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Abstract

The three-dimensional conformation of a genome can be profiled using Hi-C, a technique that
combines chromatin conformation capture with high-throughput sequencing. However, structural
variations (SV) often yield features that can be mistaken for chromosomal interactions. Here, we
describe a computational method HiNT (Hi-C for copy Number variation and Translocation
detection), which detects copy number variations and inter-chromosomal translocations within
Hi-C data with breakpoints at single base-pair resolution. We demonstrate that HINT
outperforms existing methods on both simulated and real data. We also show that Hi-C can
supplement whole-genome sequencing in SV detection by locating breakpoints in repetitive

regions.
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BACKGROUND

The Hi-C assay provides genome-wide identification of chromatin interactions, thereby enabling
systematic investigation of the three-dimensional genome architecture and its role in gene
regulation [1]. Hi-C data have been used, for example, to characterize topologically associated
domains (TADs), which are megabase-sized local chromatin interaction domains within which
genomic loci interact with higher frequency [2-4]. Characterization of genome organization using
Hi-C data has enhanced our understanding of a number of biological processes, such as X-

inactivation [2, 5], cell cycle dynamics [6], and tumor progression [7].

However, it has been shown that structural variations (SVs) can confound the interpretation of
Hi-C data [6, 8-11]. For example, when there is copy number increase, the observed number of
sequencing reads that correspond to chromosomal interactions in that region will be larger than
expected, not because there is greater frequency of interaction but because there are multiple
copies of that region. Similarly, when there is an inter-chromosomal translocation, the reads that
correspond to interactions between the translocated segment and its proximal regions will be

inflated, but this should not be mistaken for changes in interaction frequency.

One approach to mitigate the impact of SVs on the Hi-C interaction map is to first identify SVs
using whole-genome sequencing (WGS) data and then use that information to adjust the Hi-C
map. Although a great deal of progress has been made in WGS-based SV detection [12, 13], the
use of WGS data requires additional sequencing and analysis expertise. Furthermore, SV
breakpoints within repetitive regions, which are often genomic SV hotspots, cannot be easily
detected from WGS due to low mappability [14]. Indeed, Hi-C and WGS data are
complementary in SV detection: as Hi-C read pairs span genomic distances from base pairs to
megabases, they enable detection of breakpoints in repetitive regions when one read of a read

pair maps to a repetitive region and the other maps to a surrounding mappable region (Supp. Fig.

).

Here, we present HINT (Hi-C for copy Number variation and Translocation detection), an
algorithm for detection of copy number variations (CNVs) and inter-chromosomal translocations

in Hi-C data. Based on simulated data and comparisons to variants identified in WGS, HINT
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outperforms existing computational methods both in sensitivity and false discovery rate (FDR).
HiNT also provides translocation breakpoints at single base-pair resolution, a feature not
available in existing methods that utilize only Hi-C data. Furthermore, HiNT supports
parallelization, utilizes efficient storage formats for interaction matrices, and accepts multiple
input formats including raw FASTQ, BAM, and contact matrix. HiNT is available at
https://github.com/parklab/HiNT.

RESULTS

Overview of HINT

HiNT has three main components. HINT-PRE performs preprocessing of Hi-C data and
computes the contact matrix, which stores contact frequencies between any two genomic loci.
HiNT-CNV and HiNT-TL start with a Hi-C contact matrix and predict copy number segments

and inter-chromosomal translocations, respectively (Supp. Fig. 2).

HiNT-PRE aligns read pairs to the genome using BWA-MEM [15] and creates a Hi-C contact
matrix. The matrix is constructed from normal read pairs (non-chimeric reads that map uniquely
to the genome) as well as unambiguous chimeras [16] (Fig. 1A). The latter is a product of Hi-C
ligation and is defined as a read pair in which one chimeric read is split into locus A and locus B
and the other read is uniquely mapped to locus B (Fig. 1A). All other read pairs containing split
reads are defined as ambiguous chimeras [16], which will be used for translocation breakpoint

detection (Fig. 1A).

