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Abstract 22 

 23 

Animals build behavioral sequences out of simple stereotyped actions. A comprehensive 24 

characterization of these actions and the rules underlying their temporal organization is necessary 25 

to understand sensorimotor transformations performed by the brain. Here, we use unsupervised 26 

methods to study behavioral sequences in zebrafish larvae. Generating a map of swim bouts, we 27 

reveal that fish modulate their tail movements along a continuum. We cluster bouts that share 28 

common kinematic features and contribute to similar behavioral sequences into seven modules. 29 

Behavioral sequences comprising a subset of modules bring prey into the anterior dorsal visual 30 

field of the larvae. Fish then release a capture maneuver comprising a stereotyped jaw movement 31 

and fine-tuned stereotyped tail movements to capture prey at various distances. We demonstrate 32 

that changes to chaining dynamics, but not module production, underlie prey capture deficits in 33 

two visually impaired mutants. Our analysis thus reveals the temporal organization of a vertebrate 34 

hunting behavior, with the implication that different neural architectures underlie prey pursuit and 35 

capture.  36 
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Introduction 37 

 38 

Quantitative descriptions of behavior are essential if we are to fully understand the brain (Krakauer 39 

et al., 2017). Such descriptions have provided a framework for interrogating the genetic and 40 

neural basis of behavior in worms, flies and mice (Cande et al., 2018; Kato et al., 2015; Vogelstein 41 

et al., 2014; Wiltschko et al., 2015). It is believed that complex, flexible behavior arises as a result 42 

of animals chaining together simpler, more stereotyped movements (Anderson and Perona, 2014; 43 

Egnor and Branson, 2016; Tinbergen, 1951). These movements can be generated spontaneously 44 

through internal neural processes and/or induced by external stimuli impinging on the animal’s 45 

sensory organs. Thus, a comprehensive model of an animal’s behavior should identify the 46 

constituent building blocks of the behavior, uncover rules governing the chaining of these building 47 

blocks into longer sequences, and account for how the animal’s sensory experience shapes and 48 

guides these sequences (Coen et al., 2014; Seeds et al., 2014; Tinbergen, 1951; Wiltschko et al., 49 

2015). Such an account of behavior could uncover the sensorimotor transformations performed 50 

by the brain that are critical for survival in a dynamically changing world. 51 

 52 

The individual movement patterns that constitute behavior have been termed motor primitives 53 

(Flash and Hochner, 2005), synergies (Bizzi and Cheung, 2013), movemes (Del Vecchio et al., 54 

2003), or behavioral modules (Berman et al., 2014; Brown et al., 2013; Egnor and Branson, 2016; 55 

Marques et al., 2018; Wiltschko et al., 2015). However, whether such modules truly constitute 56 

stereotyped, invariant movements or whether they merely reflect extremes in a behavioral 57 

continuum remains unclear (Berman et al., 2014; Katsov et al., 2017; Marques et al., 2018; 58 

Patterson et al., 2013; Szigeti et al., 2015). In either case, actions must be chained into sequences 59 

that reliably achieve the desired goal of the animal. Stereotyped, reproducible behavioral 60 

sequences have been explained with serial models, in which one action triggers the next in the 61 

chain via feed-forward neural mechanisms (Long et al., 2010). In contrast, flexible sequences, in 62 

which the ordering of modules might be different each time the behavior occurs, have been 63 

explained using hierarchical models. In hierarchical models, switching between behavioral 64 

modules is stochastic, but may be influenced by longer-term behavioral states or sensory stimuli 65 

received by the animal (Berman et al., 2016; Seeds et al., 2014; Tao et al., 2019; Wiltschko et al., 66 

2015). 67 

 68 

Capturing prey is an essential behavior for the survival of many animals and is innate. The 69 

behavior is also complex, requiring the localization, pursuit and capture of a prey object, often 70 
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moving in a three-dimensional environment. Consequently the action sequences that constitute 71 

this behavior are required to be flexible, allowing animals to adapt to the specific movement of 72 

the current stimulus (Ewert, 1987). Zebrafish larvae hunt protists that float in the water column 73 

(Borla et al., 2002; Budick and O’Malley, 2000; McElligott and O’Malley, 2005). Larvae do not 74 

perform continuous locomotion, but rather swim in discrete bouts with a beat-and-glide structure 75 

(Budick and O’Malley, 2000), which aids the segmentation of their behavior into discrete actions 76 

(Marques et al., 2018). Both real and virtual prey presented to restrained animals can produce 77 

isolated orienting swim bouts and eye convergence: hallmarks of prey capture in zebrafish larvae 78 

(Bianco et al., 2011; Semmelhack et al., 2014). It has been suggested that such movements could 79 

compound over time in a stimulus-response loop, whereby movements of the tail and eyes bring 80 

prey to the near-anterior visual field of the animals (Patterson et al., 2013; Trivedi and Bollmann, 81 

2013). However, it is not clear whether such a model would be implemented by gradual changes 82 

in the kinematics of bouts over the course of a hunting sequence (Borla et al., 2002; Patterson et 83 

al., 2013), or as a result of discrete switches between more stereotyped motor patterns (Marques 84 

et al., 2018). One possibility, that has not been tested, is that different stages of the behavior have 85 

a different organization. For example, animals might dynamically modulate their movements to 86 

adjust to the position of the prey during pursuit, but resort to more stereotyped action patterns 87 

when consuming prey (Ewert, 1987). Moreover, studies of prey capture have predominantly 88 

focused only on either tail, jaw, or fin movements and it is not known how these movements are 89 

coordinated into temporally organized patterns over the entire behavioral sequence (Borla et al., 90 

2002; Hernández et al., 2002; McClenahan et al., 2012; Patterson et al., 2013). 91 

 92 

Here, we present a novel computational framework for generating a map of movements made by 93 

an animal. We apply our algorithm to the bouts of week-old zebrafish larvae swimming in the 94 

presence of prey and find a continuum of behaviors. In this continuous space we identify seven 95 

modules, which correspond to groups of bouts with similar kinematics and that also share 96 

common transitions to and from other modules. Sequences of bouts through a subset of these 97 

modules are reproducible across prey capture events due to a tightly coupled stimulus-response 98 

loop, in which the fish’s movements generate new stimuli that trigger subsequent bouts in the 99 

chain. Further investigating the capture strike, during which prey are consumed, we show that 100 

variation in this behavior arises from differential chaining of stereotyped tail and jaw movements, 101 

mediated by prey distance. We validate our behavioral classification by showing genetic 102 

differences in the initiation and chaining of prey capture modules in mutants with impaired visual 103 

processing. 104 
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Results 105 

 106 

Swim bouts are trajectories through a low-dimensional postural space 107 

 108 

To study the organization of prey capture in zebrafish larvae, we first sought to characterize the 109 

basic building blocks of this behavior. To this end, we recorded individual larvae (7-8 dpf; n=45; 110 

20 min each) hunting live prey (paramecia) in a custom-built behavioral arena (Figure 1A) and 111 

tracked the tail and eyes of the fish in each frame (Figure 1B,C and Video 1; see Methods). From 112 

this dataset, we automatically identified and segmented 57,644 individual swim bouts for future 113 

analysis. 114 

 115 

To reduce the dimensionality of this vast dataset, we applied principal component analysis (PCA) 116 

to the tail kinematics of the fish during swim bouts and found that just three components were 117 

sufficient to explain 84.7% of the variance in tail posture (Figure 1D). These principal components 118 

define postural modes and can be represented by a set of “eigenfish” (Girdhar et al., 2015; 119 

Stephens et al., 2008; Szigeti et al., 2015), which show the unmixed tail shapes encoded by each 120 

component (Figure 1E). As the posture of the animal evolves over time, the changing tail shape 121 

traces a trajectory in the three-dimensional coordinate space defined by the postural modes 122 

(Figure 1F and Video 2). Thus we find that the tail kinematics of zebrafish larvae are inherently 123 

low-dimensional, which provides a useful way to represent bouts for subsequent analysis. 124 

 125 

Task-specific motor programs occupy distinct domains of the behavioral space 126 

 127 

Next, we wanted to know whether animals build their behavioral sequences from kinematically 128 

discrete motor programs or draw their bouts from a continuous behavioral manifold. We sought 129 

to distinguish these possibilities by representing swim bouts in a space where neighboring points 130 

encode bouts with similar postural dynamics. In this space, tight clusters would suggest that 131 

larvae can only generate a limited number of stereotyped bout types, whereas a diffuse cloud 132 

would suggest that larvae can continuously modulate the kinematics of their bouts. To distinguish 133 

these possibilities, we developed a pipeline for determining the structure of the behavioral 134 

manifold (Figure 2A; see Methods). Our algorithm consists of three steps: alignment, clustering 135 

and embedding. In the first step, we calculate the distance between each pair of bouts in the 136 

three-dimensional postural space using dynamic time warping (DTW) (Jouary and Sumbre, 2016; 137 
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Figure 1. Swim bouts are characterized by their postural dynamics. (A) Schematic of the setup used to 

record behavioral data. (B) Example frame from high-speed video recording. Inset is overlaid with tail and 

eye tracking. (C) Eye and tail kinematics extracted from six seconds of behavioral recording. Ro: Rostral, 

Ca: Caudal. (D) Principal component analysis of tail shapes. Explained variance (bars) and cumulative 

explained variance (points) of the first eight components. We retained three components, which explained 

84.7% of the variance. (E) Schematized “eigenfish” of the first three principal components. (F) Individual 

bouts represented by trajectories through postural space. Top left panels: curvature along rostral-caudal 

axis of the tail over time. Bottom panels: bouts represented by trajectories through the first three principal 

components. Top right panels: tail movement reconstructed from these trajectories. 

 

Sakoe and Chiba, 1978). Next, we performed a round of affinity propagation (Frey and Dueck, 138 

2007) prior to embedding, using the negative DTW distance between a given pair of bouts as a 139 

measure of their similarity. Using the median similarity between bouts as the basis for affinity 140 

propagation produced 1,744 clusters containing at least three bouts. Since affinity propagation 141 

identifies an exemplar to represent each cluster, we produced our final behavioral space by 142 

performing isomap embedding (Tenenbaum et al., 2000) of these exemplars. For the isomap 143 

embedding, we constructed a nearest-neighbors graph of the exemplars using their DTW 144 

distances, and calculated the minimum distance between each pair of points in this graph. We 145 

used three dimensions for this final behavioral space to minimize the reconstruction error of the 146 

embedding with as few dimensions as possible (Figure 2 – figure supplement 1A), as well as 147 

to maximize the interpretability of bout separation in the resulting space. 148 
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Figure 2. Generation of a zebrafish larva behavioral space. 
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Figure 2. Generation of a zebrafish larva behavioral space. (A) Analysis pipeline for generating behavioral 

space. Each bout is a trajectory through a three dimensional postural space. Pairwise distances between 

all bouts are computed using dynamic time warping (DTW). Nearby bouts are grouped and a representative 

exemplar is chosen from each small group. Exemplars are then embedded in a low-dimensional behavioral 

space using isomap embedding on their DTW distances. (B) Behavioral space. Left: representative bouts 

projected onto the first two dimensions of the behavioral space. Right: behavioral space rendered in all 

three dimensions. Points colored according to position within a hue-lightness cylinder centered on origin. 

