

1 **HiNT: a computational method for detecting copy number 2 variations and translocations from Hi-C data**

3
4 Su Wang, Soohyun Lee, Chong Chu, Dhawal Jain, Geoff Nelson, Jennifer M. Walsh, Burak H.
5 Alver, Peter J. Park

6
7 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

8 Correspondence to: peter_park@hms.harvard.edu

9 10 **Abstract**

11 The three-dimensional conformation of a genome can be profiled using Hi-C, a technique that
12 combines chromatin conformation capture with high-throughput sequencing. However, structural
13 variations (SV) often yield features that can be mistaken for chromosomal interactions. Here, we
14 describe a computational method HiNT (**Hi**-C for copy **N**umber variation and **T**ranslocation
15 detection), which detects copy number variations and inter-chromosomal translocations within
16 Hi-C data with breakpoints at single base-pair resolution. We demonstrate that HiNT
17 outperforms existing methods on both simulated and real data. We also show that Hi-C can
18 supplement whole-genome sequencing in SV detection by locating breakpoints in repetitive
19 regions.

20
21

22 **Keywords**

23 chromosomal interactions, structural variation, whole-genome sequencing, repetitive region
24

25 **BACKGROUND**

26
27 The Hi-C assay provides genome-wide identification of chromatin interactions, thereby enabling
28 systematic investigation of the three-dimensional genome architecture and its role in gene
29 regulation [1]. Hi-C data have been used, for example, to characterize topologically associated
30 domains (TADs), which are megabase-sized local chromatin interaction domains within which
31 genomic loci interact with higher frequency [2-4]. Characterization of genome organization using
32 Hi-C data has enhanced our understanding of a number of biological processes, such as X-
33 inactivation [2, 5], cell cycle dynamics [6], and tumor progression [7].

34

35 However, it has been shown that structural variations (SVs) can confound the interpretation of
36 Hi-C data [6, 8-11]. For example, when there is copy number increase, the observed number of
37 sequencing reads that correspond to chromosomal interactions in that region will be larger than
38 expected, not because there is greater frequency of interaction but because there are multiple
39 copies of that region. Similarly, when there is an inter-chromosomal translocation, the reads that
40 correspond to interactions between the translocated segment and its proximal regions will be
41 inflated, but this should not be mistaken for changes in interaction frequency.

42

43 One approach to mitigate the impact of SVs on the Hi-C interaction map is to first identify SVs
44 using whole-genome sequencing (WGS) data and then use that information to adjust the Hi-C
45 map. Although a great deal of progress has been made in WGS-based SV detection [12, 13], the
46 use of WGS data requires additional sequencing and analysis expertise. Furthermore, SV
47 breakpoints within repetitive regions, which are often genomic SV hotspots, cannot be easily
48 detected from WGS due to low mappability [14]. Indeed, Hi-C and WGS data are
49 complementary in SV detection: as Hi-C read pairs span genomic distances from base pairs to
50 megabases, they enable detection of breakpoints in repetitive regions when one read of a read
51 pair maps to a repetitive region and the other maps to a surrounding mappable region (Supp. Fig.
52 1).

53

54 Here, we present HiNT (**Hi-C** for **copy Number** variation and **Translocation** detection), an
55 algorithm for detection of copy number variations (CNVs) and inter-chromosomal translocations
56 in Hi-C data. Based on simulated data and comparisons to variants identified in WGS, HiNT

57 outperforms existing computational methods both in sensitivity and false discovery rate (FDR).
58 HiNT also provides translocation breakpoints at single base-pair resolution, a feature not
59 available in existing methods that utilize only Hi-C data. Furthermore, HiNT supports
60 parallelization, utilizes efficient storage formats for interaction matrices, and accepts multiple
61 input formats including raw FASTQ, BAM, and contact matrix. HiNT is available at
62 <https://github.com/parklab/HiNT>.

63

64 **RESULTS**

65 **Overview of HiNT**

66 HiNT has three main components. HiNT-PRE performs preprocessing of Hi-C data and
67 computes the contact matrix, which stores contact frequencies between any two genomic loci.
68 HiNT-CNV and HiNT-TL start with a Hi-C contact matrix and predict copy number segments
69 and inter-chromosomal translocations, respectively (Supp. Fig. 2).

70

71 HiNT-PRE aligns read pairs to the genome using BWA-MEM [15] and creates a Hi-C contact
72 matrix. The matrix is constructed from normal read pairs (non-chimeric reads that map uniquely
73 to the genome) as well as *unambiguous* chimeras [16] (Fig. 1A). The latter is a product of Hi-C
74 ligation and is defined as a read pair in which one chimeric read is split into locus A and locus B
75 and the other read is uniquely mapped to locus B (Fig. 1A). All other read pairs containing split
76 reads are defined as *ambiguous* chimeras [16], which will be used for translocation breakpoint
77 detection (Fig. 1A).

78

79 HiNT-CNV (Supp. Fig. 2) first creates a one-dimensional (1D) coverage profile across the
80 genome by calculating row or column sums of the contact matrix at a fixed resolution, e.g., 50kb.
81 These sums should be correlated with the copy number across the bins since they correspond to
82 the strength of interaction of that region with all other regions. It is critical to use the
83 *unnormalized* contact matrix here because the matrix-balancing normalization (setting the sum of
84 each row or column to be 1), which is the most widely used Hi-C normalization approach,
85 removes not only biases but also copy number information. The next step is to perform further
86 adjustment to remove other biases that are inherent in the Hi-C experiments, such as GC content,
87 mappability, restriction site frequency, etc. In Fig. 1B, we see that, without additional

88 adjustment, the 1D profiles for K562 (human chronic myelogenous leukemia cell line; known to
89 have high genomic instability) and GM12878 (human lymphoblastoid cell line) show similarity
90 to each other but not with the copy number profiles estimated from WGS. However, when we
91 remove Hi-C internal biases in K562 by using GM12878 as a control (Fig. 1B, right), the 1D
92 coverage profile becomes highly correlated with the (ploidy-adjusted) copy ratios estimated from
93 WGS data. This result shows that proper normalization is essential in extracting copy number
94 information from Hi-C data. Given that an appropriate control is often unavailable, HiNT-CNV
95 uses a generalized additive model to remove the biggest sources of bias: GC content,
96 mappability, and restriction fragment length [17]. The boundaries of CNV segments are
97 determined using the BIC-seq segmentation algorithm, which utilizes the Bayesian information
98 criterion to identify regions with enriched or depleted read counts [18].

99

100 HiNT-TL (Supp. Fig. 2) detects translocations by analyzing normalized inter-chromosomal
101 interaction matrices. In general, contact probabilities between two regions on the same
102 chromosome decrease monotonically with distance, and inter-chromosomal interactions are
103 considerably less frequent compared to intra-chromosomal ones. When an inter-chromosomal
104 translocation occurs, we expect the contact probabilities in two opposite quadrants around the
105 breakpoint to be elevated to the levels observed for adjacent chromosomal regions (Fig. 1C).
106 Thus, HiNT-TL identifies candidate translocated chromosomal pairs based on the presence of
107 high contact probabilities and their unequal distribution. To identify exact breakpoints, HiNT-TL
108 first identifies the breakpoint regions with a coarse 100kb resolution from the 1D profiles (see
109 Methods). HiNT-TL then uses Hi-C *ambiguous* chimeric reads located within these regions to
110 refine breakpoints to single base-pair resolution.

111

112 **CNVs predicted by HiNT from Hi-C are consistent with those identified from WGS**
113 To predict CNVs, we first calculate the coverage profile throughout the genome at 50kb
114 resolution. We then correct for Hi-C biases such as GC content, mappability, and the number of
115 restriction sites (given a fixed bin size, the number of expected fragments depends on the number
116 of cut sites by the restriction enzyme used). To model the non-linear correlation between 1D
117 coverage and biases observed (Supp. Fig. 3), we use a generalized additive model (GAM) with
118 the Poisson link function. GAM is an ideal framework here, as it allows non-parametric fitting

119 with relaxed assumptions on the relationship between predictor and response variables. The copy
120 number information is extracted from regression residuals by the following equation:
121 $\log(Coverage) = s_1(GCcontent) + s_2(Mappability) + s_3(NumberOfRestr. Sites) + \varepsilon$
122 where $s_i (i=1,2,3)(\bullet)$ is an unspecified function estimated for each predictor variable and ε is the
123 regression residual. The model fits better for GM12878 ($R^2 = 0.798$) than for K562 ($R^2 =$
124 0.631), since K562 is known to have more SVs.