HiNT-CNV (Supp. Fig. 2) first creates a one-dimensional (1D) coverage profile across the
genome by calculating row or column sums of the contact matrix at a fixed resolution, e.g., S0kb.
These sums should be correlated with the copy number across the bins since they correspond to
the strength of interaction of that region with all other regions. It is critical to use the
unnormalized contact matrix here because the matrix-balancing normalization (setting the sum of
each row or column to be 1), which is the most widely used Hi-C normalization approach,
removes not only biases but also copy number information. The next step is to perform further
adjustment to remove other biases that are inherent in the Hi-C experiments, such as GC content,

mappability, restriction site frequency, etc. In Fig. 1B, we see that, without additional


https://doi.org/10.1101/657080
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/657080; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

88  adjustment, the 1D profiles for K562 (human chronic myelogenous leukemia cell line; known to
89  have high genomic instability) and GM12878 (human lymphoblastoid cell line) show similarity
90  to each other but not with the copy number profiles estimated from WGS. However, when we
91  remove Hi-C internal biases in K562 by using GM 12878 as a control (Fig. 1B, right), the 1D
92  coverage profile becomes highly correlated with the (ploidy-adjusted) copy ratios estimated from
93  WAGS data. This result shows that proper normalization is essential in extracting copy number
94  information from Hi-C data. Given that an appropriate control is often unavailable, HINT-CNV
95  uses a generalized additive model to remove the biggest sources of bias: GC content,
96  mappability, and restriction fragment length [17]. The boundaries of CNV segments are
97  determined using the BIC-seq segmentation algorithm, which utilizes the Bayesian information
98 criterion to identify regions with enriched or depleted read counts [18].
99
100  HiNT-TL (Supp. Fig. 2) detects translocations by analyzing normalized inter-chromosomal
101  interaction matrices. In general, contact probabilities between two regions on the same
102 chromosome decrease monotonically with distance, and inter-chromosomal interactions are
103 considerably less frequent compared to intra-chromosomal ones. When an inter-chromosomal
104  translocation occurs, we expect the contact probabilities in two opposite quadrants around the
105  breakpoint to be elevated to the levels observed for adjacent chromosomal regions (Fig. 1C).
106  Thus, HINT-TL identifies candidate translocated chromosomal pairs based on the presence of
107  high contact probabilities and their unequal distribution. To identify exact breakpoints, HINT-TL
108 first identifies the breakpoint regions with a coarse 100kb resolution from the 1D profiles (see
109  Methods). HINT-TL then uses Hi-C ambiguous chimeric reads located within these regions to
110  refine breakpoints to single base-pair resolution.
111
112 CNVs predicted by HIiNT from Hi-C are consistent with those identified from WGS
113 To predict CNVs, we first calculate the coverage profile throughout the genome at 50kb
114 resolution. We then correct for Hi-C biases such as GC content, mappability, and the number of
115  restriction sites (given a fixed bin size, the number of expected fragments depends on the number
116  of cut sites by the restriction enzyme used). To model the non-linear correlation between 1D
117  coverage and biases observed (Supp. Fig. 3), we use a generalized additive model (GAM) with

118  the Poisson link function. GAM is an ideal framework here, as it allows non-parametric fitting
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with relaxed assumptions on the relationship between predictor and response variables. The copy
number information is extracted from regression residuals by the following equation:
log(Coverage) = s;(GCcontent) + s,(Mappability) + s;(NumberOfRestr.Sites) + ¢

where s; (j1,2,3)(®) is an unspecified function estimated for each predictor variable and ¢ is the
regression residual. The model fits better for GM 12878 (R? = 0.798) than for K562 (R? =
0.631), since K562 is known to have more SVs.

To evaluate CNVs identified from Hi-C, we compare the log2 copy ratios along the genome
from the model above with those estimated from WGS. For K562, we see that copy number
alterations are prevalent and that the log ratios from Hi-C and WGS are mostly concordant (Fig.
2A, Supp. Fig. 4A; Spearman correlation = 0.82). For GM 12878, the correlation is lower
(Spearman correlation = 0.21) because there are very few CNVs in this cell line, and the existing
small ones are detected only from WGS (Supp. Fig. 4B, Supp. Fig. 5SA). The copy ratios
fluctuate more in the Hi-C profile relative to WGS data (Fig. 2A, Supp. Fig. 5A) due to the
different read depth and possibly due to Hi-C biases that may not have been captured by our
model. When the copy number log ratios are segmented using BIC-seq [18], the concordance
between the platforms is striking (top two rows in Fig. 2B), with ~85% and 92% of the large
(>2Mb) segments from Hi-C overlapping those from WGS in K562 and GM 12878 cells,
respectively (Fig. 2C, Supp. Fig. 5D; our definition of overlap is described in Supp. Fig. 5C).
Collectively, our analysis suggests that HiNT is a reliable tool for identifying large-scale CNVs

in both cancer and normal Hi-C data.