(C) Prey capture index (defined using eye convergence) of each exemplar in the behavioral space. Index 

defined as (# prey capture bouts - # spontaneous bouts) / (# total bouts) mapped to each exemplar. (D) 

Proportion of bouts mapped to each exemplar that occur during early, middle or late phases of prey capture. 

See also Figure 2 – figure supplement 1,2. 

 

Inspecting this behavioral space, we do not observe tight clusters with stereotyped kinematic 149 

features, but rather loosely clustered bout types separated by more sparsely populated regions 150 

(Figure 2B and Figure 2 – figure supplement 1B). Such a structure suggests a behavioral 151 

continuum, with certain motifs favored in our particular behavioral paradigm. Inspecting bouts that 152 

are represented in different regions of the space, we find high-amplitude bouts with a late turning 153 

component (far left, dark warm color), forward scoots (lower left, red to green colors), turns (right, 154 

green to blue colors), and asymmetric bouts (top, purple to magenta colors). This suggests that 155 

turn angle and swimming speed are the dominant kinematic features that define larval swim bouts 156 

(Figure 2 – figure supplement 1C). Turn angle and angular velocity separate bouts along the 157 

first dimension of the space, and swimming speed separates bouts along the second and third 158 

dimensions. 159 

 160 

Next, we sought to determine where prey capture bouts lie in the behavioral space, and to what 161 

extent they are kinematically distinct from spontaneous swims. To this end, we used eye 162 

convergence as an independent and unbiased indicator of prey capture behavior (Bianco et al., 163 

2011) (Figure 2 – figure supplement 2). We assigned each point in the space a prey capture 164 

index, indicating how frequently each bout was recruited during prey capture (eyes converged) 165 

versus spontaneous behaviors (eyes not converged). Markedly, we found that prey capture and 166 

spontaneous bouts were clearly separated in the behavioral space (Figure 2C). Furthermore, 167 

when we decomposed prey capture swims into early, mid and late bouts of a hunting sequence, 168 

we found further delineation in the behavioral space (Figure 2D). These results reveal that distinct 169 

motor programs are differentially recruited during hunting and spontaneous swimming and that 170 

larvae systematically alter the kinematics of their bouts over the course of a hunting sequence. 171 

  172 
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Behavioral sequences are built from a small number of simple transition modes 173 

 174 

Having identified the kinematic structure of zebrafish larva swim bouts, we next wanted to 175 

investigate how the temporal organization of bouts produced behavioral sequences (Figure 3A). 176 

We reasoned that, despite the large number of bouts that populate the behavioral space, the goal-177 

oriented nature of prey capture behavior would produce stereotyped sequences through this 178 

space. To test this possibility, we generated a transition frequency matrix from the number of 179 

transitions between each cluster in behavioral space. To distinguish between symmetric 180 

transitions, where animals stay in the same part of the behavioral space (i.e. repeating bouts with 181 

shared kinematic features), and asymmetric transitions, where animals transition to a different 182 

part of the space (i.e. switching to a different kind of behavior), we decomposed the matrix into its 183 

symmetric and antisymmetric parts. We then factorized the symmetric and antisymmetric matrices 184 

using singular-value decomposition (SVD) to obtain symmetric and antisymmetric transition 185 

modes (Figure 3 – figure supplement 1; see Methods). A symmetric transition mode describes 186 

transitions within a region of the behavioral space. Transitions from one region of the space to 187 

another can be described by an antisymmetric transition mode: groups of bouts occupying 188 

different areas of the behavioral space that tend to transition in one direction preferentially over 189 

the other. Each transition mode is associated with a singular value, which describes the extent to 190 

which the mode contributes to all the transitions recorded in the data. 191 

 192 

Despite there being more than 3 million possible transitions between points in the behavioral 193 

space, we found that two symmetric and one antisymmetric transition mode accounted for most 194 

of the transitions in the data (Figure 3B, elbow in the singular values). Symmetric modes are 195 

represented by a single vector and antisymmetric modes by a pair of vectors; and each cluster in 196 

the behavioral space contributes either a positive or negative weight to each of these vectors 197 

(Figure 3 – figure supplement 1B). Therefore, to visualize which transitions were represented 198 

by each mode, we mapped these weights back into the behavioral space (Figure 3C,D). The first 199 

symmetric transition mode necessarily reflects the overall distribution of bouts in the behavioral 200 

space, since a majority of transitions occur between the most common types of bouts. The second 201 

symmetric mode separates low amplitude prey capture swims from spontaneous swims (Figure 202 

3C). This indicates that animals often chain multiple low amplitude swims together, are less likely 203 

to chain low amplitude swims into spontaneous swims, and likewise less likely to chain 204 

spontaneous swims into low amplitude swims. The first antisymmetric transition mode represents 205 

transitions through different prey capture regions of the behavioral space (Figure 2D and Figure 206 
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Figure 3. Behavior is composed of seven modules with distinct kinematics and dynamics. (A) Bouts are 

chained into sequences. Top: tail tip angle trace from Figure 1C with bouts color-coded according to 

position in the behavioral space. Bottom: same sequence plotted as a sequence through the behavioral 

space. (B) Singular-value decomposition (SVD) of the transition frequency matrix (from all observed 

transitions between bout pairs). The transition frequency matrix was smoothed and decomposed into its 
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symmetric and antisymmetric components to identify transitions that occur in both directions and those that 

predominantly occur in only one direction (see Figure 3 – figure supplement 1; Methods). Top: singular 

values of the symmetric component of the transition matrix. Bottom: singular values of the antisymmetric 

component of the transition matrix. (C) First two symmetric transition modes. Symmetric transition modes 

describe transitions that occur within a group of bouts. (D) First antisymmetric transition mode. An 

antisymmetric transition mode encodes cyclic transitions through different groups of bouts. (E) Pipeline for 

generating a hybrid kinematic-transition space using re-weighted isomap embedding. Distances between 

exemplars in the behavioral space are rescaled by the distances between exemplars in the transition space 

defined by the transition modes. Bouts in the new space are clustered using hierarchical clustering. (F) 

Seven behavioral modules identified by hierarchical clustering in the kinematic-transition space. Top left: 

exemplars in the original behavioral space colored according to module. Subpanels show: individual tail 

angle traces in color with the average in black (top left); tail kinematics of a representative bout (bottom); 

tail reconstruction of the representative bout (right). See also Figure 3 – figure supplement 1,2. 

 

3D). This suggests that transitions between different regions of the behavioral space tend to follow 207 

the sequence: asymmetric turn, low amplitude swim, which is then followed by either a “late prey 208 

capture swim” or spontaneous turn. In conclusion, we find different behavioral dynamics during 209 

self-generated spontaneous swimming and goal-oriented prey capture sequences in the zebrafish 210 

larva. Spontaneous swimming contains transitions between forward swims and turns that do 211 

appear to follow a specific sequence. On the other hands, prey capture sequences appear to be 212 

more structured, with bout kinematics systematically altered in a similar way over the course of 213 

the behavior each time it occurs. 214 

 215 

Bouts are organized into modules that tile the behavioral space 216 

 217 

Bouts for exploratory and prey capture behavior form a continuum, and transitions between 218 

different regions of the behavioral space are explained by few transition modes. This suggested 219 

to us that behavior might be organized into modules, where each module represents a cluster of 220 

bouts with similar kinematics as well as similar transitions to and from other modules. Therefore, 221 

we generated a new kinematic-transition space, which contained information about both bout 222 

kinematics (from our behavioral embedding) and chaining structure (from our transition modes). 223 

We rescaled the graph distance between exemplars obtained using DTW by the corresponding 224 

distance between exemplars in a Euclidean space defined by transition modes; and proceeded 225 

with isomap embedding using this graph (Figure 3E; see Methods). Hierarchical clustering 226 

revealed seven modules that tile the original behavioral space (Figure 3F), many of which 227 

correspond to previously described bout types (Marques et al., 2018; McElligott and O’Malley, 228 

2005; Patterson et al., 2013). We call these modules J-turns, orientations, “slow 1” swims, capture 229 

strikes, “slow 2” swims, burst swims and routine turns. J-turns, orientations, “slow 1” swims and 230 
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capture strikes predominantly occurred during periods of eye convergence, and thus we term 231 

them prey capture modules (Figure 3 – figure supplement 2). In addition to these prey capture 232 

modules, we also identified three spontaneous swimming modules, “slow 2” swims, routine turns 233 

and burst swims, which predominantly occurred when the eyes were not converged. Thus, we 234 

find that despite the close juxtaposition of motifs in our behavioral space, nonetheless zebrafish 235 

larvae specifically recruit bouts from different regions of this space for different behavioral tasks. 236 

These regions correspond to behavioral modules that are not only kinematically distinct, but also 237 

occupy different positions within a behavioral chain. 238 

 239 

Prey capture sequences follow non-random, short-memory transition rules 240 

 241 

Next, we investigated the temporal organization of prey capture and spontaneous swimming. On 242 

the one hand, behavior could be organized hierarchically, with animals switching between 243 

swimming states during which they preferentially perform bouts from only a subset of modules. 244 

Alternatively, animals could generate stereotyped sequences through modules, with individual 245 

modules shared between multiple sequences. To distinguish these possibilities, we constructed 246 

a family of models with different levels of memory about past behavior and tested the efficacy of 247 

these models in predicting the next bout in behavioral sequences (Figure 4A,B). In the first model, 248 

larvae randomly transitioned between bouts, with no impact from previous ones. This 249 

“memoryless” model provided a baseline performance against which other models could be 250 

compared. Next, we considered a first order Markov model in which the next bout in the sequence 251 

depends only on the last bout performed. Such a model outperformed the random model in 252 

predicting bouts following J-turns, orientations, “slow 1” swims, “slow 2” swims, and burst swims 253 

(Figure 4B; 30, 61, 29, 13, 106% improvement respectively). We subsequently built higher-order 254 

