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Highlights 

 Defining a consensus of the human myeloid cell compartment in peripheral blood 

 3 monocytes subsets, pDC, cDC1, DC2, DC3 and precursor DC make up the 

compartment  

 Distinguish myeloid cell compartment from other cell spaces, e.g. the NK cell space 5 

 Providing a generalizable method for building consensus maps for the life sciences 
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Abstract  

Single-cell genomic techniques are opening new avenues to understand the basic units of life. 

Large international efforts, such as those to derive a Human Cell Atlas, are driving progress in 

this area; here, cellular map generation is key. To expedite the inevitable iterations of these 

underlying maps, we have developed a rule-based data-informed approach to build next 5 

generation cellular consensus maps. Using the human dendritic-cell and monocyte compartment 

in peripheral blood as an example, we performed computational integration of previous, partially 

overlapping maps using an approach we termed ‘backmapping’, combined with multi-color flow-

cytometry and index sorting-based single-cell RNA-sequencing. Our general strategy can be 

applied to any atlas generation for humans and other species.  10 
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Introduction 

Since Robert Hooke’s first observations of cells as the basic unit of life, generations of life 

scientists have been driven to understand, map and characterize individual cells (Cavaillon, 

2011). For many decades, morphological parameters were the major driving force to establish 

new cell identities (Hussein et al., 2015). In immunology, technologies such as flow cytometry 5 

have been developed that permit quantitative enumeration of single cells based on measuring 

combinations of predominantly cell-surface proteins (Hulett et al., 1969; Perfetto et al., 2004). 

These technologies, however, have some undisputable limitations, most notably, their reliance on 

a predefined subset of biomolecules. Conversely, single-cell-omics, particularly single-cell 

transcriptomics, allow for cells to be assessed, in principle, without predefined markers. Here, the 10 

complete spectrum of transcriptomic parameters is investigated and used as a defining unit of cell 

identity (Islam et al., 2014; Macosko et al., 2015; Tang et al., 2009). Such single-cell technologies 

allow for a fully data-driven analysis to establish cell maps of an organism, such as those 

proposed by the Human Cell Atlas consortium (Rozenblatt-Rosen et al., 2017). We have learnt 

from other disciplines that maps require iterations over time, often due to new data generated as 15 

a result of technological advances. These iterations improve the precision, accuracy and available 

content per data point (Edney, 2019; Monmonier, 2015; Ridpath, 2007). 

 

Reliable consensus maps are a prerequisite to reconcile conflicting data that might have been 

generated based on different data generating approaches (Edney, 2019; Monmonier, 2015). Here 20 

we generalize the approach of building geographic or astronomic consensus maps to human 

cellular consensus maps. We exemplify our approach by integrating two recently introduced 

single-cell transcriptomics-based cellular maps of the human blood mononuclear myeloid cell 

compartment (See et al., 2017; Villani et al., 2017) with novel single-cell transcriptomics and flow 

cytometry data. The human blood mononuclear myeloid cell compartment has been recognized 25 

to harbor a complex mixture of cells of diverse origins exemplified by the ongoing efforts to map 
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this cellular compartment with increasing resolution (Dutertre et al., 2019). The two mapping 

efforts present with discrepancies and commonalties in terms of cell type identification, naming 

and breadth of sampling. In order to establish a consensus map of the human mononuclear 

myeloid cell compartment we allow for the integration of prior knowledge in that we define a priori 

criteria for the cellular compartment under study in order to increase resolution and to allow 5 

building of a consensus map. Overall, our approach generates rule-based data-informed cellular 

consensus maps that resolve discrepancies between the two recently generated maps, and 

clarifies cellular identities of human dendritic-cell (DC) and monocyte subsets resulting in a novel, 

integrated consensus map of the human blood myeloid compartment.  

10 
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Results 

Integrated phenotypic characterization of the myeloid cell compartment in human 

peripheral blood 

We aimed to build a consensus map of healthy human blood myeloid cells that integrates legacy 

dataset knowledge into a revised consensus map. To do so, we generated a novel single-cell-5 

omics dataset of the blood CD45+Lin-HLA-DR+ cell space using a 17 parameter index sorting 

panel incorporating important markers from two recently published single-cell–omics datasets, 

here termed map 1 (Villani et al., 2017) and 2 (See et al., 2017) and an established panel of 

myeloid cell markers including CD14, CD16, HLA-DR, CD1c and CADM1 (Dutertre et al., 2014; 

Guilliams et al., 2016; Haniffa et al., 2012), to link the data to the body of knowledge already 10 

present within the literature (Figure 1A, S1A-C, Table S1). This strategy allowed us to directly 

include several cell populations defined by either map 1 or 2 into our single-cell transcriptomics 

dataset, compare these populations within an unbiased myeloid cell space dataset, and assess 

differences and commonalities between the two maps.  

To understand the organization of the blood-derived myeloid cell compartment, we performed 15 

dimensionality reduction using the uniform manifold approximation and projection (UMAP) 

algorithm (Becht et al., 2018) on the complete flow cytometry space of live CD45+ Lin-  cells 

(Figure 1B). UMAP revealed a complex topology of the flow cytometry data, segregating a large 

cluster on the right and multiple small entities on the left of the topology. A fraction of the Lin- cells 

(Figure 1C, cluster two) was not part of the monocyte or DC cell space according to CD16, CD14 20 

and HLA-DR expression (Figure 1D). These cells most likely represent basophils due to their lack 

of HLA-DR expression but high CD123 expression (Figure 1D, Figure S1). To fully understand 

the population structure of the presented FACS-based UMAP, we performed Phenograph 

clustering of the live CD45+ Lin- blood-derived flow cytometry UMAP space and detected 27 

clusters (Figure 1C). To link these novel data to the two existing maps for the blood myeloid cell 25 

compartment (Guilliams et al., 2014; See et al., 2017; Villani et al., 2017) we reapplied the gating 
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strategies of either map 1 or map 2 and overlaid these onto our novel flow cytometry-derived 

UMAP topology (Figure 1E, Figure S1A-C). This analysis revealed several commonalities and 

discrepancies between maps 1 and 2 in the combined novel flow cytometry panel used in this 

study. On the upper-most level, map 1 was less stringent in excluding HLA-DR- cells within the 

myeloid cell space (cells labeled light grey, Figure 1D, S1B), a feature rigorously adhered to in 5 

map 2 (cells labeled dark grey, Figure 1D, S1C). Furthermore, Axl+Siglec6+ DCs (AS-DC; DC 5, 

Table S1) in map 1 occupied the same topological space as pre-DCs in map 2, indicating potential 

cellular overlap. Finally, map 1 mono 2/4, resembling non-classical monocytes (ncMono) (Table 

S1), occupied two different locations on the UMAP topology: one of them being within the HLA-

DR- compartment of the topology and the other being within the space assigned to monocytes by 10 

a classical investigator-derived flow cytometry gating (Figure 1D, 1E, S1). These data suggest 

that there is a commonality in the identity of map 1 Axl+Siglec6+ DCs (AS-DC; DC 5) and map 2 

pre-DCs whereas mono 2/4 may represent a heterogeneous mixture of various cell types – 

apparently not all of them related to the myeloid cell lineage. 

 15 

Novel integrated single cell-omics data identifies commonalties and discrepancies 

between two recent myeloid cell maps  

To investigate the cell population structure at the transcriptomic level we performed single-cell 

RNA-sequencing (scRNA-seq) of 2,509 blood-derived single cells following index sorting to 

encompass all major populations identified in either map 1 or 2 after lineage exclusion and 20 

generated a UMAP dimensionality reduction-based transcriptome map (Figure 1B, S2A-F). De 

novo clustering of the scRNA-seq data revealed 11 transcriptionally different clusters (Figure 2A, 

2B, Data Table S1). We projected the cluster identities onto the flow cytometry-derived UMAP 

topology, which allowed us to validate our index sorting strategy and link identities across the flow 

cytometry and scRNA-seq data (Figure 2A).  25 
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Gene level inspection of these clusters revealed that cluster one had a natural killer (NK) cell 

signature, as indicated by PRF1, GNLY and NKG7 gene expression. Cluster two was identified 

by high IGH family gene expression, thus implying contaminating B cells with a strong plasmablast 

signature (Shi et al., 2015) (Figure 2B). Cluster three was represented by a minor fraction of the 

cells within our dataset, with a profile of microRNA-related transcripts. Cluster four expressed 5 

SPINK2, GAS5, SATB1and STMN1 genes, and thus corresponded to blood-derived CD34+ 

hematopoietic stem cells (Satoh et al., 2013; Will et al., 2013). Cluster five expressed the 

plasmacytoid DC (pDC)-related IRF7, TCF4 and GZMB transcripts (See et al., 2017; Villani et al., 