HiNT outperforms HiCnv for identifying CNVs from Hi-C data

HiCnv is a computational tool developed to infer copy number from normalized Hi-C coverage
[19]. It employs smoothing by kernel density estimation followed by a Hidden Markov Model;
however, it requires a baseline chromosome copy number from WGS or karyotyping to
determine the true copy number of each chromosome. To evaluate the performance of HiCnv, we
examine the concordance of CNVs identified from HiCnv to those detected from WGS.
Surprisingly, the copy number log ratios along the genome are largely discordant, with a

Spearman correlation of 0.67 in K562 and 0.1 in GM 12878 (Supp. Fig. 4C-D). Moreover, only
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149  ~15% of the large segments detected by HiCnv overlap those identified from WGS in K562 (Fig.
150  2C); the overlap is even smaller for GM 12878 cells (Supp. Fig. 5D).

151

152 In addition, input to HiCnv must be either HiC-Pro [20] output or a SAM file, which is then

153 converted to HiC-Pro format, incurring high computational cost for terabyte-scale datasets. For
154  example, 3 billion read pairs result in a ~600GB BAM file, and the required SAM format is at
155  least 4-fold larger than BAM format in size. In contrast, HINT-PRE accepts FASTQ and BAM
156 files, and generates the Hi-C contact matrix in hic [16, 21] or cool [22] format, which serves as
157  the input to HINT-CNV. Both hic and cool are efficient and widely-used formats for genomic
158 interaction matrices. Taken together, HINT-CNV outperforms this existing tool in detecting

159  CNVs in both cancer and normal cells in both accuracy and usability.

160

161  HiNT accurately identifies translocated chromosomal pairs

162  Translocations modify the 3D organization of the genome, and they will be incorrectly identified
163 as long-range interactions in Hi-C data if they are not accounted for properly. To first study their
164  impact on Hi-C interaction maps, we developed a simulation scheme to recapitulate the effect of
165  translocations, encompassing homozygous/heterozygous and balanced/unbalanced

166  translocations. A balanced translocation is an even exchange of segments between chromosomes
167  without genetic information gain or loss; an unbalanced translocation involves a loss or gain of
168  chromosome segments. As observed in previous studies [19, 23, 24], a balanced translocation
169  forms a ‘butterfly’ appearance in the chromosomal interaction map (Fig. 3A and Fig. 3B middle,
170  marked by red circles). In contrast, an unbalanced translocation only has a single block (Fig. 3A
171  and Fig. 3B, right column, marked by red circles) [23]. Detection of intra-chromosomal

172 translocations are complicated by the presence of chromatin structures such as TADs and loops.
173  Therefore, we focus on identification of inter-chromosomal translocations.

174

175  Our method is based on detection of two characteristics. First, the contact frequencies should be
176  distributed unevenly around the translocation breakpoint. For this, we utilize the Gini index, a
177  statistical measure of distribution initially used to quantify income inequality in economics [25].
178  To compute this index, we estimate the cumulative distribution of contact frequencies in each

179  square of the interaction map (we use 1Mb x 1Mb) and determine how much it deviates from a
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180  linear increase. A high index corresponds to more uneven distribution of interaction strength.
181  Second, the maximum interaction level surrounding the breakpoint should be high for a

182  translocation. Regions without a translocation but with a high noise level may satisfy the first
183  criterion of uneven contact frequencies, but their maximum interaction level would not be large.
184  Combining the two features (interaction level and evenness), we define the rank product score as
185 RP; = (Rgim-'i/n) * (le-f’i/n), where Ryin;; and Ry, ¢ ; are the ranks of matrix i based on Gini
186  index and maximum interaction frequency, respectively, and n is the total number of inter-

187  chromosomal interaction matrices.

188

189  The rank product score performs well in simulated data, separating the translocated and non-
190  translocated cases in nearly all cases (Supp. Fig. 6). For real data, we found that direct

191  application of the rank product was insufficient, due to the various factors that are not captured
192 by the normalization step, e.g., the A/B compartment effect and the increased interactions

193  between small chromosomes or between sub-telomeric regions. To eliminate such biases, we
194  created a background interaction matrix by averaging the matrices from five normal cell lines
195  (Supp. Table 1, see Methods) and used it to normalize the original matrix. In Fig. 4A, we show
196  three examples of chromosomal pairs in K562 data whose scores change as a result of the

197  additional normalization. In the first case (chrl- chr21), the score does not change significantly;
198 in the second case (chrl- chrl8), the score increases so that a translocation is now called; and in
199  the third case (chrl6 - chrl9), the score decreases so that a mistaken call is avoided. Using the
200  chromosomal pairs reported in the literature or validated by FISH experiments [4, 24] as true
201  positives, we see that the adjusted matrix results in an increased prediction accuracy, as

202  measured by the area under the curve (AUC) (Fig. 4B). As visualized in Fig. 4C, the previously
203  observed biases are effectively reduced by the normalization, allowing for better delineation of
204  translocations (Supp. Fig. 6, Supp. Fig. 7A-C).

