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Abstract 11 

The three-dimensional conformation of a genome can be profiled using Hi-C, a technique that 12 

combines chromatin conformation capture with high-throughput sequencing. However, structural 13 

variations (SV) often yield features that can be mistaken for chromosomal interactions. Here, we 14 

describe a computational method HiNT (Hi-C for copy Number variation and Translocation 15 

detection), which detects copy number variations and inter-chromosomal translocations within 16 

Hi-C data with breakpoints at single base-pair resolution. We demonstrate that HiNT 17 

outperforms existing methods on both simulated and real data. We also show that Hi-C can 18 

supplement whole-genome sequencing in SV detection by locating breakpoints in repetitive 19 

regions.  20 
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 2 

BACKGROUND 25 
 26 
The Hi-C assay provides genome-wide identification of chromatin interactions, thereby enabling 27 

systematic investigation of the three-dimensional genome architecture and its role in gene 28 

regulation [1]. Hi-C data have been used, for example, to characterize topologically associated 29 

domains (TADs), which are megabase-sized local chromatin interaction domains within which 30 

genomic loci interact with higher frequency [2-4]. Characterization of genome organization using 31 

Hi-C data has enhanced our understanding of a number of biological processes, such as X-32 

inactivation [2, 5], cell cycle dynamics [6], and tumor progression [7].  33 

 34 

However, it has been shown that structural variations (SVs) can confound the interpretation of 35 

Hi-C data [6, 8-11]. For example, when there is copy number increase, the observed number of 36 

sequencing reads that correspond to chromosomal interactions in that region will be larger than 37 

expected, not because there is greater frequency of interaction but because there are multiple 38 

copies of that region. Similarly, when there is an inter-chromosomal translocation, the reads that 39 

correspond to interactions between the translocated segment and its proximal regions will be 40 

inflated, but this should not be mistaken for changes in interaction frequency.  41 

 42 

One approach to mitigate the impact of SVs on the Hi-C interaction map is to first identify SVs 43 

using whole-genome sequencing (WGS) data and then use that information to adjust the Hi-C 44 

map. Although a great deal of progress has been made in WGS-based SV detection [12, 13], the 45 

use of WGS data requires additional sequencing and analysis expertise. Furthermore, SV 46 

breakpoints within repetitive regions, which are often genomic SV hotspots, cannot be easily 47 

detected from WGS due to low mappability [14]. Indeed, Hi-C and WGS data are 48 

complementary in SV detection: as Hi-C read pairs span genomic distances from base pairs to 49 

megabases, they enable detection of breakpoints in repetitive regions when one read of a read 50 

pair maps to a repetitive region and the other maps to a surrounding mappable region (Supp. Fig. 51 

1).  52 

 53 

Here, we present HiNT (Hi-C for copy Number variation and Translocation detection), an 54 

algorithm for detection of copy number variations (CNVs) and inter-chromosomal translocations 55 

in Hi-C data. Based on simulated data and comparisons to variants identified in WGS, HiNT 56 
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outperforms existing computational methods both in sensitivity and false discovery rate (FDR). 57 

HiNT also provides translocation breakpoints at single base-pair resolution, a feature not 58 

available in existing methods that utilize only Hi-C data. Furthermore, HiNT supports 59 

parallelization, utilizes efficient storage formats for interaction matrices, and accepts multiple 60 

input formats including raw FASTQ, BAM, and contact matrix. HiNT is available at 61 

https://github.com/parklab/HiNT. 62 

 63 

RESULTS 64 

Overview of HiNT 65 

HiNT has three main components. HiNT-PRE performs preprocessing of Hi-C data and 66 

computes the contact matrix, which stores contact frequencies between any two genomic loci.  67 

HiNT-CNV and HiNT-TL start with a Hi-C contact matrix and predict copy number segments 68 

and inter-chromosomal translocations, respectively (Supp. Fig. 2). 69 

 70 

HiNT-PRE aligns read pairs to the genome using BWA-MEM [15] and creates a Hi-C contact 71 

matrix. The matrix is constructed from normal read pairs (non-chimeric reads that map uniquely 72 

to the genome) as well as unambiguous chimeras [16] (Fig. 1A). The latter is a product of Hi-C 73 

ligation and is defined as a read pair in which one chimeric read is split into locus A and locus B 74 

and the other read is uniquely mapped to locus B (Fig. 1A). All other read pairs containing split 75 

reads are defined as ambiguous chimeras [16], which will be used for translocation breakpoint 76 

detection (Fig. 1A).  77 

 78 

HiNT-CNV (Supp. Fig. 2) first creates a one-dimensional (1D) coverage profile across the 79 

genome by calculating row or column sums of the contact matrix at a fixed resolution, e.g., 50kb. 80 

