069 .208 [-.1, .23] -.019 .433 [-.18, .14] -.081 .173 [-.24, .08] 
 Amp -.313 <.001 [-.47, -.14] -.279 .001 [-.42, -.12] -.048 .3 [-.21, .11] .139 .041 [-.02, .29] 

Note. ρ = Median of the posterior distribution of the population correlation. pBayes = Bayesian p value. CI = Credible Interval [2.5%, 97.5%]. Shading indicates reliable relationships 
(i.e., pBayes <.01). 
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3.5.3. ERP Relationships with Probability of Trigger Failure. As shown in Table 3, for stop-

failure trials only, earlier N1 peak latency, and to a lesser degree, N1 onset latency, were 

associated with higher rates of trigger failure. This N1 peak latency effect replicates the 

finding by Matzke, Hughes et al. (2017), but extends it to show specificity to stop-failure 

trials and to also include N1 onset latency. In addition, larger N1 peak amplitude for both 

trial types was associated with lower rate of trigger failure. As expected, lower levels of 

attention to the stop signal (i.e., reduced N1 amplitude) was related to higher rates of trigger 

failure. Rate of trigger failure was not associated with N2 mean amplitude, and P3 onset or 

peak latency for either trial type (Table 3). However, for both trial types, P3 peak amplitude 

was smaller for participants with higher rates of trigger failure (average ρ ≈ -.25; Table 3).  

 

3.5.4. ERP relationships with Finishing Time of the Matching Go Runner. Later N1 onset and 

peak latency on stop-failure trials were correlated with slower go finishing time (ρ ≈ .23). For 

both trial types, larger N2 amplitude was correlated with faster matching go finishing times 

(Table 3). 

  

3.6. N1 Peak Latency and Trigger Failure Rate 

 We ran further exploratory analyses to understand the paradoxical finding that faster 

N1 latency on stop-failure trials is associated with higher rates of trigger failure. Figure 1.B 

shows that the distribution of trigger failure has a strong right skew that spreads out past 

≈20%. We examined whether there are differences in the pattern of ERP effects as a 

function on trigger failure rate by extracting ERP waveforms for three groups of participants 

based on a tertile split of median participant-level posterior trigger failure rates: Low (<14%), 

Mid (>= 14% and =<25.8%) and High (>25.8%), n=52 per group. The groups had similar age 

(Low = 20.4; Mid = 21.5; High = 20.65) and gender distribution (Low = 48.1% Female; Mid = 

53.8% Female; High = 57.7% Female). 

 ERPs for each group are compared in Figure 3, and summary statistics for N1 peak 

latency are shown in Table 4. A Bayesian mixed ANOVA using default JASP priors (JASP Team, 

2018) of N1 peak latency at FCz with trigger failure group (High, Mid, Low) and trial type 

(stop-failure, stop-success) as factors showed that the evidence for the model containing the 

two main effects was very strong (BF10 = 6.43𝑒𝑒16). The interaction model was also supported 

when controlling for the main effects of group and trial type (BF Inclusion = 1.1𝑒𝑒9). Both Low 

and Mid trigger failure groups show a large N1 that peaked earlier for stop-success than 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 3, 2019. ; https://doi.org/10.1101/658336doi: bioRxiv preprint 

https://doi.org/10.1101/658336
http://creativecommons.org/licenses/by-nc/4.0/


24 
 
stop-failure trials, whereas N1 did not differ by trial type in the High trigger failure group 

(Table 4).  

Table 4. Summary of the N1 peak latency difference between Low, Mid, and High trigger 

failure groups. 

Group Stop Success 
(SD) 

Stop Failure 
(SD) 

Trial Difference 
(BF10) 

Effect Size 
(δ) 

Low 129.6 (9.7) 139.7 (10.36) 4.85𝑒𝑒13 -1.632 
 

    

Mid 128.13 (7.8) 133.37 (8.67) 1.34𝑒𝑒6 -.918 

     

High 125.9 (9.1) 126.6 (9.23) .2 -.103 

Note. Effect sizes are for the success – failure trial type difference. Shading indicates at least weak 

evidence in favour of the trial type difference. Cross-hatching indicates at least weak evidence in 

favour of a null difference. 

