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SUMMARY  
 
Mendelian Randomization (MR) is an important causal inference method primarily used in 
biomedical research. This work applies contemporary techniques in machine learning to 
improve the robustness and power of traditional MR tools. By denoising and combining 
candidate genetic variants through techniques from unsupervised probabilistic graphical 
models, an influential latent instrumental variable is constructed for causal effect estimation. We  
present results on identifying relationships between biomarkers and the occurrence of coronary 
artery disease using individual-level real-world data from UK-BioBank via the proposed method. 
The approach, termed Instrumental Variable sYnthesis (IVY) is proposed as a complement to 
current methods, and is able to improve results based on allele scoring, particularly at moderate 
sample sizes. 
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1. INTRODUCTION 
 
The goal of causal inference is to estimate the true causal relationship between a risk factor and 
an outcome from observational data in the absence of a controlled experiment (Judea Pearl, 
Madelyn Glymour, 2016). Using genetic data derived from large-scale genome-wide association 
studies (GWAS), Mendelian Randomization (MR) is an important method for causal inference in 
biomedical research. Causal relationships in observational data may be obscured by 
confounders, which are intermediate phenomena associated with both the risk factor and the 
outcome. Under the assumption that genetic variant A (inherited randomly from a parent) is 
associated with a risk factor, but does not confer risk directly for the outcome of interest or a 
confounder, the presence of confounders in observational data can be overcome by using 
genetic variant A in MR to infer the true causal relationship. A genetic variant conferring risk for 
a trait meeting these criteria is called an instrumental variable (IV)—a variable which influences 
a risk factor independent of the confounders, and subsequently influences the outcome only 
through the risk factor (Angrist, Imbens, & Rubin, 1996). Mendelian Randomization is among 
the most popular applications of instrumental variable methodology to real-world problems in 
biomedical science (Palmer et al., 2012). 
 
The development of MR methods has been centered around publicly available genetic data. In 
the era of GWAS most studies release summary statistics, which report 𝛽-coefficients relating 
individual genetic variants to one or more related outcomes or traits. Using summary statistics, 
there is a proliferation of methods to test the underlying assumptions of independence of 
genetic variants from confounders and outcomes, and to perform MR (Burgess, Small, & 
Thompson, 2017). The sample size required for well-powered MR is proportional to the amount 
of variance explained (r2) by both the genetic instrumental variable on the risk factor, and the 
strength of the relationship of between the risk factor to the outcome itself. With an r2 typically 
less than 0.01 derived from GWAS summary statistics (Burgess & Thompson, 2015), achieving 
sufficient power to confidently estimate the presence or absence of a causal relationship 
requires a large sample size; indeed, for most traits and outcomes, a minimum study size of 
tens of thousands of individuals is often required (Burgess, 2014; Freeman, Cowling, & Mary 
Schooling, 2013). The application of MR has therefore been limited to phenotypes with 
sufficiently large genetic datasets which happen to be available to the research community.  
 
In this work, we apply contemporary techniques in machine learning to improve the power and 
sample-efficiency of MR by using individual-level genetic data. Specifically, we focus upon the 
identification and representation of instrumental variables by learning a valid and influential 
latent instrumental variable from candidate genetic variants. Our framework leverages recent 
work on learning and combining noisy labels (Natarajan, Dhillon, Ravikumar, & Tewari, 2018); 
(Ratner, De Sa, Wu, Selsam, & Ré, 2016; Ratner et al., 2018), with the goal of more accurate 
prediction and representation of population-level variance using individual-level data. Our 
approach, termed Instrumental Variable sYnthesis (IVY), is complementary to existing causal 
effect estimators, whether classical (the Wald estimator (Wald, 1940), the two-stage least 
squares approach (Angrist et al., 1996) ), robust (Bowden, Davey Smith, Haycock, & Burgess, 
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2016; Kang, Zhang, Cai, & Small, 2016), or modern (deep learning-based techniques (Hartford, 
Lewis, Leyton-Brown, & Taddy, 2017); IVY seeks to produce instrumental variables that can be 
used by downstream standard instrumental variable methodology for estimating causal-effects.  
 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/657775doi: bioRxiv preprint 

https://doi.org/10.1101/657775
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. METHOD 
 