125
126 To evaluate CNVs identified from Hi-C, we compare the log2 copy ratios along the genome
127 from the model above with those estimated from WGS. For K562, we see that copy number
128 alterations are prevalent and that the log ratios from Hi-C and WGS are mostly concordant (Fig.
129 2A, Supp. Fig. 4A; Spearman correlation = 0.82). For GM12878, the correlation is lower
130 (Spearman correlation = 0.21) because there are very few CNVs in this cell line, and the existing
131 small ones are detected only from WGS (Supp. Fig. 4B, Supp. Fig. 5A). The copy ratios
132 fluctuate more in the Hi-C profile relative to WGS data (Fig. 2A, Supp. Fig. 5A) due to the
133 different read depth and possibly due to Hi-C biases that may not have been captured by our
134 model. When the copy number log ratios are segmented using BIC-seq [18], the concordance
135 between the platforms is striking (top two rows in Fig. 2B), with ~85% and 92% of the large
136 (>2Mb) segments from Hi-C overlapping those from WGS in K562 and GM12878 cells,
137 respectively (Fig. 2C, Supp. Fig. 5D; our definition of overlap is described in Supp. Fig. 5C).
138 Collectively, our analysis suggests that HiNT is a reliable tool for identifying large-scale CNVs
139 in both cancer and normal Hi-C data.

140
141 **HiNT outperforms HiCnv for identifying CNVs from Hi-C data**
142 HiCnv is a computational tool developed to infer copy number from normalized Hi-C coverage
143 [19]. It employs smoothing by kernel density estimation followed by a Hidden Markov Model;
144 however, it requires a baseline chromosome copy number from WGS or karyotyping to
145 determine the true copy number of each chromosome. To evaluate the performance of HiCnv, we
146 examine the concordance of CNVs identified from HiCnv to those detected from WGS.
147 Surprisingly, the copy number log ratios along the genome are largely discordant, with a
148 Spearman correlation of 0.67 in K562 and 0.1 in GM12878 (Supp. Fig. 4C-D). Moreover, only

149 ~15% of the large segments detected by HiCnv overlap those identified from WGS in K562 (Fig.
150 2C); the overlap is even smaller for GM12878 cells (Supp. Fig. 5D).

151
152 In addition, input to HiCnv must be either HiC-Pro [20] output or a SAM file, which is then
153 converted to HiC-Pro format, incurring high computational cost for terabyte-scale datasets. For
154 example, 3 billion read pairs result in a ~600GB BAM file, and the required SAM format is at
155 least 4-fold larger than BAM format in size. In contrast, HiNT-PRE accepts FASTQ and BAM
156 files, and generates the Hi-C contact matrix in hic [16, 21] or cool [22] format, which serves as
157 the input to HiNT-CNV. Both hic and cool are efficient and widely-used formats for genomic
158 interaction matrices. Taken together, HiNT-CNV outperforms this existing tool in detecting
159 CNVs in both cancer and normal cells in both accuracy and usability.

160

161 **HiNT accurately identifies translocated chromosomal pairs**

162 Translocations modify the 3D organization of the genome, and they will be incorrectly identified
163 as long-range interactions in Hi-C data if they are not accounted for properly. To first study their
164 impact on Hi-C interaction maps, we developed a simulation scheme to recapitulate the effect of
165 translocations, encompassing homozygous/heterozygous and balanced/unbalanced
166 translocations. A balanced translocation is an even exchange of segments between chromosomes
167 without genetic information gain or loss; an unbalanced translocation involves a loss or gain of
168 chromosome segments. As observed in previous studies [19, 23, 24], a balanced translocation
169 forms a ‘butterfly’ appearance in the chromosomal interaction map (Fig. 3A and Fig. 3B middle,
170 marked by red circles). In contrast, an unbalanced translocation only has a single block (Fig. 3A
171 and Fig. 3B, right column, marked by red circles) [23]. Detection of intra-chromosomal
172 translocations are complicated by the presence of chromatin structures such as TADs and loops.
173 Therefore, we focus on identification of inter-chromosomal translocations.

174

175 Our method is based on detection of two characteristics. First, the contact frequencies should be
176 distributed unevenly around the translocation breakpoint. For this, we utilize the Gini index, a
177 statistical measure of distribution initially used to quantify income inequality in economics [25].
178 To compute this index, we estimate the cumulative distribution of contact frequencies in each
179 square of the interaction map (we use 1Mb x 1Mb) and determine how much it deviates from a

180 linear increase. A high index corresponds to more uneven distribution of interaction strength.
181 Second, the maximum interaction level surrounding the breakpoint should be high for a
182 translocation. Regions without a translocation but with a high noise level may satisfy the first
183 criterion of uneven contact frequencies, but their maximum interaction level would not be large.
184 Combining the two features (interaction level and evenness), we define the rank product score as
185 $RP_i = (R_{gini,i}/n) * (R_{mif,i}/n)$, where $R_{gini,i}$ and $R_{mif,i}$ are the ranks of matrix i based on Gini
186 index and maximum interaction frequency, respectively, and n is the total number of inter-
187 chromosomal interaction matrices.

188

189 The rank product score performs well in simulated data, separating the translocated and non-
190 translocated cases in nearly all cases (Supp. Fig. 6). For real data, we found that direct
191 application of the rank product was insufficient, due to the various factors that are not captured
192 by the normalization step, e.g., the A/B compartment effect and the increased interactions
193 between small chromosomes or between sub-telomeric regions. To eliminate such biases, we
194 created a background interaction matrix by averaging the matrices from five normal cell lines
195 (Supp. Table 1, see Methods) and used it to normalize the original matrix. In Fig. 4A, we show
196 three examples of chromosomal pairs in K562 data whose scores change as a result of the
197 additional normalization. In the first case (chr1- chr21), the score does not change significantly;
198 in the second case (chr1- chr18), the score increases so that a translocation is now called; and in
199 the third case (chr16 - chr19), the score decreases so that a mistaken call is avoided. Using the
200 chromosomal pairs reported in the literature or validated by FISH experiments [4, 24] as true
201 positives, we see that the adjusted matrix results in an increased prediction accuracy, as
202 measured by the area under the curve (AUC) (Fig. 4B). As visualized in Fig. 4C, the previously
203 observed biases are effectively reduced by the normalization, allowing for better delineation of
204 translocations (Supp. Fig. 6, Supp. Fig. 7A-C).

205

206 Although the rank product approach detects the majority of translocated chromosomal pairs, four
207 validated translocations are not identified. To investigate this issue, we compare the Hi-C
208 interaction matrices of the detected (Supp. Fig. 8) and missed chromosomal pairs (Supp. Fig. 9).
209 Compared to the detected chromosomal pairs, no translocation signature can be visually detected
210 from the interaction matrices for missed pairs. In addition, the sharp boundaries at translocation

211 breakpoints on the 1D coverage profile can only be found in our predicted translocated
212 chromosomal pairs. Thus, we believe that there are some translocated chromosomal pairs that are
213 simply not reflected within Hi-C data, or the validation data may be incorrect, e.g., due to the
214 variation among the K562 lines. We further examined four more cancer cell lines, including
215 HelaS3 (cervical carcinoma), LNCaP (prostate carcinoma), Panc1 (pancreatic carcinoma), and
216 T47D (breast cancer). We found that the rank product and the maximum interaction perform
217 better than the Gini index in LNCaP, T47D, and Panc1, whereas the rank product and Gini index
218 are more predictive in HelaS3 (Supp. Fig. 7E).