2017), whereas cluster six expressed a conventional dendritic cell 1 (cDC1) gene-set, with high 

expression of CLEC9A, IDO1 and CD74 (van der Aa et al., 2015; Zhang et al., 2012). Interestingly, 10 

cluster seven expressed genes either affiliated to pre-DCs (See et al., 2017) or AS-DCs (DC5) 

(Villani et al., 2017), such as SIGLEC6, AXL, PLAC8 or LILRA4, thus associating them to the 

human pre-DC continuum. As expected from our sorting strategy, we also detected several 

clusters belonging to the monocyte lineage. Cluster eight represented CD16+ ncMono cells based 

on high FCGR3A (CD16) with SERPINA1 and DUSP6 expression. Conversely, cluster nine 15 

expressed S100A8, S100A9 and S100A12 together with VCAN and FCN1, identifying them as 

classical CD14+ monocytes (Mono1/cMono). Clusters 10 and 11 represented two cDC2 identities 

(DC2, DC3): both clusters expressed high levels of the cDC2-related CD1C, CD1E and several 

HLA-DR transcripts. Interestingly, and as shown in map 1 (Villani et al., 2017), cluster 11 co-

expressed certain monocyte-affiliated gene products, such as S100A8, S100A89 and FCN1 20 

(Figure 2B), as also shown in Dutertre et al. (Dutertre et al., 2019). 

To develop our consensus map, we utilized the index sorting data of the populations identified in 

map 1 and 2 and mapped them onto our single-cell transcriptomic dataset (Figure 2C). 

Overlaying this index-sorting data onto the scRNA data-derived UMAP topology reiterated several 

commonalities between maps 1 and 2, including DC1/cDC1 (purple), DC6/pDC (pink), 25 

Mono1/cMono (ochre) and CD14+CD16+ intermediate monocytes (Mono3/intMono, dark red). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/658179doi: bioRxiv preprint 

https://doi.org/10.1101/658179
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

 

 

Importantly, the detected discrepancies between maps 1 and 2 were also apparent on the 

transcriptomic level. Firstly, we noticed that map 1 double negative DCs (DN-DC) populated the 

same position within the UMAP topology as cDC2s in map 2. Furthermore, mapping the index 

sorting data of the map 1 ncMono population (transcriptionally defined in map 1 as Mono2 and 4, 

Table S1) revealed two separate cell clusters within the transcriptomic UMAP topology, indicating 5 

considerable cell-type heterogeneity within this population as defined by map 1. Interestingly one 

of the Mono2/4 clusters overlapped with the ncMono (magenta) cluster, whereas another cluster 

was mapped as HLA-DR- within the flow cytometry gating strategy used in map 2 (Figure S1). 

Moreover, we noticed that map 1 AS-DCs (red) and map 2 pre-DCs (red) occupied the same 

topological space, indicating considerable transcriptomic similarity despite different markers were 10 

used for their flow cytometric identification (Figure 2C). Taken together, the combined phenotypic 

and transcriptomic analysis presented here strongly argues for the need to further assess cellular 

identities within the myeloid cell compartment.  

 

Axl+Siglec6+ DCs phenotypically and transcriptionally overlap with human pre-DC  15 

To clarify the relationships and cellular identities of the different DC subsets and their progenitors 

in maps 1 and 2, we mapped individual protein and transcript information (Figure S3) and the 

transcriptomic signatures of DC subsets and their progenitors derived from map 2 (pDC, cDC1, 

cDC2, pre-DC) onto our scRNA-seq myeloid-cell-space data set (Figure 3A). By overlaying index 

sorting information and the initial unbiased clustering data, we revealed that specific map 2 pDC, 20 

cDC1 or pre-DC signatures were enriched in dense discrete cell clusters within the UMAP 

topology of the myeloid-cell-space scRNA-seq data, whereas the cDC2 signature was more 

broadly enriched within both the clusters associated with cDC2 and monocytes (Figure 2A, 3A) 

suggesting a close relationship between these two cell types which is studied in further detail by 

Dutertre et al.. 25 
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To integrate the identified DC subsets in map 1 and map 2 with each other, we computed a UMAP 

topology from the original map 1 single-cell transcriptome data comprising the DC cell space and 

overlaid the signatures of the map 2 DC subsets (pDC, cDC1, cDC2, pre-DC) (Figure 3B). This 

analysis showed that within the original map 1 transcriptomic data, map 2 pDC signatures mapped 

to the same topological space as DC6, thus identifying DC6 as bona fide pDCs. Similarly map 2 5 

cDC1 transcriptomic signatures were enriched within map 1 DC1, whereas map 2 cDC2 

signatures enriched in map 1 DC2, DC3 and DC4. Furthermore, mapping map 2 pre-DC 

signatures revealed the highest enrichment of this signature in map 1 DC5 (AS-DC), indicating 

the highest level of similarity between map 1 DC5 and map 2 pre-DC. 

To validate these correlations between the DC types defined in maps 1 and 2, we investigated 10 

the enrichment of map 1-defined DC1-6 signatures within our new scRNA-seq consensus data 

(Figure 3C). Visualizing the scaled signature enrichment scores for DC1 showed correspondence 

between maps 1 and 2 cDC1 locations and between map 1 DC2, DC3 and map 2 cDC2 locations, 

respectively. Similarly, map 1 DC6 and map 2 pDC localized to the same topological space within 

our new scRNA sequencing data. The highest enrichment of map 2 pre-DC signatures (Figure 15 

3A) and map 1 DC5 signatures (Figure 3C) was seen in cluster seven of our new scRNA-seq 

consensus data (Figure 2A), again indicating substantial transcriptomic overlap between map 1 

DC5 and map 2 pre-DC. 

We then investigated the potential differences in cell-type identity between map 1 AS-DCs (DC5) 

and map 2 pre-DCs (Figure 2C). We separately projected cells identified as pre-DCs by unbiased 20 

clustering of the flow cytometric data (cluster 26 in Figure 1C), map 1 DC5, map 2 pre-DC gated 

cells and cluster seven from our new scRNA-seq consensus data, which displayed precursor 

gene expression patterns, onto the novel combined flow cytometric-based UMAP topology 

(Figure 3D). This approach showed that FACS cluster 26 represented the intersection of map 1 

DC5, map 2 pre-DCs and scRNA-seq cluster 7 and best reflected these progenitor cells at the 25 

protein level in an unbiased fashion. Certain differences between map 1 AS-DCs and map 2 pre-
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DCs, however, became visible. Specifically, map 1 DC5 located only to a very discrete part of the 

topology and reached into a contaminating cDC2 space. FACS cluster 26 and map 2 pre-DCs 

occupied almost identical topological locations within the UMAP space, further illustrating the 

difficulties in discriminating pre-DCs and pDCs (Figure 3D, 1C-D, 2A). Interestingly, both map 1 

AS-DCs and map 2 pre-DCs were best defined by FACS cluster 26, indicating that these cells 5 

represent the same cellular identity at both the surface marker and transcriptomic level. This 

finding was further supported when enriching transcriptomic signatures of map 2 pre-DCs across 

the spectrum of identified DC subtypes in map 1, resulting in a high enrichment of map 2-derived 

pre-DC signature genes within map 1 AS-DCs (Figure 3E). This enrichment was further 

reinforced by comparing hallmark genes within the cell populations defined in the legacy maps 1 10 

and 2 (Figure 3F). In conclusion, these analyses demonstrate that map 1 DC5 and map 2 pre-

DCs represent, to a large extent, the same pre-DC identities and therefore, might be best named 

according to already published guidelines (Guilliams et al., 2014; Schlitzer and Ginhoux, 2014) 

as pre-DCs. 

 15 

DN-DCs/DC4 resemble CD16+ non-classical monocytes 

We were unable to locate the novel map 1 DC4 (DN-DC) subtype within a distinct cluster in our 

new scRNA-seq consensus data (Figure 2C). According to map 1 DC4 derived from a DN-DC 

subtype, being negative for the classical cDC subset markers CD1c, CD141 and CADM1 and 

pDC marker CD123 but positive for CD11c (Villani et al., 2017). To understand the role and 20 

placement of DC4 within the entire monocyte and DC space of both maps, we recapitulated the 

gating strategy originally used to delineate DC4 by map 1 (Figure 4A). Using the additional 

information from the newly included surface markers, such as CD16, we revealed that the large 

majority of DC4/DN-DCs (96.6%) were CD16+ mononuclear cells (Figure 4A). We subsequently 

mapped the CD16- and CD16+ fraction of the DC4/DN-DC compartment of map 1 onto our 25 

integrated flow cytometry-derived and scRNA-seq-derived UMAP topologies (Figure 4B). 
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Mapping onto the flow cytometry and scRNA-seq-derived UMAP topologies revealed that the 

CD16+ DC4/DN-DC compartment was associated with the location traditionally occupied by 

ncMono and the CD16- fraction mapped into the topological region of the UMAP associated with 

pre-DCs and cDCs on both the phenotypic and transcriptomic level. To address the ambiguous 

DN-DC identity, we cross-referenced map 1 DN-DCs towards map 2 ncMono and the flow 5 

cytometry-based Phenograph cluster 15 (Figure 4C). Here we detected map 1 CD16+ DN-DCs 

almost exclusively within the map 2 ncMono cluster and primarily contained within Phenograph 

cluster 15 (Figure 1C) derived from the combined flow cytometry panel, expressing ncMono-

associated surface markers. 

