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Abstract

Although advancements in electrophysiological methods to explore response inhibition have
been substantial, the methods to describe behavioural differences in response inhibition
have remained relatively unchanged. Here we use a model-based neuroscience approach to
understand the neural correlates underpinning response inhibition as estimated using a
recently developed ex-Gaussian hierarchical Bayesian model of stop-signal task
performance. In a large healthy sample (N=156) of community drawn participants, we show
the model-based estimates of stop-signal reaction time (SSRT) and a “trigger failure”
parameter reflecting lapses of attention to task goals alter previously held interpretations of
relationships between inhibition and event-related potential (ERP) component measures.
Our results show clear attenuation of SSRT by =65ms when substantial levels of trigger
failure are accounted for. This attenuation casts doubt on previous interpretations of the P3
as a manifestation of response inhibition. Instead, the N1, which reflects attentional
processes, provides a better description of both SSRT and trigger failure than the P3. In
particular, the peak N1 latency both correlated and coincided with ex-Gaussian estimated
SSRT. Furthermore, participants with higher rates of trigger failure do not show a
dissociation between N1 latency and the outcome of a stop trial. Our results show sufficient
attentional control to elicit an inhibitory process is just as important, if not more so, than
the speed of the process itself and that early ERPs provide a rich account of individual

differences in both the speed and reliability of the inhibitory process.
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1. Introduction

Response inhibition is a core component of cognitive control associated with the
cancelation or suppression of an inappropriate behaviour (Bari & Robbins, 2013). It has been
operationalised using paradigms such as the go/no-go (Falkenstein, Hoormann, &
Hohnsbein, 1999) and the stop-signal task (SST; Logan & Cowan, 1984). In the SST,
participants engage in a speeded choice response task. On a small proportion of randomly
selected trials a stop signal occurs after the target stimulus, and participants must inhibit
their response. The prominent horse-race model of the stop-signal task allows for what is
usually assumed to be the main dependent variable of interest, stop-signal reaction time
(SSRT), to be estimated. This model assumes that the construct of response inhibition is fully
represented by the estimated latency of the ‘stop process’, a unitary process that is
summarised by SSRT (Verbruggen & Logan, 2009).

It has been reported that SSRTs are slower in people with attention deficit
hyperactivity disorder, schizophrenia, and substance use disorders, when compared to
controls (for a review, see Lipszyc & Schachar, 2010). Increased SSRT is seen as representing
less efficient response inhibition, resulting in reduced impulse control (but see, Sharma,
Markon, & Clark, 2014; Skippen et al., 2019). However, the purity of SSRT as the measure of
inhibitory cognitive control has recently been increasingly questioned (Band, Van Der Molen,
& Logan, 2003; Logan, 1994; Matzke, Curley, Gong, & Heathcote, 2019; Matzke, Hughes,
Badcock, Michie, & Heathcote, 2017; Matzke, Love, & Heathcote, 2016; Matzke, Love, &
Heathcote, 2017; Skippen et al., 2019; Verbruggen, Best, Bowditch, Stevens, & MclLaren,
2014; Verbruggen, MclLaren, & Chambers, 2014).

1.1. Implications of Biased SSRT Estimations

The horse-race model (Logan & Cowan, 1984) attributes the outcome of any given
stop trial to a race between two independent processes: the go process that is measured by
go RT and the stop process that is measured by SSRT. For example, if on a given trial, the go
process finalises before the stop process, the response will not be inhibited (i.e., stop-failure
trial). Alternatively, if the stop process finalises before the go process, the response will be
successfully inhibited (i.e., stop-success trial). However, if either the go or the stop process
fails to initiate on a given trial, the original horse-race model is not applicable. The model’s
inability to account for failures to engage the go or stop processes results in biased
estimates of SSRT (Band et al., 2003; Matzke, Curley, et al., 2019; Skippen et al., 2019). While

adjustments to traditional SSRT estimation methods have been developed to account for
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omissions rates on go trials, as a close proxy for go failures (e.g., Tannock, Schachar, Carr,
Chajczyk, & Logan, 1989), simulations suggest this method over-estimates SSRT (Verbruggen
et al., 2019). Trigger failure (failure to initiate the stop process) has long been acknowledged
as possible (e.g., Logan, 1994), yet it is not taken into account in non-parametric methods of
estimating SSRT (see Verbruggen & Logan, 2009) and not accounting for trigger failure has
been shown to bias estimates of SSRT in a growing number of studies (Band et al., 2003;
Matzke, Curley, et al., 2019; Matzke, Hughes, et al., 2017; Matzke, Love, et al., 2017; Skippen
et al., 2019). More generally, it is important to acknowledge that effective inhibitory control
relies not only on fast SSRT, but also on the reliability of triggering the stop process
(Chatham et al., 2012; Matzke, Love, et al., 2017).

We have previously described a parametric model of the SST in which the finishing
times of the stop and go processes follow an ex-Gaussian distribution, and for which model
parameters may be estimated with the Bayesian Estimation of ex-Gaussian Stop-Signal
Reaction Time Distribution (BEESTS) procedure (Matzke, Dolan, Logan, Brown, &
Wagenmakers, 2013; Matzke, Love, et al., 2013). This model has the distinct advantage of
estimating the entire distribution of SSRT rather than only a summary measure obtained
using traditional non-parametric methods (see Matzke, Verbruggen, & Logan, 2019, for an
overview of the different estimation methods). The ex-Gaussian model used here (EXG3;
Matzke, Curley, et al., 2019) extends that original model by incorporating failure to trigger a
response to the go (go failure) and the stop (trigger failure; see also Matzke, Love, et al.,
2013) stimulus, as well as accounting for go errors through separate racers corresponding to
correct (matching) and error (mis-matching) responses to the go stimulus .

The practical importance of modelling trigger and go failures has been highlighted in
a number of studies (Band et al., 2003; Matzke, Curley, et al., 2019; Matzke, Dolan, et al.,
2013; Matzke, Hughes, et al., 2017; Skippen et al., 2019; Weigard, Heathcote, Matzke, &
Huang-Pollock, 2019). For example, Skippen et al. (2019) found that the SSRT estimate
derived from the EXG3 model was reduced by *100ms compared to the estimate obtained
using the traditional non-parametric integration method (e.g., Tannock et al., 1989).
Critically, this changed the relationships between SSRT and measures of impulsivity. When
data were analysed with the non-parametric integration technique, impulsivity was
correlated with estimated SSRT. However, application of the EXG3 model indicated that
impulsivity was correlated with trigger and go failures rather than SSRT. Using a similar Ex-

Gaussian model, Matzke, Hughes, et al. (2017) found both higher levels of trigger failure and
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slower SSRT in patients with schizophrenia when compared to controls?®. The distribution of
SSRT suggested that the delay in the stop process was largely due to poor encoding of the
stop signal, rather than a slower inhibition process per se. They argued that the increased
probability of trigger failure and the delayed initiation of the stop process could be
attributable to deficits in attention. Therefore, attentional factors may play a larger role in
inhibitory ability than previously thought. In this study, we take a model-based neuroscience
approach to better understand the stopping process and trigger failure (Sebastian,
Forstmann, & Matzke, 2018), using electroencephalogram (EEG) activity recorded during the
SST to capture the timeline of cognitive processes involved in stop-success and stop-failure
trials.