219

220 **HiNT detects translocation breakpoints at single base-pair resolution using Hi-C chimeric
221 reads**

222 Once a chromosomal pair containing a translocation is identified based on the rank product,
223 HiNT searches for the translocation breakpoint. For a translocation, the 1D row/column-sum
224 profile should change abruptly at the breakpoint (Supp. Fig. 8, and Supp. Fig. 10A). To identify
225 this point, we use a change point detection method called *breakpoints* from the R package
226 *strucchange* [26], which adopts a linear model to detect one or several change points in
227 multivariate time series. However, the majority of the change points detected by *breakpoints* are
228 the result of lower mappability and unremoved compartment effects, and thus should not be
229 identified as the translocation breakpoints (Supp. Fig. 10A). To remove these false positives, we
230 impose a filtering step in which only those with one quadrant (unbalanced translocation) or two
231 diagonally-opposed quadrants (balanced translocation) around the candidate breakpoint have
232 very high interactions (Supp. Fig. 10, Methods). Here, we define a high interaction frequency as
233 being greater than the 99th percentile of all the interactions between the two chromosomes.

234

235 Next, we determine the precise coordinates of the breakpoints by using *ambiguous* chimeric
236 reads [16] (Fig. 1A). These reads have their primary alignment near a breakpoint in one
237 chromosome (e.g. chrA) and their clipped part align near a breakpoint in another chromosome
238 (e.g. chrB). HiNT provides the intervals in which the breakpoints occur (100kb resolution) and,
239 as long as the breakpoint does not occur in an unmappable region, the exact location of the
240 breakpoint (1bp resolution).

241

242 **Hi-C can supplement WGS by locating translocation breakpoints in repetitive regions**

243 To assess its performance, we compare the translocation breakpoints determined from Hi-C
244 using HiNT with those detected from WGS using Delly [27] and Meerkat [28]. In K562, 56 and
245 173 inter-chromosomal translocations are detected by Meerkat and Delly, respectively, with only
246 14 translocations detected by both (Fig. 5A). This level of discrepancy is not unexpected [29]
247 and is indicative of the difficulty of detecting SVs in general. When we intersect these 14
248 consensus WGS-based translocations with those detected by HiNT, we find that 5 are in
249 common (Fig. 5A). Two additional ones were found by HiNT and either Meerkat or Delly but
250 not both. In these 7 cases, the breakpoints were exactly the same at the nucleotide level,
251 confirming the accuracy of the calls (Supp. Table 2). An example is a translocation between
252 chromosome 9 and 22 shown in Fig. 5B, with more than 100 supporting clipped reads in Hi-C
253 data and many discordant reads in WGS data (Fig. 5C).

254

255 Thirty-three translocations are detected only from Hi-C data (Fig. 5A; listed in Supplementary
256 Table 3 and can be viewed interactively by HiGlass [30] at <http://18.215.251.253/>). For example,
257 a significant rank product score is found between chr3 and chr18 in the Hi-C interaction matrix
258 (Fig. 5D), and three breakpoint regions are detected by HiNT including one validated by FISH
259 [24] (Supp. Table 4). However, few discordant reads are identified from WGS. A major reason
260 for this difference is the low mappability around those breakpoints. As illustrated in
261 Supplementary Figure 1, the long physical distance between Hi-C read pairs allow identification
262 of translocations whose breakpoints occur in a repetitive region—the paired reads can “jump
263 over” the repeat region and map to surrounding mappable regions, even though the breakpoint
264 itself cannot be mapped. Indeed, we find that large repeat (>1kb) regions (as found in repBase
265 [31]) make up a disproportionately large fraction of regions containing Hi-C-only breakpoints
266 compared to WGS consensus breakpoints (Fig. 5E). We note that repetitive regions with high
267 sequence divergence are mappable, but we used the term ‘repetitive region’ for conceptual
268 clarity.

269

270 For the translocations detected only in WGS, some are missed in Hi-C due to its more uneven
271 genome coverage. In other cases, we find that, surprisingly, the discordant reads from WGS
272 contain a large fraction of single nucleotide polymorphisms or have low mapping qualities,

273 indicating issues in read alignment (Supp. Fig. 11). Consistent with that observation,
274 translocation signatures are not found in the Hi-C interaction maps. These analyses suggest that
275 Hi-C is a powerful tool to detect translocations and can complement WGS, especially for
276 detecting those with breakpoints in repetitive regions.

277

278 **HiNT outperforms existing tools on detecting translocations**

279 Others have attempted to identify structural variants from Hi-C data. One approach is simply to
280 visually inspect the interaction heatmaps—a low resolution detection of breakpoints with poor
281 scalability and reproducibility [23]. Better approaches search for regions that contain abnormal
282 interaction frequencies based on normalized Hi-C interaction maps [6, 32]. However, such
283 methods utilizing only contact frequencies cannot easily distinguish translocations from
284 chromatin interactions, thus giving a high false discovery rate (FDR). A recent algorithm
285 HiCtrans [19] identifies translocation breakpoints based on change-point statistics obtained by
286 scanning the inter-chromosomal contact maps of each chromosomal pair. However, searching
287 the breakpoints across all inter-chromosomal contact maps leads to a high computational cost.
288 For a comprehensive set of inter- and intra-chromosomal translocations, one could integrate
289 WGS, Hi-C and optical mapping data [24]. However, in most cases, it is impractical to generate
290 all these data types for a given sample. The method they used for Hi-C data [24] is
291 hic_breakfinder, an iterative approach to locate local clusters that deviate from the expected
292 interaction frequencies in a Hi-C contact matrix.

293

294 To compare the performance of these algorithms, we first apply HiCtrans [19] and HiNT to
295 simulation data. hic_breakfinder [24] is not used here because it requires the aligned reads in
296 BAM format, but our simulation is matrix-based. Of the 21 simulated inter-chromosomal
297 translocations (mix of balanced/unbalanced and heterozygous/homozygous translocations), HiNT
298 identified 20 correctly while calling additional 5 breakpoints (Supp. Fig. 12A). The one missing
299 translocation was located at the centromere of chr21 (Supp. Fig. 12B). In contrast, HiCtrans
300 called 531 translocations (distributed across 100 different chromosomal pairs), but none were
301 *bona fide* translocations (Supp. Fig. 12C).

302

303 We also compared HiNT, HiCtrans [19], and hic_breakfinder [24] on the K562 data. As shown
304 in Supp. Fig. 12D-E, HiNT has the highest AUC measure (0.85 vs 0.78 and 0.77, see Methods)
305 as well as the best precision-recall curve. Additionally, we found that while HiCtrans identified
306 132 translocated chromosomal pairs, which is more than half of the number of all chromosomal
307 pairs, only 10 of them contain known translocations. Among all 931 breakpoints (~1Mb
308 resolution) identified by HiCtrans, only 2 of them cover what are detected from WGS by both
309 Meerkat and Delly (Supp. Fig. 12F). On the other hand, hic_breakfinder identified 77
310 breakpoints (~100kb resolution). Among these breakpoints, 4 are identified by both Meerkat and
311 Delly (Supp. Fig. 12F). This suggests a higher false discovery rate of HiCtrans and
312 hic_breakfinder than HiNT. Furthermore, we found that 60% (24/40) of HiNT-identified
313 breakpoints can also be identified by other methods. In contrast, this value is only 35% (27/77)
314 and 3.0% (28/931) for breakpoints output from hic_breakfinder and hictrans, respectively (Supp.
315 Fig. 12F). Collectively, HiNT-TL outperforms HiCtrans and hic_breakfinder in both specificity
316 and accuracy.

317

318 **Conclusion**

319 Robust identification of SVs remains paramount to accurate inference of long-range interactions
320 from Hi-C data. We have shown that HiNT can be used to identify CNVs and inter-chromosomal
321 translocations with split read support for breakpoints whenever possible, and that it outperforms
322 existing methods. Although not as sensitive as WGS data in general, Hi-C data can complement
323 WGS data for detection of translocations in repetitive regions. As new technologies for capturing
324 three-dimensional interactions are introduced, further computational methods will be needed to
325 avoid the confounding effects of SVs.