Allele scores (Burgess, Dudbridge, & Thompson, 2016; Burgess & Thompson, 2013) are an 
effective approach to summarize the effects of multiple single nucleotide polymorphisms (SNPs) 
on polygenic traits such as lipids level and blood pressure. Given a set of SNPs "𝑤$, 𝑤&, … ,𝑤() 
as IVs, where 𝑤* ∈ {−1,1} represents the absence or presence of an effective allele, allele score 
methods find a weight for each SNP and use the weighted combination of 𝑊* ’s as the score 
value to describe the genetic contribution to the risk factor.  
 
Conventionally, when allele scores are derived from the data, the risk factor 𝑋 is used as a 
supervision signal to guide the derivation so that much of the variance in the risk factor can be 
explained by the allele score, increasing the power of the allele score. However, in 
observational studies, the value of the risk factor is confounded by many measured or 
unmeasured confounders. Therefore, when there are SNPs contributing to the allele score that 
are correlated with the confounder, we call such SNPs confounded SNPs, and they are invalid 
instrumental variables that should not be used to derive the allele score. Since the 
independence of a SNP from all potential confounders cannot be verified, conventional allele 
scoring approaches are particularly vulnerable to confounded SNPs.  An allele score 
significantly corrupted by confounded SNPs could result in misleading estimate of causality. 

2.1. Assumptions and Problem Formulation 
 
In contrast to existing allele score approaches, IVY derives an allele score by circumventing the 
direct utilization of the risk factor as a supervision signal. Instead, IVY assumes that 𝑤* ’s are 
noisy realizations of a hidden binary instrumental variable 𝑧 ∈ {−1,1}  that summarizes the 
genetic contribution to the observed risk factor. For each individual, IVY views that the status of 
𝑧 is reflected from the corresponding SNPs 𝑤* ’s. When 𝑤* = 1, 𝑤*  will consider that it is more 
likely that 𝑧 = 1 and the genetic contribution to the observed risk factor is high. On the other 
hand, when 𝑤* = −1, 𝑤*  will consider it is more likely that 𝑧 = −1 and the genetic contribution to 
the observed risk factor is low.  
 
The role of the hidden 𝑧 modeled by IVY is comparable to the role of an allele score. This is 
because both 𝑧 and the allele score can be viewed as summary variables of genetic risks. In 
this sense, deriving a hidden 𝑧 in IVY from SNPs for summarization is similar in sprit to the goal 
of allele score methods. Furthermore, an allele score is also assumed to be a valid IV for the 
causal relationship in question. Since 𝑧 is solely derived from the SNPs, when all the SNPs are 
valid IVs, the resultant 𝑧 will also be a valid IV. This is also the case for allele scores. 
 
 
IVY seeks to model the joint distribution of 𝑤$,𝑤&,⋯ ,𝑤(, and 𝑧, without having access to 𝑧. Here 
we discuss the scenario where we assume that the SNPs are conditionally independent given 𝑧. 
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That is 𝑤* ⊥ 𝑤*6 ∣ 𝑧	, for all 𝑗, 𝑗: ∈ {1,2, … , 𝑝}, and 𝑗 ≠ 𝑗:. More specifically, for some parameters 
𝜃 = (𝜃$@, 𝜃&@,⋯ , 𝜃(@, 𝜃@), the joint distribution follows: 

𝑃C𝑤$,𝑤&,⋯ ,𝑤(, 𝑧D =
1

𝑍(𝜃)
	expI𝜃@𝑧 +K𝜃*@𝑤*𝑧

(

*L$

M, 

where 𝑍(𝜃) is the partition function that ensures the appropriate normalization of the distribution. 
 