These sums should be correlated with the copy number across the bins since they correspond to 81 

the strength of interaction of that region with all other regions. It is critical to use the 82 

unnormalized contact matrix here because the matrix-balancing normalization (setting the sum of 83 

each row or column to be 1), which is the most widely used Hi-C normalization approach, 84 

removes not only biases but also copy number information. The next step is to perform further 85 

adjustment to remove other biases that are inherent in the Hi-C experiments, such as GC content, 86 

mappability, restriction site frequency, etc. In Fig. 1B, we see that, without additional 87 
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adjustment, the 1D profiles for K562 (human chronic myelogenous leukemia cell line; known to 88 

have high genomic instability) and GM12878 (human lymphoblastoid cell line) show similarity 89 

to each other but not with the copy number profiles estimated from WGS. However, when we 90 

remove Hi-C internal biases in K562 by using GM12878 as a control (Fig. 1B, right), the 1D 91 

coverage profile becomes highly correlated with the (ploidy-adjusted) copy ratios estimated from 92 

WGS data. This result shows that proper normalization is essential in extracting copy number 93 

information from Hi-C data. Given that an appropriate control is often unavailable, HiNT-CNV 94 

uses a generalized additive model to remove the biggest sources of bias: GC content, 95 

mappability, and restriction fragment length [17]. The boundaries of CNV segments are 96 

determined using the BIC-seq segmentation algorithm, which utilizes the Bayesian information 97 

criterion to identify regions with enriched or depleted read counts [18]. 98 

 99 

HiNT-TL (Supp. Fig. 2) detects translocations by analyzing normalized inter-chromosomal 100 

interaction matrices. In general, contact probabilities between two regions on the same 101 

chromosome decrease monotonically with distance, and inter-chromosomal interactions are 102 

considerably less frequent compared to intra-chromosomal ones. When an inter-chromosomal 103 

translocation occurs, we expect the contact probabilities in two opposite quadrants around the 104 

breakpoint to be elevated to the levels observed for adjacent chromosomal regions (Fig. 1C). 105 

Thus, HiNT-TL identifies candidate translocated chromosomal pairs based on the presence of 106 

high contact probabilities and their unequal distribution. To identify exact breakpoints, HiNT-TL 107 

first identifies the breakpoint regions with a coarse 100kb resolution from the 1D profiles (see 108 

Methods). HiNT-TL then uses Hi-C ambiguous chimeric reads located within these regions to 109 

refine breakpoints to single base-pair resolution.  110 

 111 

CNVs predicted by HiNT from Hi-C are consistent with those identified from WGS 112 

To predict CNVs, we first calculate the coverage profile throughout the genome at 50kb 113 

resolution. We then correct for Hi-C biases such as GC content, mappability, and the number of 114 

restriction sites (given a fixed bin size, the number of expected fragments depends on the number 115 

of cut sites by the restriction enzyme used). To model the non-linear correlation between 1D 116 

coverage and biases observed (Supp. Fig. 3), we use a generalized additive model (GAM) with 117 

the Poisson link function. GAM is an ideal framework here, as it allows non-parametric fitting 118 
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with relaxed assumptions on the relationship between predictor and response variables. The copy 119 

number information is extracted from regression residuals by the following equation: 120 

𝑙𝑜𝑔(𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒) = 	 𝑠.(𝐺𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡) +	𝑠4(𝑀𝑎𝑝𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦) +	𝑠:(𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑒𝑠𝑡𝑟. 𝑆𝑖𝑡𝑒𝑠) + 	𝜀 121 

where 𝑠D	(DE.,4,:)(•) is an unspecified function estimated for each predictor variable and 𝜀 is the 122 

regression residual. The model fits better for GM12878 (𝑅4 = 0.798) than for K562 (𝑅4 =123 

0.631), since K562 is known to have more SVs. 124 

 125 

To evaluate CNVs identified from Hi-C, we compare the log2 copy ratios along the genome 126 

from the model above with those estimated from WGS. For K562, we see that copy number 127 

alterations are prevalent and that the log ratios from Hi-C and WGS are mostly concordant (Fig. 128 

2A, Supp. Fig. 4A; Spearman correlation = 0.82). For GM12878, the correlation is lower 129 

(Spearman correlation = 0.21) because there are very few CNVs in this cell line, and the existing 130 

small ones are detected only from WGS (Supp. Fig. 4B, Supp. Fig. 5A). The copy ratios 131 

fluctuate more in the Hi-C profile relative to WGS data (Fig. 2A, Supp. Fig. 5A) due to the 132 

different read depth and possibly due to Hi-C biases that may not have been captured by our 133 

model. When the copy number log ratios are segmented using BIC-seq [18], the concordance 134 

between the platforms is striking (top two rows in Fig. 2B), with ~85% and 92% of the large 135 

(>2Mb) segments from Hi-C overlapping those from WGS in K562 and GM12878 cells, 136 

respectively (Fig. 2C, Supp. Fig. 5D; our definition of overlap is described in Supp. Fig. 5C). 137 