326

327 **Methods**

328

329 **Data sources**

330 Hi-C data: *in-situ* Hi-C data in cancer cell line K562 and in normal cell lines including
331 GM12878, HMEC, HUVEC, IMR90, and NHEK were obtained from GEO (Gene Expression
332 Omnibus) with the accession number GSE63525 [16]. All the normal cell line data were
333 combined to create the background Hi-C interaction matrix. Hi-C data for HelaS3, LNCaP,
334 Panc1, and T47D, which were generated by the Dekker lab [33], were downloaded from the
335 ENCODE website (See details from Supp. Table 1).

336 WGS data: We downloaded the BAM file for NA12878 WGS data from the 1000 genomes
337 project [34], and the BAM file for K562 WGS data from the GDC legacy archive of the Cancer
338 Cell Line Encyclopedia (CCLE) project [35].

339

340 **CNV identification from WGS**

341 BIC-seq2 [36] was used to derive CNV segments from WGS read coverage data. For the
342 segmentation step, we used *binsize* = 50,000 bp and λ = 50 to determine the final CNV
343 breakpoints in NA12878. λ is a parameter that controls the smoothness (the number of
344 breakpoints) of the final CNV profile. chrY and chrM were excluded from the analysis.

345

346 **Definition of copy ratios in Hi-C and WGS data**

347 Copy ratio is defined as the ratio of observed and expected values. In Hi-C, observed values are
348 the residuals from GAM Poisson regression, and expected values are set to zero. In WGS,
349 observed values are read coverage, and expected values are estimated by a semi-parametric
350 regression model via BIC-seq2 [36].

351

352 **Simulation of inter-chromosomal translocations in Hi-C contact maps**

353 The simulation pipeline defines two random coordinates from distinct chromosomes as the origin
354 and destination of the translocation (e.g. x on chr1, and y on chr2). Then, it creates the
355 translocated version of interaction matrices for chr1 to chr1, chr2 to chr2, and chr1 to chr2 via
356 rearranging the original interaction probabilities.

357

358 **SV detection from WGS**

359 SV detection from WGS was carried out using Delly and Meerkat. To omit germline SVs, we
360 used NA12878 as a control genome. Default parameters were used to run Delly. Only
361 translocations that passed the internal quality control and were marked as “PRECISE” in Delly
362 were used for comparison. Default parameters were used to run Meerkat, and filtering step was
363 performed according to the post-processing steps described in the tool manual. Only valid
364 precise inter-chromosomal translocations were kept for comparison.

365

366 **Gini Index calculation**

367 For each Hi-C inter-chromosomal interaction matrix M, we first sorted the contact regions, based
368 on the adjusted contact frequencies between these two regions, from lowest to highest, then
369 calculated the cumulated contact frequencies of matrix M. Regions that did not form contacts
370 with any other regions were excluded. A plot of this functional relationship is called a Lorenz
371 curve. The Gini index is computed as twice the area between the Lorenz curve and the diagonal.

372

373 **Breakpoint filtering**

374 To remove false discovered change points, we first construct two-dimensional Cartesian
375 coordinate systems originating from the intersection of each pair of candidate breakpoints. For
376 each coordinate system, we then define four, 5-bin-by-5-bin quadrants around the origin, and we
377 calculate the average interaction frequency within each quadrant (Supp. Fig. 10A). The valid
378 breakpoints for translocations should have only one (unbalanced translocation) or two (balanced
379 translocation) quadrants with very high interactions, and the remaining quadrants should have
380 lower interaction frequencies (Supp. Fig. 10B upper panel). More specifically, for balanced
381 translocations, the two quadrants with high interaction frequencies should diagonally oppose
382 each other (Supp. Fig. 10B upper panel). If zero, three, or all quadrants have high interaction
383 frequencies, the proposed breakpoints are considered false positives and removed (Supp. Fig.
384 10B lower panel). Here, we define a high interaction frequency as being greater than the 99th
385 percentile of all the interactions between the two chromosomes.

386

387 **ROC curves of HiCtrans and HiC_breakfinder on translocated chromosomal pairs 388 prediction**

389 To create ROC curves for the evaluation of translocated chromosomal pairs prediction, we rank
390 all the chromosomal pairs first. Both HiCtrans and hic_breakfinder output a score (entropy ratio
391 in HiCtrans, and log-odds in hic_breakfinder) to measure the strength of each breakpoint call.
392 We assign each chromosomal pair a representative score by taking the score of the most
393 significant breakpoint that located in this chromosomal pair. The chromosomal pairs are then
394 ranked by the representative scores. ROC curves and AUC values are calculated by using the R
395 package *ROCR* [37]. The chromosomal pairs reported in the literature or validated by FISH
396 experiments are used as true positives here.

397

398 **Details of the HiNT pipeline**

399 1. HiNT-PRE: Raw Hi-C data in FASTQ format are aligned to a reference genome (hg19) via
400 bwa-mem: `bwa-0.7.16a-r1185-dirty/bwa mem -SP5M bwaIndex/hg19.fa`
401 `in1.fq in2.fq`. Read pairs that are both uniquely mapped to the genome are collected as
402 valid pairs. However, 10%-20% of the remaining Hi-C read pairs contain at least one chimeric
403 read with split alignments. Chimeric pairs with one read uniquely mapped and the other
404 chimeric, due to ligation, are defined as *unambiguous* chimeras [16], and counted as valid pairs.
405 All other chimeric pairs are classified as *ambiguous* [16] chimeras, and are used to identify
406 translocation breakpoints at single base-pair resolution. All the unmapped, multi-mapped, and
407 PCR duplicated read pairs are discarded from our analysis. All pairs are classified by pairtools
408 (<https://github.com/mirnylab/pairtools>). Then, a Hi-C interaction matrix is generated from all the
409 valid pairs by cooler [22] or juicer tools [38] at 50kb, 100kb, 1Mb, or at a user-specified
410 resolution.

411

412 2. HiNT-CNV: First, a 1D coverage profile for each 50kb bin (default) is calculated along the
413 whole genome using an unnormalized contact matrix. Bin size can be specified by users based on
414 the sequencing depth and accuracy need. Then, a GAM regression with a Poisson link function is
415 performed to remove the known Hi-C biases with pre-calculated GC content, mappability, and
416 the number of restriction sites in each bin. Then, the segmentation method of BIC-seq is applied
417 to the regression residuals to identify the breakpoints and generate the final CNV profile.

418

419 3. HiNT-TL: Translocation detection is performed in three steps; determination of the
420 translocated chromosomal pairs, identification of the rough breakpoint regions, and
421 determination of the exact breakpoints at single base pair resolution. To determine the
422 translocated chromosomal pairs, 1 Mb-binned and genome-wide normalized inter-chromosomal
423 interaction matrices are taken as input. To remove the effects of A/B compartments, a
424 background model is created by averaging multiple *in-situ* Hi-C data in normal cell lines (Supp.
425 Table 1). Each inter-chromosomal interaction matrix is corrected with the background by taking
426 the ratio between the original signals and the background signals. Then, for each possible
427 chromosomal pair, Gini index and the maximum contact frequency are calculated. Then, a rank
428 product score is computed $RP_i = (R_{gini,i}/n) * (R_{mif,i}/n)$, where $R_{gini,i}$ and $R_{mif,i}$ are the ranks
429 of matrix i based on Gini index and maximum interaction frequency, respectively, and n is the
430 total number of inter-chromosomal interaction matrices. Chromosomal pairs with $RP_i \leq 0.05$
431 are defined as the potential translocated chromosomal pairs.