It should be noted that the conditional independence assumption made in IVY is similar to the 
conditional independence assumption of 𝑤* ’s given a binary risk factor in an ordinary allele 
score, as pointed out by (Sebastiani, Solovieff, & Sun, 2012). In practice, SNPs that are not in 
physical linkage are desirable for allele score methods. In IVY, we also made use of such SNPs. 
We refer interested readers to (Ratner et al., 2018) for a discussion of scenarios such as 
handling dependencies among 𝑤* ’s. In this case, Ivy generalizes beyond the standard 
conditional independence assumption.  Table 1 summarizes the comparison of modeling 
assumptions among Ivy, UAS, and WAS. 
 
Our parameterization of the joint distribution also implies the symmetry property that 
𝑃C𝑤* = 1	|	𝑧 = 1D = 𝑃C𝑤* = −1	|	𝑧 = −1D, for all 𝑗 ∈ {1,2, … , 𝑝}. In practice, such an assumption 
can be roughly satisfied by excluding SNPs of low minor allele frequency. 

2.2. Learning and Scoring 
We now describe the learning algorithm of IVY and  the method that IVY uses to synthesize an 
IV.  Denote a random variable 𝑎* = 𝑤*𝑧. IVY first seeks to estimate 𝔼𝑎* without having access to 
𝑧. Intuitively, 𝑎* represents the agreement or disagreement between 𝑤*	 and 𝑧. Therefore, the 
higher 𝔼𝑎* the more accurate is 𝑤* in predicting 𝑧. Since 𝑤*′𝑠 are usually SNPs that associate 
with the risk factor and contribute to the overall genetic risk described by 𝑧, it is reasonable to 
view that 𝑤*	 can predict 𝑧	 better than random guessing. This means 𝔼𝑎* > 0.  One can further 

show that 𝑎* and 𝑎*′are independent, i.e. 𝑎* ⊥ 𝑎*′ for all 𝑗, 𝑗′ ∈ {1,2, … , 𝑝}, where 𝑗 ≠ 𝑗′. This 

means that Cov Y𝑎*, 𝑎*′Z = 0. Furthermore, 

0 = Cov Y𝑎*, 𝑎*′Z = 𝔼𝑎*𝑎*′ − 𝔼𝑎*𝔼𝑎*′ = 𝔼𝑤*𝑤*′ − 𝔼𝑎*𝔼𝑎*′ ⇒ 𝔼𝑤*𝑤*′ = 𝔼𝑎*𝔼𝑎*′ , 

where we have used the fact that 𝔼𝑎*𝑎*′ = 	𝔼C𝑤*𝑧D Y𝑤*′𝑧Z = 𝔼𝑤*𝑤*′𝑧
& = 𝔼𝑤*𝑤*′ 	.  

 
Note that 𝔼𝑤*𝑤*′ are the entries from the second moment matrix from 𝑊* ’s, which are 

computable from 𝑤* ’s alone. By assuming that all 𝑤* ’s can predict 𝑧 better than random 
guessing, that is, PC𝑤* = 𝑧D > PC𝑤* ≠ 𝑧D and hence 

𝔼𝑎* = 	𝕀C𝑎* = 1D ⋅ PC𝑤* = 𝑧D − 𝕀C𝑎* = −1D ⋅ PC𝑤* ≠ 𝑧D > 0. 
We can estimate log 𝔼𝑎* ’s by solving the following least square problem: 

𝔼𝑤*𝑤*′ = 𝔼𝑎*𝔼𝑎*′ ⇒ log𝔼𝑤*𝑤*′ = log𝔼𝑎* + log𝔼𝑎*′ 
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for all 𝑗, 𝑗′ ∈ {1,2, … , 𝑝}, and 𝑗 ≠ 𝑗′, where we have used the fact that 𝔼𝑎* > 0 in order to take 
its logarithm. 
 
