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Defining a consensus of the human myeloid cell compartment in peripheral blood

3 monocytes subsets, pDC, cDC1, DC2, DC3 and precursor DC make up the

compartment
Distinguish myeloid cell compartment from other cell spaces, e.g. the NK cell space

Providing a generalizable method for building consensus maps for the life sciences
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Abstract

Single-cell genomic techniques are opening new avenues to understand the basic units of life.
Large international efforts, such as those to derive a Human Cell Atlas, are driving progress in
this area; here, cellular map generation is key. To expedite the inevitable iterations of these
underlying maps, we have developed a rule-based data-informed approach to build next
generation cellular consensus maps. Using the human dendritic-cell and monocyte compartment
in peripheral blood as an example, we performed computational integration of previous, partially
overlapping maps using an approach we termed ‘backmapping’, combined with multi-color flow-
cytometry and index sorting-based single-cell RNA-sequencing. Our general strategy can be

applied to any atlas generation for humans and other species.
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Introduction

Since Robert Hooke’s first observations of cells as the basic unit of life, generations of life
scientists have been driven to understand, map and characterize individual cells (Cavaillon,
2011). For many decades, morphological parameters were the major driving force to establish
new cell identities (Hussein et al., 2015). In immunology, technologies such as flow cytometry
have been developed that permit quantitative enumeration of single cells based on measuring
combinations of predominantly cell-surface proteins (Hulett et al., 1969; Perfetto et al., 2004).
These technologies, however, have some undisputable limitations, most notably, their reliance on
a predefined subset of biomolecules. Conversely, single-cell-omics, particularly single-cell
transcriptomics, allow for cells to be assessed, in principle, without predefined markers. Here, the
complete spectrum of transcriptomic parameters is investigated and used as a defining unit of cell
identity (Islam et al., 2014; Macosko et al., 2015; Tang et al., 2009). Such single-cell technologies
allow for a fully data-driven analysis to establish cell maps of an organism, such as those
proposed by the Human Cell Atlas consortium (Rozenblatt-Rosen et al., 2017). We have learnt
from other disciplines that maps require iterations over time, often due to new data generated as
a result of technological advances. These iterations improve the precision, accuracy and available

content per data point (Edney, 2019; Monmonier, 2015; Ridpath, 2007).

Reliable consensus maps are a prerequisite to reconcile conflicting data that might have been
generated based on different data generating approaches (Edney, 2019; Monmonier, 2015). Here
we generalize the approach of building geographic or astronomic consensus maps to human
cellular consensus maps. We exemplify our approach by integrating two recently introduced
single-cell transcriptomics-based cellular maps of the human blood mononuclear myeloid cell
compartment (See et al., 2017; Villani et al., 2017) with novel single-cell transcriptomics and flow
cytometry data. The human blood mononuclear myeloid cell compartment has been recognized

to harbor a complex mixture of cells of diverse origins exemplified by the ongoing efforts to map
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this cellular compartment with increasing resolution (Dutertre et al., 2019). The two mapping
efforts present with discrepancies and commonalties in terms of cell type identification, naming
and breadth of sampling. In order to establish a consensus map of the human mononuclear
myeloid cell compartment we allow for the integration of prior knowledge in that we define a priori
criteria for the cellular compartment under study in order to increase resolution and to allow
building of a consensus map. Overall, our approach generates rule-based data-informed cellular
consensus maps that resolve discrepancies between the two recently generated maps, and
clarifies cellular identities of human dendritic-cell (DC) and monocyte subsets resulting in a novel,

integrated consensus map of the human blood myeloid compartment.
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Results

Integrated phenotypic characterization of the myeloid cell compartment in human
peripheral blood

We aimed to build a consensus map of healthy human blood myeloid cells that integrates legacy
dataset knowledge into a revised consensus map. To do so, we generated a novel single-cell-
omics dataset of the blood CD45*Lin"HLA-DR* cell space using a 17 parameter index sorting
panel incorporating important markers from two recently published single-cell-omics datasets,
here termed map 1 (Villani et al., 2017) and 2 (See et al., 2017) and an established panel of
myeloid cell markers including CD14, CD16, HLA-DR, CD1c and CADM1 (Dutertre et al., 2014;
Guilliams et al., 2016; Haniffa et al., 2012), to link the data to the body of knowledge already
present within the literature (Figure 1A, S1A-C, Table S1). This strategy allowed us to directly
include several cell populations defined by either map 1 or 2 into our single-cell transcriptomics
dataset, compare these populations within an unbiased myeloid cell space dataset, and assess
differences and commonalities between the two maps.

To understand the organization of the blood-derived myeloid cell compartment, we performed
dimensionality reduction using the uniform manifold approximation and projection (UMAP)
algorithm (Becht et al., 2018) on the complete flow cytometry space of live CD45" Lin~ cells
(Figure 1B). UMAP revealed a complex topology of the flow cytometry data, segregating a large
cluster on the right and multiple small entities on the left of the topology. A fraction of the Lin™ cells
(Figure 1C, cluster two) was not part of the monocyte or DC cell space according to CD16, CD14
and HLA-DR expression (Figure 1D). These cells most likely represent basophils due to their lack
of HLA-DR expression but high CD123 expression (Figure 1D, Figure S1). To fully understand
the population structure of the presented FACS-based UMAP, we performed Phenograph
clustering of the live CD45" Lin" blood-derived flow cytometry UMAP space and detected 27
clusters (Figure 1C). To link these novel data to the two existing maps for the blood myeloid cell

compartment (Guilliams et al., 2014; See et al., 2017; Villani et al., 2017) we reapplied the gating
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strategies of either map 1 or map 2 and overlaid these onto our novel flow cytometry-derived
UMAP topology (Figure 1E, Figure S1A-C). This analysis revealed several commonalities and
discrepancies between maps 1 and 2 in the combined novel flow cytometry panel used in this
study. On the upper-most level, map 1 was less stringent in excluding HLA-DR" cells within the
myeloid cell space (cells labeled light grey, Figure 1D, S1B), a feature rigorously adhered to in
map 2 (cells labeled dark grey, Figure 1D, S1C). Furthermore, AxI*Siglec6* DCs (AS-DC; DC 5,
Table S1) in map 1 occupied the same topological space as pre-DCs in map 2, indicating potential
cellular overlap. Finally, map 1 mono 2/4, resembling non-classical monocytes (ncMono) (Table
S1), occupied two different locations on the UMAP topology: one of them being within the HLA-
DR compartment of the topology and the other being within the space assigned to monocytes by
a classical investigator-derived flow cytometry gating (Figure 1D, 1E, S1). These data suggest
that there is a commonality in the identity of map 1 AxI*Siglec6” DCs (AS-DC; DC 5) and map 2
pre-DCs whereas mono 2/4 may represent a heterogeneous mixture of various cell types —

apparently not all of them related to the myeloid cell lineage.

Novel integrated single cell-omics data identifies commonalties and discrepancies
between two recent myeloid cell maps

To investigate the cell population structure at the transcriptomic level we performed single-cell
RNA-sequencing (scRNA-seq) of 2,509 blood-derived single cells following index sorting to
encompass all major populations identified in either map 1 or 2 after lineage exclusion and
generated a UMAP dimensionality reduction-based transcriptome map (Figure 1B, S2A-F). De
novo clustering of the scRNA-seq data revealed 11 transcriptionally different clusters (Figure 2A,
2B, Data Table S1). We projected the cluster identities onto the flow cytometry-derived UMAP
topology, which allowed us to validate our index sorting strategy and link identities across the flow