To extrapolate these surface phenotypic findings to the transcriptome level and understand the 10 

transcriptomic identity of map 1 DN-DCs, we correlated all transcriptomes of map 1 DC subsets 

with the map 1 monocyte subsets (mono 1-4) (Figure 4D). Pearson correlation revealed the 

highest level of correlation between DC4 and the map 1 mono 2 subset, with intermediate 

correlation with the mono 1, 3 and 4 subsets, and poor correlation with any map 1-identified DC 

subset (Figure 4D). Furthermore, enrichment of a mono 2-specific gene signature across all map 15 

1-identified mononuclear cell identities showed enrichment in all monocyte-associated cell entities 

and DC4, further supporting that DC4 might be ncMono (Figure 4E, S4A-C). Additionally, we 

used map 1-derived DC4 signature genes and mapped them onto our scRNA-seq consensus 

data of the blood myeloid cell space (Figure 4F). This analysis showed a strong enrichment of 

DC4 signature genes within the cluster identified by unbiased cluster detection as having ncMono 20 

identity. 

To reconcile DC4 with the existing spectrum of monocyte and DC subsets, we examined DC4 

expression of SLAN — a marker for inflammation-associated ncMono (Hansel et al., 2011) using 

a new marker panel (Figure 4G) and UMAP-based visualization (Figure 4H). DC4 showed the 

expected SLAN expression levels for ncMono. To validate this finding and to exclude that DC4 25 

are another subset within peripheral blood mononuclear cells (PMBCs) that we might not have 
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accounted for, we performed dimensionality reduction of the flow cytometric analysis in Figure 

4G (Figure 4H) and mapped both CD16- and CD16+ DN-DCs onto the UMAP topology (Figure 

4I). Again, we found that DC4 associated with two different positions within this UMAP topology. 

Putting these two separate clusters within the DC4/DN-DC in the context of a conventional gating 

strategy of PBMC-derived mononuclear cells revealed a co-association between (i) classically 5 

defined ncMono and DC4/DN-DC that are CD16+ and constitute the already known ncMono 

fraction (Schakel et al., 1999), and (ii) a CD16- pre-DC contamination associating with the areas 

within the UMAP defined as cDC2 and pre-DC by traditional investigator-informed gating (Figure 

4I). Taken together, our new consensus map clarifies that map 1 DC4 is comprised of CD16+ 

ncMono and pre-DCs, rather than a phenotypically defined novel cell type within the human 10 

mononuclear myeloid cell compartment (Calzetti et al., 2018). 

 

Backmapping identifies mono 4 as bona fide CD56dim NK cells 

Next, we wanted to use our new consensus map to define the monocyte population structure. In 

particular, we aimed to consolidate the newly defined map 1 subtype structure with the four 15 

monocyte subtypes (mono 1-4) (Villani et al., 2017) in light of the traditional view of only three 

phenotypically different monocyte subsets based on CD14 and CD16 expression (Ziegler-

Heitbrock et al., 2010). As a first step, we recapitulated the map 1 flow cytometry sorting strategy 

and overlaid the cellular contents of this gate onto our novel flow cytometry-derived UMAP 

topology (Figure 5A). Within the CD16+ compartment of map 1, two different monocyte 20 

populations (mono 2 and 4) were defined by phenotypical and transcriptional differences. 

Mapping the CD16+CD14- compartment of map 1 onto the new UMAP topology indeed showed 

that it is composed of two transcriptionally different cellular entities, one mapping into the HLA-

DR- space of the flow cytometry-derived UMAP topology and one mapping to the location 

occupied by ncMono in an investigator-driven gating approach and named mono 2 in map 1 25 

(Figure 1E, 2A, S1). 
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To understand the identity of the cells mapping to the HLA-DR- cell space, we utilized the 

transcriptomic marker genes derived from map 1 mono 4, as mono 2 mapped to the ncMono 

space. We then interrogated a publicly available database of population-based proteome 

fingerprints (Rieckmann et al., 2017) from a variety of blood-borne immune cells for the mono 4 

signature (Figure 5B). Here, we found high expression of mono 4-related proteins in NK cell 5 

subsets, including a CD56dim/neg subset (NKdim). To validate these findings, we generated a 

transcriptomic NK-cell signature based on previous knowledge (Costanzo et al., 2018; Liberzon 

et al., 2011; Rieckmann et al., 2017; Subramanian et al., 2005) and calculated the signature 

enrichment scores across all monocyte subsets defined in map 1 (Figure 5C-D). This calculation 

revealed that the mono 4 subset was significantly enriched in NK-cell-specific transcripts. 10 

Subsequently, we integrated the original monocyte map 1 single-cell transcriptome data (mono 

1-4) into an external dataset of 33,148 PBMCs (short: 33k-PBMC dataset, 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k) and 

performed dimensionality reduction of the corresponding monocyte and NK-cell-related cellular 

spaces using UMAP (Figure 5E-F). We termed this approach ‘backmapping’, where we utilized 15 

an unrelated single-cell data set derived from the same tissue origin. In a next step, we annotated 

the integrated map 1 specific monocyte subsets within the combined UMAP topology according 

to the terminology used in map 1, to understand where these cells would associate in the context 

of an unbiased assessment of the complete mononuclear PBMC fraction. This analysis showed 

that the mono 1-3 subsets mapped to the topological UMAP space initially assigned to monocytes, 20 

whereas mono 4 mapped to the topological UMAP space of NK cells, further supporting the 

hypothesis that mono 4 are NK cells. Overlaying of the NK cell signature onto the original map 1 

also revealed strong enrichment in the mono 4 cluster (Figure 5G).  

We then modified our combined flow cytometry panel to specifically verify NK cell contamination 

within the map 1-defined flow cytometry CD16+ monocyte cell space (Figure 5H, S5A). 25 

Specifically, we removed CD56 from the lineage to track the expression of this NK-cell marker 
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separately and added the granulocyte marker CD66b, the lymphoid marker CD7 and the NK cell 

markers NKp46, CD160 and CD107 (Figure S5A). We then examined CD16 and CD56 

expression within the CD14- compartment of the PBMC CD45+Lin- fraction and generated a 

reference UMAP topology of the CD45+Lin- cell space (Figure 5H, S5A-B). This analysis identified 

seven cell populations based on CD16 and CD56 expression levels (Figure S5B-C). Two 5 

populations (turquoise and pink) displayed high CD16 and SSC and no (light blue) to mid (pink) 

CD56 expression, with granulocytic forward and sideward scatter characteristics identifying them 

as granulocyte contaminants (Figure S5C). 

Next, we focused our analysis on the CD16+ compartment of this cell space (green and purple 

gates). Two populations were identified as CD16+, in which one CD16+CD56+ population (purple) 10 

matched the surface phenotype of classical CD56+ NK-cells that are normally dismissed by 

including CD56 in the lineage panel of map 1. To determine the identity and heterogeneity of the 

remaining CD16+CD56- cell compartment (green, orange, yellow, grey gates, Figure S5B), we 

mapped this compartment back to a UMAP topology of either the Lin-CD16+, Lin-CD56-CD16+ or 

the Lin-CD56-CD16+HLA-DR+ cell space, to represent a stepwise cleanup of non-monocytic 15 

CD16+ cells (Figure 5H). This analysis showed that if the totality of the Lin-CD16+ compartment 

is mapped back onto the Lin- UMAP topology (Figure 5H, pink overlay, most left panel), NK cells 

(CD56+), monocytes (CD56-CD16+/-) and granulocyte fractions (CD16high) are included in this 

cellular compartment. When excluding CD56 in the UMAP topology, classical CD56+ NK cells are 

excluded; however, within the CD16+ gate a CD56- population became apparent that mapped to 20 

the UMAP space previously associated with classical NK cells (Figure 5H, pink overlay, mid 

panel). Another CD16+CD56- population mapped to the topological UMAP space occupied by 

ncMono, as defined by their high expression of HLA-DR and CD11c and no expression of classical 

NK-cell markers, including CD56, CD7, CD160 and Nkp46 (Figure S5C). We next excluded HLA-

DR- cells and mapped the remaining CD16+ cells onto the UMAP topology. This step revealed 25 

that including a positive HLA-DR threshold successfully removed mono 4 / NK cells (pink overlay, 
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Figure 5H, right panel). This subclass of NK cells is not easily distinguishable from monocytes, 

as also evidenced by their very similar morphology (Figure S5D). Taken together, we identified 

the map 1 mono 4 subset as HLA-DR-CD16+CD56- NK-cells, intruding into the CD16+CD14-Lin-

CD45+ map 1 monocyte sorting gate that was performed without HLA-DR gating stratification 

according to map 1. Collectively, within our new consensus map, we define the borders between 5 

the myeloid compartment and the NK cell compartment and re-stablish a structure of three 

monocyte subsets in peripheral blood.  