Upon the estimation of log 𝔼𝑎*, Ivy uses the following formula to compute the allele score: 

𝑠 =K
𝔼𝑎* + 1

2
𝑤*

(

*L$

, 

where 𝔼abc$
&

 can be interpreted as the accuracy of 𝑤* in predicting the value of z. In this way, 
IVY yields a synthesized IV that upweights SNPs that are more predictive of 𝑧 while 
downweighting those that are less predictive. This is distinctive from conventional allele scores 
that tend to upweight SNPs that are more predictive of 𝑥. 

2.3. IVY in Practice 
In practical Mendelian randomization settings, 𝑤e* ∈ {0,1,2}, which represents the number of 
effective alleles. We use log 𝔼𝑤e*𝑤e*6 ’s in lieu of log 𝔼𝑤*𝑤*6 ’s as data to construct the least square 
estimate of log 𝔼𝑎* and use the estimated accuracies to weight  𝑤e* as an allele score. 
 
In this way, IVY offers a data-driven solution to compute weights for SNPs to construct an allele 
score without the direct utilization of the confounded risk factor 𝑥. Since 𝑧 is an IV, by definition, 
it is independent of a given confounder 𝑐. Even if we have a set of  confounded SNPs 
"𝑣$, 𝑣&, … , 𝑣h) that can be viewed as independent and noisy realizations of 𝑐, these confounded 
SNPs will be independent of "𝑤$, 𝑤&, … ,𝑤(), which is a set of valid instrumental variables that 
can be viewed as independent and noisy realizations of 𝑧. Therefore, when 𝑞 ≪ 𝑝, the allele 
scores learned will not be compromised much by the confounded SNPs as most SNPs that are 
valid aim to learn the concept of 𝑧, and will down weight the few invalid SNPs that try to learn 
the concept 𝑐 independent of 𝑧.  Notably, these confounded SNPs can be highly dependent on 
the confounder, which in turn can highly influence the risk factor. Therefore, using those 
confounded SNPs can be very predictive of the risk factor and hence conventional allele scores 
will assign large weights on these invalid SNPs without scrutinizing their identities, leading to 
potentially erroneous causal estimates.  
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3. Experimental procedures using real-world data 
 
We used data from the UK Biobank (UKB) as the basis of comparing IVY to standard methods 
for instrumental variable synthesis in MR. Our main experimental procedure is similar to 2-
sample MR where candidate instrumental variables are derived from the summary statistics 
from separate external GWAS, and the causal effect estimate performed in a second 
independent GWAS. The European population of the UK Biobank (𝑛 ≈ 330,000) was randomly 
divided into two equally sized groups of individuals for 1. Re-estimation of weights for an 
instrumental variable and 2. Estimation of the causal effect (  
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Figure 1). This procedure seeks to maintain the methodological rigor of 2-sample MR, whereby 
the cohort from which the instrumental variable weights are re-estimated and the cohort for 
estimation of the causal effect remain completely separate: only the re-weighted instrumental 
variable crosses between the two groups. While there is a proliferation of methods for 
estimating causal effects in MR, for simplicity we consider only causal estimates derived from a 
Wald-ratio as discussed above. We report the median and the median absolute deviation (MAD) 
associated with the Wald ratio estimate. The median and MAD are generated by repeating the 
aforementioned random division of the dataset as well as the instrumental variable reweighting 
and causal effect estimation procedure 1000 times. 
 
To better understand the performance of IVY relative to standard methods we conducted sub-
sampling experiments. Random sub-samples were taken from the instrumental variable 
estimation set to evaluate the robustness of the re-weighted instrument for capturing a 
proportion of the variance. Random sub-samples were taken from the causal effect estimation 
set to evaluate the relative power of the re-weighted instrument for correct and accurate 
estimation of a causal effect or absence thereof. 
 