Markov models with a longer memory that considered multiple previous bouts in the sequence. 255 

Doing so continued to improve our ability to predict bouts following “slow 1” swims and capture 256 

strikes (14 and 4% improvement respectively), and “slow 2” swims, turns and burst swims (4, 12, 257 

13% improvement respectively); but notably not those following J-turns and orientations (Figure 258 

4B). From this analysis, we conclude that, during spontaneous swimming, previous bouts in a 259 

chain influence the future behavior of the animal. In contrast, during prey capture swimming, 260 

actions more than a single bout in the past have minimal observable influence on future bouts. 261 
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Figure 4. A stimulus-response loop drives predictable sequences through prey capture modules. (A) 

Example of a hypothetical bout sequence color-coded according to the behavioral module. We constructed 

a series of Markov models to predict the next bout in behavioral sequences. (B) Markov modelling of 

behavioral sequences. Five models were tested with different memory lengths of previous bouts in the 

sequence. Shaded areas represent 95% confidence interval across all occurrences of each module. Stars 

indicate improvement over previous model to predict future bouts (p value < 0.05, Student’s t-test, Holm-

Bonferroni correction). (C) Ethogram of zebrafish behavior. Colored circles represent behavioral modules, 

gray arrows indicate transition probabilities between modules. (D) Transition probabilities significantly 

higher than chance (p-value < 0.05, Mann-Whitney U test, Holm-Bonferroni correction). Arrows show fold 

change in probability compared to shuffled data. (E) Average transformation of the visual scene produced 

by prey capture modules. Maps show average pixel intensity (prey) around fish across all bouts before (left) 

and after (middle) each module, expressed as a z-score (normalized using mean and standard deviation 

of 90,000 randomly selected frames). Difference is shown on the right. Images are thresholded using 95th 

percentile. Contour shows outline of the fish. See also Figure 4 – figure supplement 1. 
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We next asked which specific behavioral transitions accounted for the stereotypy we observed in 262 

prey capture module chaining. We found that animals are more likely to transition from J-turns 263 

and orientations to “slow 1” forward swims than the reverse (Figure 4C). Transitions in the 264 

sequence, J-turn, orientation, “slow 1”, capture strike, were more than 1.5 times more likely to 265 

occur than expected by chance (Figure 4D). Moreover, we found the majority of transitions 266 

between prey capture and spontaneous modules were less likely than chance (18 / 24 transition 267 

pairs). Transitions within spontaneous modules (“slow 2” swims, burst swims and routine turns) 268 

were significantly overrepresented (6 / 6 transition pairs). However, in contrast to the stereotyped 269 

sequences we observed during prey capture, switching between spontaneous modules was more 270 

stochastic. We also found a high incidence of repetitive behaviors – performing the same module 271 

more than once successively in a behavioral chain (5 / 7 transitions to same module). Collectively, 272 

these results demonstrate a hierarchical organization to zebrafish behavior, with different modules 273 

and chaining dynamics underlying spontaneous and prey capture swimming. 274 

 275 

Prey capture sequences are maintained through tight stimulus-response loops 276 

 277 

We reasoned that changes in the visual stimulus received by fish as they orients towards and 278 

approach prey might cause switching between behavioral modules during prey capture. If such 279 

changes are reproducible, they might form the basis of a stimulus-response chain, in which 280 

completion of one bout generates the appropriate stimulus for releasing the next bout. To test 281 

this, we reconstructed the visual experience of zebrafish performing prey capture sequences from 282 

our raw video data (see Methods). Doing so, we inferred the average stimulus that fish see before 283 

the onset of each behavioral module; and how the fish’s actions transform the visual scene 284 

(Figure 4E). Larvae initiate hunting sequences with a J-turn or orientation about 50% of the time 285 

(Figure 3 – figure supplement 2), and we find these bring the prey from the lateral to the anterior 286 

visual field. We found this new stimulus to be correlated with the onset of “slow 1” swims, which 287 

bring the prey to a stereotyped position in the near-anterior visual field. Prey in the near-anterior 288 

visual field was associated with the onset of capture strikes. Thus, the successive transformation 289 

of the visual scene as a result of the fish’s own motion could account for the stereotyped sequence 290 

through behavioral modules we observe during prey capture. In contrast, we do not observe 291 

stereotyped stimuli associated with spontaneous modules (Figure 4 – figure supplement 1), 292 

suggesting behavioral switching during this swimming state is likely mediated by internal neural 293 

processes. 294 

 295 
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Prey capture chains conclude with a distance-dependent choice of strike type 296 

 297 

Curiously, we noted that the most variable module in our data, the capture strike, seemed to be 298 

associated with the most stereotyped sensory stimulus – a paramecium in the near-anterior visual 299 

field. To investigate the source of this variation, we examined the prey capture strike further, with 300 

the goal of uncovering latent structure in this behavior masked by larger differences between 301 

bouts represented in our behavioral space. Our first hypothesis was that variation in capture 302 

strikes would be the result of a mixture of “long” and “short” capture dynamics (Marques et al., 303 

2018). Capture strike durations clearly form a bimodal distribution, with one peak around 100 ms 304 

and a second peak around 200 ms (Figure 5A). Across all capture strike durations, however, we 305 

noticed that fish consumed the prey after a stereotyped time, and that long capture strikes resulted 306 

from a second, spontaneous-like bout being triggered immediately after the capture event. From 307 

this, we concluded that long capture dynamics were the result of bout concatenation, and so we 308 

hypothesized that variation in capture strikes was largely due to the post-capture phase. 309 

 310 

To examine the stereotypy of the initial capture phase, we re-embedded capture strikes to 311 

produce a behavioral sub-space using our PCA-DTW-isomap pipeline, taking into account only a 312 

short 50 ms window before jaw opening (Figure 5B; see Methods). Doing so revealed two clearly 313 

separated clusters in the capture strike sub-space, suggesting that larvae capture prey with one 314 

of two distinct maneuvers (Figure 5C). These two clusters displayed markedly different postural 315 

dynamics (Figure 5D). We termed the two capture strike maneuvers the attack swim (blue cluster) 316 

and the S-strike (orange cluster) (Figure 5E and Video 3). S-strikes are immediately followed by 317 

a post-capture bout, possibly as a means to stabilize the animal in the water following the 318 

explosive capture maneuver. In contrast, only about half of attack swims lead into a post-capture 319 

bout (Figure 5A). These results reveal variation in bout dynamics exhibited by zebrafish larvae 320 

while striking at prey, suggesting that this behavior does not represent a single stereotyped 321 

movement, but rather two possible capture strategies employed by fish in different contexts. 322 

 

Figure 5. Zebrafish larvae perform distinct capture swims depending on prey position. (A) Captures strikes 

consist of a capture phase and a variable post-capture phase. Top: kernel density estimation of capture 

strike duration for attack swims (blue) and s-strikes (orange), shown as a stacked histogram. Middle: tail tip 

angle over time for capture strikes, defined by points in behavioral space containing > 50% late prey capture 

swims (see figure 2D). Grey window indicates initial 50 ms capture phase. Bottom: kernel density estimation 

showing when prey are consumed. (B) Pipeline for generating capture strike sub-space from initial capture 

phases. Strikes are represented by trajectories through postural space. Pairwise distances between all 
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strikes, computed using DTW, are used to generate the sub-space with isomap embedding. (C) K-means 

clustering in the capture strike sub-space reveals two types of strike maneuver. (D) Trajectories through 

postural space for the two capture strike clusters. (E) Representative examples of an attack swim and an 

S-strike. Tail kinematics (left) and reconstructed bout (right). (F) Normalized average prey density around 

the fish 250 ms prior to (top) and at the onset of (bottom) each type of capture strike. White contour shows 

outline of fish. Bright spots either side of the fish contour at onset of S-strikes signify fin abduction (white 

arrows). Right: maximum prey density along axial and horizontal axes in the anterior visual field (measured 

from white arrowhead). (G) Difference in maximum prey density between S-strikes and attack swims as a 

function of distance from the fish 500 ms (dark blue), 250 ms (teal) and 0 ms (yellow) prior to strike onset. 

*p-value < 0.01, permutation test on the absolute maximum z-score difference; n.s. not significant. 
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To test if the two kinematically distinct capture maneuvers might be selected in response to 323 

different stimuli, we investigated the evolution of prey position around the fish over time for hunting 324 

sequences that resulted in either an attack swim or an S-strike, respectively (Video 4). We found 325 

prey position in the anterior visual field for the two types of strike started to diverge approximately 326 

250 ms prior to the onset of the two maneuvers (Figure 5F,G). S-strikes occurred with a higher 327 

probability when prey was centered in the anterior visual field and 0.5 mm away within 250 ms of 328 

the onset of the swim (Figure 5F,G). For attack swims, prey became centered later in the bout 329 

chain and occurred within 0.25 mm of the fish. This difference was less prominent at the onset of 330 

the strike, suggesting that by this point the animal has already committed to one capture 331 

maneuver. In support of this, larvae characteristically abduct their pectoral fins prior to the onset 332 

of the S-strike but not the attack swim (McClenahan et al., 2012) (Figure 5F, white arrows). 333 

Together, these results indicate that the distance to the prey determines the choice of capture 334 

maneuver, with the S-strike recruited for prey located further than 0.25 mm, and the attack swim 335 

used to capture nearer prey. 336 

 337 

Variable tail kinematics combine with stereotyped jaw movements to capture prey from below 338 

 339 

Fish must coordinate their tail movements during capture strikes with jaw movements that 340 

generate suction to draw the prey into their mouths (Hernández et al., 2002; Patterson et al., 341 

2013). The degree of stereotypy in jaw movements is unknown, and it is possible that they, too, 342 

form discrete modules that are part of the prey capture chain. Therefore, we modified our 343 

recording setup and simultaneously observed tail and jaw kinematics of zebrafish larvae during 344 

prey capture (Figure 6A,B; see Methods). We tracked the position and pitch of larvae as well as 345 

the base of the jaw and elevation of the cranium (Figure 6B,C and Video 5). We found that the 346 

majority of jaw movements performed by zebrafish larvae were initiated immediately after a swim 347 

bout (Figure 6D), suggesting a stereotyped, sequential activation of these two types of 348 

movement. We then applied our PCA-DTW-isomap embedding pipeline to generate a behavioral 349 

space of jaw movements (Figure 6E,F). In this space, we could identify two well-separated 350 

clusters (Figure 6F). The larger cluster corresponds to a relatively slow, low amplitude depression 351 

of the lower jaw with little or no movement of the cranium (Figure 6G, left). Another type of jaw 352 

movement was rare but highly stereotyped, comprising a rapid, large amplitude depression of the 353 

lower jaw concurrent with cranial elevation (Figure 6G, right; Video 6). This movement was 354 

exclusively associated with attempts to capture prey. Inspecting the bouts preceding incidents of 355 

capture-associated jaw movements, we identified three distinct capture actions performed by 356 
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zebrafish larvae (Figure 6H). These include S-strikes and attack swims, in addition to low-357 

amplitude or absent tail movements corresponding to a purely “suction” capture (Hernández et 358 

al., 2002; Patterson et al., 2013). Thus, different capture strategies in zebrafish larvae emerge by 359 

combining variable tail kinematics with stereotyped jaw kinematics in a sequential chain.  360 