432
433 HiNT then calculates the 1D coverage profiles by calculating the sum of each row and column of
434 the adjusted inter-chromosomal interaction matrices for those predicted translocated
435 chromosomal pairs. It then applies the function *breakpoint* in the R package *strucchange*, a
436 function with high computing performance that allows simultaneous estimation of multiple
437 breakpoints in a given time series data, to the coverage profiles to identify all change points. The
438 translocation rough breakpoint regions are further decided after the filtering step as we described
439 in Supp. Fig. 10.

440
441 To get the precise breakpoints at single base-pair resolution, HiNT uses the soft-clipped reads-
442 based algorithm that is commonly used for WGS SV prediction. Translocation breakpoints that
443 are covered by at least one split read pair with one end mapped to the rough breakpoint region on
444 one chromosome, and the other end mapped to the rough breakpoint region on another
445 chromosome are reported at single base-pair resolution; otherwise, the predicted rough
446 breakpoint regions will be reported. Not all the breakpoints are expected to have supported
447 clipped reads due to the non-uniform distribution of read coverage in Hi-C data.

448

449 **List of abbreviations**

450 HiNT: **Hi**-C for copy **N**umber variation and **T**ranslocation detection; CNV: copy number
451 variation; SV: structural variation; GAM: generalized additive model; WGS: whole genome
452 sequencing; 1D: 1-dimensional; ROC: receiver operating characteristic; TADs: topologically
453 associated domains; TP: true positive; TN: true negative; FP: false positive; FN: false negative;
454 RP: rank product.

455

456 **Declarations**

457 **Availability of data and material**

458 HiNT is available open source at <https://github.com/parklab/HiNT>.

459 Sources of the data used in this study are included in Supp. Table 1

460

461 **Authors' contribution**

462 P.J.P., B.A., and S.W. conceived the project and method design. S.W. processed the data and
463 implemented HiNT. S.L., C.C., D.J., J.W., G.N., B.A., and P.J.P. discussed and helped to
464 implement HiNT. S.W. and P.J.P. wrote the manuscript with assistance from the other authors.

465 All authors read and approved the final manuscript.

466

467 **Acknowledgements**

468 We thank Shannon Ehmsen for preparing the figure of HiNT workflow.

469

470 **Funding**

471 This work was primarily supported by the National Institutes of Health Common Fund 4D
472 Nucleome Program (U01CA200059) to PJP.

473

474 **Competing interests**

475 The authors declare that they have no competing interests.

476

477 **References**

478

- 479 1. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I,
480 Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M,
481 Gmirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: **Comprehensive mapping of**
482 **long-range interactions reveals folding principles of the human genome.** *Science* 2009,

483 326:289–293.

484 2. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum
485 NL, Meisig J, Sedat J, Gribnau J, Barillot E, Blüthgen N, Dekker J, Heard E: **Spatial**
486 **partitioning of the regulatory landscape of the X-inactivation centre.** *Nature* 2012, **485**:381–
487 385.

488 3. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B: **Topological**
489 **domains in mammalian genomes identified by analysis of chromatin interactions.** *Nature*
490 2013, **485**:376–380.

491 4. Engreitz JM, Agarwala V, Mirny LA: **Three-Dimensional Genome Architecture Influences**
492 **Partner Selection for Chromosomal Translocations in Human Disease.** *PLoS ONE* 2012,
493 7:e44196.

494 5. Giorgetti L, Lajoie BR, Carter AC, Attia M, Zhan Y, Xu J, Chen C-J, Kaplan N, Chang HY,
495 Heard E, Dekker J: **Structural organization of the inactive X chromosome in the mouse.**
496 *Nature* 2016, **535**:575–579.

497 6. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J:
498 **Organization of the mitotic chromosome.** *Science* 2013, **342**:948–953.

499 7. Corces MR, Corces VG: **The three-dimensional cancer genome.** *Current Opinion in*
500 *Genetics & Development* 2016, **36**:1–7.

501 8. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J: **Chromosome-scale**
502 **scaffolding of de novo genome assemblies based on chromatin interactions.** *Nature*
503 *Biotechnology* 2013, **31**:1119–1125.

504 9. Fudenberg G, Getz G, Meyerson M, Mirny LA: **High order chromatin architecture shapes**
505 **the landscape of chromosomal alterations in cancer.** *Nature Biotechnology* 2011, **29**:1109–
506 1113.

507 10. Wu P, Li T, Li R, Jia L, Zhu P, Liu Y, Chen Q, Tang D, Yu Y, Li C: **3D genome of multiple**
508 **myeloma reveals spatial genome disorganization associated with copy number variations.**
509 *Nature Communications* 2017:1–11.

510 11. Wu H-J, Michor F: **A computational strategy to adjust for copy number in tumor Hi-C**
511 **data.** *Bioinformatics* 2016:1–7.

512 12. Guan P, Sung W-K: **Structural variation detection using next-generation sequencing**
513 **data: A comparative technical review.** *Methods* 2016, **102**(C):36–49.

514 13. Spielmann M, ez DXOGLXAX, Mundlos S: **Structural variation in the 3D genome.**
515 *Nature Reviews Genetics* 2018:1–15.

516 14. Guan P, Sung W-K: **Structural variation detection using next-generation sequencing**
517 **data.** *Methods* 2016, **102**:36–49.

518 15. Li H: **Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.**
519 *arXiv* 2013.

520 16. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL,
521 Machol I, Omer AD, Lander ES, Aiden EL: **A 3D Map of the Human Genome at Kilobase**
522 **Resolution Reveals Principles of Chromatin Looping.** *Cell* 2014, **159**:1665–1680.

523 17. Yaffe E, Tanay A: **Probabilistic modeling of Hi-C contact maps eliminates systematic**
524 **biases to characterize global chromosomal architecture.** *Nat Genet* 2011, **43**:1059–1065.

525 18. Xi R, Hadjipanayis AG, Luquette LJ, Kim T-M, Lee E, Zhang J, Johnson MD, Muzny DM,
526 Wheeler DA, Gibbs RA, Kucherlapati R, Park PJ: **Copy number variation detection in whole-**
527 **genome sequencing data using the Bayesian information criterion.** *Proceedings of the*
528 *National Academy of Sciences* 2011, **108**:E1128–36.

529 19. Chakraborty A, Ay F: **Identification of copy number variations and translocations in**
530 **cancer cells from Hi-C data.** *Bioinformatics* 2017.

531 20. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C-J, Vert J-P, Heard E, Dekker J,
532 Barillot E: **HiC-Pro: an optimized and flexible pipeline for Hi-C data processing.** *Genome*
533 *Biology* 2015, **16**:259.

534 21. Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, Aiden EL: **Juicer**
535 **Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments.** *Cell*
536 *Systems* 2016, **3**:95–98.

537 22. Abdennur N, Mirny L: **Cooler: scalable storage for Hi-C data and other genomically-**
538 **labeled arrays.**

539 23. Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, Collins VP,
540 Fraser P: **Hi-C as a tool for precise detection and characterisation of chromosomal**
541 **rearrangements and copy number variation in human tumours.** *Genome Biology* 2017:1–11.

542 24. Dixon JR, Xu J, Dileep V, Zhan Y, Song F, Le VT, Yardımcı GG, Chakraborty A, Bann DV,
543 Wang Y, Clark R, Zhang L, Yang H, Liu T, Iyyanki S, An L, Pool C, Sasaki T, Rivera-Mulia J-
544 C, Ozadam H, Lajoie BR, Kaul R, Buckley M, Lee K, Diegel M, Pezic D, Ernst C, Hadjur S,
545 Odom DT, Stamatoyannopoulos JA, et al.: **Integrative detection and analysis of structural**
546 **variation in cancer genomes.** *Nat Genet* 2018.

547 25. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P,
548 Verstraete W, Boon N: **Initial community evenness favours functionality under selective**
549 **stress.** *Nature* 2009, **458**:623–626.

550 26. Killick R, Eckley IA: **changepoint: An R Package for Changepoint Analysis.** *Journal of*
551 *statistical software* 2014, **58**:1–19.

552 27. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO: **DELLY: structural**
553 **variant discovery by integrated paired-end and split-read analysis.** *Bioinformatics* 2012,

554 28:i333–i339.