 

PBMC derived monocyte subsets form a transcriptional continuum during homeostasis 

De novo clustering (Figure 2A, 6A) did not reveal intMono as a transcriptionally distinct cluster; 10 

rather, they were identified as forming part of clusters eight and nine (Figure 6A, 6B, S6A, S6B). 

Pseudo-time analysis of the scRNA-seq data, however, placed intMono in between cMono and 

ncMono (Figure 6C). The visualization of genes changing over the pseudo-time depicts a gradual 

decrease in expression of cMono marker genes (CD14, etc) and an increase of ncMono marker 

gene expression (CD) along the trajectory (Figure 6D). This was further corroborated by plotting 15 

CD14 and CD16 mRNA expression of single cells within the three monocyte subsets (Figure 6E). 

Therefore, these analyses clearly corroborate an existing transcriptional continuum of monocytes 

within human PBMC and reveal the transcriptional identity of intMono during homeostasis. 

 

 20 

Backmapping integrates legacy datasets and enhances cell type resolution creating novel 

consensus maps 

To evaluate our findings and put our new consensus map into the framework of data-driven maps 

of the complete human PMBC compartment, we combined our new scRNA-seq data with three 

independent PBMC datasets and performed backmapping and cell type prediction (Figure 7, S7). 25 

This approach permitted a detailed annotation of previously undefined cellular identities within the 
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external PBMC-derived datasets. De novo analysis of a combined data set (Figure S7A) 

consisting of a publicly available dataset of approximately 33.000 cells (33k-PBMC) and our new 

scRNA-seq dataset revealed NK, CD8+, CD4+ and B cells alongside megakaryocytes, CD16+ and 

CD14+ monocytes, cDC1, DC2, DC3, pDCs and CD34+ progenitor cells (Figure 7A). When using 

the new scRNA-seq-based consensus map as a reference to predict cell annotations in the data-5 

driven PBMC dataset by a nearest neighbor classifier (Kiselev et al., 2018), we obtained similar 

but not identical results (Figure 7B, left panel). We therefore applied the backmapping approach 

by projecting the cluster identities of our new scRNA-seq dataset onto the UMAP dimensionality 

reduction of the combined dataset.  Backmapping revealed commonalities between all cell types 

of the myeloid cell compartment including previously unidentified pre-DCs, DC2 and DC3 clusters 10 

within the 33-K PBMC dataset (Figure 7B) as well as NK cells, CD34+ and plasma cells derived 

from both datasets (Figure S7B). We next applied the above outlined approach including 

backmapping to a larger data set provided by the Human Cell Atlas (HCA) with approximately 

255.000 cells (Figure 7C, 7D, 7E). In a first step, we categorized all major subtypes (Figure 7C) 

and predicted cells associated with the mono 4 population of map 1 and found that all cells fell 15 

within the NK cell cluster (Figure S7C, S7D), further supporting that cells of the mono 4-subset 

are bona fide NK cells. Next, we reduced the datasets to clusters that were part of the myeloid 

cell compartment (Figure 7D, S7C) and again performed the backmapping and prediction 

approaches. Because of the solely cluster-driven reduction of the dataset, we observed some 

lymphoid cells in the reduced dataset, which might derive from misclustered cells (Figure 7D). 20 

Nevertheless, this approach allowed us to identify smaller myeloid cell populations within the 

larger dataset (Figure 7E). Finally, we used a third PBMC dataset based on a targeted scRNA-

seq approach, which also allowed us to better define subsets in the unbiased dataset (Figure 

S7E, S7F, S7G) making this overall approach independent of single-cell technology and dataset 

size. 25 
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Collectively, we demonstrate the value of an iterative, rule-based, data-informed approach based 

on previously existing maps to integrate additional information layers into new consensus maps. 

Backmapping to whole data-driven tissue maps and providing a connection to previous 

knowledge are important steps to derive the next iterations of maps that finally serve as the entry 

point for further iterations.  5 

 

 

Discussion 

Consensus maps are an important instrument within an iterative process of producing cellular 

maps of all organs and tissues in different species, including humans. As within other scientific 10 

disciplines, such as geography or astronomy, the maps generated in the life sciences require 

much iteration to allow for the integration of new content. By combining single-cell transcriptomics 

with index sorting, and multi-color flow cytometry and applying simple but very effective 

computational strategies, such as ‘backmapping’ to cellular maps generated in a purely data-

driven fashion, we have generated a new consensus map of the myeloid cell compartment 15 

including monocytes, DCs and their precursors (Figure 7, S7). Because we propose to include 

prior knowledge in the respective scientific field into the algorithm for generating such consensus 

maps, we define the overall strategy as being ‘data-informed’, combining prior knowledge and 

data-driven technologies including single-cell omics.  

The two previous maps based on single-cell RNA-seq used in our approach as well as a 20 

phenotypic analysis of the human blood and tissue myeloid cells were developed to improve our 

understanding of myeloid cell heterogeneity (Alcantara-Hernandez et al., 2017; See et al., 2017; 

Villani et al., 2017). Yet there were shortcomings to these maps, which we have overcome in our 

new consensus map. First, map 2 only identified one cDC2 subset, whereas map 1 and our new 

consensus map defined two subsets. Furthermore, we established a proximity between DC3 and 25 

cMono, which has been further dissected by Dutertre et al. (Dutertre et al., 2019), thus already 
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providing the next iteration of this particular subspace in the myeloid cell map of human peripheral 

blood. Second, map 1 identified a novel monocyte subset named mono 4. Using backmapping, 

we reveal that mono 4 are CD56dim NK cells and are not related to monocytes, supporting the 

current definition of three major monocyte subsets (classical CD14+, non-classical CD16+, and 

intermediate double positive monocytes), consisting of two transcriptionally distinct entities and a 5 

continuum of intermediate, double-positive monocytes between them (Figure 6). This finding is 

further supported by the changes in expression of the CD14 and CD16 cell-surface markers and 

results derived from genetic mouse models showing that Ly6chi monocytes (murine equivalents 

of classical monocytes) can transition into Ly6clow monocytes (murine equivalents of non-classical 

monocytes) with only a few cells detectable in the transitory state (Mildner et al., 2017). Third, we 10 

could clearly define AS-DCs (DC5) from map 1 as pre-DCs within the consensus map, consistent 

with their functional definition in map 2 (See et al., 2017). Together with the complete overlap of 

the three differentiated DC populations between the original maps, these results reassure the 

validity of single-cell transcriptomic analyses.  

We define backmapping as an integral component of the strategy to define novel consensus 15 

maps. Here, we use cellular maps derived from tissues – in this case peripheral blood - without 

prior experimental enrichment of certain cell types. This relatively simple computational approach 

allows to unequivocally overlay cell subsets from different maps onto a common cell space. As 

exemplified here for the monocyte / NK cell space, we postulate that potential conflicts for new 

cell types in other organs can be resolved in a similar fashion. 20 

Collectively, we report on a new consensus map of the myeloid cell compartment in human blood, 

which was built on two previously introduced maps (See et al., 2017; Villani et al., 2017). The 

myeloid cell compartment is of particular interest due to its intrinsic heterogeneity, its involvement 

in many if not all major tissues and organs, and its prime involvement in almost any major disease 

(Bassler et al., 2019). It is therefore of utmost importance to establish a precise baseline during 25 

homeostasis as provided here by our new consensus map, to allow for a better understanding of 
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any deviations of the myeloid cell compartment during stress, pathophysiological conditions and 

diseases. Furthermore, the dynamic processes of myelopoiesis during homeostasis but even 

more so during inflammatory conditions requires precise mapping of cellular identities as a 

prerequisite to identify targets for precise therapeutic intervention (Dick et al., 2019; Schultze, 

2019; Schultze et al., 2019). Furthermore, the necessity to continuously iterate the process of 5 

improving the consensus maps is nicely illustrated by the accompanying manuscript by Dutertre 

et al. (Dutertre et al., 2019), further defining the cellular relationship of DC2/3 and monocytes. As 

many institutions world-wide continue to generate cellular maps, consensus maps will become an 

increasingly important instrument to reconcile and integrate information. Our approach provides 

a guide to integrate and value legacy datasets together with newly generated single-cell omics 10 

data and build new iterations of consensus maps applicable to any other tissue. These maps can 

also be adapted to include further technological advancements. With the continuation of technical 

advances, we anticipate that consensus map building will become a major task within our efforts 

to create complete cellular atlases for the major species.  