Collectively, our analysis suggests that HiNT is a reliable tool for identifying large-scale CNVs 138 

in both cancer and normal Hi-C data. 139 

 140 

HiNT outperforms HiCnv for identifying CNVs from Hi-C data 141 

HiCnv is a computational tool developed to infer copy number from normalized Hi-C coverage 142 

[19]. It employs smoothing by kernel density estimation followed by a Hidden Markov Model; 143 

however, it requires a baseline chromosome copy number from WGS or karyotyping to 144 

determine the true copy number of each chromosome. To evaluate the performance of HiCnv, we 145 

examine the concordance of CNVs identified from HiCnv to those detected from WGS. 146 

Surprisingly, the copy number log ratios along the genome are largely discordant, with a 147 

Spearman correlation of 0.67 in K562 and 0.1 in GM12878 (Supp. Fig. 4C-D). Moreover, only 148 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657080doi: bioRxiv preprint 

https://doi.org/10.1101/657080
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

~15% of the large segments detected by HiCnv overlap those identified from WGS in K562 (Fig. 149 

2C); the overlap is even smaller for GM12878 cells (Supp. Fig. 5D).  150 

 151 

In addition, input to HiCnv must be either HiC-Pro [20] output or a SAM file, which is then 152 

converted to HiC-Pro format, incurring high computational cost for terabyte-scale datasets. For 153 

example, 3 billion read pairs result in a ~600GB BAM file, and the required SAM format is at 154 

least 4-fold larger than BAM format in size. In contrast, HiNT-PRE accepts FASTQ and BAM 155 

files, and generates the Hi-C contact matrix in hic [16, 21] or cool [22] format, which serves as 156 

the input to HiNT-CNV. Both hic and cool are efficient and widely-used formats for genomic 157 

interaction matrices. Taken together, HiNT-CNV outperforms this existing tool in detecting 158 

CNVs in both cancer and normal cells in both accuracy and usability. 159 

 160 

HiNT accurately identifies translocated chromosomal pairs 161 

Translocations modify the 3D organization of the genome, and they will be incorrectly identified 162 

as long-range interactions in Hi-C data if they are not accounted for properly. To first study their 163 

impact on Hi-C interaction maps, we developed a simulation scheme to recapitulate the effect of 164 

translocations, encompassing homozygous/heterozygous and balanced/unbalanced 165 

translocations. A balanced translocation is an even exchange of segments between chromosomes 166 

without genetic information gain or loss; an unbalanced translocation involves a loss or gain of 167 

chromosome segments. As observed in previous studies [19, 23, 24], a balanced translocation 168 

forms a ‘butterfly’ appearance in the chromosomal interaction map (Fig. 3A and Fig. 3B middle, 169 

marked by red circles). In contrast, an unbalanced translocation only has a single block (Fig. 3A 170 

and Fig. 3B, right column, marked by red circles) [23]. Detection of intra-chromosomal 171 

translocations are complicated by the presence of chromatin structures such as TADs and loops. 172 

Therefore, we focus on identification of inter-chromosomal translocations.  173 

 174 

Our method is based on detection of two characteristics. First, the contact frequencies should be 175 

distributed unevenly around the translocation breakpoint. For this, we utilize the Gini index, a 176 

statistical measure of distribution initially used to quantify income inequality in economics [25]. 177 

To compute this index, we estimate the cumulative distribution of contact frequencies in each 178 

square of the interaction map (we use 1Mb x 1Mb) and determine how much it deviates from a 179 
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linear increase. A high index corresponds to more uneven distribution of interaction strength. 180 

Second, the maximum interaction level surrounding the breakpoint should be high for a 181 

translocation. Regions without a translocation but with a high noise level may satisfy the first 182 

criterion of uneven contact frequencies, but their maximum interaction level would not be large. 183 

Combining the two features (interaction level and evenness), we define the rank product score as 184 

𝑅𝑃D = 	 O𝑅PDQD,D/𝑛S ∗ O𝑅UDV,D/𝑛S, where 𝑅PDQD,D and 𝑅UDV,D are the ranks of matrix 𝑖	based on Gini 185 

index and maximum interaction frequency, respectively, and 𝑛 is the total number of inter-186 

chromosomal interaction matrices. 187 

 188 

The rank product score performs well in simulated data, separating the translocated and non-189 

translocated cases in nearly all cases (Supp. Fig. 6). For real data, we found that direct 190 

application of the rank product was insufficient, due to the various factors that are not captured 191 

by the normalization step, e.g., the A/B compartment effect and the increased interactions 192 

between small chromosomes or between sub-telomeric regions. To eliminate such biases, we 193 

created a background interaction matrix by averaging the matrices from five normal cell lines 194 