To test the performance of IVY on empirically collected data, we analyzed the causal 
relationship between systolic blood pressure (SBP) and coronary artery disease (CAD) using 
Mendelian randomization. CAD is a well characterized outcome with well-described causal and 
non-causal relationships, and previous Mendelian randomization analyses have provided strong 
support for a well-established causal relationship between blood pressure and risk of CAD 
(Bowden et al., 2016). Briefly, twenty-six candidate variants were selected from external GWAS 
for systolic blood pressure (International Consortium for Blood Pressure Genome-Wide 
Association Studies et al., 2011; Lieb et al., 2013; Wain et al., 2011), to be used as instruments 
for risk factors (instrumental variables related to SBP). Those 26 uncorrelated variants showed 
genetic associations with SBP in over 200,000 individuals at genome-wide significance (p<5e-8) 
(International Consortium for Blood Pressure Genome-Wide Association Studies et al., 2011) 
and have been further validated on data from the CARDIoGRAM consortium (Lieb et al., 2013).  
 
To rule out the possibility that IVY can fit artifactual causal associations (false positives), a 
negative control experiment was conducted. Mendelian randomization procedures using 
weighted and unweighted allele scores were compared to IVY on the task of determining the 
causal relationship between SBP and an unrelated outcome, where no causal effects are 
expected. Specifically, CAD was replaced by a genetically unrelated phenotype (as determined 
by LD score regression (Bulik-Sullivan et al., 2015)) and the presumably null causal relationship 
between SBP and this phenotype was tested using the 26 SBP variants to build instrumental 
variables. Bone disease was chosen as negative control outcome based on the analysis of 
hundreds of phenotypes through the LD Hub (Zheng et al., 2017) (LD score regression 
correlation with CAD: r=0.0009, S.E.=0.151, p=0.995). 
 
We further investigate the utility of IVY in correctly detecting non-causal correlations.  As an 
example, we consider the strong observational association between high density lipoprotein 
(HDL) and CAD. In observational data, increased HDL appears to be protective from CAD, and 
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the strong negative association between HDL and CAD would suggest that raising HDL level 
can have protective effect against the occurrence of CAD. However, such an association is 
spurious, as demonstrated by various clinical trials and Mendelian randomization studies 
(Schwartz et al., 2012; Voight et al., 2012). We seek to replicate the dismissal of this spurious 
correlation via IVY by making use of the 19 SNPs reported in (Holmes et al., 2015) to 
synthesize the instrumental variables.  
 
Finally, we study the performance of IVY under relatively agnostic criteria for inclusion of SNPs 
reported in large-scale GWAS. We examine the estimates of causal effect provided by IVY 
across a range of associated variants from the GWAS catalog. To this end, we consider the 
SBPàCAD relationship, where we make use of 238 SNPs associated with SBP as reported in 
the GWAS Catalog (Buniello et al., 2019), a knowledge base that curate SNPs associated with 
various biomarkers from published GWAS. We use subsets of increasing number of SNPs 
among the 238 SNPs to synthesize instrumental variables and notice the decreases in the 
uncertainty of the resultant causal effect estimates. We further consider ascertaining the 
relationships between four serum biomarkers (total cholesterol, C-reactive protein, triglycerides, 
and vitamin-D) and CAD using SNPs associated with these four risk factors respectively. Given 
a study population of European ancestry in the UK Biobank, only SNPs arising from studies 
which included individuals of European ancestry were included. 
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4. RESULTS 
 
We sought to compare the performance of IVY in identifying causal relationships between SBP 
and CAD with the performance of standard methods UAS and WAS using different number of 
samples in the instrumental variable estimation set and causal effect estimation set (Figure 2). 
As a negative control, we estimate a putatively non-existent causal relationship between SBP 
and bone density disorder (BDS, Figure 3). We investigate whether IVY can dismiss spurious 
correlation using the confounded spurious relationship between high-density lipoprotein (HDL) 
and CAD as an example (Figure 3). We then show that IVY can deliver better powered analysis 
by incorporating more associated SNPs to the risk factor in Table 2. Finally, we conduct causal 
effect estimation using un-curated SNPs for the relationships between four serum biomarker 
and CAD (Table 3). 