205

206  Although the rank product approach detects the majority of translocated chromosomal pairs, four
207  validated translocations are not identified. To investigate this issue, we compare the Hi-C

208 interaction matrices of the detected (Supp. Fig. 8) and missed chromosomal pairs (Supp. Fig. 9).
209  Compared to the detected chromosomal pairs, no translocation signature can be visually detected

210  from the interaction matrices for missed pairs. In addition, the sharp boundaries at translocation
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211  breakpoints on the 1D coverage profile can only be found in our predicted translocated

212 chromosomal pairs. Thus, we believe that there are some translocated chromosomal pairs that are
213 simply not reflected within Hi-C data, or the validation data may be incorrect, e.g., due to the
214  variation among the K562 lines. We further examined four more cancer cell lines, including
215  HelaS3 (cervical carcinoma), LNCaP (prostate carcinoma), Pancl (pancreatic carcinoma), and
216  T47D (breast cancer). We found that the rank product and the maximum interaction perform
217  better than the Gini index in LNCaP, T47D, and Pancl, whereas the rank product and Gini index
218  are more predictive in HelaS3 (Supp. Fig. 7E).

219

220  HIiNT detects translocation breakpoints at single base-pair resolution using Hi-C chimeric
221  reads

222 Once a chromosomal pair containing a translocation is identified based on the rank product,

223 HiNT searches for the translocation breakpoint. For a translocation, the 1D row/column-sum
224 profile should change abruptly at the breakpoint (Supp. Fig. 8, and Supp. Fig. 10A). To identify
225  this point, we use a change point detection method called breakpoints from the R package

226  strucchange [26], which adopts a linear model to detect one or several change points in

227  multivariate time series. However, the majority of the change points detected by breakpoints are
228  the result of lower mappability and unremoved compartment effects, and thus should not be

229  identified as the translocation breakpoints (Supp. Fig. 10A). To remove these false positives, we
230  impose a filtering step in which only those with one quadrant (unbalanced translocation) or two
231  diagonally-opposed quadrants (balanced translocation) around the candidate breakpoint have
232 very high interactions (Supp. Fig. 10, Methods). Here, we define a high interaction frequency as
233 being greater than the 99th percentile of all the interactions between the two chromosomes.

234

235  Next, we determine the precise coordinates of the breakpoints by using ambiguous chimeric
236  reads [16] (Fig. 1A). These reads have their primary alignment near a breakpoint in one

237  chromosome (e.g. chrA) and their clipped part align near a breakpoint in another chromosome
238  (e.g. chrB). HiNT provides the intervals in which the breakpoints occur (100kb resolution) and,
239  aslong as the breakpoint does not occur in an unmappable region, the exact location of the

240  breakpoint (1bp resolution).

241
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242 Hi-C can supplement WGS by locating translocation breakpoints in repetitive regions

243 To assess its performance, we compare the translocation breakpoints determined from Hi-C

244  using HiINT with those detected from WGS using Delly [27] and Meerkat [28]. In K562, 56 and
245 173 inter-chromosomal translocations are detected by Meerkat and Delly, respectively, with only
246 14 translocations detected by both (Fig. 5A). This level of discrepancy is not unexpected [29]
247  and is indicative of the difficulty of detecting SVs in general. When we intersect these 14

248  consensus WGS-based translocations with those detected by HiNT, we find that 5 are in

249  common (Fig. SA). Two additional ones were found by HiNT and either Meerkat or Delly but
250  not both. In these 7 cases, the breakpoints were exactly the same at the nucleotide level,

251  confirming the accuracy of the calls (Supp. Table 2). An example is a translocation between
252 chromosome 9 and 22 shown in Fig. 5B, with more than 100 supporting clipped reads in Hi-C
253  data and many discordant reads in WGS data (Fig. 5C).