(Supp. Table 1, see Methods) and used it to normalize the original matrix. In Fig. 4A, we show 195 

three examples of chromosomal pairs in K562 data whose scores change as a result of the 196 

additional normalization. In the first case (chr1- chr21), the score does not change significantly; 197 

in the second case (chr1- chr18), the score increases so that a translocation is now called; and in 198 

the third case (chr16 - chr19), the score decreases so that a mistaken call is avoided. Using the 199 

chromosomal pairs reported in the literature or validated by FISH experiments [4, 24] as true 200 

positives, we see that the adjusted matrix results in an increased prediction accuracy, as 201 

measured by the area under the curve (AUC) (Fig. 4B). As visualized in Fig. 4C, the previously 202 

observed biases are effectively reduced by the normalization, allowing for better delineation of 203 

translocations (Supp. Fig. 6, Supp. Fig. 7A-C).  204 

 205 

Although the rank product approach detects the majority of translocated chromosomal pairs, four 206 

validated translocations are not identified. To investigate this issue, we compare the Hi-C 207 

interaction matrices of the detected (Supp. Fig. 8) and missed chromosomal pairs (Supp. Fig. 9). 208 

Compared to the detected chromosomal pairs, no translocation signature can be visually detected 209 

from the interaction matrices for missed pairs. In addition, the sharp boundaries at translocation 210 
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breakpoints on the 1D coverage profile can only be found in our predicted translocated 211 

chromosomal pairs. Thus, we believe that there are some translocated chromosomal pairs that are 212 

simply not reflected within Hi-C data, or the validation data may be incorrect, e.g., due to the 213 

variation among the K562 lines. We further examined four more cancer cell lines, including 214 

HelaS3 (cervical carcinoma), LNCaP (prostate carcinoma), Panc1 (pancreatic carcinoma), and 215 

T47D (breast cancer). We found that the rank product and the maximum interaction perform 216 

better than the Gini index in LNCaP, T47D, and Panc1, whereas the rank product and Gini index 217 

are more predictive in HelaS3 (Supp. Fig. 7E).  218 

 219 

HiNT detects translocation breakpoints at single base-pair resolution using Hi-C chimeric 220 

reads 221 

Once a chromosomal pair containing a translocation is identified based on the rank product, 222 

HiNT searches for the translocation breakpoint. For a translocation, the 1D row/column-sum 223 

profile should change abruptly at the breakpoint (Supp. Fig. 8, and Supp. Fig. 10A). To identify 224 

this point, we use a change point detection method called breakpoints from the R package 225 

strucchange [26], which adopts a linear model to detect one or several change points in 226 

multivariate time series. However, the majority of the change points detected by breakpoints are 227 

the result of lower mappability and unremoved compartment effects, and thus should not be 228 

identified as the translocation breakpoints (Supp. Fig. 10A). To remove these false positives, we 229 

impose a filtering step in which only those with one quadrant (unbalanced translocation) or two 230 

diagonally-opposed quadrants (balanced translocation) around the candidate breakpoint have 231 

very high interactions (Supp. Fig. 10, Methods). Here, we define a high interaction frequency as 232 

being greater than the 99th percentile of all the interactions between the two chromosomes.  233 

 234 

Next, we determine the precise coordinates of the breakpoints by using ambiguous chimeric 235 

reads [16] (Fig. 1A). These reads have their primary alignment near a breakpoint in one 236 

chromosome (e.g. chrA) and their clipped part align near a breakpoint in another chromosome 237 

(e.g. chrB). HiNT provides the intervals in which the breakpoints occur (100kb resolution) and, 238 

as long as the breakpoint does not occur in an unmappable region, the exact location of the 239 

breakpoint (1bp resolution).  240 

 241 
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Hi-C can supplement WGS by locating translocation breakpoints in repetitive regions  242 

To assess its performance, we compare the translocation breakpoints determined from Hi-C 243 

using HiNT with those detected from WGS using Delly [27] and Meerkat [28]. In K562, 56 and 244 

173 inter-chromosomal translocations are detected by Meerkat and Delly, respectively, with only 245 

14 translocations detected by both (Fig. 5A). This level of discrepancy is not unexpected [29] 246 

and is indicative of the difficulty of detecting SVs in general. When we intersect these 14 247 

consensus WGS-based translocations with those detected by HiNT, we find that 5 are in 248 

common (Fig. 5A). Two additional ones were found by HiNT and either Meerkat or Delly but 249 

not both. In these 7 cases, the breakpoints were exactly the same at the nucleotide level, 250 

confirming the accuracy of the calls (Supp. Table 2). An example is a translocation between 251 

chromosome 9 and 22 shown in Fig. 5B, with more than 100 supporting clipped reads in Hi-C 252 

data and many discordant reads in WGS data (Fig. 5C).  253 

 254 

Thirty-three translocations are detected only from Hi-C data (Fig. 5A; listed in Supplementary 255 