cytometry and scRNA-seq data (Figure 2A).
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Gene level inspection of these clusters revealed that cluster one had a natural killer (NK) cell
signature, as indicated by PRF1, GNLY and NKG7 gene expression. Cluster two was identified
by high IGH family gene expression, thus implying contaminating B cells with a strong plasmablast
signature (Shi et al., 2015) (Figure 2B). Cluster three was represented by a minor fraction of the
cells within our dataset, with a profile of microRNA-related transcripts. Cluster four expressed
SPINK2, GAS5, SATBland STMN1 genes, and thus corresponded to blood-derived CD34*
hematopoietic stem cells (Satoh et al., 2013; Will et al., 2013). Cluster five expressed the
plasmacytoid DC (pDC)-related IRF7, TCF4 and GZMB transcripts (See et al., 2017; Villani et al.,
2017), whereas cluster six expressed a conventional dendritic cell 1 (cDC1) gene-set, with high
expression of CLEC9A, IDO1 and CD74 (van der Aa etal., 2015; Zhang et al., 2012). Interestingly,
cluster seven expressed genes either affiliated to pre-DCs (See et al., 2017) or AS-DCs (DC5)
(Villani et al., 2017), such as SIGLEC6, AXL, PLACS8 or LILRA4, thus associating them to the
human pre-DC continuum. As expected from our sorting strategy, we also detected several
clusters belonging to the monocyte lineage. Cluster eight represented CD16* ncMono cells based
on high FCGR3A (CD16) with SERPINA1 and DUSP6 expression. Conversely, cluster nine
expressed S100A8, S100A9 and S100A12 together with VCAN and FCNL1, identifying them as
classical CD14* monocytes (Monol/cMono). Clusters 10 and 11 represented two cDC2 identities
(DC2, DC3): both clusters expressed high levels of the cDC2-related CD1C, CD1E and several
HLA-DR transcripts. Interestingly, and as shown in map 1 (Villani et al., 2017), cluster 11 co-
expressed certain monocyte-affiliated gene products, such as S100A8, S100A89 and FCN1
(Figure 2B), as also shown in Dutertre et al. (Dutertre et al., 2019).

To develop our consensus map, we utilized the index sorting data of the populations identified in
map 1 and 2 and mapped them onto our single-cell transcriptomic dataset (Figure 2C).
Overlaying this index-sorting data onto the sScRNA data-derived UMAP topology reiterated several
commonalities between maps 1 and 2, including DC1/cDC1 (purple), DC6/pDC (pink),

Monol/cMono (ochre) and CD14*CD16" intermediate monocytes (Mono3/intMono, dark red).
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Importantly, the detected discrepancies between maps 1 and 2 were also apparent on the
transcriptomic level. Firstly, we noticed that map 1 double negative DCs (DN-DC) populated the
same position within the UMAP topology as ¢cDC2s in map 2. Furthermore, mapping the index
sorting data of the map 1 ncMono population (transcriptionally defined in map 1 as Mono2 and 4,
Table S1) revealed two separate cell clusters within the transcriptomic UMAP topology, indicating
considerable cell-type heterogeneity within this population as defined by map 1. Interestingly one
of the Mono2/4 clusters overlapped with the ncMono (magenta) cluster, whereas another cluster
was mapped as HLA-DR" within the flow cytometry gating strategy used in map 2 (Figure S1).
Moreover, we noticed that map 1 AS-DCs (red) and map 2 pre-DCs (red) occupied the same
topological space, indicating considerable transcriptomic similarity despite different markers were
used for their flow cytometric identification (Figure 2C). Taken together, the combined phenotypic
and transcriptomic analysis presented here strongly argues for the need to further assess cellular

identities within the myeloid cell compartment.

AxI*Siglec6* DCs phenotypically and transcriptionally overlap with human pre-DC

To clarify the relationships and cellular identities of the different DC subsets and their progenitors
in maps 1 and 2, we mapped individual protein and transcript information (Figure S3) and the
transcriptomic signatures of DC subsets and their progenitors derived from map 2 (pDC, cDC1,
cDC2, pre-DC) onto our scRNA-seq myeloid-cell-space data set (Figure 3A). By overlaying index
sorting information and the initial unbiased clustering data, we revealed that specific map 2 pDC,
cDC1 or pre-DC signatures were enriched in dense discrete cell clusters within the UMAP
topology of the myeloid-cell-space scRNA-seq data, whereas the cDC2 signature was more
broadly enriched within both the clusters associated with cDC2 and monocytes (Figure 2A, 3A)
suggesting a close relationship between these two cell types which is studied in further detail by

Dutertre et al..
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To integrate the identified DC subsets in map 1 and map 2 with each other, we computed a UMAP
topology from the original map 1 single-cell transcriptome data comprising the DC cell space and
overlaid the signatures of the map 2 DC subsets (pDC, cDC1, cDC2, pre-DC) (Figure 3B). This
analysis showed that within the original map 1 transcriptomic data, map 2 pDC signatures mapped
to the same topological space as DC6, thus identifying DC6 as bona fide pDCs. Similarly map 2
cDC1 transcriptomic signatures were enriched within map 1 DC1, whereas map 2 cDC2
signatures enriched in map 1 DC2, DC3 and DC4. Furthermore, mapping map 2 pre-DC
signatures revealed the highest enrichment of this signature in map 1 DC5 (AS-DC), indicating
the highest level of similarity between map 1 DC5 and map 2 pre-DC.

To validate these correlations between the DC types defined in maps 1 and 2, we investigated
the enrichment of map 1-defined DC1-6 signatures within our new scRNA-seq consensus data
(Figure 3C). Visualizing the scaled signature enrichment scores for DC1 showed correspondence
between maps 1 and 2 cDC1 locations and between map 1 DC2, DC3 and map 2 cDC2 locations,
respectively. Similarly, map 1 DC6 and map 2 pDC localized to the same topological space within
our new scRNA sequencing data. The highest enrichment of map 2 pre-DC signatures (Figure
3A) and map 1 DC5 signatures (Figure 3C) was seen in cluster seven of our new scRNA-seq
consensus data (Figure 2A), again indicating substantial transcriptomic overlap between map 1
DC5 and map 2 pre-DC.

We then investigated the potential differences in cell-type identity between map 1 AS-DCs (DC5)
and map 2 pre-DCs (Figure 2C). We separately projected cells identified as pre-DCs by unbiased
clustering of the flow cytometric data (cluster 26 in Figure 1C), map 1 DC5, map 2 pre-DC gated
cells and cluster seven from our new scRNA-seq consensus data, which displayed precursor
gene expression patterns, onto the novel combined flow cytometric-based UMAP topology
(Figure 3D). This approach showed that FACS cluster 26 represented the intersection of map 1
DC5, map 2 pre-DCs and scRNA-seq cluster 7 and best reflected these progenitor cells at the

protein level in an unbiased fashion. Certain differences between map 1 AS-DCs and map 2 pre-

11
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DCs, however, became visible. Specifically, map 1 DC5 located only to a very discrete part of the
topology and reached into a contaminating cDC2 space. FACS cluster 26 and map 2 pre-DCs
occupied almost identical topological locations within the UMAP space, further illustrating the
difficulties in discriminating pre-DCs and pDCs (Figure 3D, 1C-D, 2A). Interestingly, both map 1
AS-DCs and map 2 pre-DCs were best defined by FACS cluster 26, indicating that these cells
represent the same cellular identity at both the surface marker and transcriptomic level. This
finding was further supported when enriching transcriptomic signatures of map 2 pre-DCs across
the spectrum of identified DC subtypes in map 1, resulting in a high enrichment of map 2-derived
pre-DC signature genes within map 1 AS-DCs (Figure 3E). This enrichment was further
reinforced by comparing hallmark genes within the cell populations defined in the legacy maps 1
and 2 (Figure 3F). In conclusion, these analyses demonstrate that map 1 DC5 and map 2 pre-
DCs represent, to a large extent, the same pre-DC identities and therefore, might be best named
according to already published guidelines (Guilliams et al., 2014; Schlitzer and Ginhoux, 2014)

as pre-DCs.