 15 
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Figure Legends 

Figure 1. Generating a new consensus map of the mononuclear myeloid cell compartment 

in human peripheral blood. (A) Workflow to generate a new consensus map of the human 

mononuclear myeloid cell compartment. (B) Visualization of ~1.4 mio. live CD45+Lin(CD3, CD19, 5 

CD20, CD56)- cells after UMAP dimensionality reduction of the flow cytometry panel introduced 

in A (left panel), mononuclear myeloid cell compartment (second panel), overlay of index-sorted 

cells (third panel), UMAP topology of the index-sorted cells based on the single-cell transcriptome 

data (most right panel, see also Figure 2). Grey areas in the third panel represent the CD45+Lin- 

cell space. (C) Phenograph clustering of the flow cytometry data projected onto the FACS-based 10 

UMAP topology. (D) Color-coded visualization of markers used to define the mononuclear myeloid 

cell compartment. (E) Overlay of the cell gating strategies according to maps 1 (Villani et al., 2017) 

and 2 (See et al., 2017). See also Figure S1. 

 

Figure 2. Index-sorted scRNA-seq dataset of the myeloid cell compartment in human 15 

blood. (A) De novo clustering of the 2,509 index-sorted cells onto the scRNA-based UMAP 

topology (left panel) and cluster projection onto the FACS-based UMAP topology (right panel, 

grey background: complete CD45+Lin- cell space). (B) Heatmap of 10 most significant marker 

genes for each of the 11 clusters identified and visualized in Figure 2A. (C) Overlay of cell types 

defined for maps 1 (left panel) and 2 (right panel) onto the scRNA-based UMAP topology of the 20 

new consensus map. 
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Figure 3. Harmonizing the DC space within the mononuclear myeloid cell compartment. 

(A) Overlay of signatures derived from map 2 DCs onto the new scRNA-seq-based UMAP 

topology consensus map. (B) UMAP topology based on map 1 single-cell transcriptomes of map 

1 DC1-6 cells and overlay of signatures derived from map 2 DCs. (C) Overlay of signatures 

derived from map 1 DC1-6 cells onto the new scRNA-seq-based UMAP topology consensus map. 5 

(D) UMAP topology based on flow cytometry data derived from ~1.4 mio live CD45+Lin(CD3, 

CD19, CD20, CD56)- cells (see Figure 1A) and separate overlays of cluster 26 defined by 

Phenograph (see Figure 1C), map 1 DC5, map 2 pre-DC, and scRNA-seq-based cluster seven 

representing transcriptomic progenitor DC signatures (see Figure 2A). (E) Enrichment of map 2 

defined pDC, cDC1, cDC2 and pre-DC signatures in the map 1 DC1-6 subsets. (F) Heatmap of 10 

the average expression values of hallmark genes defined for map 1 DC1-6 subsets in both map 

1 DC1-6 as well as map 2 DCs subsets. 

 

Figure 4. Integrating newly defined DN-DCs into the new consensus space of the myeloid 

cell compartment. (A) Recapitulation of the map 1 gating strategy to identify a putative DC4 15 

subset within CD11c+ DN-DCs and visualization of CD16 expression. (B) CD16+ and CD16- DN-

DC mapping (as in A) onto the flow cytometry derived UMAP topology (left panel, see Figure 1B, 

3A) and scRNA-seq data (right panel). (C) Relationship analysis of CD16+ or CD16- DC-DN cells 

(see Figure 3A) and their corresponding annotation according to map 2, FACS Phenograph 

clustering and scRNA-seq data. (D) Pearson correlation matrix of all cell types defined in map 1. 20 

(E) Signature enrichment analysis of map 1 mono 2 signature in all other map 1-defined cell types. 

(F) Enrichment of the DC4 (DN-DC) signature visualized on the scRNA-seq data derived UMAP 

topology. (G) Gating strategy to define SLAN expression on the cell population defined as DN-

DC based on CD16 expression. (H) Visualization of DN-DC cells in the complete CD45+Lin-HLA-

DR+ UMAP topology (grey). (I) Mapping of the phenotypic information of cell populations onto the 25 

new UMAP topology. 
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Figure 5. Relationship of the previously introduced fourth monocyte subset (mono 4) in 

context of the new consensus map of the myeloid cell compartment. (A) Mapping flow 

cytometric- and scRNA-seq-defined map 1 mono 2 and 4 onto the flow cytometry based UMAP 

topology (see Figure 1B, E, 2A). (B) Heatmap of the protein expression pattern for mono 4 

signatures genes derived from mass-spectrometric data of FACS-sorted population as described 5 

by Rieckmann et al. (Rieckmann et al., 2017). (C) Enrichment of a NK cell signature in map 1 

mono 1-4 subsets. (D) Heatmap of NK cell hallmark genes within the map 1 defined cell subsets. 

(E) Backmapping by overlaying map 1 mono 1-4 cells onto the 33k-PBMC scRNA-seq dataset. 

Only monocytes and NK cells are shown. (F) Visualization of the percentage of cells that are 

aligned with either monocytes or NK cells derived from the unrelated 33k-PBMC scRNA-seq 10 

dataset. (G) UMAP topology of scRNA-seq data derived from the map1 DC and mono subsets 

(left panel) and overlay of the NK cell signature onto this UMAP topology. (H) Top panels: classical 

gating strategy and stepwise cleanup of CD45+ cells based on lineage (CD3/CD19/CD20) marker 

expression, then based on CD56 expression followed by HLA-DR expression, left to right. Middle 

panels: UMAP topology derived from the respective cell populations marked within the 15 

corresponding top panels. Mono/DC by HLA-DR expression, green; NK by CD7 expression, 

violet; and granulocytes by CCR3 or CD66b expression, orange. Bottom panels: Effect of cleanup 

as shown in top panels on the CD16+ CD14- cell population. 

 

Figure 6. Focused analysis of the monocyte compartment (A) Overlay of the the cluster 8 20 

and 9 defined by de novo clustering of the scRNA-Seq data onto the scRNA-UMAP topology of 

the new consensus map. (B) Bar chart showing the original FACS annotation of cells derived from 

cluster 8 or 9 following the sorting scheme of map 1 or map 2, respectively. (C) Trajectory analysis 

of the monocyte subset containing cells from cluster 8 and 9. Monocle-based UMAP 

dimensionality reduction overlaid with cell estimated pseudo-time (left panel) and the FACS 25 
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annotations derived from map 1 (center panel) or map 2 (right panel). (D) Transcriptional changes 

of genes that are considered as differentially expressed along the inferred trajectory. Heatmap 

shows scaled gene expression changing over the pseudo-time (x-axis, early to late). Selected 

marker genes of cMono and ncMono are highlighted. (E) Expression of CD14 and CD16 in relation 

to the estimated pseudo-time of cells. Cells are colored by their FACS annotation from map 1 or 5 

map 2. 

 

Figure 7. Backmapping strategy combining the new scRNA-seq data and different PBMC 

datasets. (A) Annotation of cell types within the combined dataset (33-K PBMC and new scRNA-

seq dataset). (B) Graphs in the left panel predict cell labels from the 33-K PBMC dataset by using 10 

the transcriptome information from the new scRNA-seq dataset. Graphs in the right panel show 

the visualization of the cells from the new scRNA-seq dataset after integration with the 33-k PBMC 

dataset. (C) UMAP dimensionality reduction of around 260.000 human cord blood cells and cell 

annotation based on markers obtained from the unrelated 33k-PBMC dataset (Figure 7A-B). (D) 

Reduction of the HCA dataset to cells, which were found within clusters associated with 15 

monocytes or dendritic cells. (E) Graphs within the left panel show the prediction scores 

calculated for the respective cell types of the new scRNA-seq data. Graphs in the right panel 

show the visualization of the cells from the new scRNA-seq data after “anchoring” together with 

the HCA dataset. 