254

255  Thirty-three translocations are detected only from Hi-C data (Fig. 5A; listed in Supplementary
256  Table 3 and can be viewed interactively by HiGlass [30] at http://18.215.251.253/). For example,
257  asignificant rank product score is found between chr3 and chr18 in the Hi-C interaction matrix
258  (Fig. 5D), and three breakpoint regions are detected by HiNT including one validated by FISH
259  [24] (Supp. Table 4). However, few discordant reads are identified from WGS. A major reason
260  for this difference is the low mappability around those breakpoints. As illustrated in

261  Supplementary Figure 1, the long physical distance between Hi-C read pairs allow identification
262  of translocations whose breakpoints occur in a repetitive region—the paired reads can “jump
263  over” the repeat region and map to surrounding mappable regions, even though the breakpoint
264  itself cannot be mapped. Indeed, we find that large repeat (>1kb) regions (as found in repBase
265  [31]) make up a disproportionately large fraction of regions containing Hi-C-only breakpoints
266  compared to WGS consensus breakpoints (Fig. SE). We note that repetitive regions with high
267  sequence divergence are mappable, but we used the term ‘repetitive region’ for conceptual

268  clarity.

269

270  For the translocations detected only in WGS, some are missed in Hi-C due to its more uneven
271  genome coverage. In other cases, we find that, surprisingly, the discordant reads from WGS

272  contain a large fraction of single nucleotide polymorphisms or have low mapping qualities,
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273  indicating issues in read alignment (Supp. Fig. 11). Consistent with that observation,

274  translocation signatures are not found in the Hi-C interaction maps. These analyses suggest that
275  Hi-Cis a powerful tool to detect translocations and can complement WGS, especially for

276  detecting those with breakpoints in repetitive regions.

277

278  HINT outperforms existing tools on detecting translocations

279  Others have attempted to identify structural variants from Hi-C data. One approach is simply to
280  visually inspect the interaction heatmaps—a low resolution detection of breakpoints with poor
281  scalability and reproducibility [23]. Better approaches search for regions that contain abnormal
282  interaction frequencies based on normalized Hi-C interaction maps [6, 32]. However, such

283  methods utilizing only contact frequencies cannot easily distinguish translocations from

284  chromatin interactions, thus giving a high false discovery rate (FDR). A recent algorithm

285  HiCtrans [19] identifies translocation breakpoints based on change-point statistics obtained by
286  scanning the inter-chromosomal contact maps of each chromosomal pair. However, searching
287  the breakpoints across all inter-chromosomal contact maps leads to a high computational cost.
288  For a comprehensive set of inter- and intra-chromosomal translocations, one could integrate
289  WGS, Hi-C and optical mapping data [24]. However, in most cases, it is impractical to generate
290  all these data types for a given sample. The method they used for Hi-C data [24] is

291  hic_breakfinder, an iterative approach to locate local clusters that deviate from the expected
292  interaction frequencies in a Hi-C contact matrix.

293

294  To compare the performance of these algorithms, we first apply HiCtrans [19] and HiNT to

295  simulation data. Hic breakfinder [24] is not used here because it requires the aligned reads in
296 BAM format, but our simulation is matrix-based. Of the 21 simulated inter-chromosomal

297  translocations (mix of balanced/unbalanced and heterozygous/homozygous translocations), HINT
298  identified 20 correctly while calling additional 5 breakpoints (Supp. Fig. 12A). The one missing
299 translocation was located at the centromere of chr21 (Supp. Fig. 12B). In contrast, HiCtrans
300 called 531 translocations (distributed across 100 different chromosomal pairs), but none were
301  bona fide translocations (Supp. Fig. 12C).

302

10
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303  We also compared HiNT, HiCtrans [19], and hic_breakfinder [24] on the K562 data. As shown
304  in Supp. Fig. 12D-E, HiNT has the highest AUC measure (0.85 vs 0.78 and 0.77, see Methods)
305 as well as the best precision-recall curve. Additionally, we found that while HiCtrans identified
306 132 translocated chromosomal pairs, which is more than half of the number of all chromosomal
307  pairs, only 10 of them contain known translocations. Among all 931 breakpoints (~1Mb

308  resolution) identified by HiCtrans, only 2 of them cover what are detected from WGS by both
309  Meerkat and Delly (Supp. Fig. 12F). On the other hand, hic_breakfinder identified 77

310  breakpoints (~100kb resolution). Among these breakpoints, 4 are identified by both Meerkat and
311  Delly (Supp. Fig. 12F). This suggests a higher false discovery rate of HiCtrans and

312 hic_breakfinder than HiNT. Furthermore, we found that 60% (24/40) of HiNT-identified

313  breakpoints can also be identified by other methods. In contrast, this value is only 35% (27/77)
314  and 3.0% (28/931) for breakpoints output from hic_breakfinder and hictrans, respectively (Supp.
315  Fig. 12F). Collectively, HINT-TL outperforms HiCtrans and hic_breakfinder in both specificity
316  and accuracy.