 Furthermore, there was an interesting pattern of differences in N1 peak latency 

across trigger failure groups. The Low and Mid trigger failure groups did not differ in N1 peak 

latency on stop-success trials, BF10 = .283, δ = .15, but N1 peaked earlier on stop-failure trials 

in the Mid trigger failure group (BF10 = 29.39, δ = .61). Comparing Low and High trigger 

failure groups also showed strong evidence in favour of an earlier N1 peak latency for stop-

failure trials in the High trigger failure group, BF10 = 1.26𝑒𝑒7, δ = 1.28, but the evidence for the 

same difference on stop-success trials was equivocal, BF10 = 1.24, δ = .36. The same results 

were found when comparing the Mid to High trigger failure groups: stop-failure, BF10 = 

117.61, δ = .7; stop-success, BF10 = .47, δ = .24.  
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Figure 3. ERPs for stop-success (blue) and stop-failure (orange) shown for low, mid and high trigger failure 

groups at FCz. Shaded areas represent the within subject confidence intervals.  

 

4. Discussion 

  This study is the first to make a comprehensive examination of the ERP correlates of 

response inhibition using an ex-Gaussian model of response inhibition which accounts for 

the failures of both the stop and go processes. These relationships suggested a number of 

interpretive changes to common ERP components found during the stop-signal task. We 

present the evidence and interpretations for each of the ERP components separately, but 

first compare the model-based estimates of SSRT with traditional non-parametric estimates 

that have been recently been recommended as best practice (Verbruggen et al., 2019). 

4.1. Integration vs ex-Gaussian estimates of SSRT  

 Replicating recent studies, we show that ex-Gaussian estimation techniques which 

account for trigger failure result in substantial attenuation of SSRT latency. SSRTEXG3 was 

about 65ms faster compared to SSRT using the traditional integration algorithm (Matzke, 

Curley, et al., 2019; Matzke, Hughes, et al., 2017; Skippen et al., 2019; Weigard et al., 2019). 

These findings support the proposal that traditional SSRT estimates are biased by the 

assumption that trigger failure rates are negligible. Importantly, the traditionally estimated 

SSRTint was only moderately correlated with ex-Gaussian model estimated SSRTEXG3 and 

more strongly associated with the trigger failure parameter. This suggests that previous 

interpretations, based on a non-parametric SSRT, of ERP components in terms of the latency 

of an inhibitory response may be spurious and instead these components are more likely 
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related to a failure to engage the correct task goal (i.e., failure to trigger a stop response).

  

4.2. Attention, N1, and Response Inhibition 

 We first discuss the ‘stop-N1’ effects which have been relatively unexplored 

compared to other ERP components in studies using the stop-signal task. In this study, we 

support the general finding that N1 amplitude is larger on stop-success compared to stop-

failure trials. We also report a moderate positive relationship between SSRT and N1 

amplitude, which is found for both trial types and both the traditional and ex-Gaussian 

estimations of SSRT. This relationship supports Keneman’s (2015) interpretation of the ‘stop-

N1’ effect. Larger N1 amplitude on stop-success compared to stop-failure trials is thought to 

indicate greater attentional allocation to the stop signal, which in turn influences the 

outcome of a stop trial (Bekker et al., 2005; Hughes et al., 2012; Kenemans, 2015; but see 

Ramautar, Slagter, Kok, & Ridderinkhof 2006). If fluctuations in attention influence both N1 

amplitude and the outcome of a stop trial, then our evidence suggests that this ‘stop-N1’ 

effect is elicited through the relationship between reduced SSRT and increased N1 

amplitude. This study is the first to show that individual variability in attentional allocation to 

the task can change SSRT, which in turn modulates the probability of successful inhibition.  

 Furthermore, we present the first evidence that a ‘stop-N1’ effect is also present for 

the N1 component’s latency. We found that not only does successful stopping depend on 

the amplitude of the N1, but also its latency. As the N1 starts earlier, peaks earlier, and is 

larger on stop-success trials when compared to stop-failure trials, it appears to index a 

cognitive process which determines the success of inhibition. Importantly, this effect was 

only seen in participants with low to mid range levels of trigger failure. Those participants 

with high levels of trigger failure (>25%) did not show a difference in latency between trial 

types.  