 20 
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Supplementary Figure Legends 

Figure S1. Classical flow cytometry gating strategies applied for the generation of the 

legacy maps 1 and 2. (A) Common part of the flow cytometry gating strategy applied for the 

generation of the legacy maps 1 and 2. (B) Map 1-specific part of the flow cytometry gating 

strategy with the resulting cell subsets (colored boxes). (C) Map 2-specific part of the flow 5 

cytometry gating strategy with the resulting cell subsets (colored boxes). Some cell types shown 

here are based on a priori definitions (e.g. monocytes) and were not part of the transcriptionally 

defined cells in the legacy map 2.  

 

Figure S2. Quality control criteria for the scRNA-seq data established for the new 10 

consensus map of the myeloid cell compartment. (A) Visualization of the number of reads for 

all 8 384-well plates analyzed within this project. Violin plot of the number of genes observed to 

be present within all cells measured. (B) Visualization of the number of reads (left panel), the 

number of genes (middle panel), and the percent of aligned reads (right panel) as a violin plot for 

each of the 8 384-well plates individually. (C) Comparison and visualization of cell distribution 15 

across all identified clusters in relationship to the 8 384-well plates utilized within this experiment. 

(D) Mapping of single-cell information concerning the total number of reads, unaligned reads, 

number of genes, and number of transcripts onto the UMAP topology of the final consensus map 

based on scRNA-seq data. (E) Cluster relationship analysis (F) Distribution of cells within each of 

the identified cluster in relation to the 8 384-well plates used in this study. 20 

 

Figure S3. Overlay of phenotypic and transcriptomic data onto the new consensus map of 

the myeloid cell compartment. (A) Visualization of cell surface markers detected by index 

sorting on the 2,509 cells which were used to define the UMAP topology of the index-sorted cells 

based on the single cell transcriptome data. (B) Visualization of gene-level expression of the 25 
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respective cell surface markers within the 2.509 cells which were used to define the UMAP 

topology of the index-sorted cells based on the single cell transcriptome data. 

 

Figure S4. Defining the relationship of map 1 DN-DC within the new consensus map of the 

myeloid cell compartment. (A) Enrichment of map 1 mono 1,3,4 signatures in map 1 mono1-4 5 

and DC1-6 subsets. (B) Violin plots for normalized gene expression of FCGR3A, TCF7L2, RHOC, 

MTSS1 in map 1 mono1-4 and DC1-6 subsets. (C) Overlay and visualization of map 1 mono 1-4 

subset gene signature enrichment on the UMAP topology based on scRNA-seq of 2.509 index-

sorted cells (see Figure 2A).  

 10 

Figure S5. The relationship between the myeloid and the NK cell compartment in human 

peripheral blood. (A) Schematic representation of the development of a new focus strategy (panel 

adjustment) to define the relationship between the myeloid and the NK cell compartment in human 

peripheral blood. (B) Classical gating strategy to determine those cell populations that need to be 

placed either into the myeloid or the NK cell compartment followed by the development and 15 

visualization of the UMAP topology of both cellular compartments. (C) Color-coded visualization 

of markers used to define the mononuclear myeloid and NK cell compartments on the flow 

cytometry data-based UMAP topology. (D) Cytospins of cells sorted according to the gating 

strategy depicted in Figure S5B. 

 20 

Figure S6. Focused analysis of the monocyte compartment (A) UMAP dimensionality 

reduction calculated on the focused subset of cluster 8 and 9 containing the monocyte 

populations. Overlaid are the cell annotations from the clustering and (B) the FACS annotation 

derived from Map 1 (upper panel) and Map 2 (lower panel).  
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Figure S7. Integration of the new scRNA-seq dataset with three individual PBMC datasets. 

(A) UMAP dimensionality reduction based on the combined dataset of the new mononuclear 

myeloid scRNA-seq data and the external 33k-PBMC dataset.  Cells originating from the new 

scRNA-seq data are colored black and cells from the external PBMC dataset are colored grey. 

(B) Overlay of cell annotations of cells from NK cells, CD34+, plasma cells, CD4+ T cells, CD8+ T 5 

cells, and B cells from the 33-k PBMC dataset. (C) Clustering of the HCA dataset. (D) Prediction 

and backmapping of NK cells from the novel scRNA-seq dataset onto the complete HCA dataset. 

Left UMAP graph shows the computed prediction score for NK cells of the HCA dataset using the 

new scRNA-seq consensus map information. Red color indicates highest prediction score.  Right 

UMAP graph shows the location of NK cells from the new scRNA-seq data within the combined 10 

dataset. (E) UMAP dimensionality reduction based on the combined dataset of the new 

mononuclear myeloid scRNA-seq data-based consensus map and a PBMC dataset processed 

by the BD Rhapsody technology. Cells originating from the new scRNA-seq consensus map are 

colored black and cells from the Rhapsody PBMC dataset are colored grey. (F) Overlay of cell 

annotations of the DC subsets from the new scRNA-seq data-based consensus map on the 15 

combined UMAP. (G) Overlay of cell annotations of NK cells and monocyte subsets identified in 

the new scRNA-seq data-based consensus map (top panel) and the respective cell annotations 

of NK cells, CD14+ and CD16+ monocytes from the Rhapsody PBMC dataset. (H) Overlay of cell 

annotations of CD4+ T cells, CD8+ T cells and B cells from the external PBMC dataset. 

 20 
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Table legends 

Tables S1:  

Cell types classified in the respective studies 

 

Data Table S1:  5 

Data Table S1.csv. Gene signatures of the 11 clusters identified in our new scRNA-seq 

consensus map 

 

Data Table S2:  

Data Table S2.xlsx. Gene signatures derived from map 2  10 
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Cell types identified in Map1 (12 ) Cell types in Map2 (13 ) Cluster identified in the consensus Map Cell types in the consensus Map

DC1 cDC1 Cluster 6 cDC1

DC2 cDC2 Cluster 10 DC2

DC3 cDC2 Cluster 11 DC3

DC4 - - ncMonos, Cd34

DC5 (AS-DC) preDC Cluster 7 preDC

DC6 pDC Cluster 5 pDC

Mono1 - Cluster 9 CD14 Mono

Mono2/ DC4 - Cluster 8 CD16 mono

Mono3 - - intMonos

Mono4 - Cluster 1 NK cells

- Plasma cells

- Undef.

Table S1. Cell types classified in the respective studies
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EXPERIMENTAL PROCEDURE 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact jschultze@uni-bonn.de 5 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Peripheral blood mononuclear cells (PBMC) 

Buffy coats or venipuncture blood were obtained from healthy donors (University hospital Bonn, 

local ethics vote 203/09) after written consent was given according to the Declaration of Helsinki. 10 

Peripheral blood mononuclear cells (PBMC) were isolated by Pancoll (PAN-Biotech) density 

centrifugation from buffy coats.  

 

METHOD DETAILS 

Flow cytometric analysis 15 

Whole blood or buffy coat was diluted in room temperature PBS (1:2 or 1:5, respectively) and 

layered onto polysuccrose solution (Pancoll; PAN Biotech, Germany) for the enrichment of 

mononuclear cells by density gradient centrifugation according to the manufacturer's instructions. 

After three times washing in cold PBS, cells were resuspended in FACS-buffer (0.5% BSA, 2 mM 

EDTA in PBS) for surface marker staining (Table S2). Human FcR-Block (Miltenyi Biotec, 20 

Germany) was included to reduce unspecific staining. After 1 h incubation at 4º in the dark, cells 

were washed and optionally stained for additional 20 min with 1:400 anti-biotin BV421 in FACS-

buffer for CADM1-biotin secondary staining. Washed cells were incubated with L/D Marker 

DRAQ7 (BioLegend, USA) for 5 min at room temperature before acquisition and sorting of the 

cells using a BD FACSARIA III (BD BioSciences, USA). Single antibody staining was prepared in 25 
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parallel to assess fluorescence spillover. Fluorescence-minus-one (FMO) controls were prepared 

in addition for critical markers to set sorting gates. Post-sort data analysis was performed using 

FlowJo software (FlowJo, Tree Star Inc., USA). The packages "flowCore" and "flowWorkspace" 

were used to import raw data into R. For dimensionality reduction with UMAP fluorescence 

parameters were transformed with logicleTransform (Becht et al., 2018). 5 

 

Library preparation and sequencing using Smart-Seq2 

Our new index-sorted single cell transcriptome dataset was based on the Smart-Seq2 protocol 

(Picelli et al., 2013). For single cell sorting into 384-well plates and to ensure sufficient cell 

numbers and balanced representation from each main myeloid subset, loose sorting gates have 10 

been set covering the entire space of alive CD45+Lin (CD3, CD19, CD20, CD56)-CD14+, CD16+ 

or CD14-CD16-HLA-DR+ cells. To achieve this, the alive CD45+Lin- compartment was divided to 

sort 24 cells per plate each of CD14+CD16-, CD14-CD16+, CD14+CD16+, HLA-DR+CADM1+, HLA-

DR+CADM-AXL+SIGLEC6+, HLA-DR+CADM1-AXL-SIGLEC6-CD123+CD11c-, HLA-DR+CADM1-

AXL-SIGLEC6-CD123-CD11c- or HLA-DR+CADM-AXL-SIGLEC6-CD123-CD11c- cells. Cells were 15 

FACS sorted into eight 384-well plates containing 2.3µl lysis buffer (Guanidine Hydrochloride (50 

mM), dNTPs (17.4mM), 2.2µM SMART dT30VN primer) retaining protein expression information 

for every well to subsequently match with the respective single-cell transcriptomic data in an index 

sorting approach. Plates were sealed and stored at -80°C until further processing. Smart-Seq2 

libraries were finally generated on a Tecan Freedom EVO and Nanodrop II (BioNex) system as 20 

previously described (Picelli et al., 2013). 