317

318  Conclusion

319  Robust identification of SVs remains paramount to accurate inference of long-range interactions
320  from Hi-C data. We have shown that HINT can be used to identify CNVs and inter-chromosomal
321  translocations with split read support for breakpoints whenever possible, and that it outperforms
322  existing methods. Although not as sensitive as WGS data in general, Hi-C data can complement
323  WGS data for detection of translocations in repetitive regions. As new technologies for capturing
324  three-dimensional interactions are introduced, further computational methods will be needed to
325  avoid the confounding effects of SVs.

326
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327  Methods
328
329  Data sources

330  Hi-C data: in-situ Hi-C data in cancer cell line K562 and in normal cell lines including

331 GMI12878, HMEC, HUVEC, IMR90, and NHEK were obtained from GEO (Gene Expression
332 Omnibus) with the accession number GSE63525 [16]. All the normal cell line data were

333 combined to create the background Hi-C interaction matrix. Hi-C data for HelaS3, LNCaP,

334  Pancl, and T47D, which were generated by the Dekker lab [33], were downloaded from the
335 ENCODE website (See details from Supp. Table 1).

336 WGS data: We downloaded the BAM file for NA12878 WGS data from the 1000 genomes

337  project [34], and the BAM file for K562 WGS data from the GDC legacy archive of the Cancer
338  Cell Line Encyclopedia (CCLE) project [35].

339

340 CNYV identification from WGS

341  BIC-seq2 [36] was used to derive CNV segments from WGS read coverage data. For the

342  segmentation step, we used binsize = 50,000 bp and A = 50 to determine the final CNV

343  breakpoints in NA12878. A is a parameter that controls the smoothness (the number of

344  breakpoints) of the final CNV profile. chrY and chrM were excluded from the analysis.

345

346  Definition of copy ratios in Hi-C and WGS data

347  Copy ratio is defined as the ratio of observed and expected values. In Hi-C, observed values are
348  the residuals from GAM Poisson regression, and expected values are set to zero. In WGS,

349  observed values are read coverage, and expected values are estimated by a semi-parametric

350  regression model via BIC-seq?2 [36].

351

352  Simulation of inter-chromosomal translocations in Hi-C contact maps

353  The simulation pipeline defines two random coordinates from distinct chromosomes as the origin
354  and destination of the translocation (e.g. x on chrl, and y on chr2). Then, it creates the

355 translocated version of interaction matrices for chrl to chrl, chr2 to chr2, and chrl to chr2 via
356  rearranging the original interaction probabilities.

357

358 SV detection from WGS
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359 SV detection from WGS was carried out using Delly and Meerkat. To omit germline SVs, we
360 used NA12878 as a control genome. Default parameters were used to run Delly. Only

361 translocations that passed the internal quality control and were marked as “PRECISE” in Delly
362  were used for comparison. Default parameters were used to run Meerkat, and filtering step was
363  performed according to the post-processing steps described in the tool manual. Only valid

364  precise inter-chromosomal translocations were kept for comparison.

365

366  Gini Index calculation

367  For each Hi-C inter-chromosomal interaction matrix M, we first sorted the contact regions, based
368  on the adjusted contact frequencies between these two regions, from lowest to highest, then

369  calculated the cumulated contact frequencies of matrix M. Regions that did not form contacts
370  with any other regions were excluded. A plot of this functional relationship is called a Lorenz
371  curve. The Gini index is computed as twice the area between the Lorenz curve and the diagonal.
372

373 Breakpoint filtering

374  To remove false discovered change points, we first construct two-dimensional Cartesian

375  coordinate systems originating from the intersection of each pair of candidate breakpoints. For
376  each coordinate system, we then define four, 5-bin-by-5-bin quadrants around the origin, and we
377  calculate the average interaction frequency within each quadrant (Supp. Fig. 10A). The valid
378  breakpoints for translocations should have only one (unbalanced translocation) or two (balanced
379  translocation) quadrants with very high interactions, and the remaining quadrants should have
380 lower interaction frequencies (Supp. Fig. 10B upper panel). More specifically, for balanced

381 translocations, the two quadrants with high interaction frequencies should diagonally oppose
382  each other (Supp. Fig. 10B upper panel). If zero, three, or all quadrants have high interaction
383  frequencies, the proposed breakpoints are considered false positives and removed (Supp. Fig.
384  10B lower panel). Here, we define a high interaction frequency as being greater than the 99th
385  percentile of all the interactions between the two chromosomes.