DN-DCs/DC4 resemble CD16* non-classical monocytes

We were unable to locate the novel map 1 DC4 (DN-DC) subtype within a distinct cluster in our
new scRNA-seq consensus data (Figure 2C). According to map 1 DC4 derived from a DN-DC
subtype, being negative for the classical cDC subset markers CD1c, CD141 and CADM1 and
pDC marker CD123 but positive for CD11c (Villani et al., 2017). To understand the role and
placement of DC4 within the entire monocyte and DC space of both maps, we recapitulated the
gating strategy originally used to delineate DC4 by map 1 (Figure 4A). Using the additional
information from the newly included surface markers, such as CD16, we revealed that the large
majority of DC4/DN-DCs (96.6%) were CD16* mononuclear cells (Figure 4A). We subsequently
mapped the CD16° and CD16* fraction of the DC4/DN-DC compartment of map 1 onto our

integrated flow cytometry-derived and scRNA-seg-derived UMAP topologies (Figure 4B).
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Mapping onto the flow cytometry and scRNA-seq-derived UMAP topologies revealed that the
CD16* DC4/DN-DC compartment was associated with the location traditionally occupied by
ncMono and the CD16" fraction mapped into the topological region of the UMAP associated with
pre-DCs and cDCs on both the phenotypic and transcriptomic level. To address the ambiguous
DN-DC identity, we cross-referenced map 1 DN-DCs towards map 2 ncMono and the flow
cytometry-based Phenograph cluster 15 (Figure 4C). Here we detected map 1 CD16" DN-DCs
almost exclusively within the map 2 ncMono cluster and primarily contained within Phenograph
cluster 15 (Figure 1C) derived from the combined flow cytometry panel, expressing ncMono-
associated surface markers.

To extrapolate these surface phenotypic findings to the transcriptome level and understand the
transcriptomic identity of map 1 DN-DCs, we correlated all transcriptomes of map 1 DC subsets
with the map 1 monocyte subsets (mono 1-4) (Figure 4D). Pearson correlation revealed the
highest level of correlation between DC4 and the map 1 mono 2 subset, with intermediate
correlation with the mono 1, 3 and 4 subsets, and poor correlation with any map 1-identified DC
subset (Figure 4D). Furthermore, enrichment of a mono 2-specific gene signature across all map
1-identified mononuclear cell identities showed enrichment in all monocyte-associated cell entities
and DC4, further supporting that DC4 might be ncMono (Figure 4E, S4A-C). Additionally, we
used map 1-derived DC4 signature genes and mapped them onto our scRNA-seq consensus
data of the blood myeloid cell space (Figure 4F). This analysis showed a strong enrichment of
DC4 signature genes within the cluster identified by unbiased cluster detection as having ncMono
identity.

To reconcile DC4 with the existing spectrum of monocyte and DC subsets, we examined DC4
expression of SLAN — a marker for inflammation-associated ncMono (Hansel et al., 2011) using
a new marker panel (Figure 4G) and UMAP-based visualization (Figure 4H). DC4 showed the
expected SLAN expression levels for ncMono. To validate this finding and to exclude that DC4

are another subset within peripheral blood mononuclear cells (PMBCs) that we might not have
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accounted for, we performed dimensionality reduction of the flow cytometric analysis in Figure
4G (Figure 4H) and mapped both CD16™ and CD16* DN-DCs onto the UMAP topology (Figure
4]). Again, we found that DC4 associated with two different positions within this UMAP topology.
Putting these two separate clusters within the DC4/DN-DC in the context of a conventional gating
strategy of PBMC-derived mononuclear cells revealed a co-association between (i) classically
defined ncMono and DC4/DN-DC that are CD16* and constitute the already known ncMono
fraction (Schakel et al., 1999), and (ii) a CD16" pre-DC contamination associating with the areas
within the UMAP defined as cDC2 and pre-DC by traditional investigator-informed gating (Figure
4]). Taken together, our new consensus map clarifies that map 1 DC4 is comprised of CD16*
ncMono and pre-DCs, rather than a phenotypically defined novel cell type within the human

mononuclear myeloid cell compartment (Calzetti et al., 2018).

Backmapping identifies mono 4 as bona fide CD56%™ NK cells

Next, we wanted to use our new consensus map to define the monocyte population structure. In
particular, we aimed to consolidate the newly defined map 1 subtype structure with the four
monocyte subtypes (mono 1-4) (Villani et al., 2017) in light of the traditional view of only three
phenotypically different monocyte subsets based on CD14 and CD16 expression (Ziegler-
Heitbrock et al., 2010). As a first step, we recapitulated the map 1 flow cytometry sorting strategy
and overlaid the cellular contents of this gate onto our novel flow cytometry-derived UMAP
topology (Figure 5A). Within the CD16" compartment of map 1, two different monocyte
populations (mono 2 and 4) were defined by phenotypical and transcriptional differences.
Mapping the CD16*CD14 compartment of map 1 onto the new UMAP topology indeed showed
that it is composed of two transcriptionally different cellular entities, one mapping into the HLA-
DR’ space of the flow cytometry-derived UMAP topology and one mapping to the location
occupied by ncMono in an investigator-driven gating approach and named mono 2 in map 1

(Figure 1E, 2A, S1).
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To understand the identity of the cells mapping to the HLA-DR" cell space, we utilized the
transcriptomic marker genes derived from map 1 mono 4, as mono 2 mapped to the ncMono
space. We then interrogated a publicly available database of population-based proteome
fingerprints (Rieckmann et al., 2017) from a variety of blood-borne immune cells for the mono 4
signature (Figure 5B). Here, we found high expression of mono 4-related proteins in NK cell
subsets, including a CD569™"3 subset (NK%™). To validate these findings, we generated a
transcriptomic NK-cell signature based on previous knowledge (Costanzo et al., 2018; Liberzon
et al., 2011; Rieckmann et al., 2017; Subramanian et al., 2005) and calculated the signature
enrichment scores across all monocyte subsets defined in map 1 (Figure 5C-D). This calculation
revealed that the mono 4 subset was significantly enriched in NK-cell-specific transcripts.
Subsequently, we integrated the original monocyte map 1 single-cell transcriptome data (mono
1-4) into an external dataset of 33,148 PBMCs (short: 33k-PBMC dataset,
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33Kk) and
performed dimensionality reduction of the corresponding monocyte and NK-cell-related cellular
spaces using UMAP (Figure 5E-F). We termed this approach ‘backmapping’, where we utilized
an unrelated single-cell data set derived from the same tissue origin. In a next step, we annotated
the integrated map 1 specific monocyte subsets within the combined UMAP topology according
to the terminology used in map 1, to understand where these cells would associate in the context
of an unbiased assessment of the complete mononuclear PBMC fraction. This analysis showed
that the mono 1-3 subsets mapped to the topological UMAP space initially assigned to monocytes,
whereas mono 4 mapped to the topological UMAP space of NK cells, further supporting the
hypothesis that mono 4 are NK cells. Overlaying of the NK cell signature onto the original map 1
also revealed strong enrichment in the mono 4 cluster (Figure 5G).

We then modified our combined flow cytometry panel to specifically verify NK cell contamination
within the map 1-defined flow cytometry CD16* monocyte cell space (Figure 5H, S5A).

Specifically, we removed CD56 from the lineage to track the expression of this NK-cell marker
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separately and added the granulocyte marker CD66b, the lymphoid marker CD7 and the NK cell
markers NKp46, CD160 and CD107 (Figure S5A). We then examined CD16 and CD56
expression within the CD14  compartment of the PBMC CDA45*Lin" fraction and generated a
reference UMAP topology of the CD45*Lin" cell space (Figure 5H, S5A-B). This analysis identified
seven cell populations based on CD16 and CD56 expression levels (Figure S5B-C). Two
populations (turquoise and pink) displayed high CD16 and SSC and no (light blue) to mid (pink)
CD56 expression, with granulocytic forward and sideward scatter characteristics identifying them
as granulocyte contaminants (Figure S5C).