4.1. Comparing IVY with UAS and WAS for known causal 
relationships 
We report our comparison between IVY and allele scores for known causal relationships using 
SBPàCAD as an example. IVY faithfully recapitulates known causal relationships between SBP 
and CAD similar to both UAS and WAS. When the size of the instrumental variable estimation 
dataset is varied, causal estimates from the WAS become less precise (indicated by larger 
MAD) with less data but are invariant when using instrumental variables derived from IVY and 
UAS of different sizes. This is reflected in (Figure 2b), where as the sample size decreases, the 
MAD of WAS increases substantially, while the MAD of UAS and IVY maintains relatively stable. 
Functionally, so long as the alleles are present in the instrumental variable estimation set no re-
weighting of the UAS occurs. When the size of the CE dataset is varied, IVY provides accurate 
estimates of the SBPàCAD causal relationship similar in magnitude to the WAS which are 
lower than the UAS (Figure 2d). The causal estimates from all 3 methods remain stable to 
below 10^4 individuals but precision decreases with sample sizes below 10^5 individuals 
(Figure 2b and Figure 2c). 
 
To demonstrate that IVY does not capture artificial causal associations (false positives), we 
consider the relationship between SBP and BDS as an example. IVY correctly detects an 
absence of causality between blood pressure and bone disorders similar to UAS and WAS. The 
correct estimate for an absence of effect becomes more precise in larger instrumental variable 
estimation cohort sizes using all three methods (Figure 3). Overall, IVY may provide a method 
of estimating instrumental variables which provides a more stable estimate of CE than WAS 
when smaller sample sizes are provided for re-weighting the instrumental variable and is more 
robust to inflation of the CE than the UAS. IVY retains the both the advantages of UAS and 
WAS while dispensing with the disadvantages.  
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4.2.  Comparing IVY with UAS and WAS for a known non-causal 
relationship 
To test the performance of IVY in a known non-causal relationship we examined HDL and CAD. 
In our experimental protocol, IVY can successfully detect the true absence of a causal 
relationship between HDL and CAD (Figure 4) despite the strong observational association. 
Although UAS and WAS can also detect the absence of a causal relationship, IVY yields a 
median causal effect that is closer to the null  and when ablating either the IV estimation set 
(Figure 4a) or the causal effect estimation set  (Figure 4c). The variance of the estimate as 
indicated by the MAD (Figure 4b and  Figure 4d) of the three methods are similar to that of the 
previously described causal and non-causal relationships (Figures 2,3) where the WAS appears 
to be most sensitive to the sample size of the IV estimation set while the three methods display 
similar characteristics when varying the size of the causal effect estimation set. 

4.3. Incorporating more associated SNPs may yield better powered 
study with IVY 
When performing two-sample MR, a greater number of SNPs independently associated with risk 
factor increases the proportion of variance explained and improves the certainty of the causal 
estimate. In order to examine the performance of IVY utilizing different subsets of SNPs, we 
measured the causal estimate and median absolute deviation (MAD) across subsets of SNPs of 
decreasing size for a single trait. We consider the SBPàCAD relationship, for which we find 
238 SNPs associated with SBP in the GWAS catalog as candidate instrumental variables. We 
carry out causal effect estimate over subsets of the 238 SNPs. Specifically, we fix the split 
between the instrumental variable estimation set and the causal effect estimation set. Within the 
instrumental variable estimation set, we randomly select 1/16, 1/8, 1/4, and 1/2 of all the 238 
SNPs respectively to derive the IV. We repeat this random selection procedure for 1000 times in 
order to compute median and MAD. We expect that a larger subset of SNPs corresponds to 
lower MAD (higher certainty) of the estimate. The experimental results are summarized in Table 
2, where we observe that as the number of instrumental variables used increases, the causal 
effect remains relatively constant while the MAD decreases. These results suggest that the 
causal estimates derived from the IVY procedure behave in an expected manner; increasing the 
number of SNPs within the instrumental variable explains more variance and delivers a better 
powered instrumental variable for MR when using the IVY framework. 
 
