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Abstract

Animals build behavioral sequences out of simple stereotyped actions. A comprehensive
characterization of these actions and the rules underlying their temporal organization is necessary
to understand sensorimotor transformations performed by the brain. Here, we use unsupervised
methods to study behavioral sequences in zebrafish larvae. Generating a map of swim bouts, we
reveal that fish modulate their tail movements along a continuum. We cluster bouts that share
common kinematic features and contribute to similar behavioral sequences into seven modules.
Behavioral sequences comprising a subset of modules bring prey into the anterior dorsal visual
field of the larvae. Fish then release a capture maneuver comprising a stereotyped jaw movement
and fine-tuned stereotyped tail movements to capture prey at various distances. We demonstrate
that changes to chaining dynamics, but not module production, underlie prey capture deficits in
two visually impaired mutants. Our analysis thus reveals the temporal organization of a vertebrate
hunting behavior, with the implication that different neural architectures underlie prey pursuit and

capture.
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Introduction

Quantitative descriptions of behavior are essential if we are to fully understand the brain (Krakauer
et al., 2017). Such descriptions have provided a framework for interrogating the genetic and
neural basis of behavior in worms, flies and mice (Cande et al., 2018; Kato et al., 2015; Vogelstein
et al., 2014; Wiltschko et al., 2015). It is believed that complex, flexible behavior arises as a result
of animals chaining together simpler, more stereotyped movements (Anderson and Perona, 2014;
Egnor and Branson, 2016; Tinbergen, 1951). These movements can be generated spontaneously
through internal neural processes and/or induced by external stimuli impinging on the animal’s
sensory organs. Thus, a comprehensive model of an animal’s behavior should identify the
constituent building blocks of the behavior, uncover rules governing the chaining of these building
blocks into longer sequences, and account for how the animal’s sensory experience shapes and
guides these sequences (Coen et al., 2014; Seeds et al., 2014; Tinbergen, 1951; Wiltschko et al.,
2015). Such an account of behavior could uncover the sensorimotor transformations performed

by the brain that are critical for survival in a dynamically changing world.

The individual movement patterns that constitute behavior have been termed motor primitives
(Flash and Hochner, 2005), synergies (Bizzi and Cheung, 2013), movemes (Del Vecchio et al.,
2003), or behavioral modules (Berman et al., 2014; Brown et al., 2013; Egnhor and Branson, 2016;
Marqgues et al., 2018; Wiltschko et al., 2015). However, whether such modules truly constitute
stereotyped, invariant movements or whether they merely reflect extremes in a behavioral
continuum remains unclear (Berman et al., 2014; Katsov et al., 2017; Marques et al., 2018;
Patterson et al., 2013; Szigeti et al., 2015). In either case, actions must be chained into sequences
that reliably achieve the desired goal of the animal. Stereotyped, reproducible behavioral
sequences have been explained with serial models, in which one action triggers the next in the
chain via feed-forward neural mechanisms (Long et al., 2010). In contrast, flexible sequences, in
which the ordering of modules might be different each time the behavior occurs, have been
explained using hierarchical models. In hierarchical models, switching between behavioral
modules is stochastic, but may be influenced by longer-term behavioral states or sensory stimuli
received by the animal (Berman et al., 2016; Seeds et al., 2014; Tao et al., 2019; Wiltschko et al.,
2015).

Capturing prey is an essential behavior for the survival of many animals and is innate. The