Next, we focused our analysis on the CD16* compartment of this cell space (green and purple
gates). Two populations were identified as CD16*, in which one CD16*CD56" population (purple)
matched the surface phenotype of classical CD56" NK-cells that are normally dismissed by
including CD56 in the lineage panel of map 1. To determine the identity and heterogeneity of the
remaining CD16*CD56" cell compartment (green, orange, yellow, grey gates, Figure S5B), we
mapped this compartment back to a UMAP topology of either the Lin"CD16*, Lin\CD56'CD16" or
the Lin"CD56' CD16"HLA-DR™ cell space, to represent a stepwise cleanup of non-monocytic
CD16" cells (Figure 5H). This analysis showed that if the totality of the LinCD16* compartment
is mapped back onto the Lin- UMAP topology (Figure 5H, pink overlay, most left panel), NK cells
(CD56*), monocytes (CD56°CD16*") and granulocyte fractions (CD16"9") are included in this
cellular compartment. When excluding CD56 in the UMAP topology, classical CD56* NK cells are
excluded; however, within the CD16" gate a CD56" population became apparent that mapped to
the UMAP space previously associated with classical NK cells (Figure 5H, pink overlay, mid
panel). Another CD16+CD56" population mapped to the topological UMAP space occupied by
ncMono, as defined by their high expression of HLA-DR and CD11c and no expression of classical
NK-cell markers, including CD56, CD7, CD160 and Nkp46 (Figure S5C). We next excluded HLA-
DR cells and mapped the remaining CD16" cells onto the UMAP topology. This step revealed

that including a positive HLA-DR threshold successfully removed mono 4 / NK cells (pink overlay,
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Figure 5H, right panel). This subclass of NK cells is not easily distinguishable from monocytes,
as also evidenced by their very similar morphology (Figure S5D). Taken together, we identified
the map 1 mono 4 subset as HLA-DR'CD16*CD56° NK-cells, intruding into the CD16*CD14 Lin
CD45* map 1 monocyte sorting gate that was performed without HLA-DR gating stratification
according to map 1. Collectively, within our new consensus map, we define the borders between
the myeloid compartment and the NK cell compartment and re-stablish a structure of three

monocyte subsets in peripheral blood.

PBMC derived monocyte subsets form a transcriptional continuum during homeostasis

De novo clustering (Figure 2A, 6A) did not reveal intMono as a transcriptionally distinct cluster;
rather, they were identified as forming part of clusters eight and nine (Figure 6A, 6B, S6A, S6B).
Pseudo-time analysis of the scRNA-seq data, however, placed intMono in between cMono and
ncMono (Figure 6C). The visualization of genes changing over the pseudo-time depicts a gradual
decrease in expression of cMono marker genes (CD14, etc) and an increase of ncMono marker
gene expression (CD) along the trajectory (Figure 6D). This was further corroborated by plotting
CD14 and CD16 mRNA expression of single cells within the three monocyte subsets (Figure 6E).
Therefore, these analyses clearly corroborate an existing transcriptional continuum of monocytes

within human PBMC and reveal the transcriptional identity of intMono during homeostasis.

Backmapping integrates legacy datasets and enhances cell type resolution creating novel
consensus maps

To evaluate our findings and put our new consensus map into the framework of data-driven maps
of the complete human PMBC compartment, we combined our new scRNA-seq data with three
independent PBMC datasets and performed backmapping and cell type prediction (Figure 7, S7).

This approach permitted a detailed annotation of previously undefined cellular identities within the
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external PBMC-derived datasets. De novo analysis of a combined data set (Figure S7A)
consisting of a publicly available dataset of approximately 33.000 cells (33k-PBMC) and our new
scRNA-seq dataset revealed NK, CD8*, CD4* and B cells alongside megakaryocytes, CD16" and
CD14* monocytes, cDC1, DC2, DC3, pDCs and CD34* progenitor cells (Figure 7A). When using
the new scRNA-seq-based consensus map as a reference to predict cell annotations in the data-
driven PBMC dataset by a nearest neighbor classifier (Kiselev et al., 2018), we obtained similar
but not identical results (Figure 7B, left panel). We therefore applied the backmapping approach
by projecting the cluster identities of our new scRNA-seq dataset onto the UMAP dimensionality
reduction of the combined dataset. Backmapping revealed commonalities between all cell types
of the myeloid cell compartment including previously unidentified pre-DCs, DC2 and DC3 clusters
within the 33-K PBMC dataset (Figure 7B) as well as NK cells, CD34" and plasma cells derived
from both datasets (Figure S7B). We next applied the above outlined approach including
backmapping to a larger data set provided by the Human Cell Atlas (HCA) with approximately
255.000 cells (Figure 7C, 7D, 7E). In a first step, we categorized all major subtypes (Figure 7C)
and predicted cells associated with the mono 4 population of map 1 and found that all cells fell
within the NK cell cluster (Figure S7C, S7D), further supporting that cells of the mono 4-subset
are bona fide NK cells. Next, we reduced the datasets to clusters that were part of the myeloid
cell compartment (Figure 7D, S7C) and again performed the backmapping and prediction
approaches. Because of the solely cluster-driven reduction of the dataset, we observed some
lymphoid cells in the reduced dataset, which might derive from misclustered cells (Figure 7D).
Nevertheless, this approach allowed us to identify smaller myeloid cell populations within the
larger dataset (Figure 7E). Finally, we used a third PBMC dataset based on a targeted scRNA-
seq approach, which also allowed us to better define subsets in the unbiased dataset (Figure
S7E, S7F, S7G) making this overall approach independent of single-cell technology and dataset

size.
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Collectively, we demonstrate the value of an iterative, rule-based, data-informed approach based
on previously existing maps to integrate additional information layers into new consensus maps.
Backmapping to whole data-driven tissue maps and providing a connection to previous
knowledge are important steps to derive the next iterations of maps that finally serve as the entry

point for further iterations.

Discussion

Consensus maps are an important instrument within an iterative process of producing cellular
maps of all organs and tissues in different species, including humans. As within other scientific
disciplines, such as geography or astronomy, the maps generated in the life sciences require
much iteration to allow for the integration of new content. By combining single-cell transcriptomics
with index sorting, and multi-color flow cytometry and applying simple but very effective
computational strategies, such as ‘backmapping’ to cellular maps generated in a purely data-
driven fashion, we have generated a new consensus map of the myeloid cell compartment
including monocytes, DCs and their precursors (Figure 7, S7). Because we propose to include
prior knowledge in the respective scientific field into the algorithm for generating such consensus
maps, we define the overall strategy as being ‘data-informed’, combining prior knowledge and
data-driven technologies including single-cell omics.

The two previous maps based on single-cell RNA-seq used in our approach as well as a
phenotypic analysis of the human blood and tissue myeloid cells were developed to improve our
understanding of myeloid cell heterogeneity (Alcantara-Hernandez et al., 2017; See et al., 2017;
Villani et al., 2017). Yet there were shortcomings to these maps, which we have overcome in our
new consensus map. First, map 2 only identified one cDC2 subset, whereas map 1 and our new
consensus map defined two subsets. Furthermore, we established a proximity between DC3 and

cMono, which has been further dissected by Dutertre et al. (Dutertre et al., 2019), thus already
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providing the next iteration of this particular subspace in the myeloid cell map of human peripheral
blood. Second, map 1 identified a novel monocyte subset named mono 4. Using backmapping,
we reveal that mono 4 are CD56%™ NK cells and are not related to monocytes, supporting the
current definition of three major monocyte subsets (classical CD14*, non-classical CD16*, and
intermediate double positive monocytes), consisting of two transcriptionally distinct entities and a
continuum of intermediate, double-positive monocytes between them (Figure 6). This finding is
further supported by the changes in expression of the CD14 and CD16 cell-surface markers and
results derived from genetic mouse models showing that Ly6c" monocytes (murine equivalents
of classical monocytes) can transition into Ly6¢'®Y monocytes (murine equivalents of non-classical
monocytes) with only a few cells detectable in the transitory state (Mildner et al., 2017). Third, we
could clearly define AS-DCs (DC5) from map 1 as pre-DCs within the consensus map, consistent
with their functional definition in map 2 (See et al., 2017). Together with the complete overlap of
the three differentiated DC populations between the original maps, these results reassure the
validity of single-cell transcriptomic analyses.

We define backmapping as an integral component of the strategy to define novel consensus
maps. Here, we use cellular maps derived from tissues — in this case peripheral blood - without
prior experimental enrichment of certain cell types. This relatively simple computational approach
allows to unequivocally overlay cell subsets from different maps onto a common cell space. As
exemplified here for the monocyte / NK cell space, we postulate that potential conflicts for new
cell types in other organs can be resolved in a similar fashion.