 

4.4. Ascertain relationships between four serum biomarkers and 
CAD using un-curated SNPs via IVY 
Given the IVY procedure is sensitive to the number of included SNPs and proportion of variance 
explained in the risk factor, we investigate whether IVY is capable of estimating causal effects 
using SNPs with little or no curation of candidate instrumental variables. To this end, we 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 9, 2019. ; https://doi.org/10.1101/657775doi: bioRxiv preprint 

https://doi.org/10.1101/657775
http://creativecommons.org/licenses/by-nc-nd/4.0/


consider the known relationships between four additional serum biomarkers and coronary artery 
disease for which the ground truth is known. We use the GWAS catalog to identify all SNPs that 
are associated with each of the four serum biomarkers. Including all the available SNPs in the 
GWAS catalog, we estimate the causal effects for each of these relationships using IVY. The 
experimental results are summarized in Table 3, where IVY is capable of estimating causal 
effects in a manner consistent with the ground truth when including un-curated SNPs. 
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5. DISCUSSION  
The method proposed here IVY provides a framework for instrumental variable synthesis for 
causal inference that leverages weak supervision to learn a hidden instrumental variable from 
the vastly available candidate instrumental variables of potentially lower quality in the data. 
Through empirical demonstrations we demonstrate that IVY can recover causal effects in a 
manner that retains the desirable characteristics of conventional weighted and unweighted allele 
scoring for instrumental variables in a framework analogous to two-sample Mendelian 
randomization. Through ablating the instrumental variable estimation set and causal effect 
estimation set, we show that IVY has the potential to deliver overall better powered MR using 
individual-level data in a more sample-efficient fashion.  
 
The underlying statistical assumptions made in IVY are connected to the assumptions made in 
conventional allele scores. Specifically, the conditional independence assumption made in IVY 
for the inclusion of individual SNPs is valid because the same assumption is made for methods 
employing allele scores (Sebastiani et al., 2012). We point out the possibility of extending 
beyond the assumption of conditional independence such as handling SNPs occurring 
physically upon the same chromosome which display some degree of genetic linkage (Ratner et 
al., 2018). Empirical validation of such an extension is left for future research.  
 
We offer intuitive explanation on why IVY can potentially synthesize an instrumental variable 
that is more robust to invalid SNPs. Specifically, as the re-weighting procedure performed by 
IVY is not supervised by a potentially confounded risk factor, IVY may avoid over-weighting an 
invalid confounded SNPs during the synthesis. Our findings illustrate that when smaller sample 
sizes are provided for re-weighting of the instrumental variable, IVY provides a more stable 
estimate of the CE than the WAS method. Additionally, the instrumental variable produced by 
IVY appears to be more robust to inflation of the CE than the UAS method. In this manner when 
the Wald ratio is used to estimate the causal effects, the CE produced by IVY appear to be both 
more stable and resistant to inflation compared to standard methods. Additional research is 
necessary to determine appropriate procedures for including the re-weighted instrumental 
variable provided by IVY with weighted median and other accepted methods of computing CE 
estimates (Bowden et al., 2016). 
 
The IVY framework as described here is not without limitations. To begin with, the assumption 
of the existence of a hidden binary valid instrumental variable 𝑧 is somewhat different than 
conventional allele scores that seek to synthesize a numeric score as an instrumental variable. 
Nonetheless, the potential limitation of this assumption can be mitigated by considering the log 
probability of 𝑧 = 1, i.e. log 𝑃(𝑧 = 1|𝑤$, 𝑤&,⋯ ,𝑤(), which is a numeric quantity, as an 
instrumental variable to be synthesized. As a result, the scoring formula that gives 𝑠 as a 
weighted combination of estimated accuracies of 𝑤* ’s proposed in the paper can also be 
replaced by this log probability. Secondly, our investigation assumes the existence of only one 
hidden instrumental variable. While such an assumption is consistent with that of allele scores 
due to the similar conditional independence assumption between the two, it is desirable to 
generalize the IVY framework where multiple hidden instrumental variables are available. 
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Finally, the analysis conducted in this paper is only among population of European ancestry. 
Further investigation is needed to ensure that the framework of instrumental variable synthesis 
presented here is not derive power from artifacts of European population substructure and is 
generalizable to individual-level data of other ancestries. 
 