 361 

We observed that hunting episodes of zebrafish larvae were associated with both changes in 362 

pitch and moving up and down in the water column (Figure 6C). On average, larvae have a 363 

preferred orientation of 7° in the water and rotate to 12° prior to the onset of a capture, suggesting 364 

that fish adjust their pitch as well as their azimuth over the course of a hunting sequence (Figure 365 

6I). Analyzing the prey position around the fish prior to the onset of captures revealed a preferred 366 

position in the immediate anterior and slightly dorsal visual field (Figure 6J). Such a configuration 367 

implies that capture strikes are initiated when prey fall on the temporal-ventral retina and that 368 

cranial elevation and jaw opening then create downward suction of prey into the up-turned mouth 369 

of the fish. Spontaneous jaw movements were associated with prey near the head of the fish, 370 

suggesting that these movements may serve olfactory or gustatory functions. 371 

 

Figure 6. Capture strikes chain into a single stereotyped jaw movement. (A) Schematic of the setup used 

to record behavior simultaneously from above and from the side. (B) Example frame; insets are overlaid 

with tail and jaw tracking. (C) Jaw and tail kinematics from three seconds of behavioral recording. Top: 

depression of the jaw (black) and elevation of the cranium (gray). Arrowheads show onset of automatically 

identified jaw movements. Spontaneous movements (green); capture strikes (magenta). Middle: tail 

tracking. Bouts are color-coded according to nearest exemplar in behavioral space. Bottom: pitch of the 

fish in the water. (D) Cross-correlation between bout onsets and jaw movements onsets. (E) Pipeline for 

generating a jaw movement behavioral space. Jaw kinematics are transformed into postural dynamics with 

principal component analysis (PCA). Isomap embedding using DTW distances between jaw postural time 

series generates behavioral space. (F) HDSCAN clustering in the jaw behavioral space reveals two types 

of jaw movement. (G) Jaw depression (top) and cranial elevation (bottom) for the two types of jaw 

movement in zebrafish larvae. Colored traces: individual movements. Black lines: average. (H) Larvae can 

chain into capture jaw movements from three types of tail movement. Example of an S-strike, attack swim, 

and no tail movement that preceded the shown capture jaw movement (bottom). (I) Pitch of fish in the water 

prior to swims that chain into spontaneous and capture jaw movements. * two-tailed p-value < 0.01, 

unpaired Student’s t-test. (J) Normalized average prey density around the fish at the onset of bouts that 

chained into a spontaneous jaw movement (top) or a capture jaw movement (middle). White contour: outline 

of fish in average image. Anterior is left. Images are aligned and rotated so that the fish is in a horizontal 

position. Bottom: z-score difference between capture and spontaneous images. Red indicates higher 

density preceding a capture maneuver. 
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  Figure 6. Capture strikes chain into a single stereotyped jaw movement. 
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Genetic disruptions of visual processing perturb behavioral chaining 372 

 373 

Our results suggest that prey capture in zebrafish is maintained through a stimulus-response loop, 374 

which drives predictable transitions between behavioral modules. These transitions are triggered 375 

by changes in the visual stimulus the fish receives as the behavior progresses. Therefore, we 376 

hypothesized that genetic mutants with different visual impairments should have selective deficits 377 

in behavioral chaining during prey capture. In zebrafish larvae, prey capture depends on vision, 378 

and is impaired in darkness as well as in blind mutants (Gahtan et al., 2005; Patterson et al., 379 

2013). Prey capture circuitry includes retinal ganglion cells (RGCs) and the optic tectum (Bianco 380 

and Engert, 2015; Gahtan et al., 2005; Semmelhack et al., 2014). In lakritz mutants (lakth241) (Kay 381 

et al., 2001; Neuhauss et al., 1999), RGCs fail to develop, and, consequently, these fish are blind 382 

(Figure 7A, bottom left). We reasoned that if vision drives transitions into and through prey 383 

capture, these swims should be absent in lak-/-. To test this, we recorded the behavior of lak-/- 384 

and sibling controls (mix of lak+/- and lak+/+) in the presence of prey and mapped their bouts into 385 

our canonical behavioral space (Figure 7B, top). We found a 58% reduction in the number of 386 

prey capture bouts performed by mutants compared to controls (Figure 7C, left; controls, 39.3% 387 

± 0.04, n=6; mutants, 16.5% ± 0.04, n=6; mean ± SD). This could be explained by a decreased 388 

probability of initiating prey capture modules in mutants, as well as a failure to sustain sequences 389 

for more than a single bout once initiated (Figure 7D,E; spontaneous sequence lengths: controls 390 

1.72 ± 0.08, mutants 2.23 ± 0.18; prey capture sequence lengths: controls 2.06 ± 0.13, mutants 391 

1.38 ± 0.10; mean ± SD). These differences were reflected in the SVD of the transition frequency 392 

matrices of controls and mutants (Figure 7 – figure supplement 1A-E). While the first two 393 

symmetric and first antisymmetric transition modes of controls closely matched wildtypes in the 394 

canonical dataset (Figure 7 – figure supplement 1B,C, dot products 0.96, 0.88 and 0.72, 395 

respectively), transition modes involving prey capture swims were disrupted in mutants (Figure 7 396 

– figure supplement 1D,E, dot products 0.59, 0.13 and 0.06). Thus, depriving animals of visual 397 

inputs selectively disrupts the initiation of prey capture modules. 398 

 399 

Next, we tested the behavior of blumenkohl mutants (blutc257) (Neuhauss et al., 1999), which carry 400 

a mutation in a vesicular glutamate transporter, vglut2a. Blu-/- mutants grow larger RGC axonal 401 

arbors in the tectum, which is proposed to decrease visual acuity in these animals (Figure 7A, 402 

bottom right) (Smear et al., 2007). Consequently, blu-/- mutants are less efficient hunters of small 403 

prey items. According to our model, these mutants should be able to initiate prey capture 404 

sequences, but we predicted their blurred vision would prevent them from receiving the 405 
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appropriate stimuli required to connect subsequent bouts in the behavioral chain. We found that 406 

both blu-/- and blu+/- sibling controls exhibited the full behavioral repertoire of wild-types (Figure 407 

7B, bottom); however, mutants performed 30% fewer prey capture bouts compared to controls 408 

(Figure 7C, right; controls, 39.0% ± 0.09, n=18; mutants, 27.2% ± 0.09, n=19; mean ± SD). The 409 

transition modes of controls were indistinguishable from wildtype (Figure 7 – figure supplement 410 

1F-H, dot products 0.95, 0.93 and 0.87), but were disrupted in mutants, suggesting that behavioral 411 

chaining was affected in these animals (Figure 7 – figure supplement 1F,I,J, dot products 0.64, 412 

0.08, 0.10). 413 

 414 

We found the most significant changes in the blu-/- behavior affected transitions into and out of 415 

“slow 1” swims, recruited during prey capture, and burst swims, recruited during spontaneous 416 

swimming (Figure 7F). We predicted that blurred vision in the mutants could prevent them from 417 

receiving the appropriate stimulus necessary to initiate “slow 1” swims during prey capture. 418 

Therefore, we investigated the prey position around blu-/- animals during hunting sequences. This 419 

revealed that blu-/- mutants perform orientations when prey were closer to the animals than in 420 

controls (Figure 7G, left). We also found that prey were closer prior to the onset of “slow 1” swims 421 

in blu-/-, and was in a less reproducible location (Figure 7G, right). We reasoned that the nearer 422 

position required to orient towards prey in mutants would result in them initiating prey capture less 423 

frequently, and indeed we found that blu-/- perform more spontaneous bouts before initiating a 424 

prey capture swim (Figure 7H, top, spontaneous sequence lengths: controls 1.84 ± 0.22, mutants 425 

2.16 ± 0.2; mean ± SD). Second, we predicted that the less stereotyped prey position prior to 426 

“slow 1” swims would impair mutants’ ability to maintain prey capture sequences. Indeed, we 427 

found that prey capture sequences in blu-/- were slightly truncated (Figure 7H, bottom, prey 428 

capture sequence lengths: controls 1.97 ± 0.20, mutants 1.75 ± 0.16; mean ± SD). Thus, our fine-429 

grained analysis reveals a specific deficit in visually driven chaining of prey capture sequences 430 

that likely results from a blurred visual map in the optic tectum. 431 

 

Figure 7. Behavioral chaining is disrupted in lakritz and blumenkohl mutants. (A) Developmental phenotype 

of lakritz (lak) and blumenkohl (blu) mutants. In lak-/- RGCs fail to form. In blu-/- RGC arbors overgrow in 

the tectum. Lak controls are a mix of lak+/- and lak+/+ siblings. Blu controls are blu+/- siblings. (B) Bouts 

from lak and blu can be mapped into the canonical behavioral space using DTW, enabling comparison of 

different behavioral datasets. (C) Proportion of bouts that are mapped to prey capture exemplars. Error 

bars indicate standard deviation. * two-sided p value < 0.01 Mann-Whitney U test. Difference between 

control groups is not significant (p > 0.4). (D) Ethogram of lak behavior. Controls (left), mutants (middle), 

and fold change in transition probabilities between these groups (right). Only statistically significantly 

differences between groups are shown (p < 0.05 Mann-Whitney U test with Holm-Bonferroni correction). 

(E) Spontaneous (top) and prey capture (bottom) sequences in lak. Left: probability that sequence is 
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Figure 7. Behavioral chaining is disrupted in lakritz and blumenkohl mutants. 
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aborted after a given number of bouts. Right: average sequence length. * two-sided p value < 0.01 Mann-

Whitney U test. (F) Ethogram of blu behavior. Controls (left), mutants (middle), and fold change in transition 

probabilities between these groups (right). Only statistically significantly differences between groups are 

shown (p < 0.05 Mann-Whitney U test with Holm-Bonferroni correction). (G) Normalized average prey 

density before and after orientations and “slow 1” swims for blu controls (top) and mutants (bottom). Images 

are thresholded using 95th percentile. (H) Spontaneous (top) and prey capture (bottom) sequences in blu. 