Collectively, we report on a new consensus map of the myeloid cell compartment in human blood,
which was built on two previously introduced maps (See et al., 2017; Villani et al., 2017). The
myeloid cell compartment is of particular interest due to its intrinsic heterogeneity, its involvement
in many if not all major tissues and organs, and its prime involvement in almost any major disease
(Bassler et al., 2019). It is therefore of utmost importance to establish a precise baseline during

homeostasis as provided here by our new consensus map, to allow for a better understanding of
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any deviations of the myeloid cell compartment during stress, pathophysiological conditions and
diseases. Furthermore, the dynamic processes of myelopoiesis during homeostasis but even
more so during inflammatory conditions requires precise mapping of cellular identities as a
prerequisite to identify targets for precise therapeutic intervention (Dick et al., 2019; Schultze,
2019; Schultze et al., 2019). Furthermore, the necessity to continuously iterate the process of
improving the consensus maps is nicely illustrated by the accompanying manuscript by Dutertre
et al. (Dutertre et al., 2019), further defining the cellular relationship of DC2/3 and monocytes. As
many institutions world-wide continue to generate cellular maps, consensus maps will become an
increasingly important instrument to reconcile and integrate information. Our approach provides
a guide to integrate and value legacy datasets together with newly generated single-cell omics
data and build new iterations of consensus maps applicable to any other tissue. These maps can
also be adapted to include further technological advancements. With the continuation of technical
advances, we anticipate that consensus map building will become a major task within our efforts

to create complete cellular atlases for the major species.
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Figure Legends

Figure 1. Generating a new consensus map of the mononuclear myeloid cell compartment
in human peripheral blood. (A) Workflow to generate a new consensus map of the human
mononuclear myeloid cell compartment. (B) Visualization of ~1.4 mio. live CD45*Lin(CD3, CD19,
CD20, CD56)" cells after UMAP dimensionality reduction of the flow cytometry panel introduced
in A (left panel), mononuclear myeloid cell compartment (second panel), overlay of index-sorted
cells (third panel), UMAP topology of the index-sorted cells based on the single-cell transcriptome
data (most right panel, see also Figure 2). Grey areas in the third panel represent the CD45*Lin
cell space. (C) Phenograph clustering of the flow cytometry data projected onto the FACS-based
UMAP topology. (D) Color-coded visualization of markers used to define the mononuclear myeloid
cell compartment. (E) Overlay of the cell gating strategies according to maps 1 (Villani et al., 2017)

and 2 (See et al., 2017). See also Figure S1.

Figure 2. Index-sorted scRNA-seq dataset of the myeloid cell compartment in human
blood. (A) De novo clustering of the 2,509 index-sorted cells onto the scRNA-based UMAP
topology (left panel) and cluster projection onto the FACS-based UMAP topology (right panel,
grey background: complete CD45*Lin" cell space). (B) Heatmap of 10 most significant marker
genes for each of the 11 clusters identified and visualized in Figure 2A. (C) Overlay of cell types
defined for maps 1 (left panel) and 2 (right panel) onto the scRNA-based UMAP topology of the

new consensus map.
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Figure 3. Harmonizing the DC space within the mononuclear myeloid cell compartment.
(A) Overlay of signatures derived from map 2 DCs onto the new scRNA-seq-based UMAP
topology consensus map. (B) UMAP topology based on map 1 single-cell transcriptomes of map
1 DC1-6 cells and overlay of signatures derived from map 2 DCs. (C) Overlay of signatures
derived from map 1 DC1-6 cells onto the new scRNA-seq-based UMAP topology consensus map.
(D) UMAP topology based on flow cytometry data derived from ~1.4 mio live CD45*Lin(CD3,
CD19, CD20, CD56) cells (see Figure 1A) and separate overlays of cluster 26 defined by
Phenograph (see Figure 1C), map 1 DC5, map 2 pre-DC, and scRNA-seqg-based cluster seven
representing transcriptomic progenitor DC signatures (see Figure 2A). (E) Enrichment of map 2
defined pDC, cDC1, cDC2 and pre-DC signatures in the map 1 DC1-6 subsets. (F) Heatmap of
the average expression values of hallmark genes defined for map 1 DC1-6 subsets in both map

1 DC1-6 as well as map 2 DCs subsets.

Figure 4. Integrating newly defined DN-DCs into the new consensus space of the myeloid
cell compartment. (A) Recapitulation of the map 1 gating strategy to identify a putative DC4
subset within CD11c* DN-DCs and visualization of CD16 expression. (B) CD16* and CD16 DN-
DC mapping (as in A) onto the flow cytometry derived UMAP topology (left panel, see Figure 1B,
3A) and scRNA-seq data (right panel). (C) Relationship analysis of CD16* or CD16  DC-DN cells
(see Figure 3A) and their corresponding annotation according to map 2, FACS Phenograph
clustering and scRNA-seq data. (D) Pearson correlation matrix of all cell types defined in map 1.
(E) Signature enrichment analysis of map 1 mono 2 signature in all other map 1-defined cell types.
(F) Enrichment of the DC4 (DN-DC) signature visualized on the scRNA-seq data derived UMAP
topology. (G) Gating strategy to define SLAN expression on the cell population defined as DN-
DC based on CD16 expression. (H) Visualization of DN-DC cells in the complete CD45*Lin"HLA-
DR* UMAP topology (grey). (1) Mapping of the phenotypic information of cell populations onto the

new UMAP topology.
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Figure 5. Relationship of the previously introduced fourth monocyte subset (mono 4) in
context of the new consensus map of the myeloid cell compartment. (A) Mapping flow
cytometric- and scRNA-seg-defined map 1 mono 2 and 4 onto the flow cytometry based UMAP
topology (see Figure 1B, E, 2A). (B) Heatmap of the protein expression pattern for mono 4
signatures genes derived from mass-spectrometric data of FACS-sorted population as described
by Rieckmann et al. (Rieckmann et al., 2017). (C) Enrichment of a NK cell signature in map 1
mono 1-4 subsets. (D) Heatmap of NK cell hallmark genes within the map 1 defined cell subsets.
(E) Backmapping by overlaying map 1 mono 1-4 cells onto the 33k-PBMC scRNA-seq dataset.
Only monocytes and NK cells are shown. (F) Visualization of the percentage of cells that are
aligned with either monocytes or NK cells derived from the unrelated 33k-PBMC scRNA-seq
dataset. (G) UMAP topology of scRNA-seq data derived from the mapl DC and mono subsets
(left panel) and overlay of the NK cell signature onto this UMAP topology. (H) Top panels: classical
gating strategy and stepwise cleanup of CD45" cells based on lineage (CD3/CD19/CD20) marker
expression, then based on CD56 expression followed by HLA-DR expression, left to right. Middle
panels: UMAP topology derived from the respective cell populations marked within the
corresponding top panels. Mono/DC by HLA-DR expression, green; NK by CD7 expression,
violet; and granulocytes by CCR3 or CD66b expression, orange. Bottom panels: Effect of cleanup

as shown in top panels on the CD16* CD14 cell population.

Figure 6. Focused analysis of the monocyte compartment (A) Overlay of the the cluster 8
and 9 defined by de novo clustering of the scRNA-Seq data onto the scRNA-UMAP topology of
the new consensus map. (B) Bar chart showing the original FACS annotation of cells derived from
cluster 8 or 9 following the sorting scheme of map 1 or map 2, respectively. (C) Trajectory analysis
of the monocyte subset containing cells from cluster 8 and 9. Monocle-based UMAP

dimensionality reduction overlaid with cell estimated pseudo-time (left panel) and the FACS
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annotations derived from map 1 (center panel) or map 2 (right panel). (D) Transcriptional changes
of genes that are considered as differentially expressed along the inferred trajectory. Heatmap
shows scaled gene expression changing over the pseudo-time (x-axis, early to late). Selected
marker genes of cMono and ncMono are highlighted. (E) Expression of CD14 and CD16 in relation
to the estimated pseudo-time of cells. Cells are colored by their FACS annotation from map 1 or

map 2.