behavior is also complex, requiring the localization, pursuit and capture of a prey object, often
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71  moving in a three-dimensional environment. Consequently the action sequences that constitute
72  this behavior are required to be flexible, allowing animals to adapt to the specific movement of
73  the current stimulus (Ewert, 1987). Zebrafish larvae hunt protists that float in the water column
74  (Borla et al., 2002; Budick and O’Malley, 2000; McElligott and O’Malley, 2005). Larvae do not
75  perform continuous locomotion, but rather swim in discrete bouts with a beat-and-glide structure
76  (Budick and O’Malley, 2000), which aids the segmentation of their behavior into discrete actions
77  (Marques et al., 2018). Both real and virtual prey presented to restrained animals can produce
78 isolated orienting swim bouts and eye convergence: hallmarks of prey capture in zebrafish larvae
79 (Biancoetal., 2011; Semmelhack et al., 2014). It has been suggested that such movements could
80 compound over time in a stimulus-response loop, whereby movements of the tail and eyes bring
81  prey to the near-anterior visual field of the animals (Patterson et al., 2013; Trivedi and Bollmann,
82  2013). However, it is not clear whether such a model would be implemented by gradual changes
83 in the kinematics of bouts over the course of a hunting sequence (Borla et al., 2002; Patterson et
84 al., 2013), or as a result of discrete switches between more stereotyped motor patterns (Marques
85 etal., 2018). One possibility, that has not been tested, is that different stages of the behavior have
86  a different organization. For example, animals might dynamically modulate their movements to
87  adjust to the position of the prey during pursuit, but resort to more stereotyped action patterns
88 when consuming prey (Ewert, 1987). Moreover, studies of prey capture have predominantly
89 focused only on either tail, jaw, or fin movements and it is not known how these movements are
90 coordinated into temporally organized patterns over the entire behavioral sequence (Borla et al.,
91 2002; Hernandez et al., 2002; McClenahan et al., 2012; Patterson et al., 2013).
92
93 Here, we present a novel computational framework for generating a map of movements made by
94  an animal. We apply our algorithm to the bouts of week-old zebrafish larvae swimming in the
95 presence of prey and find a continuum of behaviors. In this continuous space we identify seven
96 modules, which correspond to groups of bouts with similar kinematics and that also share
97  common transitions to and from other modules. Sequences of bouts through a subset of these
98 modules are reproducible across prey capture events due to a tightly coupled stimulus-response
99 loop, in which the fish’'s movements generate new stimuli that trigger subsequent bouts in the
100 chain. Further investigating the capture strike, during which prey are consumed, we show that
101  variation in this behavior arises from differential chaining of stereotyped tail and jaw movements,
102 mediated by prey distance. We validate our behavioral classification by showing genetic
103 differences in the initiation and chaining of prey capture modules in mutants with impaired visual

104  processing.
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105 Results

106

107 Swim bouts are trajectories through a low-dimensional postural space
108

109 To study the organization of prey capture in zebrafish larvae, we first sought to characterize the
110  basic building blocks of this behavior. To this end, we recorded individual larvae (7-8 dpf; n=45;
111 20 min each) hunting live prey (paramecia) in a custom-built behavioral arena (Figure 1A) and
112  tracked the tail and eyes of the fish in each frame (Figure 1B,C and Video 1; see Methods). From
113  this dataset, we automatically identified and segmented 57,644 individual swim bouts for future
114  analysis.

115

116  To reduce the dimensionality of this vast dataset, we applied principal component analysis (PCA)
117  to the tail kinematics of the fish during swim bouts and found that just three components were
118  sufficient to explain 84.7% of the variance in tail posture (Figure 1D). These principal components
119 define postural modes and can be represented by a set of “eigenfish” (Girdhar et al., 2015;
120 Stephens et al., 2008; Szigeti et al., 2015), which show the unmixed tail shapes encoded by each
121 component (Figure 1E). As the posture of the animal evolves over time, the changing tail shape
122 traces a trajectory in the three-dimensional coordinate space defined by the postural modes
123  (Figure 1F and Video 2). Thus we find that the tail kinematics of zebrafish larvae are inherently
124  low-dimensional, which provides a useful way to represent bouts for subsequent analysis.

125

126  Task-specific motor programs occupy distinct domains of the behavioral space

127

128  Next, we wanted to know whether animals build their behavioral sequences from kinematically

129  discrete motor programs or draw their bouts from a continuous behavioral manifold. We sought
130 to distinguish these possibilities by representing swim bouts in a space where neighboring points
131 encode bouts with similar postural dynamics. In this space, tight clusters would suggest that
132 larvae can only generate a limited number of stereotyped bout types, whereas a diffuse cloud
133  would suggest that larvae can continuously modulate the kinematics of their bouts. To distinguish
134 these possibilities, we developed a pipeline for determining the structure of the behavioral
135 manifold (Figure 2A; see Methods). Our algorithm consists of three steps: alignment, clustering
136 and embedding. In the first step, we calculate the distance between each pair of bouts in the

137 three-dimensional postural space using dynamic time warping (DTW) (Jouary and Sumbre, 2016;
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Figure 1. Swim bouts are characterized by their postural dynamics. (A) Schematic of the setup used to
record behavioral data. (B) Example frame from high-speed video recording. Inset is overlaid with tail and
eye tracking. (C) Eye and tail kinematics extracted from six seconds of behavioral recording. Ro: Rostral,
Ca: Caudal. (D) Principal component analysis of tail shapes. Explained variance (bars) and cumulative
explained variance (points) of the first eight components. We retained three components, which explained
84.7% of the variance. (E) Schematized “eigenfish” of the first three principal components. (F) Individual
bouts represented by trajectories through postural space. Top left panels: curvature along rostral-caudal
axis of the tail over time. Bottom panels: bouts represented by trajectories through the first three principal
components. Top right panels: tail movement reconstructed from these trajectories.