Left: probability that sequence is aborted after a given number of bouts. Right: average sequence length. * 

two-sided p-value < 0.01 Mann-Whitney U test. See also Figure 7 – figure supplement 1. 

 

Discussion 432 

 433 

A thorough quantification of the actions performed by an animal, and how the environment 434 

influences these actions, is a prerequisite for understanding the sensorimotor transformations 435 

performed by the brain to realize behavior (Krakauer et al., 2017). Our unsupervised analysis 436 

reveals that zebrafish swim bouts lie on a behavioral continuum. We group bouts into seven 437 

behavioral modules that are differentially recruited during spontaneous swimming and prey 438 

capture. During prey capture, we find that the location of prey in the visual scene likely triggers a 439 

specific behavioral module, whose movement transforms the prey stimulus, leading to the next 440 

bout in the chain. Thus, iterative bout chaining positions the prey in the center of the anterior 441 

dorsal visual field through a stimulus-response loop. Once the prey has reached this position, the 442 

fish releases one of three distinct capture maneuvers, determined by the remaining distance to 443 

the prey. Further decomposition of these capture maneuvers revealed that distinct predation 444 

strategies arise through combining a stereotyped jaw movement with distinct types of swim bout. 445 

Genetic manipulation of visual processing disrupted the stimulus-response loop, preventing prey 446 

capture initiation in blind animals, and impairing the maintenance of the behavior in animals with 447 

blurry vision. 448 

 449 

One of the challenges of linking behavior to neural activity is finding suitable representations that 450 

link these two domains (Brown and Bivort, 2018). Postural modes identified through PCA have 451 

previously been used to describe spontaneous swimming in zebrafish and crawling behavior in 452 

C. elegans and Drosophila larvae (Girdhar et al., 2015; Stephens et al., 2008; Szigeti et al., 2015). 453 

We found that the first three eigenfish in our data form a harmonic series (Figure 1E), with the 454 

second and third modes describing the sinusoidal oscillation of the tail during a bout and the first 455 

mode accounting for turning. These are similar to the basis vectors used to describe postural 456 

dynamics in fly maggots and nematodes, suggesting that such modes may serve as a common 457 

framework for finding equations of motion across taxa. In the future it may be possible to relate 458 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/656959doi: bioRxiv preprint 

https://doi.org/10.1101/656959
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

trajectories in this space to specific structural or dynamical motifs in the neural circuits that 459 

produce locomotion across species (Kato et al., 2015). 460 

 461 

Different unsupervised approaches have not provided a consensus on whether behavior is 462 

organized into distinct modules with stereotyped kinematics (Berman et al., 2014; Marques et al., 463 

2018) or whether such modules represent extremes of a continuum (Katsov et al., 2017; Szigeti 464 

et al., 2015). Non-linear embedding algorithms, such as t-SNE, have become popular for 465 

analyzing high-dimensional behavioral data (Berman et al., 2014; Marques et al., 2018); however, 466 

such representations separate behaviors along arbitrary dimensions and tend to exaggerate the 467 

distances between clusters. Our isomap embedding approach revealed a continuum of swim 468 

bouts used by zebrafish larvae during hunting and spontaneous swimming (Figure 2B). This 469 

showed that swim bouts predominantly vary in swimming speed and turning degree (Figure 2 – 470 

figure supplement 1C). When we inspected the prey capture strike further, however, we found 471 

evidence of modularity in this particular behavior (Figure 5). Moreover, we used our method to 472 

explore the kinematics of jaw movements, demonstrating that it generalizes to different types of 473 

movement patterns (Figure 6). In addition, we demonstrate that different datasets can be bridged 474 

into the same behavioral space, aiding the identification of behavioral deficits in mutants (Figure 475 

7). Thus, our method provides a suitable alternative to stochastic embedding algorithms as it can 476 

capture both continuity and discreteness in a variety of behavioral datasets. 477 

 478 

Classically, two general models have been proposed to explain how animals chain behavioral 479 

modules into sequences. Hierarchical models propose that behavioral switching is stochastic, yet 480 

structured over various timescales (Berman et al., 2016; Seeds et al., 2014). In contrast, 481 

sequential models predict recurring, stereotyped behavioral chains (Long et al., 2010). These are 482 

not mutually exclusive, and it has been suggested that both might contribute to spontaneous 483 

behaviors in Drosophila (Berman et al., 2016; Katsov et al., 2017). The extent to which these 484 

mechanisms contribute to the production of behavioral sequences in zebrafish was not known. 485 

We found that larvae preferentially form sequences consisting of either spontaneous or prey 486 

capture modules (Figure 3C,D and Figure 4C,D), suggesting a hierarchical organization in their 487 

behavior. We found bout chains to be more stereotyped during prey capture, hinting that an 488 

underlying mechanism drives sequential activation of modules during this behavior (Figure 2D, 489 

Figure 3D and Figure 4B-D). Predictable behavioral sequences can be driven by either internal 490 

neural mechanisms or feedback from the environment (Coen et al., 2014; Long et al., 2010). 491 

Previous reports have suggested that zebrafish larvae reflexively react to the current position of 492 
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a prey object in the visual field when generating their bouts (Patterson et al., 2013; Trivedi and 493 

Bollmann, 2013). Our results suggest that a stimulus-response loop links successive bouts in a 494 

behavioral chain and drives stereotyped sequences through prey capture modules, with little 495 

influence from previous behaviors (Figure 4). Short integration windows for deciding the next 496 

behavioral action have also been observed in thermal navigation of larvae (Haesemeyer et al., 497 

2015) and social affiliation of juvenile zebrafish (Larsch and Baier, 2018). Thus, stimulus-498 

response loops driving behavioral chaining might not be specific to prey capture, but provide a 499 

more general mechanism underlying goal-directed behavior in zebrafish. 500 

 501 

Zebrafish larvae move in a three dimensional water column, and make full use of this environment 502 

during natural behaviors (Horstick et al., 2017). It was recently proposed that a specialized UV-503 

sensitive zone in the ventral retina could facilitate targeting prey from below (Zimmermann et al., 504 

2018). We demonstrate that larvae do indeed orient themselves beneath the prey over the course 505 

of a hunting sequence (Figure 6I,J). Furthermore, we found that larvae capture prey with a single 506 

stereotyped jaw movement that includes dorsal flexion of the cranium (Figure 6F-H, Video 5 and 507 

Video 6). This movement likely generates downward suction during strikes. Moreover, this jaw 508 

movement is either produced in isolation, or in combination with an attack swim or S-strike 509 

maneuver, both of which are similarly stereotyped and occur when prey reach a specific location 510 

in the visual field (Figure 5C-G and Video 4). These results provide compelling evidence that jaw 511 

morphology has co-evolved with sensory and motor circuits to reduce the complexity of capturing 512 

prey in a three-dimensional environment. Producing invariant actions in response to stereotyped 513 

“releasing” stimuli has long been considered an efficient way to ensure reproducible outcomes in 514 

innate behaviors (Ewert, 1987; Tinbergen, 1951). By linking three different releasing stimuli to 515 

three stereotyped motor programs, all sharing a common jaw movement, the developing nervous 516 

system of the zebrafish larva has evolved an efficient means to produce reliable, flexible behavior 517 

with a limited number of neurons. 518 

 519 

Whether behaviors exist in a continuum or as stereotyped, invariant motor patterns have different 520 

implications for their underlying neural circuit implementation. Behavioral continua, such as the J-521 

turns, orientations and “slow 1” swims that occur during prey capture, may be encoded in a 522 

topographic motor map, where the position of prey in the visual field is transformed into a graded 523 

motor output. Such a map has been identified in the optic tectum of zebrafish larvae and its 524 

projections to the hindbrain (Helmbrecht et al., 2018). We found that blu mutants, which have 525 

blurred retinotectal maps, had difficulty sustaining prey capture sequences. This suggests that 526 
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the visuo-motor transformations normally performed by the tectum during prey capture are 527 

disrupted in these mutants. Furthermore, the gradual transformation of the visual stimulus 528 

received by fish over a prey capture sequence suggests that the animal is trying to position the 529 

prey at a specific point in the temporal-ventral retina (Figure 4E, Figure 5F,G and Video 4). When 530 

the eyes are converged, this point would result in the prey being represented bilaterally in the 531 

anterior regions of both tecta. This region could contain specialized circuitry for implementing the 532 

appropriate capture maneuver, depending on the distance to the prey. Rather than a continuous 533 

motor map, we posit the S-strike and attack swim are driven by separate command-like neuronal 534 

populations, or alternatively by different activity levels within a common population. Similarly, a 535 

dedicated neural circuit may control the stereotyped jaw movement we observe during strikes 536 

(Figure 6 and Video 6). Thus, we propose that different neural architectures underlie the pursuit 537 

and capture of prey in zebrafish larvae. Our work provides a computational framework for 538 

interrogating the production and chaining of motor modules during this behavior in a genetically 539 

tractable vertebrate. 540 

 541 

 542 

Methods 543 

 544 

Fish 545 

 546 

For experiments relating to Figure 1-6 we obtained TLN (nacre) embryos from an outcross of 547 

TLN homozygous to TL/TLN heterozygous adults. Until 3 days post fertilization (dpf) embryos 548 

were raised in Danieau’s solution (17 mM NaCl, 2 mM KCl, 0.12 mM MgSO2, 1.8 mM Ca(NO3)2, 549 

1.5 mM HEPES) at a density of 60 embryos per 50 ml at 28 °C with a 14h-10h light-dark cycle. 550 

Thereafter, embryos were transferred to new dishes containing fish system water and raised at a 551 

density of 30 larvae per 50 ml until behavioral testing at 7 dpf or 8 dpf. At 5 dpf and 6 dpf, a few 552 

drops of dense paramecia culture (Paramecium multimicronucleatum, Carolina Biological Supply 553 

Company, Burlington, NC) were added to each dish and larvae were allowed to feed ad libitum. 554 

 555 

For experiments relating to Figure 7, we used lakritz (lakth241) and blumenkohl (blutz257) mutants 556 

(Neuhauss et al., 1999) in a TL background. Lak mutants were obtained from a heterozygous in 557 

cross. Homozygous mutants could be clearly identified by their dark color compared to sibling 558 

controls (mixture of heterozygotes and wild types) in a visual background adaptation (VBA) assay. 559 