555 28. Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh C-H, Zhang C, Ren X,
556 Protopopov A, Chin L, Kucherlapati R, Lee C, Park PJ: **Diverse Mechanisms of Somatic**
557 **Structural Variations in Human Cancer Genomes.** *Cell* 2013, **153**:919–929.

558 29. Becker T, Lee W-P, Leone J, Zhu Q, Zhang C, Liu S, Sargent J, Shanker K, Mil-homens A,
559 Cerveira E, Ryan M, Cha J, Navarro FCP, Galeev T, Gerstein M, Mills RE, Shin D-G, Lee C,
560 Malhotra A: **FusorSV: an algorithm for optimally combining data from multiple structural**
561 **variation detection methods.** 2018:1–14.

562 30. Kerpeljiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, Luber JM,
563 Ouellette SB, Azhir A, Kumar N, Hwang J, Lee S, Alver BH, Pfister H, Mirny LA, Park PJ,
564 Gehlenborg N: **HiGlass: web-based visual exploration and analysis of genome interaction**
565 **maps.** 2018:1–12.

566 31. Bao W, Kojima KK, Kohany O: **Rephbase Update, a database of repetitive elements in**
567 **eukaryotic genomes.** *Mob DNA* 2015, **6**:11.

568 32. Lin D, Hong P, Zhang S, Xu W, Jamal M, Yan K, Lei Y, Li L, Ruan Y, Fu ZF, Li G, Cao G:
569 **Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome**
570 **conformation capture.** *Nat Genet* 2018, **50**:754–763.

571 33. ENCODE Project Consortium: **An integrated encyclopedia of DNA elements in the**
572 **human genome.** *Nature* 2012, **489**:57–74.

573 34. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang
574 HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR: **A global reference for**
575 **human genetic variation.** *Nature* 2015, **526**:68–74.

576 35. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ,
577 Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais
578 P, Meltzer J, Korejwa A, Jané-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P,
579 Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspasia P, de Silva M, et al.: **The Cancer Cell**
580 **Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.** *Nature* 2012,
581 **483**:603–607.

582 36. Xi R, Lee S, Xia Y, Kim T-M, Park PJ: **Copy number analysis of whole-genome data**
583 **using BIC-seq2 and its application to detection of cancer susceptibility variants.** *Nucleic*
584 *Acids Research* 2016, **44**:6274–6286.

585 37. Sing T, Sander O, Beerenwinkel N, Lengauer T: **ROCR: visualizing classifier performance**
586 **in R.** *Bioinformatics* 2005, **21**:3940–3941.

587 38. Knight PA, Ruiz D: **A fast algorithm for matrix balancing.** *IMA Journal of Numerical*
588 *Analysis* 2013, **33**:1029–1047.

589

590 **Figure Legends**

591 **Figure 1.** Illustration of HiNT. **A**, Hi-C read pairs are classified into normal pairs (left panel),
592 *unambiguous* chimeric pairs (middle panel), and *ambiguous* chimeric pairs (right panel). Hi-C
593 *unambiguous* chimeric pairs are the product of Hi-C ligations in which one read crosses the
594 ligation junction and thus maps to both locus A and locus B, while the other normal read maps
595 only to locus B. Hi-C *ambiguous* chimeric pairs are often caused by structural variations, with
596 one read maps to both locus A and locus C, while the other read maps to locus B. **B**, Copy
597 number information is reflected in the Hi-C 1D coverage profile after Hi-C biases are removed
598 by normalizing the K562 Hi-C contact matrix with the GM12878 Hi-C contact matrix. The copy
599 number profile (log2 ratios) estimated from WGS data is shown in the bottom row for
600 comparison. **C**, Comparison of the Hi-C contact matrix between chr9 and chr19 in samples with
601 and without translocations. The distribution of normalized contact frequencies are higher in the
602 sample with translocation (purple dots) than in the sample without (cyan dots). Contact
603 frequencies were calculated in 1Mb bins in chr9 and chr19.

604 **Figure 2. Copy number inference in K562 cells by HiNT.** **A**, Comparison of log2 copy ratios
605 calculated using regression residuals from Hi-C (blue) and using read coverage from WGS
606 (orange). **B**, Comparison of CNV profiles from Hi-C and WGS after segmentation. Red, green
607 and grey bars represent copy gain, copy loss, and copy neutral regions, respectively. **C**, The
608 number of CNV segments detected from Hi-C by HiNT (upper) and HiCnv (lower) that are also
609 supported by WGS. The overlap criteria for consistency are shown in Supp. Fig. 5C.

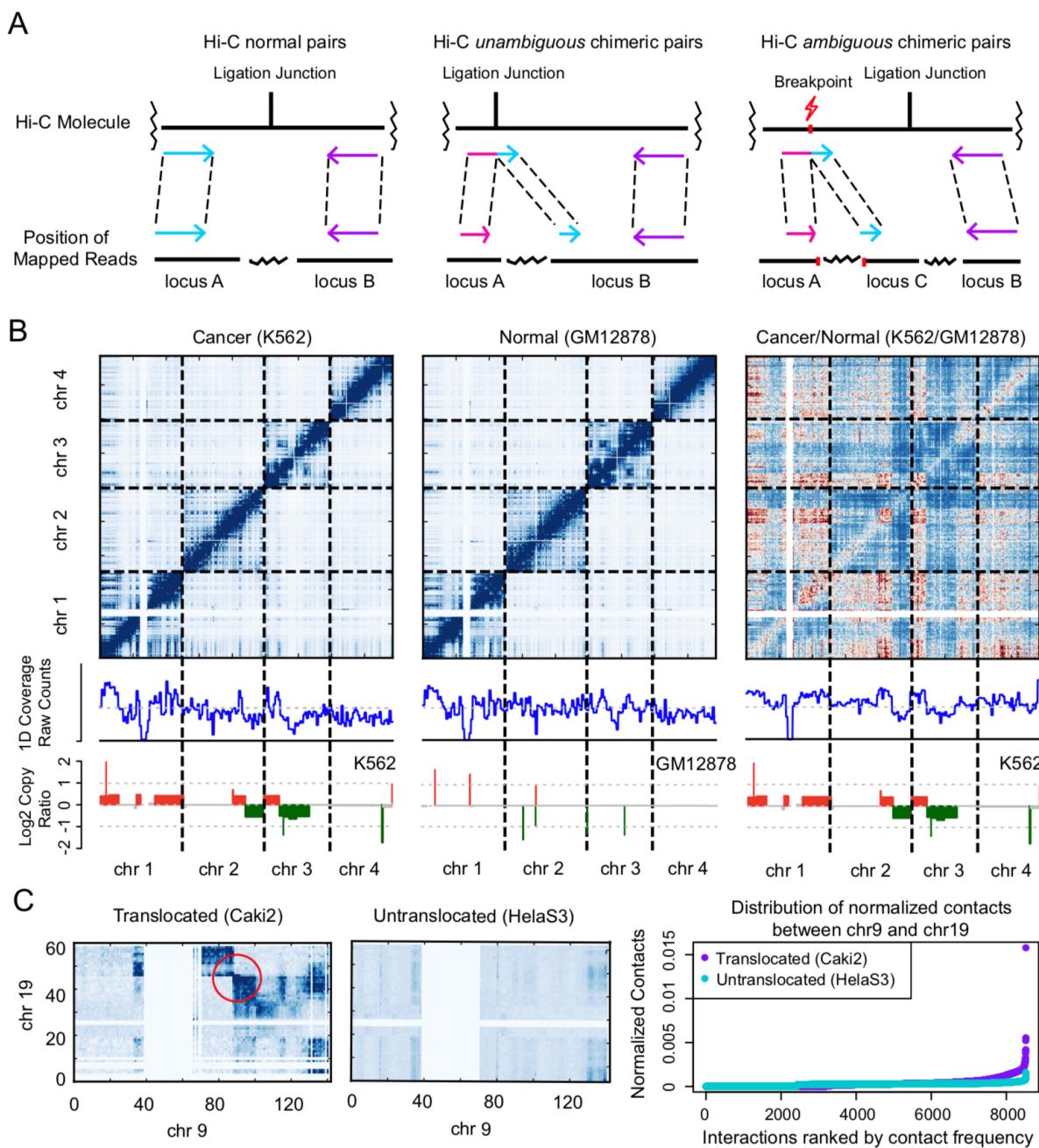
610 **Figure 3. Simulation translocations in Hi-C data.** **A**, Homozygous cases. **B**, Heterozygous
611 cases. An example of a translocation involving two chromosomes is illustrated. The three
612 columns correspond to original matrix, with balanced translocation, and unbalanced
613 translocation, respectively. Circles highlight the features introduced by the translocations.