1.2. Temporal processes of response inhibition

Event Related Potential (ERP) components time-locked to an auditory stop signal
typically consist of an early negative component (N1) within the first 100-200ms, a negative
deflection (N2) occurring around 200ms, and a positive component (P3) around 300-350ms,
all commonly measured fronto-centrally (Pires, Leitdo, Guerrini, & Simdes, 2014). These
components are thought to index distinct processes that together result in the inhibition of a
pre-potent response.

The N1 is thought to reflect the level of encoding of a stimulus within the auditory
cortex (Hillyard, Hink, Schwent, & Picton, 1971; Luck, Woodman, & Vogel, 2000; Nditanen &
Picton, 1987). The N1 is comprised of several underlying components that are influenced by
voluntary attention to the stimulus, the physical attributes of the stimulus, and the
conditions under which it is presented (Ndatanen, 1982; Naitanen, Gaillard, & Mantysalo,
1978; Naatanen & Michie, 1979; Ndatdanen & Picton, 1987). In the response inhibition
literature, N1 is commonly used as a measure of attentional resources allocated to the stop
signal (Bekker, Kenemans, Hoeksma, Talsma, & Verbaten, 2005; Dimoska & Johnstone,
2008). The commonly reported ‘stop-N1’ effect (i.e., increased N1 amplitude for stop-
success compared to stop-failure trials), suggests that N1 amplitude is associated with the
outcome of the stop process (Bekker et al., 2005; Hughes, Fulham, Johnston, & Michie, 2012;
Lansbergen, Bocker, Bekker, & Kenemans, 2007). This ‘stop-N1’ effect has been suggested to

reflect a mechanism that primes the detection of the stop signal, in turn potentiating a faster

! This study used the BEESTS procedure with trigger failure, and therefore did not estimate go failure.
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connection between brain regions vital to improving the speed of inhibition (Kenemans,
2015).

The role of the two later components, N2 and P3, is the subject of substantial debate.
It is generally thought that N2 reflects conflict monitoring and cognitive control, whereas P3
represents the inhibition process (for a review, Huster, Enriquez-Geppert, Lavallee,
Falkenstein, & Herrmann, 2013). These attributions arise largely from the relative timing of
the two components relative to SSRT. Supporting the argument that the P3 represents the
inhibition process, the onset latency of the P3 has been found to coincide with SSRT latency
(Kok, Ramautar, De Ruiter, Band, & Ridderinkhof, 2004; Wessel & Aron, 2015). Alternatively,
others have argued that P3 peaks too late to represent inhibition, and instead is more likely
to reflect post-inhibitory processing (Gonzalez-Villar, Bonilla, & Carrillo-de-la-Pefia, 2016;
Huster et al., 2013; Ramautar, Kok, & Ridderinkhof, 2004). However, both arguments are
based on conventional estimates of SSRT, which as discussed above, are likely biased
because they do not account for trigger and/or go failure. As models that account for trigger
failure produce attenuated estimates of SSRT, the temporal association between ERPs
(especially P3) and SSRT are likely to be altered. For example, estimates of SSRT derived from
the EXG3 model that accounts for trigger and go failures (Skippen et al., 2019) align the end
of the stop process within the latency range of N1 and N2 components, that is, at least
100ms before the onset of the P3. Therefore, models that include these failure parameters
in the estimation of SSRT may challenge previous interpretations of the ERP correlates of
response inhibition.

The only previous study to investigate the relationship between ERPs and parameters
from an ex-Gaussian model of the SST reported that faster stop-N1 latency was associated
with higher probability of trigger failure in a small group of people with schizophrenia
(Matzke, Hughes, et al., 2017). At face value, this relationship is counterintuitive, suggesting
that earlier processing of the stop signal (as indexed by the N1) is predictive of higher rates
of trigger failure. However, as the N1 is comprised of a number of partially overlapping sub-
components (Naatanen & Picton, 1987), Matzke, Hughes, et al. (2017) argued that earlier N1
peak latency may arise from attenuation of a late N1 sub-component and not necessarily
represent faster processing of the stop signal. This would be consistent with the hypothesis
that trigger failure results from dysfunctional encoding of the attributes of the stop signal,
which then fails to generate the appropriate response pattern (i.e., inhibition). However, the

Matzke, Hughes, et al. (2017) analysis was based on a relatively small group (N < 13 for
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patients and controls), and did not separately examine stop-successes and failures, so these
findings need replication before drawing strong conclusions about the relationship between
ERP components and model parameters.

1.3. Current study

In the present study, we examine the relationships between EXG3 parameters and
ERPs to the stop signal in a large, young, healthy cohort (N = 156). With increased statistical
power and opportunity to examine individual variability, we aim to provide insight into the
neural processes that underlie trigger failure, go failure, and SSRT. We expect to replicate
the finding that trigger failure rate is negatively associated with stop signal N1 peak latency.
We will also estimate the onset latency of the N1 component to examine whether trigger
failure is associated with early or late N1 sub-components. Furthermore, we will examine
whether ERP components for successful and failed stop trials correlate with the same model
parameters. In line with the attentional account of trigger failure, we expect that lower
levels of attention to the stop signal (i.e., reduced N1 amplitude) will be related to higher
rates of trigger failure.

As SSRT latency is attenuated after accounting for trigger failure, we expect that the
relationships between SSRT and ERP components commonly reported in the literature will
be altered. Specifically, we expect to challenge the common interpretation of the P3 as an
index of response inhibition process by showing that, after accounting for trigger failure, the
commonly reported positive relationship between SSRT and P3 will be reduced. We will test
the relationships between P3 onset and peak latency, and peak amplitude with both
traditional and EXG3 estimations of SSRT. As theorists have recently suggested that response
inhibition is a more automatic process than previously thought (Verbruggen, McLaren, &
Chambers, 2014), we expect EXG3 estimated SSRT will have a stronger relationship with
early ERP components (i.e., N1, N2) than the traditional estimation. Finally, we will run
exploratory analyses of the relationships between the remaining model parameters and ERP
component measures to inform future hypotheses about the neural correlates of response
inhibition in a large healthy young sample. These include the relationships between the N2
and all EXG3 parameters, and the relationships for both the N1 and P3 with go RT and go

failures.
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2. Methods
2.1. Participants and Procedure

The data reported here were collected as part of a larger longitudinal study, the Age-
ility Project (Karayanidis et al., 2016). Participants were screened for self-reported
neurological or psychiatric conditions and asked to abstain from caffeine or alcohol for 2hrs
prior to testing. A community-based cohort aged 15-35 years (n=282) was recruited via local
businesses, community groups, and secondary and tertiary education centres. Participants
were paid AUS20/hr. This study conforms to the Declaration of Helsinki and was approved
by the University of Newcastle Human Research Ethics Committee (HREC: H-2012-0157).