In short, lysed cells were incubated at 95°C for 3 min. 2.7 µl RT mix containing  SuperScript II 

buffer (Invitrogen), 9.3mM DTT, 370mM Betaine, 15mM MgCl2, 9.3U SuperScript II RT 

(Invitrogen), 1.85U recombinant RNase Inhibitor (Takara), 1.85 µM template-switching oligo was 

aliquoted to each lysed cell using a Nanodrop II liquid handling system (BioNex) and incubating 25 
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at 42°C for 90 min and at 70°C for 15min. 7.5µl preamplification mix containing KAPA HiFi 

HotStart ReadyMix and 2µM ISPCR primers was added to each well and full-length cDNA was 

amplified for 16 cycles. cDNA was purified with 1X Agencourt AMPure XP beads (Beckman 

Coulter) and eluted in 14µl nuclease-free water. Concentration and cDNA size were checked for 

select representative wells using a High Sensitivity DNA5000 assay for the Tapestation 4200 5 

(Agilent). cDNA was diluted to an average of 200pg/µl and 100pg cDNA from each cell was 

tagmented by adding 1µl TD and 0.5µl ATM from a Nextera XT DNA Library Preparation Kit 

(Illumina) to 0.5µl diluted cDNA in each well of a fresh 384-well plate. The tagmentation reaction 

was incubated at 55°C for 8min before removing the Tn5 from the DNA by adding 0.5µl NT buffer 

per well. 1µl well-specific indexing primer mix from Nextera XT Index Kit v2 Sets A-D and 1.5µl 10 

NPM was added to each well and the tagmented cDNA was amplified for 14 cycles according to 

manufacturer’s specifications. PCR products from all wells were pooled and purified with 1X 

Agencourt AMPure XP beads (Beckman Coulter) according to manufacturer’s protocol. The 

fragment size distribution was determined using a High Sensitivity DNA5000 assay for the 

Tapestation 4200 (Agilent) and library concentration was determined using a Qubit dsDNA HS 15 

assay (Thermo Fischer). Libraries were clustered at 1.4pM concentration using High Output v2 

chemistry and sequenced on a NextSeq500 system SR 75bp with 2*8bp index reads. Single-cell 

data was demultiplexed using bcl2fastq2 v2.20. 

 

Proteomic Data  20 

To validate the gene signature associated with the mono 4 subset as described by Villani et al. 

on the protein level, we extracted copy numbers from key signature proteins from the publicly 

accessible proteomic resource (http://www.immprot.org/) described by Rieckmann et al. 

containing quantitative high-resolution mass-spectrometry data derived from FACS-enriched 
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human primary blood cells (Rieckmann et al., 2017). Copy numbers were visualized as a heatmap 

using the pheatmap package (v1.0.10) in R. 

 

Cytospin preparation and May-Grünwald/Giemsa staining 

Cell populations of interest were sorted into 1.5 ml reaction tubes containing 200 µl FACS-buffer 5 

using a BD FACSARIA III (BD BioSciences, USA). The cell suspension was centrifuged onto 

SuperFrost Plus glass slides (Thermo Scientific, USA) at 1000 rpm for 5 min using a Universal 

16A slide centrifuge (Andreas Hettich GmbH & Co.KG, Germany). Slides were air-dried overnight 

and subsequently stained with May-Grünwald/Giesma solution (Carl Roth GmbH, Germany) 

according to the manufacturer’s guidelines. Images were acquired with a BZ-9000 (Keyence, 10 

Japan). 

 

Targeted sequencing of human PBMC with the BD Rhapsody™ system 

Whole blood was diluted in room temperature PBS (1:2) and layered onto polysuccrose solution 

(Pancoll; PAN Biotech, Germany) for the enrichment of mononuclear cells by density gradient 15 

centrifugation according to the manufacturer's instructions. Granulocytes were isolated using 

erythrocyte lysis buffer (ELB, 0.15M NH4Cl, 0.01M KHCO3, 0.1mM EDTA, pH 7.4 at ca. 2-8°C) 

and mononuclear cells and granulocytes are mixed in a ratio of 2:1. After washing in cold PBS 

10.000 cells were loaded onto a BD Rhapsody™ cartridge and processed according to 

manufacturer’s instructions for targeted single-cell RNA-seq using the predesigned Immune 20 

Response Panel (Human). The library was clustered at 1.75pM on a NextSeq500 system 

(Illumina) to generate ~40.000 paired end (2*75bp) reads per cell using High Output v2 chemistry. 

Sequenced single-cell data was demultiplexed using bcl2fastq2 v2.20. 
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Single-cell RNA-Seq raw data processing  

Following sequencing by the Smart-Seq2 method (Picelli et al., 2013), RNA-Seq libraries were 

subjected to initial quality control using FASTQC (http://www.bioinformatics.babraham.ac.uk 

/projects/fastqc, v0.11.7) implemented in a scRNA pre-processing pipeline (docker image and 

scripts available at https://hub.docker.com/r/pwlb/rna-seq-pipeline-base/, v0.1.1; 5 

https://bitbucket.org/limes_bonn/bulk-rna-kallisto-qc/src/master/, v0.2.1). Next, raw reads were 

pseudoaligned to the human transcriptome (GRCh38, Gencode v27 primary assembly) using 

Kallisto with default settings (v0.44.0) (Bray et al., 2016). Based on the pseudoalignment 

estimated by Kallisto, transcript levels were quantified as transcripts per million reads (TPM). TPM 

counts were imported into R using tximport (Soneson et al., 2015) and transcript information was 10 

summarized on gene-level. We imported the resulting dataset of 43,612 features across 3,072 

samples and performed the downstream analysis using the R package Seurat (v.2.3.4, (Butler et 

al., 2018)). 

For processing of the single-cell data obtained by the BD Rhapsody™ system, we run the 

recommended BD Rhapsody™ Analysis Pipeline of Seven Bridges Genomics 15 

(sbgenomics.com/bdgenomics) with standard settings. The resulting count table that was 

accounted for UMI sequencing and amplification errors, was comprised of 488 features across 

7,873 cells. Normalization and further downstream analysis were conducted in R using Seurat 

(v.2.3.4, (Butler et al., 2018)). 

 20 

Quality control  

Concerning our new index-sorted and Smart-Seq2-based single cell transcriptome dataset the 

following quality control scheme using various meta information was performed to obtain high-

quality transcriptome data: 1) We removed genes that are detected in less than 6 cells (0.2 

percent of cells), 2) and removed cells that have less than 1,000 uniquely detected genes. Next, 25 
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we filtered further outlier cells with 3) less than 50,000 unique reads, 4) less than 30% 

pseudoalignment of reads to the transcriptome, 5) a lower rate of endogenous-to-mitochondrial 

count rate of 2, 6). This quality control scheme results in a dataset of 29,240 genes across 2,509 

cells.  

 5 

Normalization of single-cell transcriptomic data 

To reduce the influence of variation of sequencing depth among samples we applied a log-

normalization to the data and scaled each cells gene expression profile to a total count of 10,000. 

In addition, we corrected for other technical effects including differences in the fraction of 

mitochondrial counts as well of unique detected genes using a linear regression model for these 10 

factors. The residuals of this regression are scaled and centered and used for further downstream 

analysis. 