614 **Figure 4. Accurately identification of translocated chromosomal pairs by HiNT.** **A**, The
615 distribution of the rank product scores for all chromosomal pairs in K562 before (left) and after
616 (right) adjustment by background subtraction. Chromosomal pairs in pink and blue correspond to
617 two FISH-validated translocation pairs (chr1, chr21) and (chr1, chr18); the one in yellow
618 corresponds to a chromosome pair (chr16, chr19) without translocation. After matrix adjustment,

619 the blue pair now has a lower score and the yellow pair has a higher score, as desired. TP: True
620 Positive, TN: True Negative, FN: False Negative, FP: False Positive, 0.05 is used as the cutoff.
621 **B**, Receiver-operator characteristic (ROC) curves show HiNT performs better after the
622 background subtraction. Areas under the ROC curves (AUCs) are shown in parentheses. **C**, The
623 original, background (average of multiple other Hi-C maps), and the adjusted maps are shown
624 for the three cases highlighted in panel A. Validated translocations are marked by circles.
625

626 **Figure 5. Comparison of breakpoints detected from Hi-C and WGS.** **A**, Overlap of the
627 translocation breakpoints detected by Meerkat (WGS), Delly (WGS), and HiNT (Hi-C). **B**, The
628 Hi-C interaction map containing a breakpoint detected in both Hi-C and WGS. **C**, The same
629 exact breakpoint in panel B is captured in WGS. Discordant reads in light green (dark green) are
630 paired-end reads whose mates are found on chr9 (chr22). **D**, Hi-C interaction map illustrating a
631 clear case of translocation detected only by HiNT. **E**, Breakpoints detected in both Meerkat and
632 Delly ('WGS Common') and only in Hi-C only are classified into small repeat, large repeat and
633 non-repeat regions, showing that Hi-C is enriched for SVs involving large repeats.
634