Participants attended the laboratory on two occasions. In the first session, they
completed a neuropsychological battery and received demographic and psychometric
questionnaires to complete at home. In the second session, participants initially practiced
and then performed a task switching paradigm (see Cooper et al., 2015) with concurrent EEG
recording for approximately 45 minutes before completing the SST. After loss to attrition
between testing sessions, 208 participants attempted the stop-signal task. EEG technical
problems resulted in the removal of 20 participants. Model constraints excluded a further 32
participants. The final total sample was N = 156 (see 2.3.1. Data Cleaning). This sample
overlaps with that reported by Skippen et al. (2019), with the exclusion of participants
without clean EEG.
2.2. Stimuli and Apparatus
2.2.1. Stop-signal task. The primary go task was a two-choice number parity task (700 trials).
The stimulus was a number between 2 and 9, presented for 100ms in the centre of a grey
rectangle. On 29% of trials (=200 trials), the go stimulus was followed after a variable stop-
signal delay by an auditory stop signal delivered binaurally through calibrated headphones
(1000Hz, 85dB tone, 100ms duration). The stop-signal delay ranged from 50-800ms and
decreased or increased by 50ms after every failed or successful stop trial, respectively.
Following a single practice block, behavioural responses and EEG activity were recorded for
700 trials across five blocks.
2.2.2. Electroencephalogram recording. EEG data were recorded (2048Hz sample rate,
bandpass filter of DC-400Hz) via a BioSemi Active Two system with 64 scalp electrodes as
well as two mastoid, lateral ocular, and infra/supra ocular sites. Common mode sense and

driven right leg electrodes were positioned inferior to P1 and P2, respectively. Data were
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recorded relative to an amplifier reference voltage and re-referenced to the common
average offline to remove common-mode signals.

2.3. Data analysis
2.3.1. Data Cleaning. At the start of the study, a technical issue resulted in the first 20
participants being excluded. Another 32 participants were excluded from analysis due to
poor or non-compliant performance on the stop-signal task. Of these, (a) nine participants
slowed their go trial reaction time by over 300ms over the course of the experiment?, most
likely to assist in inhibiting on a subsequent stop trial. This slowing of responses can bias
SSRT estimates; (b) four participants responded on over 75% of stop trials, against what
would be expect of the stop-signal delay algorithm; (c) sixteen were excluded because they
violated the independence assumption of the horse race model. This assumption states that
the go and stop processes are independent and is tested by confirming that mean RT on stop
trials (i.e., stop-failure trials) is not slower than mean RT on the go task; (d) one participant
had both independence and response rate violations; (e) one had both independence
violations and commission error rates on go task approaching chance, and (f) one participant
had zero errors on the go task and therefore could not be modelled with the EXG3. This
resulted in an exclusion rate of approximately 16.5% (not including the hardware error).
During the quality control process, we found six participants with a block of
behavioural data that differed from the rest of their performance. One participant made no
responses with their right hand across the entire 5th block, and one reported forgetting to
stop to the signal in the first block but corrected this for the remaining blocks. Three
participants made no responses at all in one block (1st, 2nd, or, 4", respectively), and the
final participant made no successful stops in the first block. For each participant, these block
with the problem performance was removed from further analysis. In all cases the SSD
tracking recovered quickly in the following block of trials.
2.3.2. Modelling of Response Inhibition. The ex-Gaussian distribution is a convolution of a
Gaussian (i.e., normal) and an exponential distribution. The EXG3 model (Heathcote et al.,
2018) assumes that finishing times of the three runners (i.e., two go runners and one stop
runner) can be described by an ex-Gaussian distribution. The model estimates the finishing
time of both the matching (correct) and mis-matching (error) response to the go stimuli. For

each of the go processes (matching and mis-matching) and the stop process, the ex-Gaussian

2 This was assessed by regressing RT on trial number and then using the slope of the fit to estimate slowing
over the course of the task.
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distribution has three parameters |, o, and 1, which characterise the mean and standard
deviation of the normal component, and the mean of the exponential component (i.e., the
long slow tail of the distribution), respectively. The mean and variance of each parameter
can then be estimated as p + T and o® + 12, respectively. The parameters quantifying the
probability of go and trigger failures were estimated on the probit scale.

We used the Dynamic Models of Choice (DMC; Heathcote et al., 2018) software
implemented in R (R Core Team, 2018) to estimate model parameters via Bayesian
hierarchical modelling. In hierarchical modelling, the population-level mean and standard
deviation parameters characterise the population-level distribution for each model
parameter. Weakly informative uniform priors were set for the population-level parameters,
which are identical to those of Skippen et al. (2019). Posterior distributions of the
parameters were obtained using Differential Evolution Markov Chain Monte Carlo (MCMC)
sampling (Ter Braak, 2006), with steps closely mimicking Heathcote et al. (2018).

To confirm the non-negligible presence of trigger failures, we ran two EXG3 models,
one with a trigger failure parameter and one without. We ran 33 MCMC chains in the model
with trigger failure and 30 in the model without (e.g., three times as many chains as model
parameters). Participants were initially modelled separately until the MCMC chains reached
convergence, with thinning of every 10t sample. Convergence was identified with visual
inspection and Gelman-Rubin R (Gelman & Rubin, 1992) values below 1.1. These participant
fits were then used as the start values for the hierarchical fits. During this period, we set a
5% probability of migration for both the participant and the hierarchical levels. Crossover
steps were performed until chains were converged and stable. After this, an additional 200
samples per chain were retained as the final set from which further analysis is undertaken.

The population distributions describe the between-subject variability of the
parameters and are appropriate for population inference, analogous to frequentist random-
effects analysis. On the other hand, the individual participant parameters are useful for
examining individual differences and are used here to examine the relationships between
response inhibition and electrophysiology.

2.3.3. Electrophysiological Data. EEG data pre-processing was performed using in house
techniques within EEGDisplay v6.4.4 (Fulham, 2015). The continuous EEG records were firstly
down sampled to 512Hz before being visually inspected to exclude intervals containing gross
artefact. Bad EEG channels were replaced by interpolating between adjacent scalp

electrodes. Eye blink artefact was corrected using a regression-based procedure (Semlitsch,
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Anderer, Schuster, & Presslich, 1986). As a secondary control measure to visual inspection,
gross movement or muscle artefacts were excluded with an automated procedure which
applies amplitude thresholds within specific frequency bands. For each electrode a threshold
of 4, 6, and 7.5 times the standard deviation in the EEG signal was set for the frequency
bands below 2Hz, between 0.5-15Hz, and above 10Hz, respectively. EEG was then bandpass
filtered between 0.05 and 30Hz and re-referenced to the average of the left and right
mastoids.

EEG epochs were extracted between 900ms pre-event to 1400ms post-event for the
stop signals and averaged to obtain stop-locked ERPs separately for stop-success and stop-
failure trials. Stop-locked ERPs are contaminated by the overlapping perceptual response to
the preceding go stimulus, especially for short stop-signal delays. Assuming the underlying
responses elicited by the go stimulus and by the stop signal combine linearly, we extracted
the underlying stop-locked ERPs by applying level 1 ADJAR correction (Woldorff, 1993),
which takes into account the observed distribution of stop-signal delays between the go
stimulus and the stop signal. The ADJAR corrected stop-locked ERPs were baseline corrected
to the 50ms peri-stop (i.e., -25 pre- to 25ms post-stop).