 

Dimensionality reduction and clustering 

In order to reduce the dimensionality of the dataset, we selected highly variable genes as genes 15 

with an average expression of at least 0.0125 and a scaled dispersion of at least 1. This resulted 

in a total of 2491 genes, which were used as input for a principal component (PC) analysis. We 

visualized the standard deviation of the first 20 PCs and identified the first 10 principal 

components with a minimum standard deviation of at least 2 as significant PCs. Next, we utilized 

Uniform Manifold Approximation and Projection (UMAP) to further reduce the data into a two-20 

dimensional representation (Becht et al., 2018). To test for cellular heterogeneity, we used a 

shared nearest neighbor (SNN)-graph based clustering algorithm implemented in the Seurat 

package. We used the first 10 principal components for constructing the SNN-graph and set the 

resolution to 1. Monocle was used to infer differentiation trajectories by using the Louvain 

clustering method, umap dimensionality reduction and the SimplePPT algorithm (Qiu et al., 2017)  25 
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Additional analysis 

Differentially expressed (DE) genes were defined using a Wilcoxon-based test for differential gene 

expression built in the Seurat pipeline (v.2.3.4) (Data Table S1). Unless otherwise stated genes 

have been considered as differentially expressed, if the adjusted p-value is smaller than 0.1. 

Top10 DE genes have been visualized using heatmap of hierarchical clustered gene expression 5 

profiles. DE genes have been verified with current literature. 

  

Gene signature enrichment analysis 

Single-cell RNA-Seq data is inherently sparse and a high-dropout rate is limiting the use of single 

marker genes to identify cell populations. In order to unambiguously identify the different cell 10 

types, we have used an updated version of a gene signature score analysis described earlier 

(Mass et al., 2016). A cell population is always characterized by genes that are significantly 

upregulated in comparison to other populations and genes that show significantly lower 

expression in comparison to the background populations. In order to increase the power, we use 

both up and downregulated gene signatures for the calculation of the gene expression scores. A 15 

cell i may be described by a gene expression profile A[i,j] as the combination of gene expression 

values of all genes j. To calculate a signature score for a cell i, we first calculate the scaled 

average expression of all genes jup from an upregulated list and of all genes jdown from a 

downregulated gene list. The difference between these two is scaled and visualized. The 

visualization is performed as color-coded overlay on the UMAP dimensionality reduction or as 20 

density distribution.  

 

Data analysis of external single-cell RNA-Seq datasets 

To assess the single-cell RNA-Seq data of human dendritic cells and monocytes publicly available 

under the Gene Expression Omnibus accession number GSE94820, we applied the processing 25 
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steps previously described (Villani et al., 2017). We focused on the “discovery” dataset and 

performed downstream analysis with the R software package Seurat 

(https://github.com/satijalab/seurat; http://satijalab. org/seurat/, v.2.3.4). Uniform manifold 

approximation (UMAP) algorithm integrated into the Seurat package was used as a dimensionality 

reduction method with standard settings. To define cell-type specific gene signatures for all cell 5 

populations, a Wilcoxon-based test was used. We considered genes as differentially expressed 

with an adjusted p-value of smaller 0.1 and a log2-fold change of higher than 1 or lower than -1, 

respectively. A global comparison of all cell types was performed by calculating the Pearson 

Correlation coefficients between the average expression profiles of all clusters. Scaled gene 

expression profiles have been used. 10 

In order to have a comprehensive single-cell RNA-Seq dataset of human PBMCs, we downloaded 

a dataset containing transcriptome data of 33,148 PBMCs from a healthy donor (short 33k-PBMC 

dataset), which is publicly available on the 10x Genomics webpage 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc33k). Next, 

we followed the general data analysis scheme described at the Seurat package webpage 15 

(https://satijalab.org/seurat/get_started_v1_4.html). Briefly, we used the filtered cell-gene matrix 

provided by 10x Genomics and imported the data and performed the analysis with the Seurat 

package. We filtered genes that are expressed in less than three cells and removed cells from 

the data set that have gene counts for less than 500 genes or for more than 2500 genes. In 

addition, we removed cells that have more than 5% mitochondrial counts. This resulted in a 20 

dataset of 17943 genes across 28.823 cells. Next, a log-normalization was applied, and highly 

variable genes were identified by applying a dispersion cutoff of 0.8 (2.281 variable genes). To 

account for technical variability in the dataset, a linear model was used to regress out the effects 

of the number of measured molecules per cell, the fraction of mitochondrial counts as well as the 

effect introduced by processing the cells in different sets. The first 25 principal components were 25 
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used for a graph-based clustering approach. NK cell specific genes were identified by a Wilcoxon-

based test for differential gene expression (adj. p-value < smaller 0.1, |log2-fold change| > 1). 

 

Backmapping 

In order to compare the transcriptome profiles of monocytes isolated from the dataset derived 5 

from GSE94820 (Villani et al., 2017) with the comprehensive PBMC dataset, we used the 

previously introduced canonical correlation alignment to combine datasets (Butler et al., 2018). 

First, we isolated all monocyte populations from Villani et al. and all monocyte and NK cell 

populations of the 10x Genomics dataset. Both datasets are normalized, scaled and a linear 

regression was performed to account for differences in the number of detected genes. In both 10 

datasets, a feature selection was performed to identify genes with high dispersion. We determined 

the mutual highly variable genes as the overlap of the 4.000 genes from each dataset with highest 

dispersion. Next, we combined both datasets by performing the canonical correlation alignment, 

which resulted in an integrated dataset comprising 41.620 genes across 8.846 cells. UMAP 

dimensionality reduction was applied to the dataset using the first 8 canonical correlation 15 

alignment components and 40 neighbor points as well as a minimal distance of 0.01. 

In addition, we downloaded from the data portal (https://preview.data.humancellatlas.org/) of the 

HCA consortium a single-cell dataset comprised of immune cells from human cord blood samples. 

When analyzing this dataset, we observed a donor dependent batch effect and thus decided to 

use an “anchoring” approach to harmonize the different batches of the single-cell dataset and to 20 

integrate the new consensus map. To this end, we took advantage of the R package Seurat (v. 

3.0.0.9000). After filtering genes that were expressed in less than 10 cells of the HCA dataset 

with a cell being kept when 500 genes were detected, we ended up with a large dataset that 

contained 21,409 genes expressed across 254,937 cells. Next, we merged this Seurat object with 

the Seurat object of the new consensus map. We treated the different batches of the HCA dataset 25 

as individual datasets and normalized them and the expression table of the consensus map 
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separately. For each dataset, we calculated the top 2,000 most variable genes based on a 

variance stabilizing transformation followed by data integration by leaving the standard settings 

unaltered. The integrated dataset was visualized using UMAP based on the top 30 computed 

PCs. For cell type prediction of the cord blood cells based on the calculated clusters of the new 

consensus map, we followed the recommendations of the Seurat vignette for the 5 

‘FindTransferAnchors’ and the ‘TransferData’ functions. First, we repeated the steps above but 

without integration of the new consensus map data. We used the resulting integrated HCA dataset 

as query dataset and the new consensus map as reference dataset. Because of the large cell 

number of the HCA dataset, we projected the PCA from the query dataset onto the reference 

dataset. The remaining standard settings were left unaltered. Finally, we transferred the cluster 10 

information of the new consensus map onto the query dataset. The resulting prediction scores 

were visualized as color code onto the UMAP graph by coloring the highest prediction score red.  

Clustering of the dataset was done based on the construction of an SNN-graph by setting the 

resolution to 0.6. Cluster 5, 7, 9 and 13 were found to be associated with monocytes or DCs and 

thus the HCA dataset was filtered on these cells followed by repetition of the abovementioned 15 

steps. 

 

Population-based gene signatures of pDC, pre-DC, cDC1 and cDC2 

Specific gene signatures of up or downregulated in the comparison of human DC subsets have 

been identified as described earlier using the publicly available dataset (See et al., 2017) (GEO 20 

accession number: GSE80171). Gene signatures are available in supplementary Data Table S2. 

 

Data visualization 

In general, the ggplot2 package was used to generate figures (Wickham, 2016).   

 25 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analysis was performed using the R programming language. Statistical tests used are 

described in the figure legend or methods part, respectively. Differentially expressed genes have 

been identified using a Wilcoxon-based test for differential gene expression. If not otherwise 

stated a significance level of 0.1 was applied to adjusted p-values (Benjamini Hochberg). 5 

 

DATA AND SOFTWARE AVAILABILITY 

Processed and raw scRNA-seq datasets are available through the Gene Expression Omnibus 

(GSE126422). Additional Data tables are provided in form of EXCEL Tables (Data S1, S2) 

Data Table S1: Data Table S1.csv 10 

Gene signatures of the 11 clusters identified in our new scRNA-seq consensus map 

 

Data Table S2: Data Table S2.xlsx 

Gene signatures derived from map 2 

 15 

ADDITIONAL RESOURCES 

In addition, we provide an interactive web tool to visualize the single-cell RNA-Seq data together 

with the flow cytometry data at https://paguen.shinyapps.io/DC_MONO/ (external database S1).  
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