Figure 7. Backmapping strategy combining the new scRNA-seq data and different PBMC
datasets. (A) Annotation of cell types within the combined dataset (33-K PBMC and new scRNA-
seq dataset). (B) Graphs in the left panel predict cell labels from the 33-K PBMC dataset by using
the transcriptome information from the new scRNA-seq dataset. Graphs in the right panel show
the visualization of the cells from the new scRNA-seq dataset after integration with the 33-k PBMC
dataset. (C) UMAP dimensionality reduction of around 260.000 human cord blood cells and cell
annotation based on markers obtained from the unrelated 33k-PBMC dataset (Figure 7A-B). (D)
Reduction of the HCA dataset to cells, which were found within clusters associated with
monocytes or dendritic cells. (E) Graphs within the left panel show the prediction scores
calculated for the respective cell types of the new scRNA-seq data. Graphs in the right panel
show the visualization of the cells from the new scRNA-seq data after “anchoring” together with

the HCA dataset.
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Supplementary Figure Legends

Figure S1. Classical flow cytometry gating strategies applied for the generation of the
legacy maps 1 and 2. (A) Common part of the flow cytometry gating strategy applied for the
generation of the legacy maps 1 and 2. (B) Map 1-specific part of the flow cytometry gating
strategy with the resulting cell subsets (colored boxes). (C) Map 2-specific part of the flow
cytometry gating strategy with the resulting cell subsets (colored boxes). Some cell types shown
here are based on a priori definitions (e.g. monocytes) and were not part of the transcriptionally

defined cells in the legacy map 2.

Figure S2. Quality control criteria for the scRNA-seq data established for the new
consensus map of the myeloid cell compartment. (A) Visualization of the number of reads for
all 8 384-well plates analyzed within this project. Violin plot of the number of genes observed to
be present within all cells measured. (B) Visualization of the number of reads (left panel), the
number of genes (middle panel), and the percent of aligned reads (right panel) as a violin plot for
each of the 8 384-well plates individually. (C) Comparison and visualization of cell distribution
across all identified clusters in relationship to the 8 384-well plates utilized within this experiment.
(D) Mapping of single-cell information concerning the total number of reads, unaligned reads,
number of genes, and number of transcripts onto the UMAP topology of the final consensus map
based on scRNA-seq data. (E) Cluster relationship analysis (F) Distribution of cells within each of

the identified cluster in relation to the 8 384-well plates used in this study.

Figure S3. Overlay of phenotypic and transcriptomic data onto the new consensus map of
the myeloid cell compartment. (A) Visualization of cell surface markers detected by index
sorting on the 2,509 cells which were used to define the UMAP topology of the index-sorted cells

based on the single cell transcriptome data. (B) Visualization of gene-level expression of the
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respective cell surface markers within the 2.509 cells which were used to define the UMAP

topology of the index-sorted cells based on the single cell transcriptome data.

Figure S4. Defining the relationship of map 1 DN-DC within the new consensus map of the
myeloid cell compartment. (A) Enrichment of map 1 mono 1,3,4 signatures in map 1 monol-4
and DC1-6 subsets. (B) Violin plots for normalized gene expression of FCGR3A, TCF7L2, RHOC,
MTSS1 in map 1 monol-4 and DC1-6 subsets. (C) Overlay and visualization of map 1 mono 1-4
subset gene signature enrichment on the UMAP topology based on scRNA-seq of 2.509 index-

sorted cells (see Figure 2A).

Figure S5. The relationship between the myeloid and the NK cell compartment in human
peripheral blood. (A) Schematic representation of the development of a new focus strategy (panel
adjustment) to define the relationship between the myeloid and the NK cell compartment in human
peripheral blood. (B) Classical gating strategy to determine those cell populations that need to be
placed either into the myeloid or the NK cell compartment followed by the development and
visualization of the UMAP topology of both cellular compartments. (C) Color-coded visualization
of markers used to define the mononuclear myeloid and NK cell compartments on the flow
cytometry data-based UMAP topology. (D) Cytospins of cells sorted according to the gating

strategy depicted in Figure S5B.

Figure S6. Focused analysis of the monocyte compartment (A) UMAP dimensionality
reduction calculated on the focused subset of cluster 8 and 9 containing the monocyte
populations. Overlaid are the cell annotations from the clustering and (B) the FACS annotation

derived from Map 1 (upper panel) and Map 2 (lower panel).
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Figure S7. Integration of the new scRNA-seq dataset with three individual PBMC datasets.
(A) UMAP dimensionality reduction based on the combined dataset of the new mononuclear
myeloid scRNA-seq data and the external 33k-PBMC dataset. Cells originating from the new
scRNA-seq data are colored black and cells from the external PBMC dataset are colored grey.
(B) Overlay of cell annotations of cells from NK cells, CD34", plasma cells, CD4" T cells, CD8* T
cells, and B cells from the 33-k PBMC dataset. (C) Clustering of the HCA dataset. (D) Prediction
and backmapping of NK cells from the novel scRNA-seq dataset onto the complete HCA dataset.
Left UMAP graph shows the computed prediction score for NK cells of the HCA dataset using the
new scRNA-seq consensus map information. Red color indicates highest prediction score. Right
UMAP graph shows the location of NK cells from the new scRNA-seq data within the combined
dataset. (E) UMAP dimensionality reduction based on the combined dataset of the new
mononuclear myeloid sScCRNA-seq data-based consensus map and a PBMC dataset processed
by the BD Rhapsody technology. Cells originating from the new scRNA-seq consensus map are
colored black and cells from the Rhapsody PBMC dataset are colored grey. (F) Overlay of cell
annotations of the DC subsets from the new scRNA-seq data-based consensus map on the
combined UMAP. (G) Overlay of cell annotations of NK cells and monocyte subsets identified in
the new scRNA-seq data-based consensus map (top panel) and the respective cell annotations
of NK cells, CD14* and CD16* monocytes from the Rhapsody PBMC dataset. (H) Overlay of cell

annotations of CD4* T cells, CD8* T cells and B cells from the external PBMC dataset.
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Table legends

Tables S1:

Cell types classified in the respective studies

Data Table S1:
Data Table S1.csv. Gene signatures of the 11 clusters identified in our new scRNA-seq

consensus map

Data Table S2:

Data Table S2.xIsx. Gene signatures derived from map 2
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EXPERIMENTAL PROCEDURE

CONTACT FOR REAGENT AND RESOURCE SHARING
Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact jschultze@uni-bonn.de

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Peripheral blood mononuclear cells (PBMC)

Buffy coats or venipuncture blood were obtained from healthy donors (University hospital Bonn,
local ethics vote 203/09) after written consent was given according to the Declaration of Helsinki.
Peripheral blood mononuclear cells (PBMC) were isolated by Pancoll (PAN-Biotech) density

centrifugation from buffy coats.

METHOD DETAILS

Flow cytometric analysis

Whole blood or buffy coat was diluted in room temperature PBS (1:2 or 1:5, respectively) and
layered onto polysuccrose solution (Pancoll; PAN Biotech, Germany) for the enrichment of
mononuclear cells by density gradient centrifugation according to the manufacturer's instructions.
After three times washing in cold PBS, cells were resuspended in FACS-buffer (0.5% BSA, 2 mM
EDTA in PBS) for surface marker staining (Table S2). Human FcR-Block (Miltenyi Biotec,
Germany) was included to reduce unspecific staining. After 1 h incubation at 4° in the dark, cells
were washed and optionally stained for additional 20 min with 1:400 anti-biotin BV421 in FACS-
buffer for CADM1-biotin secondary staining. Washed cells were incubated with L/D Marker
DRAQ7 (BioLegend, USA) for 5 min at room temperature before acquisition and sorting of the

cells using a BD FACSARIA Il (BD BioSciences, USA). Single antibody staining was prepared in
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parallel to assess fluorescence spillover. Fluorescence-minus-one (FMO) controls were prepared
in addition for critical markers to set sorting gates. Post-sort data analysis was performed using
FlowJo software (FlowJo, Tree Star Inc., USA). The packages "flowCore" and "flowWorkspace"
were used to import raw data into R. For dimensionality reduction with UMAP fluorescence

parameters were transformed with logicleTransform (Becht et al., 2018).