386

387  ROC curves of HiCtrans and HiC_breakfinder on translocated chromosomal pairs

388  prediction
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389  To create ROC curves for the evaluation of translocated chromosomal pairs prediction, we rank
390  all the chromosomal pairs first. Both HiCtrans and hic_breakfinder output a score (entropy ratio
391  in HiCtrans, and log-odds in hic_breakfinder) to measure the strength of each breakpoint call.
392  We assign each chromosomal pair a representative score by taking the score of the most

393  significant breakpoint that located in this chromosomal pair. The chromosomal pairs are then
394  ranked by the representative scores. ROC curves and AUC values are calculated by using the R
395  package ROCR [37]. The chromosomal pairs reported in the literature or validated by FISH

396  experiments are used as true positives here.

397

398  Details of the HiNT pipeline

399 1. HiNT-PRE: Raw Hi-C data in FASTQ format are aligned to a reference genome (hg19) via
400 bwa-mem: bwa-0.7.16a-r1185-dirty/bwa mem -SP5M bwaIndex/hgl9.fa

401 inl.fq in2.fq. Read pairs that are both uniquely mapped to the genome are collected as
402  valid pairs. However, 10%-20% of the remaining Hi-C read pairs contain at least one chimeric
403  read with split alignments. Chimeric pairs with one read uniquely mapped and the other

404  chimeric, due to ligation, are defined as unambiguous chimeras [16], and counted as valid pairs.
405  All other chimeric pairs are classified as ambiguous [16] chimeras, and are used to identify

406 translocation breakpoints at single base-pair resolution. All the unmapped, multi-mapped, and
407  PCR duplicated read pairs are discarded from our analysis. All pairs are classified by pairtools
408  (https://github.com/mirnylab/pairtools). Then, a Hi-C interaction matrix is generated from all the
409  valid pairs by cooler [22] or juicer tools [38] at 50kb, 100kb, 1Mb, or at a user-specified

410  resolution.

411

412 2. HINT-CNV: First, a 1D coverage profile for each 50kb bin (default) is calculated along the
413 whole genome using an unnormalized contact matrix. Bin size can be specified by users based on
414  the sequencing depth and accuracy need. Then, a GAM regression with a Poisson link function is
415  performed to remove the known Hi-C biases with pre-calculated GC content, mappability, and
416  the number of restriction sites in each bin. Then, the segmentation method of BIC-seq is applied
417  to the regression residuals to identify the breakpoints and generate the final CNV profile.

418
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419 3. HiNT-TL: Translocation detection is performed in three steps; determination of the

420  translocated chromosomal pairs, identification of the rough breakpoint regions, and

421  determination of the exact breakpoints at single base pair resolution. To determine the

422  translocated chromosomal pairs, | Mb-binned and genome-wide normalized inter-chromosomal
423 interaction matrices are taken as input. To remove the effects of A/B compartments, a

424 background model is created by averaging multiple in-situ Hi-C data in normal cell lines (Supp.
425  Table 1). Each inter-chromosomal interaction matrix is corrected with the background by taking
426  the ratio between the original signals and the background signals. Then, for each possible

427  chromosomal pair, Gini index and the maximum contact frequency are calculated. Then, a rank
428  product score is computed RP; = (Rgim-,i /n) * (le- £ /n), where Ryin;; and Ry, ¢ ; are the ranks
429  of matrix i based on Gini index and maximum interaction frequency, respectively, and n is the
430  total number of inter-chromosomal interaction matrices. Chromosomal pairs with RP; < 0.05
431  are defined as the potential translocated chromosomal pairs.

432

433 HiNT then calculates the 1D coverage profiles by calculating the sum of each row and column of
434 the adjusted inter-chromosomal interaction matrices for those predicted translocated

435  chromosomal pairs. It then applies the function breakpoint in the R package strucchange, a

436  function with high computing performance that allows simultaneous estimation of multiple

437  breakpoints in a given time series data, to the coverage profiles to identify all change points. The
438 translocation rough breakpoint regions are further decided after the filtering step as we described
439  in Supp. Fig. 10.