Table 3 and can be viewed interactively by HiGlass [30] at http://18.215.251.253/). For example, 256 

a significant rank product score is found between chr3 and chr18 in the Hi-C interaction matrix 257 

(Fig. 5D), and three breakpoint regions are detected by HiNT including one validated by FISH 258 

[24] (Supp. Table 4). However, few discordant reads are identified from WGS. A major reason 259 

for this difference is the low mappability around those breakpoints. As illustrated in 260 

Supplementary Figure 1, the long physical distance between Hi-C read pairs allow identification 261 

of translocations whose breakpoints occur in a repetitive region—the paired reads can “jump 262 

over” the repeat region and map to surrounding mappable regions, even though the breakpoint 263 

itself cannot be mapped. Indeed, we find that large repeat (>1kb) regions (as found in repBase 264 

[31]) make up a disproportionately large fraction of regions containing Hi-C-only breakpoints 265 

compared to WGS consensus breakpoints (Fig. 5E). We note that repetitive regions with high 266 

sequence divergence are mappable, but we used the term ‘repetitive region’ for conceptual 267 

clarity. 268 

 269 

For the translocations detected only in WGS, some are missed in Hi-C due to its more uneven 270 

genome coverage. In other cases, we find that, surprisingly, the discordant reads from WGS 271 

contain a large fraction of single nucleotide polymorphisms or have low mapping qualities, 272 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657080doi: bioRxiv preprint 

https://doi.org/10.1101/657080
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

indicating issues in read alignment (Supp. Fig. 11). Consistent with that observation, 273 

translocation signatures are not found in the Hi-C interaction maps. These analyses suggest that 274 

Hi-C is a powerful tool to detect translocations and can complement WGS, especially for 275 

detecting those with breakpoints in repetitive regions.  276 

 277 

HiNT outperforms existing tools on detecting translocations 278 

Others have attempted to identify structural variants from Hi-C data. One approach is simply to 279 

visually inspect the interaction heatmaps—a low resolution detection of breakpoints with poor 280 

scalability and reproducibility [23]. Better approaches search for regions that contain abnormal 281 

interaction frequencies based on normalized Hi-C interaction maps [6, 32]. However, such 282 

methods utilizing only contact frequencies cannot easily distinguish translocations from 283 

chromatin interactions, thus giving a high false discovery rate (FDR). A recent algorithm 284 

HiCtrans [19] identifies translocation breakpoints based on change-point statistics obtained by 285 

scanning the inter-chromosomal contact maps of each chromosomal pair. However, searching 286 

the breakpoints across all inter-chromosomal contact maps leads to a high computational cost. 287 

For a comprehensive set of inter- and intra-chromosomal translocations, one could integrate 288 

WGS, Hi-C and optical mapping data [24]. However, in most cases, it is impractical to generate 289 

all these data types for a given sample. The method they used for Hi-C data [24] is 290 

hic_breakfinder, an iterative approach to locate local clusters that deviate from the expected 291 

interaction frequencies in a Hi-C contact matrix. 292 

 293 

To compare the performance of these algorithms, we first apply HiCtrans [19] and HiNT to 294 

simulation data. Hic_breakfinder [24] is not used here because it requires the aligned reads in 295 

BAM format, but our simulation is matrix-based. Of the 21 simulated inter-chromosomal 296 

translocations (mix of balanced/unbalanced and heterozygous/homozygous translocations), HiNT 297 

identified 20 correctly while calling additional 5 breakpoints (Supp. Fig. 12A). The one missing 298 

translocation was located at the centromere of chr21 (Supp. Fig. 12B). In contrast, HiCtrans 299 

called 531 translocations (distributed across 100 different chromosomal pairs), but none were 300 

bona fide translocations (Supp. Fig. 12C).  301 

 302 
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We also compared HiNT, HiCtrans [19], and hic_breakfinder [24] on the K562 data. As shown 303 

in Supp. Fig. 12D-E, HiNT has the highest AUC measure (0.85 vs 0.78 and 0.77, see Methods) 304 

as well as the best precision-recall curve. Additionally, we found that while HiCtrans identified 305 

132 translocated chromosomal pairs, which is more than half of the number of all chromosomal 306 

pairs, only 10 of them contain known translocations. Among all 931 breakpoints (~1Mb 307 

resolution) identified by HiCtrans, only 2 of them cover what are detected from WGS by both 308 

Meerkat and Delly (Supp. Fig. 12F). On the other hand, hic_breakfinder identified 77 309 

breakpoints (~100kb resolution). Among these breakpoints, 4 are identified by both Meerkat and 310 

Delly (Supp. Fig. 12F). This suggests a higher false discovery rate of HiCtrans and 311 

hic_breakfinder than HiNT. Furthermore, we found that 60% (24/40) of HiNT-identified 312 

breakpoints can also be identified by other methods. In contrast, this value is only 35% (27/77) 313 

and 3.0% (28/931) for breakpoints output from hic_breakfinder and hictrans, respectively (Supp. 314 