Library preparation and sequencing using Smart-Seq2

Our new index-sorted single cell transcriptome dataset was based on the Smart-Seg2 protocol
(Picelli et al., 2013). For single cell sorting into 384-well plates and to ensure sufficient cell
numbers and balanced representation from each main myeloid subset, loose sorting gates have
been set covering the entire space of alive CD45*Lin (CD3, CD19, CD20, CD56) CD14%, CD16*
or CD14'CD16'HLA-DR" cells. To achieve this, the alive CD45*Lin" compartment was divided to
sort 24 cells per plate each of CD14"CD16°, CD14'CD16%, CD14*CD16*, HLA-DR*CADML1*, HLA-
DR*CADMAXL*SIGLEC6*, HLA-DR*CADM1AXL SIGLEC6CD123*CD11c’, HLA-DR*CADM1-
AXL SIGLEC6CD123CD11c or HLA-DR*CADMAXL SIGLEC6'CD123'CD11c cells. Cells were
FACS sorted into eight 384-well plates containing 2.3ul lysis buffer (Guanidine Hydrochloride (50
mM), dNTPs (17.4mM), 2.2uM SMART dT30VN primer) retaining protein expression information
for every well to subsequently match with the respective single-cell transcriptomic data in an index
sorting approach. Plates were sealed and stored at -80°C until further processing. Smart-Seq2
libraries were finally generated on a Tecan Freedom EVO and Nanodrop Il (BioNex) system as
previously described (Picelli et al., 2013).

In short, lysed cells were incubated at 95°C for 3 min. 2.7 pl RT mix containing SuperScript Il
buffer (Invitrogen), 9.3mM DTT, 370mM Betaine, 15mM MgCI2, 9.3U SuperScript Il RT
(Invitrogen), 1.85U recombinant RNase Inhibitor (Takara), 1.85 pM template-switching oligo was

aliquoted to each lysed cell using a Nanodrop Il liquid handling system (BioNex) and incubating
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at 42°C for 90 min and at 70°C for 15min. 7.5ul preamplification mix containing KAPA HiFi
HotStart ReadyMix and 2uM ISPCR primers was added to each well and full-length cDNA was
amplified for 16 cycles. cDNA was purified with 1X Agencourt AMPure XP beads (Beckman
Coulter) and eluted in 14pl nuclease-free water. Concentration and cDNA size were checked for
select representative wells using a High Sensitivity DNA5000 assay for the Tapestation 4200
(Agilent). cDNA was diluted to an average of 200pg/ul and 100pg cDNA from each cell was
tagmented by adding 1ul TD and 0.5ul ATM from a Nextera XT DNA Library Preparation Kit
(Illumina) to 0.5ul diluted cDNA in each well of a fresh 384-well plate. The tagmentation reaction
was incubated at 55°C for 8min before removing the Tn5 from the DNA by adding 0.5ul NT buffer
per well. 1pl well-specific indexing primer mix from Nextera XT Index Kit v2 Sets A-D and 1.5ul
NPM was added to each well and the tagmented cDNA was amplified for 14 cycles according to
manufacturer's specifications. PCR products from all wells were pooled and purified with 1X
Agencourt AMPure XP beads (Beckman Coulter) according to manufacturer's protocol. The
fragment size distribution was determined using a High Sensitivity DNA5000 assay for the
Tapestation 4200 (Agilent) and library concentration was determined using a Qubit dsDNA HS
assay (Thermo Fischer). Libraries were clustered at 1.4pM concentration using High Output v2
chemistry and sequenced on a NextSeg500 system SR 75bp with 2*8bp index reads. Single-cell

data was demultiplexed using bcl2fastq2 v2.20.

Proteomic Data

To validate the gene signature associated with the mono 4 subset as described by Villani et al.
on the protein level, we extracted copy numbers from key signature proteins from the publicly
accessible proteomic resource (http://www.immprot.org/) described by Rieckmann et al.

containing quantitative high-resolution mass-spectrometry data derived from FACS-enriched
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human primary blood cells (Rieckmann et al., 2017). Copy humbers were visualized as a heatmap

using the pheatmap package (v1.0.10) in R.

Cytospin preparation and May-Grinwald/Giemsa staining

Cell populations of interest were sorted into 1.5 ml reaction tubes containing 200 pl FACS-buffer
using a BD FACSARIA IIl (BD BioSciences, USA). The cell suspension was centrifuged onto
SuperFrost Plus glass slides (Thermo Scientific, USA) at 1000 rpm for 5 min using a Universal
16A slide centrifuge (Andreas Hettich GmbH & Co.KG, Germany). Slides were air-dried overnight
and subsequently stained with May-Griinwald/Giesma solution (Carl Roth GmbH, Germany)
according to the manufacturer’s guidelines. Images were acquired with a BZ-9000 (Keyence,

Japan).

Targeted sequencing of human PBMC with the BD Rhapsody™ system

Whole blood was diluted in room temperature PBS (1:2) and layered onto polysuccrose solution
(Pancoll; PAN Biotech, Germany) for the enrichment of mononuclear cells by density gradient
centrifugation according to the manufacturer's instructions. Granulocytes were isolated using
erythrocyte lysis buffer (ELB, 0.15M NH4CI, 0.01M KHCO3, 0.1mM EDTA, pH 7.4 at ca. 2-8°C)
and mononuclear cells and granulocytes are mixed in a ratio of 2:1. After washing in cold PBS
10.000 cells were loaded onto a BD Rhapsody™ cartridge and processed according to
manufacturer’'s instructions for targeted single-cell RNA-seq using the predesigned Immune
Response Panel (Human). The library was clustered at 1.75pM on a NextSeg500 system
(Illumina) to generate ~40.000 paired end (2*75bp) reads per cell using High Output v2 chemistry.

Sequenced single-cell data was demultiplexed using bcl2fastg2 v2.20.
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Single-cell RNA-Seq raw data processing

Following sequencing by the Smart-Seq2 method (Picelli et al., 2013), RNA-Seq libraries were
subjected to initial quality control using FASTQC (http://www.bioinformatics.babraham.ac.uk
/projects/fastqc, v0.11.7) implemented in a scRNA pre-processing pipeline (docker image and
scripts available at https://hub.docker.com/r/pwlb/rna-seq-pipeline-base/, v0.1.1;
https://bitbucket.org/limes_bonn/bulk-rna-kallisto-qc/src/master/, v0.2.1). Next, raw reads were
pseudoaligned to the human transcriptome (GRCh38, Gencode v27 primary assembly) using
Kallisto with default settings (v0.44.0) (Bray et al., 2016). Based on the pseudoalignment
estimated by Kallisto, transcript levels were quantified as transcripts per million reads (TPM). TPM
counts were imported into R using tximport (Soneson et al., 2015) and transcript information was
summarized on gene-level. We imported the resulting dataset of 43,612 features across 3,072
samples and performed the downstream analysis using the R package Seurat (v.2.3.4, (Butler et
al., 2018)).

For processing of the single-cell data obtained by the BD Rhapsody™ system, we run the
recommended BD Rhapsody™ Analysis Pipeline of Seven Bridges Genomics
(sbgenomics.com/bdgenomics) with standard settings. The resulting count table that was
accounted for UMI sequencing and amplification errors, was comprised of 488 features across
7,873 cells. Normalization and further downstream analysis were conducted in R using Seurat

(v.2.3.4, (Butler et al., 2018)).

Quality control

Concerning our new index-sorted and Smart-Seq2-based single cell transcriptome dataset the
following quality control scheme using various meta information was performed to obtain high-
quality transcriptome data: 1) We removed genes that are detected in less than 6 cells (0.2

percent of cells), 2) and removed cells that have less than 1,000 uniquely detected genes. Next,
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we filtered further outlier cells with 3) less than 50,000 unique reads, 4) less than 30%
pseudoalignment of reads to the transcriptome, 5) a lower rate of endogenous-to-mitochondrial
count rate of 2, 6). This quality control scheme results in a dataset of 29,240 genes across 2,509

cells.

Normalization of single-cell transcriptomic data

To reduce the influence of variation of sequencing depth among samples we applied a log-
normalization to the data and scaled each cells gene expression profile to a total count of 10,000.
In addition, we corrected for other technical effects including differences in the fraction of
mitochondrial counts as well of unique detected genes using a linear regression model for these
factors. The residuals of this regression are scaled and centered and used for further downstream

analysis.