The extracted amplitude and latency measures for ERP components were calculated
using the geterpvalues function from the ERPLAB (Lopez-Calderon & Luck, 2014) package for
MATLAB (Mathworks, r2018b). To increase the resolution of latency estimates, we first
interpolated waveforms by a factor of four to a 2048Hz sampling rate. Peak latency was
estimated using fractional area latency, the latency that defines 50% of the area under the
curve across a specified window after stop-signal onset (N1 = 80 — 185ms; P3 = 290 —
400ms). Fractional area latency is less sensitive to noise than simple peak latency (Kiesel,
Miller, Jolicoeur, & Brisson, 2008). For N1 and P3 peak amplitude, we took an average of
20ms around the respective peak latency values. The onset latency of N1 was estimated by
determining the latency at which the amplitude reached 50% of the component’s peak
amplitude. The relatively flat morphology of the P3 meant that, for some participants, the
estimation of this component was difficult and therefore we used 60% of the peak amplitude
to obtain more robust onset latency estimates. As the N2 component did not show a distinct
peak in average ERPs for the majority of participants, we extracted mean amplitude over 190
—245ms.

As per the literature, we expected midline, frontal/fronto-central sites to show the

largest effects for these components. We extracted component measures from midline sites
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(Fz, FCz, Cz, CPz, Pz), and corresponding lateral sites (F3, F4, FC3, FC4, etc.). Figures showing
ERPs display 95% confidence intervals appropriate for within-subject comparisons calculated
through the adjusted Cousineau-Morey method (Morey, 2008). These figures were used in
determining the site/s of interest.
2.3.4. Plausible Values Analysis. Traditional tests of correlations between model parameters
and ERP component measures ignore the uncertainty of the parameter estimates, and so
tend to be overconfident. Here we use a plausible value analysis to evaluate these
relationships, which calculates a distribution of correlations between covariates (e.g., N1
latency) and model parameters (i.e., mean SSRT) using each MCMC sample from the
posterior distribution of the parameter. Ly et al. (2018) provide a detailed rationale for this
fully Bayesian and more conservative approach, which is more appropriate for the novel
effects examined here. This process results in a set of ‘plausible’ values of the sample
correlation, r, for n individuals. As described by Ly et al., the sample correlation can be
transformed into the posterior distribution of the population correlation (rho; p), which is a
function of r and n. Repeating this process for all plausible sample correlations and averaging
each population correlation distribution yields the estimated posterior distribution of the
population correlation.
2.4. Statistical Procedures
2.4.1. Stop-Signal Task Behaviour. In accordance with the recommendations of Matzke,
Verbruggen, and Logan (2019), we describe the mean RT on both correct go and stop-failure
trials to test the independence assumption of the horse-race model. Omission and
commission error rates on the go task are reported, along with the mean and range of stop-
signal delays. We report the mean and standard deviation of the traditional SSRT estimate,
SSRTint, obtained using the integration technique described in Verbruggen et al. (2019),
where go omissions trials are replaced with the participants maximum go RT.
2.4.2. Model Selection and Parameter Estimation. To determine the effect of incorporating
the trigger failure parameter, we estimated two EXG3 models, one with a trigger failure
parameter and one without. Both models included a go failure parameter, as Matzke, Curley,
et al. (2019) demonstrated that this parameter may be included in the model without
causing estimation problems even if go omissions are infrequent. To formally compare the
two hierarchical models and examine whether the presence of trigger failures was non-
negligible, we used the Deviance Information Criterion (DIC; Spiegelhalter, Best, Carlin, &

Van Der Linde, 2002). Smaller DIC values indicate a better model in terms of providing an
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accurate yet parsimonious fit to the data. When comparing models, a difference in DIC of 10
or more is taken as substantial evidence in favour of the model with the smaller DIC.
Furthermore, we assessed the absolute goodness-of-fit using posterior predictive model
checks. The process of posterior predictive checks involves randomly selecting a set of, in
this case 100, parameter vectors from the joint posterior of the participant-level model
parameters. Following this, 100 stop-signal data sets are generated using the parameter
vectors. If the model provides an adequate representation of the data, these predictions
should closely resemble the observed data3. We used the most supported EXG3 model to
estimate mean SSRT (i.e., Ustop + Tstop), Mean finishing time of the matching go runner (i.e.,
go correct + Tgo correct), O failures, and trigger failures. We refer to the EXG3-based estimate of
mean SSRT as SSRTexas.
2.4.3. ERP Component Electrode Site/s of Interest. To determine the site/s of interest for
each ERP component measure, we examined the scalp topography of the grand average ERP
component windows and compared these with previous literature. Furthermore, we used a
Bayesian paired t-test to determine the site/s with the largest amplitude differences
between trial types (i.e., stop-failure vs stop-success) for each ERP component measure.
Two-sided Bayesian t-tests were computed using the BayesFactor package (Morey & Rouder,
2018) in R (R Core Team, 2018), with effect sizes given as the posterior median effect size
(6). Priors for the t-test on trial type were default “medium” Cauchy priors with r =\/2/2.
2.4.4. Traditional Correlational Analysis. Correlations between SSRTint and ERP component
measures were undertaken using Pearson product moment correlations. Inference was
conducted using Bayes factors. Correlation tests were completed with a prior on p centred
around zero, assigning equal likelihood for all values between -1 and 1. A default “medium” r
scale arguments of 1/3 were used. We use the Kass and Raftery (1995) conventions to
describe the strength of evidence that the data provide for the alternative hypothesis. For
the null and alternative, a Bayes factor between 1/3 and 3 is considered ‘equivocal’ (i.e.,

indicating more data are needed to obtain a clear outcome), between 1/3-1/20 or 3-20 is

3 We report a small but systematic tendency for the inhibition function predicted by the EXG3 model to be
steeper than the observed inhibition function (see also, Skippen et al., 2019). This effect was most prominent in
participants with less stable RT (i.e., speeding or slowing across the task). Therefore, we ran two further
hierarchical models containing the 50 and 100 most stable participants. Details of these analyses are found
online at osf.io/rhktj. Most importantly for this study, fits to inhibitions functions were greatly improved in
these models, and inferences based on the plausible values analysis was consistent across all models.
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considered ‘positive’, between 1/20-1/150 or 20-150 ‘strong’, and Bayes factors less than
1/150 or greater than 150 are considered ‘very strong’.