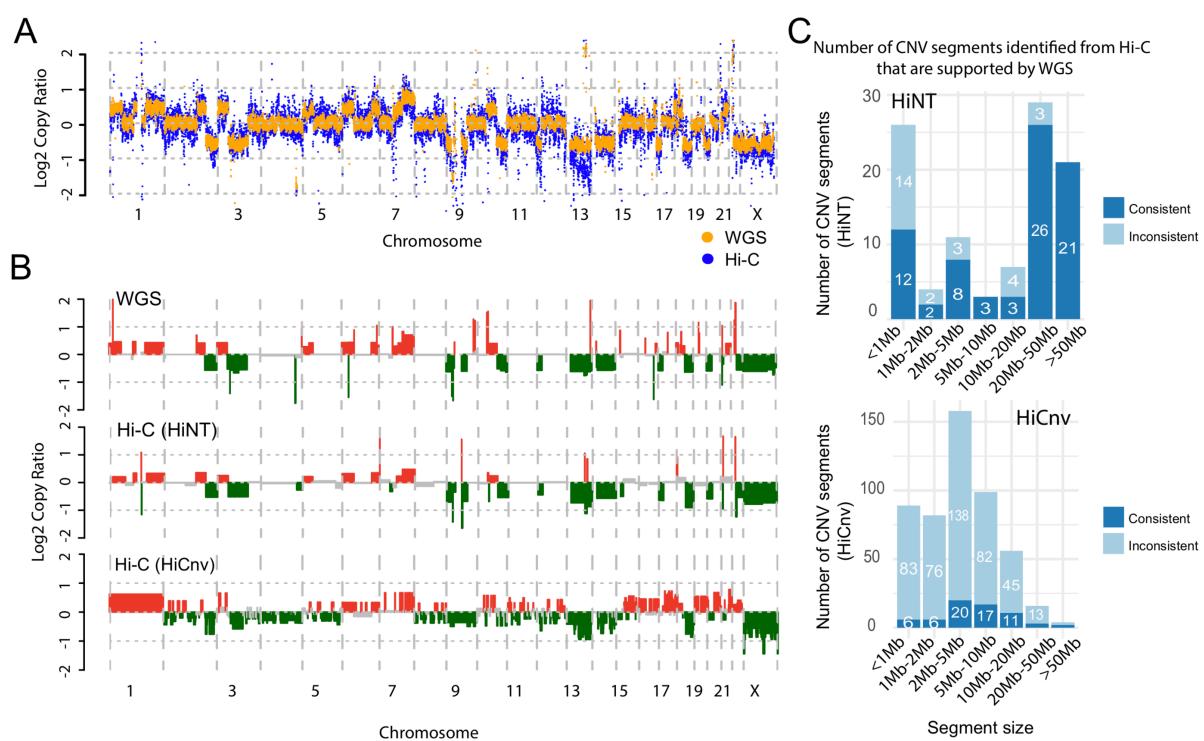
635 Figure 1



636

637

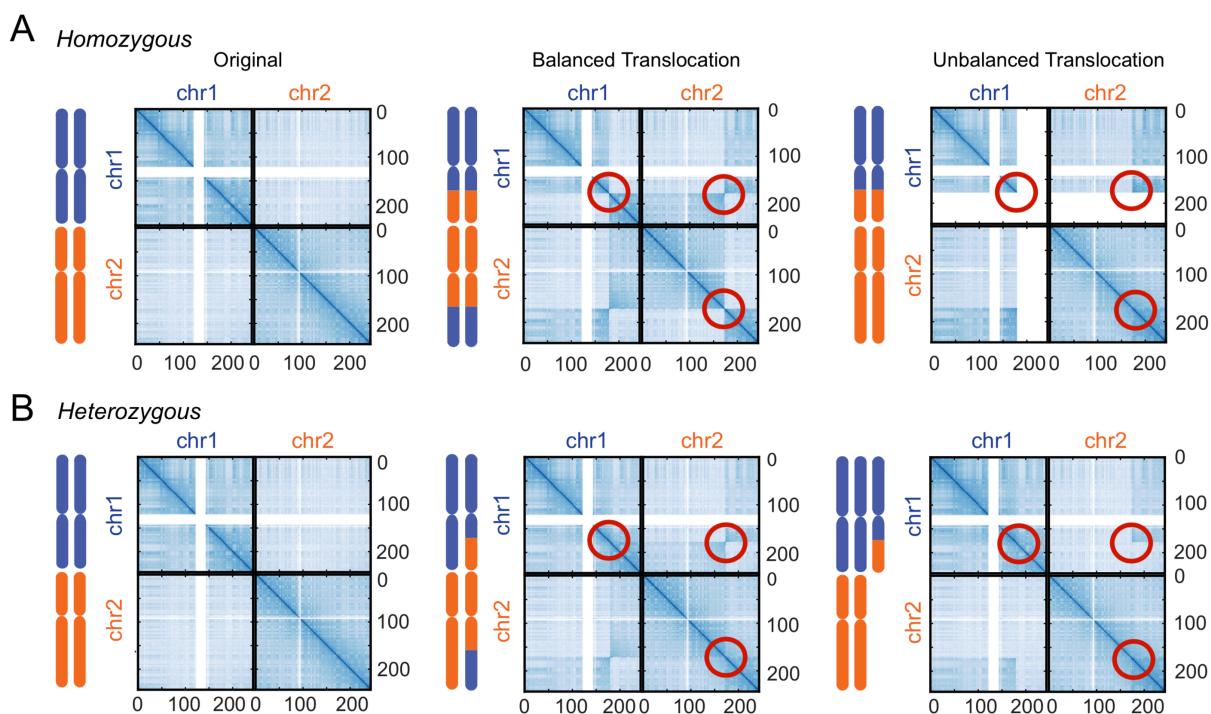
638 Figure 2



639

640

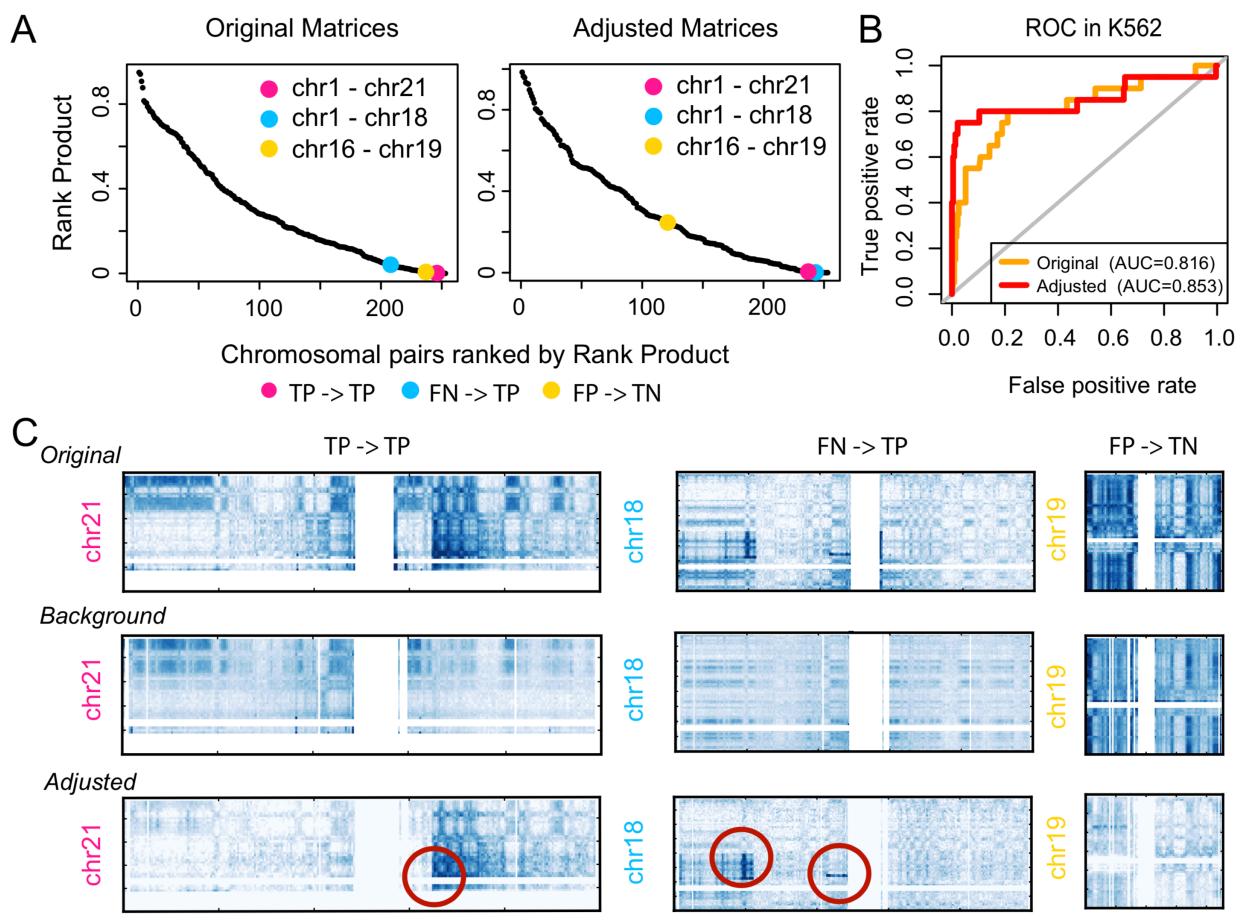
641 Figure 3



642

643

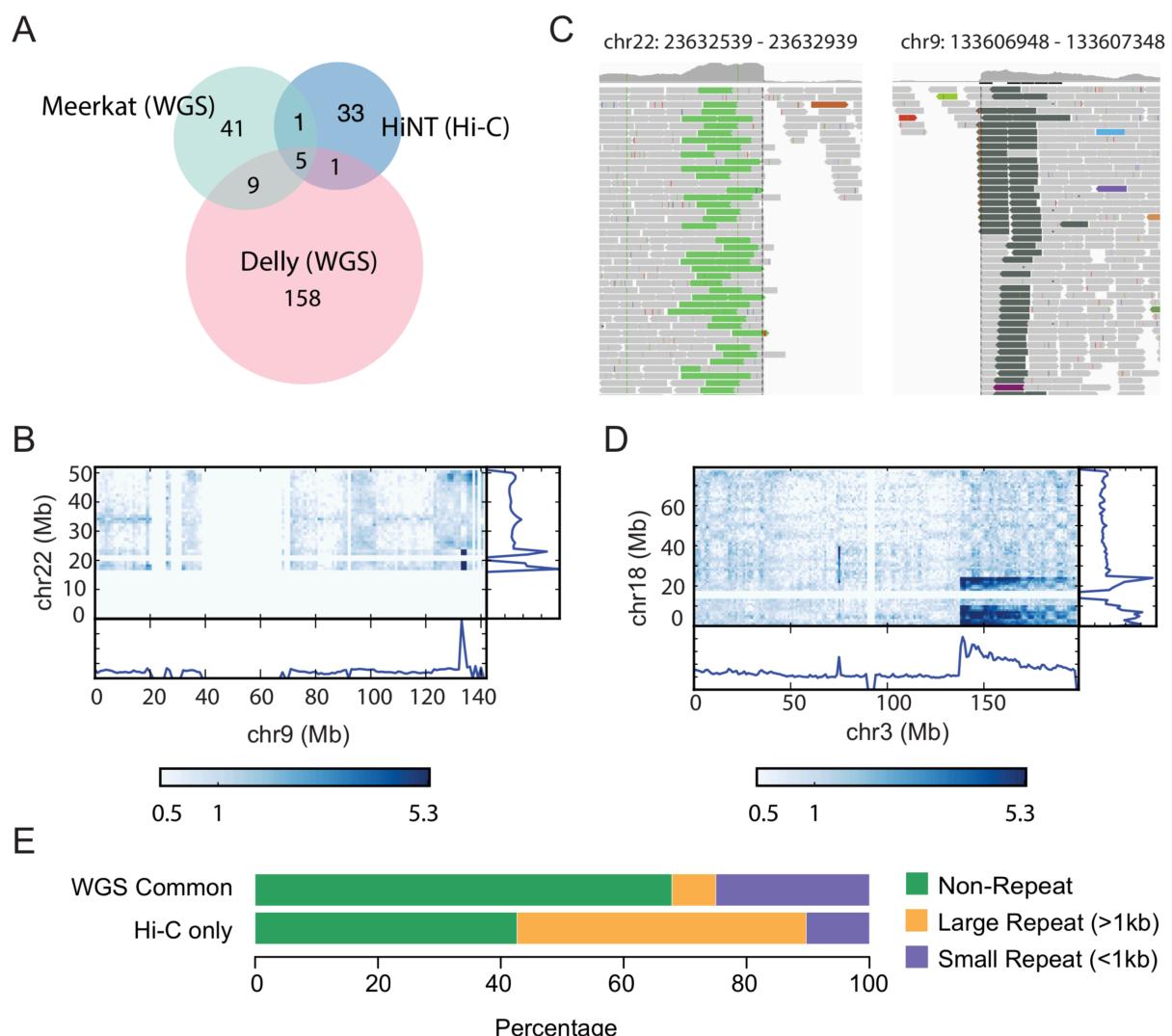
644 Figure 4



645

646

647 Figure 5



648