Dimensionality reduction and clustering

In order to reduce the dimensionality of the dataset, we selected highly variable genes as genes
with an average expression of at least 0.0125 and a scaled dispersion of at least 1. This resulted
in a total of 2491 genes, which were used as input for a principal component (PC) analysis. We
visualized the standard deviation of the first 20 PCs and identified the first 10 principal
components with a minimum standard deviation of at least 2 as significant PCs. Next, we utilized
Uniform Manifold Approximation and Projection (UMAP) to further reduce the data into a two-
dimensional representation (Becht et al., 2018). To test for cellular heterogeneity, we used a
shared nearest neighbor (SNN)-graph based clustering algorithm implemented in the Seurat
package. We used the first 10 principal components for constructing the SNN-graph and set the
resolution to 1. Monocle was used to infer differentiation trajectories by using the Louvain

clustering method, umap dimensionality reduction and the SimplePPT algorithm (Qiu et al., 2017)
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Additional analysis

Differentially expressed (DE) genes were defined using a Wilcoxon-based test for differential gene
expression built in the Seurat pipeline (v.2.3.4) (Data Table S1). Unless otherwise stated genes
have been considered as differentially expressed, if the adjusted p-value is smaller than 0.1.
Topl0 DE genes have been visualized using heatmap of hierarchical clustered gene expression

profiles. DE genes have been verified with current literature.

Gene signature enrichment analysis

Single-cell RNA-Seq data is inherently sparse and a high-dropout rate is limiting the use of single
marker genes to identify cell populations. In order to unambiguously identify the different cell
types, we have used an updated version of a gene signature score analysis described earlier
(Mass et al., 2016). A cell population is always characterized by genes that are significantly
upregulated in comparison to other populations and genes that show significantly lower
expression in comparison to the background populations. In order to increase the power, we use
both up and downregulated gene signatures for the calculation of the gene expression scores. A
cell i may be described by a gene expression profile A[i,j] as the combination of gene expression
values of all genes j. To calculate a signature score for a cell i, we first calculate the scaled
average expression of all genes jy from an upregulated list and of all genes jgown from a
downregulated gene list. The difference between these two is scaled and visualized. The
visualization is performed as color-coded overlay on the UMAP dimensionality reduction or as

density distribution.

Data analysis of external single-cell RNA-Seq datasets
To assess the single-cell RNA-Seq data of human dendritic cells and monocytes publicly available

under the Gene Expression Omnibus accession number GSE94820, we applied the processing

37


https://doi.org/10.1101/658179
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

15

20

25

bioRxiv preprint doi: https://doi.org/10.1101/658179; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

steps previously described (Villani et al., 2017). We focused on the “discovery” dataset and
performed  downstream  analysis with the R  software  package  Seurat
(https://github.com/satijalab/seurat; http://satijalab. org/seurat/, v.2.3.4). Uniform manifold
approximation (UMAP) algorithm integrated into the Seurat package was used as a dimensionality
reduction method with standard settings. To define cell-type specific gene signatures for all cell
populations, a Wilcoxon-based test was used. We considered genes as differentially expressed
with an adjusted p-value of smaller 0.1 and a log2-fold change of higher than 1 or lower than -1,
respectively. A global comparison of all cell types was performed by calculating the Pearson
Correlation coefficients between the average expression profiles of all clusters. Scaled gene
expression profiles have been used.

In order to have a comprehensive single-cell RNA-Seq dataset of human PBMCs, we downloaded
a dataset containing transcriptome data of 33,148 PBMCs from a healthy donor (short 33k-PBMC
dataset), which is  publicly available on the 10x Genomics webpage
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k). Next,
we followed the general data analysis scheme described at the Seurat package webpage
(https://satijalab.org/seurat/get_started_v1_4.html). Briefly, we used the filtered cell-gene matrix
provided by 10x Genomics and imported the data and performed the analysis with the Seurat
package. We filtered genes that are expressed in less than three cells and removed cells from
the data set that have gene counts for less than 500 genes or for more than 2500 genes. In
addition, we removed cells that have more than 5% mitochondrial counts. This resulted in a
dataset of 17943 genes across 28.823 cells. Next, a log-normalization was applied, and highly
variable genes were identified by applying a dispersion cutoff of 0.8 (2.281 variable genes). To
account for technical variability in the dataset, a linear model was used to regress out the effects
of the number of measured molecules per cell, the fraction of mitochondrial counts as well as the

effect introduced by processing the cells in different sets. The first 25 principal components were
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used for a graph-based clustering approach. NK cell specific genes were identified by a Wilcoxon-

based test for differential gene expression (adj. p-value < smaller 0.1, |log2-fold change| > 1).

Backmapping

In order to compare the transcriptome profiles of monocytes isolated from the dataset derived
from GSE94820 (Villani et al., 2017) with the comprehensive PBMC dataset, we used the
previously introduced canonical correlation alignment to combine datasets (Butler et al., 2018).
First, we isolated all monocyte populations from Villani et al. and all monocyte and NK cell
populations of the 10x Genomics dataset. Both datasets are normalized, scaled and a linear
regression was performed to account for differences in the number of detected genes. In both
datasets, a feature selection was performed to identify genes with high dispersion. We determined
the mutual highly variable genes as the overlap of the 4.000 genes from each dataset with highest
dispersion. Next, we combined both datasets by performing the canonical correlation alignment,
which resulted in an integrated dataset comprising 41.620 genes across 8.846 cells. UMAP
dimensionality reduction was applied to the dataset using the first 8 canonical correlation
alignment components and 40 neighbor points as well as a minimal distance of 0.01.

In addition, we downloaded from the data portal (https://preview.data.humancellatlas.org/) of the
HCA consortium a single-cell dataset comprised of immune cells from human cord blood samples.
When analyzing this dataset, we observed a donor dependent batch effect and thus decided to
use an “anchoring” approach to harmonize the different batches of the single-cell dataset and to
integrate the new consensus map. To this end, we took advantage of the R package Seurat (v.
3.0.0.9000). After filtering genes that were expressed in less than 10 cells of the HCA dataset
with a cell being kept when 500 genes were detected, we ended up with a large dataset that
contained 21,409 genes expressed across 254,937 cells. Next, we merged this Seurat object with
the Seurat object of the new consensus map. We treated the different batches of the HCA dataset

as individual datasets and normalized them and the expression table of the consensus map
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separately. For each dataset, we calculated the top 2,000 most variable genes based on a
variance stabilizing transformation followed by data integration by leaving the standard settings
unaltered. The integrated dataset was visualized using UMAP based on the top 30 computed
PCs. For cell type prediction of the cord blood cells based on the calculated clusters of the new
consensus map, we followed the recommendations of the Seurat vignette for the
‘FindTransferAnchors’ and the ‘TransferData’ functions. First, we repeated the steps above but
without integration of the new consensus map data. We used the resulting integrated HCA dataset
as query dataset and the new consensus map as reference dataset. Because of the large cell
number of the HCA dataset, we projected the PCA from the query dataset onto the reference
dataset. The remaining standard settings were left unaltered. Finally, we transferred the cluster
information of the new consensus map onto the query dataset. The resulting prediction scores
were visualized as color code onto the UMAP graph by coloring the highest prediction score red.
Clustering of the dataset was done based on the construction of an SNN-graph by setting the
resolution to 0.6. Cluster 5, 7, 9 and 13 were found to be associated with monocytes or DCs and
thus the HCA dataset was filtered on these cells followed by repetition of the abovementioned

steps.

Population-based gene signatures of pDC, pre-DC, cDC1 and ¢cDC2
Specific gene signatures of up or downregulated in the comparison of human DC subsets have
been identified as described earlier using the publicly available dataset (See et al., 2017) (GEO

accession number: GSE80171). Gene signatures are available in supplementary Data Table S2.

Data visualization

In general, the ggplot2 package was used to generate figures (Wickham, 2016).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using the R programming language. Statistical tests used are
described in the figure legend or methods part, respectively. Differentially expressed genes have
been identified using a Wilcoxon-based test for differential gene expression. If not otherwise

stated a significance level of 0.1 was applied to adjusted p-values (Benjamini Hochberg).

DATA AND SOFTWARE AVAILABILITY

Processed and raw scRNA-seq datasets are available through the Gene Expression Omnibus
(GSE126422). Additional Data tables are provided in form of EXCEL Tables (Data S1, S2)

Data Table S1: Data Table Sl1.csv

Gene signatures of the 11 clusters identified in our new scRNA-seq consensus map
Data Table S2: Data Table S2.xIsx

Gene signatures derived from map 2

ADDITIONAL RESOURCES

In addition, we provide an interactive web tool to visualize the single-cell RNA-Seq data together

with the flow cytometry data at https://paguen.shinyapps.io/DC_MONO/ (external database S1).
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