2.4.5. Plausible Values Analysis. To first examine the overlap between traditional and model
estimates of response inhibition on the stop-signal task, we examined the relationship
between the posterior distributions of the mean SSRTexg3, probit transformed trigger and go
failure parameters and SSRTin: using plausible values analysis. We also report plausible value
correlations between model parameters and ERP component measures from both stop-
success and stop-failure trials. All plausible values relationships are accompanied by
associated Bayesian p-values, which denote the proportion of the distribution shifted away
from zero. For example, a Bayesian p value of .05 denotes that 95% of the resulting
distribution is above (for positive relationships) or below (for negative relationships) zero. In
acknowledgement of the large number of plausible values tests, we take a Bayesian p value
<.01 as reliable. This method also allows for the comparisons of two sets of plausible values
relationships. For each relationship we can take differences between samples from each
plausible value distribution and if the resulting difference distribution returns a Bayesian p
value <.01, we have evidence so say that the difference in relationships is reliably greater
than zero. This method was used to test whether relationships between SSRTexes and the N1
are stronger than between SSRTexg3 and P3. Code for this analysis can be found in the
materials at osf.io/rhktj (made public at acceptance).
3. Results
3.1. Stop-Signal Task Behavioural Summary

Of the 198 + .85 stop trials (mean £ SEM), participants responded on average to
49.14% + .45% of stop trials, showing the efficacy of the tracking algorithm. Of the 479 + 2.7
go trials, errors of omission and commission occurred on 2.99 + .31 % and 7.41 £ 0.51% of
trials, respectively. The mean stop-signal delay was 354.24 + 9.63ms (range = 89.42 —
705.29ms). Mean RT on correct go trials was 585.56 + 7.37ms. Mean RT on stop-failure trials
was 521.69 + 6.09ms, faster than the average go RT. The slope of a regression of RT against
trial number indicated that participants slowed their responses by an average of only 43.58 +
7.63ms between the start and end of the test session. Lastly, traditional estimation via the
integration technique returned a mean SSRTin: of 196.91 ot 7.43ms.
3.2. Model Selection and Parameter Estimation

Both models achieved convergence, as determined by visual inspection and a

Gelman-Rubin R <1.1. The fit generated from the EXG3 model with trigger failure was more
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closely matched to the observed data than the model without trigger failure (DIC difference
=1685). Hence, we selected the EXG3 model with trigger failure for use in all further
analyses. A visualisation of the posterior distributions of the parameter estimates from the
EXG3 model that included trigger failure is presented in Figure 1. The EXG3-based estimate
of mean SSRTexg3z has a mean of 132.35ms with a 95% credible interval of [124.55, 140.17],
which was around 65ms faster than SSRTint. Trigger failure rates were 22.27% [21.43, 24.82],
suggesting that across participants, an average of 22% of stop-failure trials were due to a
failure to trigger an inhibitory response. Go failures occurred on 3.06% [2.83, 3.76] of trials.

Lastly, the mean finishing time of the matching go runner was 596.51ms [581.13, 611.84].
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Figure 1. Posterior distributions of the individual (gray density lines) and group-level mean (black boldface
density lines) parameters. Mean Stop Signal Reaction Time (Milliseconds; Panel A). Probability of Trigger
Failure (Panel B). Mean finishing time for the matching go runner (Milliseconds; Panel C). Probability of Go
Failure (Panel D). Each grey shaded distribution represents the posterior of a single participant. The black

boldface distribution represents the posterior distribution of the population-level mean parameter.

3.3. ERP Summary

The summary statistics of ERP components are found in Table 1. Based on previous
literature, as well as the morphology and topography of ERP waveforms, and the strength of

trial-type differences, we selected FCz for measurement of the N1 and N2 component


https://doi.org/10.1101/658336
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/658336; this version posted June 3, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

16
(Figure 2). The N1 was larger, peaked earlier, and had an earlier onset on stop-success,
compared to stop-failure trials (Table 1). However, the evidence for a trial type difference
and the effect size was much larger for peak latency (BF1o = 5.25e13, § =-.77) than amplitude
(BF10=10.59, 6 =-.14). The N2 was generally under the baseline (Figure 2), but stop-failure
trials had larger (i.e., less positive) N2 amplitude than stop-success trials (Table 1, BFio =
2.7e17,6 =.9).
Table 1. Summary statistics for and differences between trial types for each component

measure at FCz.

Measure Stop Success (SD)  Stop Failure (SD) Trial Difference Effect Size
(BF10) (8)
N1
Latency (ms) 127.86 (8.97) 133.22 (10.81) 5.25e™3 -77
Amp (uV) -13.50 (5.99) -12.67 (6.04) 10.589 -14
Onset (ms) 93.39 (11.71) 96.64 (14.16) 188.985 -.29
N2
Amp (V) 4.64 (5.89) 1.00 (5.01) 2.66e'7 9
P3
Latency (ms) 313.56 (23.22) 312.60 (27.14) .093 -.30
Amp (uV) 7.28 (4.29) 6.03 (4.00) 2.38e° 74
Onset (ms) 291.04 (29.19) 291.43 (34.07) 758 -.44

Note. Effect sizes are for the success — failure trial type difference. Shading indicates at least weak
evidence in favour of the trial type difference. Cross-hatching indicates at least weak evidence in
favour of a null difference.

Figure 2 shows that the P3 component spread anteriorly from Pz to FCz. Interestingly,
while trial type effects were equally large at FCz and Pz, the peak latency difference between
these sites suggests a P3a/P3b dissociation (Figure 2). As we focus on the inhibition-related
P3, we measured it at FCz to be consistent with prior literature (results of analysis at Pz can
be found in the supplementary materials). There was very strong support for a trial type
difference in P3 amplitude (BF10 = 2.38e®, § = .74), showing that stop success trials had a
larger amplitude. Howevr, there was equivocal support for a difference in onset latency, and

positive support for a null difference in peak latency (Table 1).
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3.4. Relationships between Traditional SSRT estimates and ERP measures

Table 2 provides summary statistics for the Pearson correlation analysis between
SSRTint and ERP component measures. Participants with faster SSRTin: showed increased N1
amplitude on both trial types (Table 2). However, latency and onset were only found to
relate on stop-failure trials. Furthermore, there was weak evidence for a null relationship
between N1 onset on stop success trials and SSRTint (BF10 = .211). Delayed onset and latency
of the stop-failure N1 was found to correlate with faster SSRTin:.. This paradoxical result
suggests that participants with later encoding and attention to the stop-signal have faster

SSRT.

Table 2. Pearson product moment correlations and associated Bayes factors for the

relationships between event-related potential component measures and SSRTint.

r BF1o
Stop
Success
N1
Onset .042 211
Latency -.102 .401
Amp 405 1.08¢°
N2
Amp -.311 355.522
P3
Onset .181 .916
Latency .239 14.716
Amp -.347 2.55¢3
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Stop
Failure
N1
Onset -.266 43.028
Latency -.476 3.39¢7
Amp 350 2.95¢3
N2
Amp .031 2
P3
Onset .169 .898
Latency 177 1.881
Amp -.388 3.39¢*

Note. Shading indicates at least weak evidence in favour of the correlation. Cross-hatching
indicates at least weak evidence in favour of a null correlation.

Mean N2 amplitude showed a negative correlation to SSRTint 0n stop-success trials,
suggesting larger N2 amplitude was related to slower SSRT. Conversely, on stop-failure trials
there was weak evidence in favour of a null relationship between N2 mean amplitude and
SSRTint (BF10 = .2). Consistent with the literature, amplitude of the P3 was negatively
correlated with SSRTin: on both trial types (Raud & Huster, 2017). Greater P3 amplitude was
generated by participants with faster SSRT. Peak latency of the P3 on stop-success trials was
also found to correlate with SSRTint, suggesting that earlier peaking P3 is associated with
reduced SSRT. We were unable to find relationships between P3 onset and SSRTin: on either
which has also been reported elsewhere (Raud & Huster, 2017; but see Wessel & Aron,
2015), with Bayes factor evidence for the relationships equivocal for both trial types (Table
2).