 Traditionally, the very early time-course (within 200ms after the stop signal), 

especially compared to the traditional estimates of SSRT, N1 has been discounted from any 

direct role in the inhibition process. However, recent support for a fast, automatic inhibitory 

process (e.g., Verbruggen, McLaren, & Chambers, 2014) suggests that the N1 may in fact be 

a better temporal index of the stop process than N2 or P3. These findings are consistent with 

the argument that the manifestation of the inhibitory process, which has previously been 

attributed to the P3, may in fact be better represented by the N1, an earlier ERP component 

associated with attention to the stimulus. As stop-failure N1 peak latency was related to 
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both traditional and ex-Gaussian estimates of SSRT, we propose that N1 peak latency may 

indicate the starting point of the inhibitory process. In fact, the ex-Gaussian estimates of 

SSRT temporally match that of the N1 peak latency (both ≈130ms). However, this finding 

requires replication to suggest such a connection with strong confidence. 

 Nevertheless, the attentionally sensitive N1 component appears to be imperative to 

successful inhibition through the detection and encoding of the stop signal. Dysfunctional 

attentional processing of the stop signal has previously been suggested to lead to a 

seemingly earlier peaking N1 for participants with larger rates of trigger failure in a 

schizophrenia patient group (Matzke, Hughes, et al., 2017). We provide evidence in line with 

this finding in a large healthy cohort, and also extend this to show that it is only present on 

stop-failure trials. However, the fact that N1 onset was also found to correlate with trigger 

failure (albeit to a lesser degree) suggests that the effect might not be specifically related to 

the dysfunction of later sub-components of the N1 as previously thought (Matzke, Hughes, 

et al., 2017). The ERP morphology of the high and low trigger failure groups in Figure 3 

suggests that the phenomenon of trigger failure is closely tied to the attentional allocation 

to the stop signal more generally.  

 The absence of a ‘stop-N1’ effect in the high trigger failure group suggests a broken 

connection between the impact of the stop signal and the outcome of the trial. Therefore, 

the paradoxical correlation between earlier peaking latency of the N1 and higher rates of 

trigger failure can be explained by an overall earlier stop-failure N1 in the high trigger failure 

group. Based on the evidence presented here, this might then reflect the lack of connection, 

which is proposed to be represented by tonic activity in the right inferior frontal gyrus (rIFG; 

Kenemans, 2015). Specifically, Kenemans proposed that a tonically active rIFG potentiates 

the link between detecting the stop signal and eliciting an inhibitory process. When this link 

is active, stopping is speeded and possibly automatic (Verbruggen, Best, et al., 2014). The 

≈130ms estimates of SSRT reported here (see also, Skippen et al., 2019) supports the idea 

that inhibition can be automatic and adds to a growing literature reporting similar evidence 

in the form of short SSRT latencies (Matzke, Hughes, et al., 2017) and physiological evidence 

of fast inhibitory processes around 140ms (Coxon, Stinear, & Byblow, 2006; Raud & Huster, 

2017; Waldvogel et al., 2000; Wilcoxon, Nadolski, Samarut, Chassande, & Redei, 2007). We 

suggest that in line with Kenemans (2015) explanation for the absence of a ‘stop-N1’ in 

patients with attention deficit hyperactivity disorder, there is a missing automatic 

connection between the registration of the stop signal (as represented by the N1) and the 
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outcome of the trial (i.e., failed or successful inhibition) in participants with high trigger 

failure rates. Recent analysis strengthens this argument by showing that increased rates of 

trigger failure drove group differences between children with attention deficit hyperactivity 

disorder and typically developing controls. Poor SST performance among children with 

attention deficit hyperactivity disorder likely reflects impairments in early attentional 

processes, rather than the speed of the stop process (Weigard, et al., 2019). 