Fig. 12F). Collectively, HiNT-TL outperforms HiCtrans and hic_breakfinder in both specificity 315 

and accuracy.  316 

 317 

Conclusion 318 

Robust identification of SVs remains paramount to accurate inference of long-range interactions 319 

from Hi-C data. We have shown that HiNT can be used to identify CNVs and inter-chromosomal 320 

translocations with split read support for breakpoints whenever possible, and that it outperforms 321 

existing methods. Although not as sensitive as WGS data in general, Hi-C data can complement 322 

WGS data for detection of translocations in repetitive regions. As new technologies for capturing 323 

three-dimensional interactions are introduced, further computational methods will be needed to 324 

avoid the confounding effects of SVs. 325 

  326 
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Methods 327 
 328 
Data sources 329 

Hi-C data: in-situ Hi-C data in cancer cell line K562 and in normal cell lines including 330 

GM12878, HMEC, HUVEC, IMR90, and NHEK were obtained from GEO (Gene Expression 331 

Omnibus) with the accession number GSE63525 [16]. All the normal cell line data were 332 

combined to create the background Hi-C interaction matrix. Hi-C data for HelaS3, LNCaP, 333 

Panc1, and T47D, which were generated by the Dekker lab [33], were downloaded from the 334 

ENCODE website (See details from Supp. Table 1).  335 

WGS data: We downloaded the BAM file for NA12878 WGS data from the 1000 genomes 336 

project [34], and the BAM file for K562 WGS data from the GDC legacy archive of the Cancer 337 

Cell Line Encyclopedia (CCLE) project [35]. 338 

 339 

CNV identification from WGS 340 

BIC-seq2 [36] was used to derive CNV segments from WGS read coverage data. For the 341 

segmentation step, we used 𝑏𝑖𝑛𝑠𝑖𝑧𝑒 = 50,000	𝑏𝑝	and 𝜆 = 50 to determine the final CNV 342 

breakpoints in NA12878. 𝜆 is a parameter that controls the smoothness (the number of 343 

breakpoints) of the final CNV profile. chrY and chrM were excluded from the analysis.  344 

 345 

Definition of copy ratios in Hi-C and WGS data 346 

Copy ratio is defined as the ratio of observed and expected values. In Hi-C, observed values are 347 

the residuals from GAM Poisson regression, and expected values are set to zero. In WGS, 348 

observed values are read coverage, and expected values are estimated by a semi-parametric 349 

regression model via BIC-seq2 [36]. 350 

 351 

Simulation of inter-chromosomal translocations in Hi-C contact maps 352 

The simulation pipeline defines two random coordinates from distinct chromosomes as the origin 353 

and destination of the translocation (e.g. x on chr1, and y on chr2). Then, it creates the 354 

translocated version of interaction matrices for chr1 to chr1, chr2 to chr2, and chr1 to chr2 via 355 

rearranging the original interaction probabilities. 356 

 357 

SV detection from WGS 358 
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SV detection from WGS was carried out using Delly and Meerkat. To omit germline SVs, we 359 

used NA12878 as a control genome. Default parameters were used to run Delly. Only 360 

translocations that passed the internal quality control and were marked as “PRECISE” in Delly 361 

were used for comparison. Default parameters were used to run Meerkat, and filtering step was 362 

performed according to the post-processing steps described in the tool manual. Only valid 363 

precise inter-chromosomal translocations were kept for comparison. 364 

 365 

Gini Index calculation 366 

For each Hi-C inter-chromosomal interaction matrix M, we first sorted the contact regions, based 367 

on the adjusted contact frequencies between these two regions, from lowest to highest, then 368 

calculated the cumulated contact frequencies of matrix M. Regions that did not form contacts 369 

with any other regions were excluded. A plot of this functional relationship is called a Lorenz 370 

curve. The Gini index is computed as twice the area between the Lorenz curve and the diagonal. 371 

 372 

Breakpoint filtering 373 

To remove false discovered change points, we first construct two-dimensional Cartesian 374 

coordinate systems originating from the intersection of each pair of candidate breakpoints. For 375 

each coordinate system, we then define four, 5-bin-by-5-bin quadrants around the origin, and we 376 

calculate the average interaction frequency within each quadrant (Supp. Fig. 10A). The valid 377 

breakpoints for translocations should have only one (unbalanced translocation) or two (balanced 378 

translocation) quadrants with very high interactions, and the remaining quadrants should have 379 

lower interaction frequencies (Supp. Fig. 10B upper panel). More specifically, for balanced 380 

translocations, the two quadrants with high interaction frequencies should diagonally oppose 381 

each other (Supp. Fig. 10B upper panel). If zero, three, or all quadrants have high interaction 382 

frequencies, the proposed breakpoints are considered false positives and removed (Supp. Fig. 383 