3.5. Plausible Values Relationships

We first present the results of the plausible values relationships between SSRTi,: and
EXG3 model parameters in text. These are described by their median p, Bayesian p value,
and 95% credible intervals. We then summarise the plausible values relationships between
ERP component measures and EXG3 model parameters in Table 3. Small Bayesian p-values

suggest the distributions are shifted away from zero. The smaller the credible interval, the
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more peaked the distribution and the greater the confidence we can have in the median p

values.

3.5.1. Relationships between Traditional SSRT estimates and Model Parameters. We
examined the plausible values relationships between SSRTin: and key parameters estimated
by the EXG3 model (e.g., SSRTexcs3, trigger failure, go failure etc.). The two SSRT estimates,
SSRTint and SSRTexa3, were moderately related, p = .537, pgayes < .001 [95% Cl: .373, .670). In
contrast, slower traditional SSRTint was strongly correlated with higher trigger failure rates, p
= .846, prayes < .001 [.787, .89], but only weakly with higher rates of go failure, p = .246, pgayes
=.001 [.088, .391]. Importantly, we can show that the plausible values distributions for the
relationship between SSRTin: and SSRTexa3 is weaker than the relationship between SSRTint
and trigger failure. The resulting distribution after taking the difference between the
plausible values distributions had a Bayesian p-value = .002, showing that only =.2% of the
difference overlaps zero. In sum, the novel trigger failure parameter was a better predictor

of traditional SSRT than the EXG3 estimation of SSRT.

3.5.2. Relationships between Model Estimated SSRT and ERP measures. As was found with
SSRTint, delayed N1 peak latency was related to faster SSRTexgsz on stop-failure trials, p
=-.362, PBayes <.001 [-.51, -.19], but not on stop-success trials (Table 3). In addition, larger N1
was associated with faster SSRTexgs on both stop-failure (p =.314, psayes <.001 [.15, .46]) and
stop-success trials (p = .35, peayes <.001 [.18, .5]). However, unlike what was found with
SSRTint, there was no reliable relationship between stop-failure N1 onset and SSRTexes. In
summary, faster SSRTexc3z was associated with larger, but delayed N1 peak, but not with N1
onset latency (Table 3).

Larger stop-success N2 amplitude was associated with slower SSRTexas, p = -.34, Paayes
<.001 [-.49, -.17]. This relationship was also found with SSRTi: with a similar correlational
strength. Larger P3 amplitude was associated with faster SSRTexg3 across both trial types
(Table 3), with both p >-.31. For stop-failure trials, later P3 onset and peak latency were
both reliably associated with slower SSRTexs3 (Table 3). These relationships were not found
with traditional SSRTin:. In fact, the relationship between P3 onset and SSRTin: was found for
stop-success trials, not stop-failure trials as was found with SSRTexas.

Although the strength of the relationship between SSRTexcz and N1 latency was

larger than with P3 latency, this difference was not reliably different from zero (pgayes = .22).
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Likewise, there was no reliable difference between the plausible values distributions of the
N1 and P3 amplitude for either trial type (pgayes >.01). Therefore, we cannot support our
prediction that relationships with SSRTexg3 would be stronger with N1, as compared to P3.
The plausible value analysis with variance of SSRTexas can be found in the supplementary
materials. Overall, there was no reliable relationships between the variability of SSRTexss and

the ERP component measures.
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Table 3. Results of the plausible values analysis. Median p, Bayesian p-values, and 95% credible intervals for the relationship between model

estimated response inhibition parameters and event-related potential component measures.

Stop Signal Reaction Time

Probability of Trigger Failure

Probability of Go Failure

Matching Go Finishing Time

p pBayes CI p pBayes CI p pBayes CI p pBayes CI
Stop Success
N1 Onset 0 .501 [-.18, .18] .055 .255 [-.11, .22] .165 .021 [.01,.32] 141 .04 [-.02,.29]
Latency -.09 174 [-.26,.09] -.07 .219 [-.23,.1] .014 432 [-.15,.17] 137 .044 [-.02,.29]
Amp .35 <.001 [.18, .5] .289 <.001 [.13,.43] -.064 .234 [-.22,.1] -.149 .036 [-.3,.01]
N2
Amp -.34 <.001 [-.49, -.17] -.182 .016 [-.34,-.02] .081 .16 [-.08, .24] .333 <.001 [.19, .47]
P3
Onset .186 .065 [-.06, .41] .076 .249 [-.14, .29] .089 .208 [-.13,.3] 123 127 [-.09, .32]
Latency .194 .014 [.02, .36] 127 .064 [-.04, .28] .021 401 [-.14, .18] .029 .361 [-.13,.18]
Amp -.342 <.001 [-.49, -.18] -.207 .007 [-.36, -.05] -.076 .192 [-.23,.08] 117 .073 [-.04, .27]
Stop Failure
N1 Onset -.145 .06 [-.31,.03] -.257 .001 [-.4,-.1] .013 436 [-.15,.17] 211 .004 [.06, .36]
Latency -.362 <.001 [-.51,-.19] -.412 <.001 [-.54, -.26] -.097 129 [-.25, .06] .263 .001 [.11, .4]
Amp 314 <.001 [.15, .46] .206 .006 [.05, .36] -.119 .082 [-.27,.04] -.156 .03 [-.31, 0]
N2
Amp -.095 .166 [-.27,.09] .106 .102 [-.06, .26] 132 .052 [-.03, .29] .202 .006 [.05, .35]
P3
Onset .26 .01 [.04, .45] .067 .257 [-.14, .26] .083 .206 [-.12,.27] -.037 .374 [-.23,.16]
Latency .249 .003 [.07, .41] .069 .208 [-.1,.23] -.019 433 [-.18, .14] -.081 173 [-.24, .08]
Amp -.313 <.001 [-.47,-.14] -.279 .001 [-.42,-.12] -.048 3 [-.21,.11] .139 .041 [-.02,.29]

Note. p = Median of the posterior distribution of the population correlation. pgayes = Bayesian p value. Cl

(i'e'l PBayes <01)

= Credible Interva

I [2.5%, 97.5%]. Shading indicates reliable relationships
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3.5.3. ERP Relationships with Probability of Trigger Failure. As shown in Table 3, for stop-
failure trials only, earlier N1 peak latency, and to a lesser degree, N1 onset latency, were
associated with higher rates of trigger failure. This N1 peak latency effect replicates the
finding by Matzke, Hughes et al. (2017), but extends it to show specificity to stop-failure
trials and to also include N1 onset latency. In addition, larger N1 peak amplitude for both
trial types was associated with lower rate of trigger failure. As expected, lower levels of
attention to the stop signal (i.e., reduced N1 amplitude) was related to higher rates of trigger
failure. Rate of trigger failure was not associated with N2 mean amplitude, and P3 onset or
peak latency for either trial type (Table 3). However, for both trial types, P3 peak amplitude

was smaller for participants with higher rates of trigger failure (average p = -.25; Table 3).