 Further investigation is warranted, but we suggest that this gating mechanism 

proposed to reflect rIFG activation, marked by a beta signature around the time of SSRTEXG3 

is rudimentarily captured in our N1. The N1 reported here shows similar trial type 

differences, scalp topography, and timing as a beta frequency response which occurs before 

traditional estimates of SSRT (i.e., ≈150ms after the stop signal) and appears to be 

imperative for successful stopping (Huster, Schneider, Lavallee, Enriquez-Geppert, & 

Herrmann, 2017; Swann et al., 2009; Swann et al., 2012; Wagner, Wessel, Ghahremani, & 

Aron, 2018; Wessel, Conner, Aron, & Tandon, 2013). This beta signature shows much of the 

same trial type characteristics as both the N1 and P3 ERP components, but temporally aligns 

with the N1. More generally, we provide evidence that shows that ERP attributes previously 

related to the speed of the inhibitory response (i.e., SSRT) are more related to attentional 

processes that occur much earlier. 

4.3. Conflict and Control N2 

Correlations showing larger N2 amplitude on stop-failure trials in participants with slower 

SSRT has been previously reported (van Boxtel, van der Molen, Jennings, & Brunia, 2001). 

However, the explanation that this then reflects the manifestation of the inhibitory process 

is not supported here. Firstly, we found evidence in favour of a null relationship between 

stop-failure N2 amplitude and SSRTint. Secondly, both the SSRTint and SSRTEXG3 estimates do 

not coincide with the N2 component. We instead believe our relationships between stop-

success N2 and SSRT, coupled with the fact that we report larger N2 amplitude on stop-

failure trials to reflect the conflict stop-N2 hypothesis. 

 A general interpretation for the increased stop-N2 amplitude on stop-failure trials 

(Dimoska, Johnstone, & Barry, 2006; Galdo-Alvarez, Bonilla, González-Villar, & Carrillo-de-la-

Peña, 2016; Greenhouse & Wessel, 2013; Ramautar, Kok, & Ridderinkhof, 2006; van Boxtel 

et al., 2001) is that it indexes the increased level of conflict that occurs when the go and stop 

process are both maximal (Ramautar et al., 2004; Ramautar, Kok, et al., 2006). In our data, 

larger stop-success N2 was related with slower SSRT, and larger N2 for both trial types was 
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associated with faster finishing time of the matching go process. Our N2 is larger on stop-

failure trials, where the go process is likely to be relatively faster, and the stop process 

relatively slower, leading both processes to be maximally active at the same time. Therefore, 

there is greater conflict on stop-failure trials, which may be captured in the N2.  

4.4. Manifestation of Response Inhibition and the P3 

 The SSRTint estimate was almost 100ms earlier than P3 onset latency at the group 

level and there was no relationship found between P3 onset and SSRTint. Furthermore, we 

only found weak support for the relationship between stop-success P3 latency and SSRTint. 

This does not support the P3 as an electrophysiological manifestation of the stop process 

(Wessel & Aron, 2015). In contrast, SSRTEXG3 which was, on average, 140ms earlier than the 

onset latency of the P3, was reliably correlated with both P3 onset and peak latency on stop-

failure trials. Given that SSRTEXG3 also correlated with N1 peak latency on stop-failure trials, 

we suggest that the P3 on stop-failure trials may represent the activation of an evaluation 

process after a failure to inhibit, a process which, by definition, would be elicited only after 

the inhibition process has failed. 

 Alternatively, recent work has shown that the P3 on the stop-signal task shares 

common neural generators with the P3 elicited in tasks involving infrequent stimulus 

detection (Waller, Hazeltine, & Wessel, 2019; Wessel & Huber, 2019). If P3 indexes a 

stimulus detection process, the larger P3 on stop-success compared to stop-failure trials 

might simply index the successful detection of the stop signal on the former and/or poor 

detection on the later trial type. This interpretation is consistent with both the horse-race 

model in general, as well as the interpretations of the N1 findings presented here. 

Specifically, we propose that P3 is not a manifestation of the stopping process itself, but a 

delayed marker of detection of the stop signal. Therefore, the attentional processes required 

to both detect the novelty of the stop signal, as well as trigger an inhibitory response, may 

help explain the relationship between trigger failure and P3 amplitude across trial types. 
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