Blu mutants were obtained by outcrossing heterozygous females to homozygous males. Similarly 560 
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to lak, mutants could be identified unambiguously with a VBA assay. Larvae were raised as 561 

described above, except they were not fed at 5 and 6 dpf, and thus their naïve prey capture ability 562 

was assayed at 7 dpf. This was to minimize potential confounding effects of experience-563 

dependent improvement in prey capture efficacy between groups. 564 

 565 

Free-swimming behavioral assay 566 

 567 

Free-swimming prey capture experiments relating to Figure 1-5 and Figure 7 were conducted 568 

using a custom-built behavioral setup. Behavior arenas were produced by flooding a 35 mm petri 569 

dish with 2% agarose (Biozym, Germany), with an acrylic square (15 x 15 mm, 5 mm deep) placed 570 

in the center. Once the agarose had set, the acrylic square was removed producing a hollow 571 

chamber with transparent walls. Single larvae were introduced to the chamber along with a drop 572 

of culture containing approximately 50-100 paramecia. The chamber was filled to the top with fish 573 

system water and a glass coverslip was placed over the chamber to flatten the meniscus. This 574 

provided a clean, transparent chamber where behavior could be observed and tracked. 575 

 576 

Behavior experiments were performed in a climate-controlled box kept at 28 ± 1 °C between 3 577 

and 12 hours after lights on. Each larva was recorded for 20 minutes using a high speed camera 578 

(PhotonFocus, MV1-D1312-160-CL, Switzerland), fitted with an objective (Sigma 50 mm f/2.8 ex 579 

DG Macro, Japan), connected to a frame grabber (Teledyne DALSA X64-CL Express, Ontario, 580 

Canada). The camera was positioned over the behavior arena, which was lit from below with a 581 

custom-built infrared LED array. Behavior was filmed at 500 frames per second with a frame size 582 

of 500 x 500 pixels covering an area slightly larger than the arena (Figure 1B), providing a final 583 

resolution of approximately 0.03 mm/pixel. The aperture of the camera objective was adjusted 584 

such that the fish was in focus throughout the entire depth of the arena. Recording was performed 585 

using StreamPix 5 software (NorPix, Quebec, Canada) and individual trials were initiated through 586 

a custom written Python script. Each 20 minute session was split into 20x 1 minute recording 587 

trials, with < 1 second between the end of one trial and the beginning of the next, to keep video 588 

files to a manageable size. If frames were dropped during a trial, the recording was stopped to 589 

prevent problems in subsequent analyses. Videos were compressed offline in VirtualDub with 590 

Xvid compression before tracking was performed. 591 

 592 

Free-swimming behavioral assay in three dimensions 593 

 594 
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To record behavior simultaneously from above and from the side, we designed a new chamber 595 

(Figure 6A). A 3 ml transparent, unfrosted plastic cuvette was with flooded with 2% agarose. An 596 

acrylic rod (20 x 5 x 5 mm) was inserted into the liquid agarose, which was allowed to set, after 597 

which the rod was removed leaving behind a hollow chamber. As before, individual larvae were 598 

introduced into the chamber with a drop of paramecia culture topped up with fish system water. 599 

The opening was plugged with a small piece of acrylic cut to match the cross section of the 600 

chamber (5 x 5 mm). The cuvette was placed on its side on top of a glass coverslip suspended 601 

above a mirror angled at 45°. The high speed camera was positioned above this setup in such a 602 

way as to allow the fish in the chamber as seen from above as well as the reflected side view 603 

from the mirror to be visible within the field of view of the camera. The IR LED array was rotated 604 

by 90°, allowing the chamber to be illuminated from the side and from below (via the mirror) with 605 

a single light source. We reduced the aperture of the camera objective so that the entire arena 606 

was in focus in both views and offset the decrease in luminance by increasing the exposure time 607 

of each frame. Consequently, for this experiment we achieved a frame rate of 400 fps. As 608 

described above, data from each fish was split into 20x 1 minute recording trials. 609 

 610 

To record jaw movements during prey capture with higher spatial resolution in Video 6, we used 611 

two cameras (PhotonFocus, MV1-D1312-160-CL, Switzerland) and two light sources and filmed 612 

a number of fish swimming in a custom-built transparent chamber. We waited for one of the fish 613 

to start hunting a paramecium in the field of view of both cameras and manually triggered the 614 

recording. Frame acquisition was synchronized using StreamPix 5 and a dual camera frame 615 

grabber. 616 

 617 

Tail and eye tracking 618 

 619 

Tracking was performed using custom-written Python scripts. Each frame was tracked 620 

independently. Each frame was divided by a background image, calculated as the median of 621 

every 100th frame over all trials from a given animal.  The frames were then thresholded and 622 

contours extracted using OpenCV. The largest contour in the image was taken as the outline of 623 

the fish and all other pixels were discarded. Then, the histogram of pixel values of the fish was 624 

normalized and a second threshold was applied to find the three largest contours within the fish, 625 

corresponding to the two eyes and swim bladder. The eyes were identified automatically as the 626 

two contours with the nearest centroids and left and right identities were assigned using the sign 627 

of the vector product between lines connecting the swim bladder to these two points. The heading 628 
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of the fish was defined by a vector starting in the center of the swim bladder and passing through 629 

the midpoint between the eye centroids. The angle of each eye was calculated from the image 630 

moments of their contours and was defined as: 631 

 632 

1

2
∗ arctan (

2 ∗ 𝑢11

𝑢20 − 𝑢02
) 633 

 634 

Where 𝑢𝑖𝑗 is the corresponding central moment. The eye angles in an egocentric reference were 635 

calculated as the difference between the heading angle and absolute orientation of eyes, and eye 636 

convergence defined as the difference between the eye angles (Figure 2 – figure supplement 637 

2A). A 100 ms median filter was applied to smooth the traces obtained from each eye while 638 

preserving edges. The two thresholds used for tracking were set manually for each fish. In frames 639 

where the eye contours could not be detected through thresholding, we instead applied a 640 

watershed algorithm to obtain contours and then proceeded as above. 641 

 642 

Due to the dark pigmentation of lak and blu mutants, there was insufficient contrast to segment 643 

the eyes from the surrounding skin using either thresholding or watershed analysis. For this 644 

reason, eye tracking could not be performed in these animals. To calculate the heading in this 645 

case, we used the second threshold to segment the head and body of the fish from the tail, for 646 

which we identified the minimum enclosing triangle using OpenCV. The heading was then defined 647 

as a vector passing through the apex and centroid of this triangle, and the position of the swim 648 

bladder estimated as lying midway between these two points. 649 

 650 

To track the tail of the fish, we skeletonized the contour obtained after applying the first threshold 651 

described above. We started the tracking from the point on this skeleton nearest to the swim 652 

bladder. We used a custom-written algorithm to identify the longest path through the skeletonized 653 

image that started at this point, ended at the tip of a branch, and began in the opposite direction 654 

of the heading vector. We then linearly interpolated 51 equally spaced points along this path to 655 

obtain the final tail points. 656 

 657 

The tail tip angle was defined as the angle between the midline of the fish (provided by the heading 658 

vector) and a vector between the center of the swim bladder and the last point of the tail. This 659 

angle is used to help visualize the sinusoidal oscillation of the tail in Figure 1, 3, 5, and 6, but was 660 

not used as the basis of any analysis in the paper. 661 
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 662 

We vectorized the tracked tail points for kinematic analysis in a similar manner to what has been 663 

previously described (Girdhar et al., 2015; Stephens et al., 2008). Briefly, we calculated the angle 664 

between the midline (defined by the heading vector) and a vector drawn between each adjacent 665 

pair of tail points, providing a 50 dimensional representation of the tail in each frame. A three 666 

frame median filter was applied to the heading angle and tail kinematics to remove single frame 667 

noise. 668 

 669 

The mean tail tip curvature was computed as the mean of the last ten points of the tail angle 670 

vector, and was used for bout segmentation. Bouts were detected by applying a threshold to the 671 

smoothed absolute value of the first derivative of this mean tail tip curvature. Uncharacteristically 672 

long bouts detected with this method were further split by finding turning points in the smoothed 673 

absolute value of the mean tail tip curvature convolved with a cosine kernel. 674 

 675 

Jaw tracking 676 

 677 

As for the single view setup, each frame was tracked independently offline using custom-written 678 

Python scripts. Each frame was divided by a background image, calculated as the median of 679 

every 100th frame over a recording trial. The upper and lower halves of the frame were tracked 680 

separately. The lower half of the frame, containing the image of the fish as seen from above, was 681 

tracked as described above. Fish were only tracked from the side when their heading was within 682 

±45° of the imaging plane to minimize artifacts arising as a result of foreshortening. Frames were 683 

thresholded and contours extracted using OpenCV. The largest contour in the image was taken 684 

as the outline of the fish and all other pixels were discarded. Then, the histogram of pixel values 685 

of the fish was normalized and a second threshold was applied to find a contour enclosing the 686 

head and body of the fish. The pitch and angle of the cranium were calculated using image 687 

moments of these two contours respectively, with cranial elevation defined as the difference 688 

between them. 689 

 690 

To find the point of the base of the jaw, we first defined point, 𝒑, as the centroid of the head-body 691 

contour and vector, 𝒗, defined by the cranium angle (i.e. orientation of this contour in the frame). 692 

We extended vector 𝒗 from 𝒑 until it intersected the fish contour at point 𝒒. Next, we found the 693 

midpoint of 𝒑𝒒⃑⃑⃑⃑  ⃑, called 𝒄. We then extended a vector orthogonal to 𝒗 from 𝒄 until it intersected the 694 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/656959doi: bioRxiv preprint 

https://doi.org/10.1101/656959
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

fish contour at the base of the jaw, 𝒉. Jaw depression was defined as the Euclidean distance, 695 

‖𝒄𝒉⃑⃑ ⃑⃑ ‖. 696 

 697 

The cranial elevation angle and hyoid depression were smoothed with an edge-preserving five-698 

frame median filter. Then, we applied a high-pass filter by subtracting the baseline of these two 699 

kinematic features over a recording. To compute this baseline, we first calculated a 250 ms rolling 700 

minimum, and then computed the one-second rolling mean of this rolling minimum. This provided 701 

a relatively stable baseline for identifying jaw movements, despite changes in elevation and 702 

azimuth of the fish over a recording. To segment jaw movements, we identified periods when the 703 

baseline-adjusted jaw depression, smoothed with a 50 ms rolling average, was above a 704 

predetermined threshold and defined movement onset and offset as turning points in this 705 

smoothed trace. 706 

 707 

Embedding postural dynamics in a behavioral space 708 

 709 

To generate our behavioral space, we excluded any bouts during which the tail of the fish hit the 710 

wall of the behavior chamber. This was to ensure that only the fish’s self-generated motion – and 711 

not motion artifacts introduced from distortion of the tail by the wall – was considered when 712 

mapping the behavioral space. Consequently, not all the bouts we observed could be mapped 713 

into the space. 714 

 715 

To describe bouts in terms of their postural dynamics, we performed principal component analysis 716 