3.5.4. ERP relationships with Finishing Time of the Matching Go Runner. Later N1 onset and
peak latency on stop-failure trials were correlated with slower go finishing time (p = .23). For
both trial types, larger N2 amplitude was correlated with faster matching go finishing times

(Table 3).

3.6. N1 Peak Latency and Trigger Failure Rate

We ran further exploratory analyses to understand the paradoxical finding that faster
N1 latency on stop-failure trials is associated with higher rates of trigger failure. Figure 1.B
shows that the distribution of trigger failure has a strong right skew that spreads out past
=20%. We examined whether there are differences in the pattern of ERP effects as a
function on trigger failure rate by extracting ERP waveforms for three groups of participants
based on a tertile split of median participant-level posterior trigger failure rates: Low (<14%),
Mid (>= 14% and =<25.8%) and High (>25.8%), n=52 per group. The groups had similar age
(Low = 20.4; Mid = 21.5; High = 20.65) and gender distribution (Low = 48.1% Female; Mid =
53.8% Female; High = 57.7% Female).

ERPs for each group are compared in Figure 3, and summary statistics for N1 peak
latency are shown in Table 4. A Bayesian mixed ANOVA using default JASP priors (JASP Team,
2018) of N1 peak latency at FCz with trigger failure group (High, Mid, Low) and trial type
(stop-failure, stop-success) as factors showed that the evidence for the model containing the
two main effects was very strong (BFio = 6.43e'°). The interaction model was also supported
when controlling for the main effects of group and trial type (BF iciusion = 1.1¢°). Both Low

and Mid trigger failure groups show a large N1 that peaked earlier for stop-success than
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stop-failure trials, whereas N1 did not differ by trial type in the High trigger failure group
(Table 4).

Table 4. Summary of the N1 peak latency difference between Low, Mid, and High trigger

failure groups.

Group Stop Success Stop Failure Trial Difference Effect Size
(SD) (SD) (BF10) (8)

Low 129.6 (9.7) 139.7 (10.36) 4.85¢13 -1.632

Mid 128.13 (7.8) 133.37 (8.67) 1.34e° -.918

High 125.9 (9.1) 126.6 (9.23) 2 -.103

Note. Effect sizes are for the success — failure trial type difference. Shading indicates at least weak
evidence in favour of the trial type difference. Cross-hatching indicates at least weak evidence in
favour of a null difference.

Furthermore, there was an interesting pattern of differences in N1 peak latency
across trigger failure groups. The Low and Mid trigger failure groups did not differ in N1 peak
latency on stop-success trials, BFi10=.283, § = .15, but N1 peaked earlier on stop-failure trials
in the Mid trigger failure group (BF10 = 29.39, § = .61). Comparing Low and High trigger
failure groups also showed strong evidence in favour of an earlier N1 peak latency for stop-
failure trials in the High trigger failure group, BF1o = 1.26e7, § = 1.28, but the evidence for the
same difference on stop-success trials was equivocal, BF1p = 1.24, § = .36. The same results
were found when comparing the Mid to High trigger failure groups: stop-failure, BF1o =

117.61, 6 =.7; stop-success, BFip = .47, 6 = .24.
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Figure 3. ERPs for stop-success (blue) and stop-failure (orange) shown for low, mid and high trigger failure

groups at FCz. Shaded areas represent the within subject confidence intervals.

4. Discussion

This study is the first to make a comprehensive examination of the ERP correlates of
response inhibition using an ex-Gaussian model of response inhibition which accounts for
the failures of both the stop and go processes. These relationships suggested a number of
interpretive changes to common ERP components found during the stop-signal task. We
present the evidence and interpretations for each of the ERP components separately, but
first compare the model-based estimates of SSRT with traditional non-parametric estimates
that have been recently been recommended as best practice (Verbruggen et al., 2019).
4.1. Integration vs ex-Gaussian estimates of SSRT

Replicating recent studies, we show that ex-Gaussian estimation techniques which
account for trigger failure result in substantial attenuation of SSRT latency. SSRTexc3z was
about 65ms faster compared to SSRT using the traditional integration algorithm (Matzke,
Curley, et al., 2019; Matzke, Hughes, et al., 2017; Skippen et al., 2019; Weigard et al., 2019).
These findings support the proposal that traditional SSRT estimates are biased by the
assumption that trigger failure rates are negligible. Importantly, the traditionally estimated
SSRTint was only moderately correlated with ex-Gaussian model estimated SSRTexgz and
more strongly associated with the trigger failure parameter. This suggests that previous
interpretations, based on a non-parametric SSRT, of ERP components in terms of the latency

of an inhibitory response may be spurious and instead these components are more likely
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related to a failure to engage the correct task goal (i.e., failure to trigger a stop response).

4.2. Attention, N1, and Response Inhibition

We first discuss the ‘stop-N1’ effects which have been relatively unexplored
compared to other ERP components in studies using the stop-signal task. In this study, we
support the general finding that N1 amplitude is larger on stop-success compared to stop-
failure trials. We also report a moderate positive relationship between SSRT and N1
amplitude, which is found for both trial types and both the traditional and ex-Gaussian
estimations of SSRT. This relationship supports Keneman’s (2015) interpretation of the ‘stop-
N1’ effect. Larger N1 amplitude on stop-success compared to stop-failure trials is thought to
indicate greater attentional allocation to the stop signal, which in turn influences the
outcome of a stop trial (Bekker et al., 2005; Hughes et al., 2012; Kenemans, 2015; but see
Ramautar, Slagter, Kok, & Ridderinkhof 2006). If fluctuations in attention influence both N1
amplitude and the outcome of a stop trial, then our evidence suggests that this ‘stop-N1’
effect is elicited through the relationship between reduced SSRT and increased N1
amplitude. This study is the first to show that individual variability in attentional allocation to
the task can change SSRT, which in turn modulates the probability of successful inhibition.

Furthermore, we present the first evidence that a ‘stop-N1’ effect is also present for
the N1 component’s latency. We found that not only does successful stopping depend on
the amplitude of the N1, but also its latency. As the N1 starts earlier, peaks earlier, and is
larger on stop-success trials when compared to stop-failure trials, it appears to index a
cognitive process which determines the success of inhibition. Importantly, this effect was
only seen in participants with low to mid range levels of trigger failure. Those participants
with high levels of trigger failure (>25%) did not show a difference in latency between trial
types.

Traditionally, the very early time-course (within 200ms after the stop signal),
especially compared to the traditional estimates of SSRT, N1 has been discounted from any
direct role in the inhibition process. However, recent support for a fast, automatic inhibitory
process (e.g., Verbruggen, Mclaren, & Chambers, 2014) suggests that the N1 may in fact be
a better temporal index of the stop process than N2 or P3. These findings are consistent with
the argument that the manifestation of the inhibitory process, which has previously been
attributed to the P3, may in fact be better represented by the N1, an earlier ERP component

associated with attention to the stimulus. As stop-failure N1 peak latency was related to
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both traditional and ex-Gaussian estimates of SSRT, we propose that N1 peak latency may
indicate the starting point of the inhibitory process. In fact, the ex-Gaussian estimates of
SSRT temporally match that of the N1 peak latency (both =130ms). However, this finding
requires replication to suggest such a connection with strong confidence.