10B lower panel). Here, we define a high interaction frequency as being greater than the 99th 384 

percentile of all the interactions between the two chromosomes.  385 

 386 

ROC curves of HiCtrans and HiC_breakfinder on translocated chromosomal pairs 387 

prediction 388 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/657080doi: bioRxiv preprint 

https://doi.org/10.1101/657080
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

To create ROC curves for the evaluation of translocated chromosomal pairs prediction, we rank 389 

all the chromosomal pairs first. Both HiCtrans and hic_breakfinder output a score (entropy ratio 390 

in HiCtrans, and log-odds in hic_breakfinder) to measure the strength of each breakpoint call. 391 

We assign each chromosomal pair a representative score by taking the score of the most 392 

significant breakpoint that located in this chromosomal pair. The chromosomal pairs are then 393 

ranked by the representative scores. ROC curves and AUC values are calculated by using the R 394 

package ROCR [37]. The chromosomal pairs reported in the literature or validated by FISH 395 

experiments are used as true positives here. 396 

 397 

Details of the HiNT pipeline 398 

1. HiNT-PRE: Raw Hi-C data in FASTQ format are aligned to a reference genome (hg19) via 399 

bwa-mem: bwa-0.7.16a-r1185-dirty/bwa mem -SP5M bwaIndex/hg19.fa 400 

in1.fq in2.fq. Read pairs that are both uniquely mapped to the genome are collected as 401 

valid pairs. However, 10%-20% of the remaining Hi-C read pairs contain at least one chimeric 402 

read with split alignments. Chimeric pairs with one read uniquely mapped and the other 403 

chimeric, due to ligation, are defined as unambiguous chimeras [16], and counted as valid pairs. 404 

All other chimeric pairs are classified as ambiguous [16] chimeras, and are used to identify 405 

translocation breakpoints at single base-pair resolution. All the unmapped, multi-mapped, and 406 

PCR duplicated read pairs are discarded from our analysis. All pairs are classified by pairtools 407 

(https://github.com/mirnylab/pairtools). Then, a Hi-C interaction matrix is generated from all the 408 

valid pairs by cooler [22] or juicer tools [38] at 50kb, 100kb, 1Mb, or at a user-specified 409 

resolution.  410 

 411 

2. HiNT-CNV: First, a 1D coverage profile for each 50kb bin (default) is calculated along the 412 

whole genome using an unnormalized contact matrix. Bin size can be specified by users based on 413 

the sequencing depth and accuracy need. Then, a GAM regression with a Poisson link function is 414 

performed to remove the known Hi-C biases with pre-calculated GC content, mappability, and 415 

the number of restriction sites in each bin. Then, the segmentation method of BIC-seq is applied 416 

to the regression residuals to identify the breakpoints and generate the final CNV profile.  417 

 418 
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3. HiNT-TL: Translocation detection is performed in three steps; determination of the 419 

translocated chromosomal pairs, identification of the rough breakpoint regions, and 420 

determination of the exact breakpoints at single base pair resolution. To determine the 421 

translocated chromosomal pairs, 1 Mb-binned and genome-wide normalized inter-chromosomal 422 

interaction matrices are taken as input. To remove the effects of A/B compartments, a 423 

background model is created by averaging multiple in-situ Hi-C data in normal cell lines (Supp. 424 

Table 1). Each inter-chromosomal interaction matrix is corrected with the background by taking 425 

the ratio between the original signals and the background signals. Then, for each possible 426 

chromosomal pair, Gini index and the maximum contact frequency are calculated. Then, a rank 427 

product score is computed 𝑅𝑃D = 	 O𝑅PDQD,D/𝑛S ∗ O𝑅UDV,D/𝑛S, where 𝑅PDQD,D and 𝑅UDV,D are the ranks 428 

of matrix 𝑖	based on Gini index and maximum interaction frequency, respectively, and 𝑛 is the 429 

total number of inter-chromosomal interaction matrices. Chromosomal pairs with 𝑅𝑃D ≤ 	0.05 430 

are defined as the potential translocated chromosomal pairs. 431 

 432 

HiNT then calculates the 1D coverage profiles by calculating the sum of each row and column of 433 

the adjusted inter-chromosomal interaction matrices for those predicted translocated 434 

chromosomal pairs. It then applies the function breakpoint in the R package strucchange, a 435 

function with high computing performance that allows simultaneous estimation of multiple 436 

breakpoints in a given time series data, to the coverage profiles to identify all change points. The 437 

translocation rough breakpoint regions are further decided after the filtering step as we described 438 

in Supp. Fig. 10.  439 

 440 

To get the precise breakpoints at single base-pair resolution, HiNT uses the soft-clipped reads-441 

based algorithm that is commonly used for WGS SV prediction. Translocation breakpoints that 442 

are covered by at least one split read pair with one end mapped to the rough breakpoint region on 443 

one chromosome, and the other end mapped to the rough breakpoint region on another 444 

chromosome are reported at single base-pair resolution; otherwise, the predicted rough 445 

breakpoint regions will be reported. Not all the breakpoints are expected to have supported 446 

clipped reads due to the non-uniform distribution of read coverage in Hi-C data.  447 