(PCA) on the tail kinematics across all bout frames. Data were normalized before applying PCA 717 

by subtracting the mean tail shape and dividing by the standard deviation. 718 

 719 

The next step in generating the behavioral space involved computing the distance between every 720 

pair of bouts with dynamic time warping (DTW) (Sakoe and Chiba, 1978). DTW finds an alignment 721 

between two time series that minimizes a cost function, which is the sum of the Euclidean 722 

distances between each pair of aligned points. In our analysis, we only allowed trajectories to be 723 

warped within a 10 ms time window. For bouts of different lengths, we padded the end of the 724 

shorter bout with zeros until it was the same length as the longer bout. We performed each 725 

alignment twice, reversing the sign of all the values for one of the trajectories the second time, 726 

and considered the distance between two bouts to be: 𝑚𝑖𝑛(𝐷𝑇𝑊(𝑡1, 𝑡2), 𝐷𝑇𝑊(𝑡1, −𝑡2)), thus 727 

effectively ignoring the left/right polarity of the bouts. 728 
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 729 

For generating the behavioral space in Figure 2, we performed a round of affinity propagation 730 

(Frey and Dueck, 2007) prior to embedding, using the negative DTW distance between a given 731 

pair of bouts as a measure of their similarity. We used the median similarity between bouts as the 732 

preference for the clustering. Doing so provided 2,802 clusters, of which we excluded any clusters 733 

containing fewer than three bouts, thus ensuring that only repeatedly observable motor patterns 734 

were used for generating the behavioral space. As a final quality check, we manually inspected 735 

every cluster exemplar and removed incorrectly identified bouts, which usually was the result of 736 

tracking artifacts from a paramecium crossing the tail of the fish. The final number of clusters that 737 

we embedded was 1,744.  738 

 739 

Since affinity propagation identifies an exemplar to represent each cluster, we produced our final 740 

behavioral space by performing isomap embedding (Tenenbaum et al., 2000) of these exemplars. 741 

For the isomap embedding, we constructed a nearest-neighbors graph of the exemplars using 742 

their DTW distances, and calculated the minimum distance between each pair of points in this 743 

graph. The isomap components correspond to the eigenvectors of this graph distance matrix. 744 

 745 

Eye convergence analysis 746 

 747 

To identify periods of eye convergence, we calculated a kernel density estimation (Gaussian 748 

kernel, bandwidth=2.0) of the eye convergence angles across all frames for a given fish. This 749 

distribution was bimodal (eyes converged or unconverged) and therefore we defined the eye 750 

convergence threshold as the antimode (least frequent value between the two modes). To identify 751 

spontaneous, early, mid, and late prey capture bouts, we calculated the mean eye convergence 752 

angle over the first and last 20 ms of a bout, and concluded the eyes were converged if this 753 

number was above the threshold. Bouts were classified as spontaneous if the eyes were 754 

unconverged at the beginning and end of a bout; early prey capture if the eyes were unconverged 755 

at the beginning and converged at the end of the bout; mid prey capture if the eyes were 756 

converged at the beginning and end of the bout; and late prey capture if the eyes were converged 757 

at the beginning and unconverged at the end of the bout. 758 

 759 

Mapping kinematic features and eye convergence into the behavioral space 760 

 761 
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With our PCA-DTW-isomap approach, each point in the behavioral space represents a small 762 

cluster of bouts. For each bout, we calculated the mean speed, angle through which the fish 763 

turned, maximum angular velocity of the fish, and the time at which the maximum angular velocity 764 

occurred (turn onset). In Figure 2 – figure supplement 1C, we show the median of each of these 765 

features over a cluster. Similarly, we could calculate the proportion of bouts in each cluster that 766 

occurred during spontaneous, early, mid, or late prey capture as defined above. The prey capture 767 

index was defined as: 768 

 769 

# prey capture bouts in cluster −   # spontaneous bouts in cluster

 # bouts in cluster
  770 

 771 

Mapping mutant bouts into the behavioral space 772 

 773 

To map mutant bouts into the behavioral space, we extracted tail kinematics and identified bouts 774 

as described above (see tail and eye tracking). The postural dynamics of each mutant bout was 775 

projected onto the first three principal components obtained from the canonical dataset (Figure 776 

1D,E) to bring it into the same space as bouts from that dataset. Then, each mutant bout was 777 

mapped to one of the 1,744 exemplars identified in “embedding postural dynamics in a behavioral 778 

space” using dynamic time warping (DTW), with the nearest exemplar having the smallest DTW 779 

distance to the bout. In this way, each mutant bout could be projected into the three dimensional 780 

behavioral space defined by the 1,744 exemplars. In Figure 7B, we show a kernel density 781 

estimation of all bouts from a given condition over the first two dimensions of the behavioral space. 782 

 783 

Since we could not perform eye tracking in the mutants (see tail and eye tracking), we instead 784 

calculated the proportion of bouts performed by each fish that were mapped to a prey capture 785 

motif, defined as those having a prey capture index > 0. This provided each fish with a “prey 786 

capture score”. We then compared the prey capture scores of fish with different genotypes with 787 

three two-sided Student’s t-tests (independent samples) comparing lak controls to lak mutants, 788 

blu controls to blu mutants, and lak mutants to blu mutants. 789 

 790 

Singular value decomposition (SVD) of behavioral transitions 791 

 792 

To identify transition modes, we generated a transition frequency matrix, 𝑀, where 𝑀𝑖𝑗 contains 793 

the number of transitions from behavioral motif 𝑗 to behavioral motif 𝑖, where each behavioral 794 
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motif is a small cluster of bouts in the behavioral space (see embedding postural dynamics in a 795 

behavioral space). This matrix included all the transitions from all animals for a given experiment. 796 

 797 

Since there are more than 3 million (1,7442) possible transitions between motifs, and only 44,154 798 

transitions in our largest dataset, the matrix 𝑀 is necessarily sparse. This would hinder the 799 

identification of common dynamical motifs, and so we performed smoothing on matrix 𝑀 by 800 

blurring similar transitions into each other. To achieve this, we took advantage of the fact that 801 

nearby points in our behavioral space encode bouts with similar postural dynamics. We computed 802 

a weighting matrix, 𝑊, where 𝑊𝑖𝑗 ≡ 𝑒−𝑎∗𝐸(𝑝𝑖,𝑝𝑗). 𝐸(𝑝𝑖 , 𝑝𝑗) is the Euclidean distance between a pair 803 

of points in the three-dimensional behavioral space, and 𝑎 is a smoothing factor (see Figure 3 – 804 

figure supplement 1). 805 

 806 

We normalized matrix 𝑊 so that the columns summed to one and then smoothed the transitions 807 

in matrix 𝑀 with the transformation: 𝑀𝑠𝑚𝑜𝑜𝑡ℎ = 𝑊𝑀𝑊𝑇. 808 

 809 

To distinguish between symmetric transitions (i.e. those that occur in both direction), and 810 

antisymmetric transitions (i.e. those in which transitions in one direction outweigh those in the 811 

other), we decomposed the smoothed matrix, 𝑀𝑠𝑚𝑜𝑜𝑡ℎ, into its symmetric and antisymmetric parts, 812 

where: 813 

 814 

𝑀𝑠𝑚𝑜𝑜𝑡ℎ = 𝑀𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 + 𝑀𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 815 

𝑀𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  =  ½ (𝑀𝑠𝑚𝑜𝑜𝑡ℎ  +  𝑀𝑠𝑚𝑜𝑜𝑡ℎ
𝑇 ) 816 

𝑀𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐  =  ½ (𝑀𝑠𝑚𝑜𝑜𝑡ℎ − 𝑀𝑠𝑚𝑜𝑜𝑡ℎ
𝑇 ) 817 

 818 

The symmetric and antisymmetric transition modes were found by taking the SVD of these two 819 

matrices respectively. 820 

 821 

Every real or complex matrix, 𝐴, can be factorized using the singular-value decomposition (SVD) 822 

into three matrices such that: 823 

 824 

𝐴 = 𝑈S𝑉𝑇 825 

 826 
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The columns of 𝑈 and rows of 𝑉𝑇 define two sets of orthonormal basis vectors and S is a diagonal 827 

matrix containing the singular values, ordered from largest to smallest. The SVD describes the 828 

transformation performed by matrix, 𝐴. Under this transformation, each row of the matrix, 𝑉𝑇, is 829 

mapped to the corresponding column of 𝑈 and scaled by the associated singular value. Therefore, 830 

this decomposition provides an unbiased description of the most common transitions between 831 

behavioral motifs. 832 

 833 

A symmetric matrix, such as 𝑀𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, geometrically defines a scaling transformation. 834 

Consequently, its singular-value decomposition is the same as its eigendecomposition: spaces 𝑈 835 

and 𝑉 are the same and S contains the eigenvalues. As such, the 𝑛𝑡ℎ transition mode of 836 

𝑀𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 can be written: 837 

 838 

𝒗⃑⃑ 𝒏. 𝜎𝑛. 𝒗⃑⃑ 𝒏
𝑇 839 

 840 

Where 𝒗⃑⃑ 𝒏 is the singular vector with corresponding singular value, 𝜎𝑛. In Figure 3C and Figure 841 

7 – figure supplement 1, we show motifs with positive or negative loadings to each singular 842 

vector separately. 843 

 844 

An antisymmetric matrix, such as 𝑀𝑎𝑛𝑡𝑖𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐, describes a set of orthogonal rotations. As such, 845 

spaces 𝑈 and 𝑉 are related by a 90° rotation and each transition mode can be written: 846 

 847 

(𝒗⃑⃑ 𝟏 𝒗⃑⃑ 𝟐) (
0 −𝜎𝑛

𝜎𝑛 0
)(

𝒗⃑⃑ 𝟏
𝒗⃑⃑ 𝟐

) 848 

 849 

Where 𝒗⃑⃑ 𝟏 and 𝒗⃑⃑ 𝟐 are orthonormal, and 𝜎𝑛 is the corresponding singular value. Positive values in 850 