Nevertheless, the attentionally sensitive N1 component appears to be imperative to
successful inhibition through the detection and encoding of the stop signal. Dysfunctional
attentional processing of the stop signal has previously been suggested to lead to a
seemingly earlier peaking N1 for participants with larger rates of trigger failure in a
schizophrenia patient group (Matzke, Hughes, et al., 2017). We provide evidence in line with
this finding in a large healthy cohort, and also extend this to show that it is only present on
stop-failure trials. However, the fact that N1 onset was also found to correlate with trigger
failure (albeit to a lesser degree) suggests that the effect might not be specifically related to
the dysfunction of later sub-components of the N1 as previously thought (Matzke, Hughes,
et al., 2017). The ERP morphology of the high and low trigger failure groups in Figure 3
suggests that the phenomenon of trigger failure is closely tied to the attentional allocation
to the stop signal more generally.

The absence of a ‘stop-N1’ effect in the high trigger failure group suggests a broken
connection between the impact of the stop signal and the outcome of the trial. Therefore,
the paradoxical correlation between earlier peaking latency of the N1 and higher rates of
trigger failure can be explained by an overall earlier stop-failure N1 in the high trigger failure
group. Based on the evidence presented here, this might then reflect the lack of connection,
which is proposed to be represented by tonic activity in the right inferior frontal gyrus (rIFG;
Kenemans, 2015). Specifically, Kenemans proposed that a tonically active rIFG potentiates
the link between detecting the stop signal and eliciting an inhibitory process. When this link
is active, stopping is speeded and possibly automatic (Verbruggen, Best, et al., 2014). The
=130ms estimates of SSRT reported here (see also, Skippen et al., 2019) supports the idea
that inhibition can be automatic and adds to a growing literature reporting similar evidence
in the form of short SSRT latencies (Matzke, Hughes, et al., 2017) and physiological evidence
of fast inhibitory processes around 140ms (Coxon, Stinear, & Byblow, 2006; Raud & Huster,
2017; Waldvogel et al., 2000; Wilcoxon, Nadolski, Samarut, Chassande, & Redei, 2007). We
suggest that in line with Kenemans (2015) explanation for the absence of a ‘stop-N1’ in
patients with attention deficit hyperactivity disorder, there is a missing automatic

connection between the registration of the stop signal (as represented by the N1) and the
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outcome of the trial (i.e., failed or successful inhibition) in participants with high trigger
failure rates. Recent analysis strengthens this argument by showing that increased rates of
trigger failure drove group differences between children with attention deficit hyperactivity
disorder and typically developing controls. Poor SST performance among children with
attention deficit hyperactivity disorder likely reflects impairments in early attentional
processes, rather than the speed of the stop process (Weigard, et al., 2019).

Further investigation is warranted, but we suggest that this gating mechanism
proposed to reflect rIFG activation, marked by a beta signature around the time of SSRTexe3
is rudimentarily captured in our N1. The N1 reported here shows similar trial type
differences, scalp topography, and timing as a beta frequency response which occurs before
traditional estimates of SSRT (i.e., =150ms after the stop signal) and appears to be
imperative for successful stopping (Huster, Schneider, Lavallee, Enriquez-Geppert, &
Herrmann, 2017; Swann et al., 2009; Swann et al., 2012; Wagner, Wessel, Ghahremani, &
Aron, 2018; Wessel, Conner, Aron, & Tandon, 2013). This beta signature shows much of the
same trial type characteristics as both the N1 and P3 ERP components, but temporally aligns
with the N1. More generally, we provide evidence that shows that ERP attributes previously
related to the speed of the inhibitory response (i.e., SSRT) are more related to attentional
processes that occur much earlier.

4.3. Conflict and Control N2

Correlations showing larger N2 amplitude on stop-failure trials in participants with slower
SSRT has been previously reported (van Boxtel, van der Molen, Jennings, & Brunia, 2001).
However, the explanation that this then reflects the manifestation of the inhibitory process
is not supported here. Firstly, we found evidence in favour of a null relationship between
stop-failure N2 amplitude and SSRTint. Secondly, both the SSRTint and SSRTexs3 estimates do
not coincide with the N2 component. We instead believe our relationships between stop-
success N2 and SSRT, coupled with the fact that we report larger N2 amplitude on stop-
failure trials to reflect the conflict stop-N2 hypothesis.

A general interpretation for the increased stop-N2 amplitude on stop-failure trials
(Dimoska, Johnstone, & Barry, 2006; Galdo-Alvarez, Bonilla, Gonzalez-Villar, & Carrillo-de-la-
Pefia, 2016; Greenhouse & Wessel, 2013; Ramautar, Kok, & Ridderinkhof, 2006; van Boxtel
et al., 2001) is that it indexes the increased level of conflict that occurs when the go and stop
process are both maximal (Ramautar et al., 2004; Ramautar, Kok, et al., 2006). In our data,

larger stop-success N2 was related with slower SSRT and larger N2 for both trial types was
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associated with faster finishing time of the matching go process. Our N2 is larger on stop-
failure trials, where the go process is likely to be relatively faster, and the stop process
relatively slower, leading both processes to be maximally active at the same time. Therefore,
there is greater conflict on stop-failure trials, which may be captured in the N2.

4.4. Manifestation of Response Inhibition and the P3

The SSRTint estimate was almost 100ms earlier than P3 onset latency at the group
level and there was no relationship found between P3 onset and SSRTin:. Furthermore, we
only found weak support for the relationship between stop-success P3 latency and SSRTint.
This does not support the P3 as an electrophysiological manifestation of the stop process
(Wessel & Aron, 2015). In contrast, SSRTexs3 which was, on average, 140ms earlier than the
onset latency of the P3, was reliably correlated with both P3 onset and peak latency on stop-
failure trials. Given that SSRTexes also correlated with N1 peak latency on stop-failure trials,
we suggest that the P3 on stop-failure trials may represent the activation of an evaluation
process after a failure to inhibit, a process which, by definition, would be elicited only after
the inhibition process has failed.

Alternatively, recent work has shown that the P3 on the stop-signal task shares
common neural generators with the P3 elicited in tasks involving infrequent stimulus
detection (Waller, Hazeltine, & Wessel, 2019; Wessel & Huber, 2019). If P3 indexes a
stimulus detection process, the larger P3 on stop-success compared to stop-failure trials
might simply index the successful detection of the stop signal on the former and/or poor
detection on the later trial type. This interpretation is consistent with both the horse-race
model in general, as well as the interpretations of the N1 findings presented here.
Specifically, we propose that P3 is not a manifestation of the stopping process itself, but a
delayed marker of detection of the stop signal. Therefore, the attentional processes required
to both detect the novelty of the stop signal, as well as trigger an inhibitory response, may

help explain the relationship between trigger failure and P3 amplitude across trial types.
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