 448 

List of abbreviations 449 
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HiNT: Hi-C for copy Number variation and Translocation detection; CNV: copy number 450 

variation; SV: structural variation; GAM: generalized additive model; WGS: whole genome 451 

sequencing; 1D: 1-dimensional; ROC: receiver operating characteristic; TADs: topologically 452 

associated domains; TP: true positive; TN: true negative; FP: false positive; FN: false negative; 453 

RP: rank product.  454 
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Figure Legends 590 

Figure 1. Illustration of HiNT. A, Hi-C read pairs are classified into normal pairs (left panel), 591 

unambiguous chimeric pairs (middle panel), and ambiguous chimeric pairs (right panel). Hi-C 592 

unambiguous chimeric pairs are the product of Hi-C ligations in which one read crosses the 593 

ligation junction and thus maps to both locus A and locus B, while the other normal read maps 594 

only to locus B. Hi-C ambiguous chimeric pairs are often caused by structural variations, with 595 

one read maps to both locus A and locus C, while the other read maps to locus B. B, Copy 596 

number information is reflected in the Hi-C 1D coverage profile after Hi-C biases are removed 597 

by normalizing the K562 Hi-C contact matrix with the GM12878 Hi-C contact matrix. The copy 598 

number profile (log2 ratios) estimated from WGS data is shown in the bottom row for 599 

comparison. C, Comparison of the Hi-C contact matrix between chr9 and chr19 in samples with 600 

and without translocations. The distribution of normalized contact frequencies are higher in the 601 

sample with translocation (purple dots) than in the sample without (cyan dots). Contact 602 

frequencies were calculated in 1Mb bins in chr9 and chr19. 603 

Figure 2. Copy number inference in K562 cells by HiNT. A, Comparison of log2 copy ratios 604 

calculated using regression residuals from Hi-C (blue) and using read coverage from WGS 605 

(orange). B, Comparison of CNV profiles from Hi-C and WGS after segmentation. Red, green 606 

and grey bars represent copy gain, copy loss, and copy neutral regions, respectively. C, The 607 

number of CNV segments detected from Hi-C by HiNT (upper) and HiCnv (lower) that are also 608 

supported by WGS. The overlap criteria for consistency are shown in Supp. Fig. 5C.  609 

Figure 3. Simulation translocations in Hi-C data. A, Homozygous cases. B, Heterozygous 610 

cases. An example of a translocation involving two chromosomes is illustrated. The three 611 

columns correspond to original matrix, with balanced translocation, and unbalanced 612 

translocation, respectively. Circles highlight the features introduced by the translocations. 613 

Figure 4. Accurately identification of translocated chromosomal pairs by HiNT. A, The 614 

distribution of the rank product scores for all chromosomal pairs in K562 before (left) and after 615 

(right) adjustment by background subtraction. Chromosomal pairs in pink and blue correspond to 616 

two FISH-validated translocation pairs (chr1, chr21) and (chr1, chr18); the one in yellow 617 

corresponds to a chromosome pair (chr16, chr19) without translocation. After matrix adjustment, 618 
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the blue pair now has a lower score and the yellow pair has a higher score, as desired. TP: True 619 

Positive, TN: True Negative, FN: False Negative, FP: False Positive, 0.05 is used as the cutoff. 620 

B, Receiver-operator characteristic (ROC) curves show HiNT performs better after the 621 

background subtraction. Areas under the ROC curves (AUCs) are shown in parentheses. C, The 622 

original, background (average of multiple other Hi-C maps), and the adjusted maps are shown 623 

for the three cases highlighted in panel A. Validated translocations are marked by circles.  624 

 625 

Figure 5. Comparison of breakpoints detected from Hi-C and WGS. A, Overlap of the 626 

translocation breakpoints detected by Meerkat (WGS), Delly (WGS), and HiNT (Hi-C). B, The 627 

Hi-C interaction map containing a breakpoint detected in both Hi-C and WGS. C, The same 628 

exact breakpoint in panel B is captured in WGS. Discordant reads in light green (dark green) are 629 

paired-end reads whose mates are found on chr9 (chr22). D, Hi-C interaction map illustrating a 630 

clear case of translocation detected only by HiNT. E, Breakpoints detected in both Meerkat and 631 

Delly (‘WGS Common’) and only in Hi-C only are classified into small repeat, large repeat and 632 

non-repeat regions, showing that Hi-C is enriched for SVs involving large repeats. 633 

  634 
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Figure 1 635 
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Figure 2 638 
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Figure 3 641 
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Figure 4 644 
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Figure 5 647 
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