𝒗⃑⃑ 𝟏 map to positive values in 𝒗⃑⃑ 𝟐, positive values in 𝒗⃑⃑ 𝟐 map to negative values in 𝒗⃑⃑ 𝟏, negative 851 

values in 𝒗⃑⃑ 𝟏 map to negative values in 𝒗⃑⃑ 𝟐 and negative values in 𝒗⃑⃑ 𝟐 map to positive values in 𝒗⃑⃑ 𝟏: 852 

 853 

𝑣1
+ → 𝑣2

+

↑  ↓
𝑣2

− ← 𝑣1
−
 854 

 855 

These are the four transformations we represent in Figure 3D and Figure 7 – figure supplement 856 

1. 857 
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 858 

To determine whether transition modes were disrupted in mutants, we mapped mutant and control 859 

bouts into the behavioral space and computed the SVD of their transition frequency matrices. We 860 

compared the dot products of sibling control transition modes to transition modes obtained from 861 

the canonical dataset, and the dot products of mutant transition modes to sibling control transition 862 

modes (Figure 7 – figure supplement 1). We determined whether transition modes were 863 

significantly disrupted in mutants with a permutation test. 864 

 865 

Identification of behavioral modules 866 

 867 

To identify behavioral modules, we combined information about bouts’ kinematics and transitions 868 

to generate a new kinematic-transition hybrid space. The kinematic nearest-neighbors graph was 869 

constructed from the DTW distances between exemplars as described above (embedding 870 

postural dynamics in a behavioral space). We constructed a transition space from the vector 871 

defining the second symmetric transition mode and the pair of vectors defining the first 872 

antisymmetric transition mode, and then calculated an orthogonal basis for this space. The first 873 

symmetric transition mode was excluded since it contains information about the prevalence of 874 

each kinematic motif in the data, rather than how motifs are chained together. Then, we warped 875 

the kinematic graph by multiplying the distances between adjacent nodes by the Euclidean 876 

distance between the corresponding exemplars in the transition space to generate our hybrid 877 

space. Then we proceeded with isomap embedding on this hybrid space, finding the shortest 878 

distance between each pair of motifs and taking the eigenvectors of the resulting matrix. This 879 

decomposition was dominated by two large eigenvalues, so we used a two-dimensional 880 

kinematic-transition space and performed hierarchical clustering using Ward’s method (Figure 881 

3E). We set the threshold for separating clusters based on what we considered to provide the 882 

most parsimonious partitioning of bouts, referencing previously published literature and assessing 883 

whether further subdivision of the space produced interpretable clusters.  884 

 885 

In Figure 3F, we colored points in the original behavioral space based on the cluster they were 886 

assigned in the hybrid kinematic-transition space. The transparency value in that graph was 887 

determined by the number of nearest neighbors that were assigned the same cluster label. 888 

 889 
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To produce average traces for the tail tip angle, we aligned all exemplars belonging to a given 890 

cluster using dynamic time warping and took the average of the aligned traces. The representative 891 

examples we show are those whose tail tip angle traces were most similar to each average. 892 

 893 

Modelling transitions between modules 894 

 895 

For this analysis, we first identified every uninterrupted chain containing at least two bouts in our 896 

data which could be assigned a behavioral module, i.e. only chains of bouts from within a single 897 

recording trial (see free-swimming behavioral assay) and that could be embedded in the 898 

behavioral space (see embedding postural dynamics in a behavioral space). We then tested the 899 

ability of a series of Markov models – ranging from zeroth to fourth order – to predict each 900 

subsequent bout. For this purpose, we modelled each module as a state in a Markov process 901 

(allowing transitions to the same state, since fish can perform the same type of bout twice in a 902 

row). Each of our models contained seven states, 𝑠1, 𝑠2, … , 𝑠7, and we denote the current state, 903 

𝑋𝑡, the next state 𝑋𝑡+1, the previous state 𝑋𝑡−1, etc. 904 

 905 

A zeroth order Markov model does not know the current state and therefore guesses the next 906 

state based simply on the distribution of bouts across all states: 907 

 908 

𝑃(𝑋𝑡+1 = 𝑠𝑖 | 𝑋𝑡 = 𝑠𝑗) = 𝑃(𝑠𝑖) 909 

 910 

In a first order Markov model, the current state is known. To predict the next state, we considered 911 

all other times the current state was visited (𝑋𝑛) and observed which bout occurred next in the 912 

sequence: 913 

 914 

𝑃(𝑋𝑡+1 = 𝑠𝑖 | 𝑋𝑡 = 𝑠𝑗) =  𝑃(𝑋𝑛+1 = 𝑠𝑖 | 𝑋𝑛 = 𝑠𝑗) 915 

 916 

For the second-order Markov model, we took into account the last two states in a chain when 917 

predicting the next state: 918 

 919 

𝑃(𝑋𝑡+1 = 𝑠𝑖 | 𝑋𝑡 = 𝑠𝑗, 𝑋𝑡−1 = 𝑠𝑘) =  𝑃(𝑋𝑛+1 = 𝑠𝑖 | 𝑋𝑛 = 𝑠𝑗, 𝑋𝑛−1 = 𝑠𝑘) 920 

 921 

Similarly, for Markov models up to order, 𝑚, we predicted the next state: 922 

 923 
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𝑃(𝑋𝑡+1 = 𝑠𝑖 | 𝑋𝑡 = 𝑠𝑗, 𝑋𝑡−1 = 𝑠𝑘, … , 𝑋𝑡−𝑚+1 = 𝑠𝑛) 924 

=  𝑃(𝑋𝑛+1 = 𝑠𝑖 | 𝑋𝑛 = 𝑠𝑗, 𝑋𝑛−1 = 𝑠𝑘, … , 𝑋𝑛−𝑚+1 = 𝑠𝑛) 925 

 926 

In Figure 4B, we show the probability that a given model predicts the next bout correctly starting 927 

from each behavioral module. 928 

 929 

Ethogram analysis 930 

 931 

The ethogram in Figure 4C,D shows the first-order Markovian transition probabilities across all 932 

fish. To identify which transitions were significant, we used a permutation test. We shuffled the 933 

order of bouts within each fish 1000 times and recomputed the first-order Markovian transition 934 

probability matrices. This gave a distribution of transition probabilities between each pair of 935 

modules from which we could calculate the one-tailed p-values. We considered significant 936 

transitions as those that had a p-value < 0.05 after applying a Holm-Bonferroni correction (72 = 937 

49 comparisons). 938 

 939 

To identify significantly altered transition in the mutants, we computed an ethogram for each fish 940 

and compared the distribution of transition probabilities across fish between groups with a series 941 

of Mann-Whitney U tests. We always compared mutants to sibling controls, and considered 942 

significant transitions as those that had a p-value < 0.05 after applying a Holm-Bonferroni 943 

correction. 944 

 945 

Spontaneous and prey capture chain analysis 946 

 947 

To determine whether spontaneous and prey capture chains were disrupted in mutants, we 948 

computed the number of transitions within the groups {slow 2, burst, turn} and {J-turn, orientation, 949 

slow 1, capture strike} respectively, before a transition to a bout from the other group occurred. 950 

For each animal, we calculated the mean number of transitions within a group, and compared the 951 

distributions of these means between conditions, always comparing mutants to sibling controls, 952 

with a two-tailed Mann-Whitney U test (Figure 7F,I). 953 

 954 

Generating stimulus maps 955 

 956 
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To obtain stimulus maps for Figure 4E and Figure 4 – figure supplement 1, we took the first 957 

and last frames from the raw video data of each bout. We then performed background division 958 

(see tail and eye tracking) and binarized the images using a low threshold to remove pixel noise. 959 

We then aligned frames using the heading angle and swim bladder centroid obtained from the 960 

tracking. Next, we split bouts based on eye convergence state and behavioral module, and 961 

averaged the pre- and post-bout frames for each of these conditions. We then performed pixel-962 

wise normalization of these average images using the mean and standard deviation of ~90,000 963 

frames randomly selected from periods when fish were not performing any bout. To obtain mirror-964 

symmetric stimulus maps, we calculated the average of each image with its reflection. 965 

 966 

We obtained the stimulus maps for Figure 5F and Video 4 using the same process described 967 

above: background division, thresholding, alignment, averaging, normalization. To obtain the 968 

stimulus time series, we split captures into attack swims and S-strikes (see capture strike analysis 969 

below), and aligned videos in time to the onset of each bout. 970 

 971 

To obtain stimulus maps for jaw movements (Figure 6J), we identified the onset of the bouts that 972 

immediately preceded each jaw movement. We calculated the average stimulus from the side for 973 

frames corresponding to these bout onsets as described above for the top view: background 974 

division, thresholding, binarization, alignment, averaging, normalization. We aligned frames using 975 

the centroid of the contour outlining the head and the pitch of the fish in the water. Normalization 976 

was performed with the average and standard deviation of ~18,000 randomly selected frames. 977 

 978 

Capture strike analysis 979 

 980 

For analysis relating to Figure 5, Video 3 and Video 4, we defined capture strikes as bouts that 981 

were mapped to a kinematic motif that contains > 50% late prey capture bouts (Figure 2D). To 982 

determine the moment of capture in Figure 5A, we selected 100 random capture strikes and 983 

manually annotated the frames where the jaw was maximally extended. 984 

 985 

For subsequent analysis, we only considered the 50 ms time window shown in Figure 5A (24-74 986 

ms after the bout onset as determined by our bout segmentation algorithm) and proceeded with 987 

our general DTW-isomap embedding algorithm as described above (see embedding postural 988 

dynamics in a behavioral space). To generate the capture strike subspace, we computed the 989 

DTW distance between each pair of strikes, only allowing warping within a 6 ms (3 frames) time 990 
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window. We used the resulting pairwise distance matrix directly for isomap embedding, keeping 991 

the first two dimensions. Note we did not perform an intermediate affinity propagation clustering 992 

for this dataset. We then performed KMeans clustering (sklearn.cluster.KMeans) with # clusters 993 

= 2 to classify strikes. 994 

 995 

Generating a behavioral space of jaw movements 996 

 997 

To generate the jaw movement behavioral space in Figure 6F, we performed PCA on the jaw 998 

depression and cranial elevation traces across movement frames (see jaw tracking). We 999 

calculated the DTW distance (warping bandwidth = 10 ms) between each pair of movements 1000 

projected onto the first principal component (Figure 6E), and performed isomap embedding using 1001 

the resulting distance matrix. To identify clusters, we used Hierarchical Density-Based Spatial 1002 

Clustering of Applications with Noise (HDBSCAN) (hdbscan library, Python).  1003 
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