440

441  To get the precise breakpoints at single base-pair resolution, HiNT uses the soft-clipped reads-
442  based algorithm that is commonly used for WGS SV prediction. Translocation breakpoints that
443  are covered by at least one split read pair with one end mapped to the rough breakpoint region on
444  one chromosome, and the other end mapped to the rough breakpoint region on another

445  chromosome are reported at single base-pair resolution; otherwise, the predicted rough

446  breakpoint regions will be reported. Not all the breakpoints are expected to have supported

447  clipped reads due to the non-uniform distribution of read coverage in Hi-C data.

448

449  List of abbreviations
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HiNT: Hi-C for copy Number variation and Translocation detection; CNV: copy number
variation; SV: structural variation; GAM: generalized additive model; WGS: whole genome
sequencing; 1D: 1-dimensional; ROC: receiver operating characteristic; TADs: topologically
associated domains; TP: true positive; TN: true negative; FP: false positive; FN: false negative;

RP: rank product.
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590  Figure Legends

591  Figure 1. [llustration of HiNT. A, Hi-C read pairs are classified into normal pairs (left panel),
592 unambiguous chimeric pairs (middle panel), and ambiguous chimeric pairs (right panel). Hi-C
593 unambiguous chimeric pairs are the product of Hi-C ligations in which one read crosses the

594  ligation junction and thus maps to both locus A and locus B, while the other normal read maps
595  only to locus B. Hi-C ambiguous chimeric pairs are often caused by structural variations, with
596  one read maps to both locus A and locus C, while the other read maps to locus B. B, Copy

597  number information is reflected in the Hi-C 1D coverage profile after Hi-C biases are removed
598 by normalizing the K562 Hi-C contact matrix with the GM12878 Hi-C contact matrix. The copy
599  number profile (log2 ratios) estimated from WGS data is shown in the bottom row for

600  comparison. C, Comparison of the Hi-C contact matrix between chr9 and chr19 in samples with
601  and without translocations. The distribution of normalized contact frequencies are higher in the
602  sample with translocation (purple dots) than in the sample without (cyan dots). Contact

603  frequencies were calculated in 1Mb bins in chr9 and chr19.

604  Figure 2. Copy number inference in K562 cells by HiNT. A, Comparison of log2 copy ratios
605  calculated using regression residuals from Hi-C (blue) and using read coverage from WGS

606  (orange). B, Comparison of CNV profiles from Hi-C and WGS after segmentation. Red, green
607  and grey bars represent copy gain, copy loss, and copy neutral regions, respectively. C, The
608 number of CNV segments detected from Hi-C by HiNT (upper) and HiCnv (lower) that are also
609  supported by WGS. The overlap criteria for consistency are shown in Supp. Fig. 5C.

610  Figure 3. Simulation translocations in Hi-C data. A, Homozygous cases. B, Heterozygous
611  cases. An example of a translocation involving two chromosomes is illustrated. The three
612  columns correspond to original matrix, with balanced translocation, and unbalanced

613  translocation, respectively. Circles highlight the features introduced by the translocations.

614  Figure 4. Accurately identification of translocated chromosomal pairs by HiNT. A, The

615  distribution of the rank product scores for all chromosomal pairs in K562 before (left) and after
616  (right) adjustment by background subtraction. Chromosomal pairs in pink and blue correspond to
617  two FISH-validated translocation pairs (chrl, chr21) and (chrl, chr18); the one in yellow

618  corresponds to a chromosome pair (chrl6, chr19) without translocation. After matrix adjustment,
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the blue pair now has a lower score and the yellow pair has a higher score, as desired. TP: True
Positive, TN: True Negative, FN: False Negative, FP: False Positive, 0.05 is used as the cutoff.
B, Receiver-operator characteristic (ROC) curves show HiNT performs better after the
background subtraction. Areas under the ROC curves (AUCs) are shown in parentheses. C, The
original, background (average of multiple other Hi-C maps), and the adjusted maps are shown

for the three cases highlighted in panel A. Validated translocations are marked by circles.

Figure 5. Comparison of breakpoints detected from Hi-C and WGS. A, Overlap of the
translocation breakpoints detected by Meerkat (WGS), Delly (WGS), and HiNT (Hi-C). B, The
Hi-C interaction map containing a breakpoint detected in both Hi-C and WGS. C, The same
exact breakpoint in panel B is captured in WGS. Discordant reads in light green (dark green) are
paired-end reads whose mates are found on chr9 (chr22). D, Hi-C interaction map illustrating a
clear case of translocation detected only by HiNT. E, Breakpoints detected in both Meerkat and
Delly (‘“WGS Common’) and only in Hi-C only are classified into small repeat, large repeat and

non-repeat regions, showing that Hi-C is enriched for SVs involving large repeats.
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