Overall, given the stability offered by our proposed methods with relatively small sample sizes 
for re-weighting of the instrumental variable or estimating a causal effect, we envision that IVY 
may be useful to perform MR in small population sizes. Real world examples of where it may be 
desirable to perform MR in small population sizes might include cultural, ethnic, and geographic 
groups not represented in large GWAS studies, sub-analyses of larger datasets stratified by sex 
or a specific clinical risk factor, or for risk-factors or outcomes which have been described in 
relatively small GWAS. An R-package for this procedure is forthcoming.  
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Figure 1: Experimental procedure using the UK Biobank for evaluation of IVY in the 
format of two-sample Mendelian Randomization.  
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Figure 2: IVY correctly determines a causal effect between systolic blood pressure and 
coronary artery disease at different sample sizes. 

  
(a) (b) 

  
(c) (d) 
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Figure 3: IVY correctly determines the absence of a causal effect between systolic blood 
pressure and bone disease at different sample sizes. 

  
(a) (b) 

  
(c) (d) 
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Figure 4: IVY correctly determines the absence of a causal effect between HDL-
cholesterol and coronary artery disease at different sample sizes. 

  
(a) (b) 

  
(c) (d) 
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Table 1 Comparison of Modeling Assumptions among Ivy, UAS, and WAS 

Method Dependencies of 
SNPs 

Summary 
variable 

Relationship 
between 
SNPs and the 
summary 
variable 

Comments 

IVY Conditional 
independence 
and beyond 

Yes Markov  
Random 
Field 

Learns from 
individual-level 
data. Can be 
extended to 
handle 
dependencies 
among SNPs 
(Ratner et al., 
2018). 

UAS Conditional 
Independence 

Yes Additive 
Model 

IVY and WAS are 
similar to UAS 
when the effect of 
individual SNPs 
are of similar 
magnitude 

WAS Conditional 
independence 

Yes Additive 
Model 

Can be learned 
from summary 
data. Conditional 
independence 
assumption 
(Sebastiani et al., 
2012). 
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Table 2: Variance decreases but causal effect estimates remain stable across increasing 
subsets of SNPs included by IVY. 

# SBP SNPs (fraction total) Median Causal estimate Median absolute deviation 
15 (1/16) 0.90 0.38 
30 (1/8) 0.90 0.27 
60 (1/4) 0.92 0.17 

119 (1/2) 0.91 0.10 
instrumental variable estimation set and causal effect estimation set sizes each 166,499.  
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Table 3: IVY correctly ascertains causal relationships between four serum biomarker and 
coronary artery disease. 

Serum biomarker # SNPs in 
GWAS Catalog 

Median Causal 
estimate 

95% Confidence 
Interval Ground truth 

Total cholesterol 279 0.851 [0.623, 1.077] Increased risk 
C-reactive protein 88 0.176 [-0.257, 0.594] Non-causal 

Triglycerides 273 1.777 [1.520, 2.103] Increased risk 
Vitamin-D 25 0.157 [-0.182,0.505] Non-causal 

CE and instrumental variable cohort sizes each 166,499.  
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6. Appendix 
 
 
Figure 5: Ribbon Plots Corresponding to Figure 2. IVY correctly determines a causal 
effect between systolic blood pressure and coronary artery disease at different sample 
sizes. 
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Figure 6: Ribbon Plots Corresponding to Figure 3. IVY correctly determines the absence 
of a causal effect between systolic blood pressure and bone disease at different sample 
sizes. 
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Figure 7: Ribbon Plots Corresponding to Figure 4. IVY correctly determines the absence 
of a causal effect between HDL-cholesterol and coronary artery disease at different 
sample sizes. 
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