138 Sakoe and Chiba, 1978). Next, we performed a round of affinity propagation (Frey and Dueck,
139  2007) prior to embedding, using the negative DTW distance between a given pair of bouts as a
140 measure of their similarity. Using the median similarity between bouts as the basis for affinity
141  propagation produced 1,744 clusters containing at least three bouts. Since affinity propagation
142  identifies an exemplar to represent each cluster, we produced our final behavioral space by
143  performing isomap embedding (Tenenbaum et al., 2000) of these exemplars. For the isomap
144  embedding, we constructed a nearest-neighbors graph of the exemplars using their DTW
145  distances, and calculated the minimum distance between each pair of points in this graph. We
146  used three dimensions for this final behavioral space to minimize the reconstruction error of the
147  embedding with as few dimensions as possible (Figure 2 — figure supplement 1A), as well as

148 to maximize the interpretability of bout separation in the resulting space.
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Figure 2. Generation of a zebrafish larva behavioral space.
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Figure 2. Generation of a zebrafish larva behavioral space. (A) Analysis pipeline for generating behavioral
space. Each bout is a trajectory through a three dimensional postural space. Pairwise distances between
all bouts are computed using dynamic time warping (DTW). Nearby bouts are grouped and a representative
exemplar is chosen from each small group. Exemplars are then embedded in a low-dimensional behavioral
space using isomap embedding on their DTW distances. (B) Behavioral space. Left: representative bouts
projected onto the first two dimensions of the behavioral space. Right: behavioral space rendered in all
three dimensions. Points colored according to position within a hue-lightness cylinder centered on origin.
(C) Prey capture index (defined using eye convergence) of each exemplar in the behavioral space. Index
defined as (# prey capture bouts - # spontaneous bouts) / (# total bouts) mapped to each exemplar. (D)
Proportion of bouts mapped to each exemplar that occur during early, middle or late phases of prey capture.
See also Figure 2 —figure supplement 1,2.

149 Inspecting this behavioral space, we do not observe tight clusters with stereotyped kinematic
150 features, but rather loosely clustered bout types separated by more sparsely populated regions
151 (Figure 2B and Figure 2 — figure supplement 1B). Such a structure suggests a behavioral
152  continuum, with certain motifs favored in our particular behavioral paradigm. Inspecting bouts that
153 are represented in different regions of the space, we find high-amplitude bouts with a late turning
154  component (far left, dark warm color), forward scoots (lower left, red to green colors), turns (right,
155 green to blue colors), and asymmetric bouts (top, purple to magenta colors). This suggests that
156  turn angle and swimming speed are the dominant kinematic features that define larval swim bouts
157 (Figure 2 — figure supplement 1C). Turn angle and angular velocity separate bouts along the
158 first dimension of the space, and swimming speed separates bouts along the second and third
159 dimensions.

160

161  Next, we sought to determine where prey capture bouts lie in the behavioral space, and to what
162 extent they are kinematically distinct from spontaneous swims. To this end, we used eye
163 convergence as an independent and unbiased indicator of prey capture behavior (Bianco et al.,
164  2011) (Figure 2 — figure supplement 2). We assigned each point in the space a prey capture
165 index, indicating how frequently each bout was recruited during prey capture (eyes converged)
166  versus spontaneous behaviors (eyes not converged). Markedly, we found that prey capture and
167  spontaneous bouts were clearly separated in the behavioral space (Figure 2C). Furthermore,
168 when we decomposed prey capture swims into early, mid and late bouts of a hunting sequence,
169  we found further delineation in the behavioral space (Figure 2D). These results reveal that distinct
170  motor programs are differentially recruited during hunting and spontaneous swimming and that
171 larvae systematically alter the kinematics of their bouts over the course of a hunting sequence.
172
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173 Behavioral sequences are built from a small number of simple transition modes
174

175 Having identified the kinematic structure of zebrafish larva swim bouts, we next wanted to

176 investigate how the temporal organization of bouts produced behavioral sequences (Figure 3A).
177  We reasoned that, despite the large number of bouts that populate the behavioral space, the goal-
178 oriented nature of prey capture behavior would produce stereotyped sequences through this
179 space. To test this possibility, we generated a transition frequency matrix from the number of
180 transitions between each cluster in behavioral space. To distinguish between symmetric
181 transitions, where animals stay in the same part of the behavioral space (i.e. repeating bouts with
182  shared kinematic features), and asymmetric transitions, where animals transition to a different
183  part of the space (i.e. switching to a different kind of behavior), we decomposed the matrix into its
184  symmetric and antisymmetric parts. We then factorized the symmetric and antisymmetric matrices
185 using singular-value decomposition (SVD) to obtain symmetric and antisymmetric transition
186 modes (Figure 3 —figure supplement 1; see Methods). A symmetric transition mode describes
187 transitions within a region of the behavioral space. Transitions from one region of the space to
188 another can be described by an antisymmetric transition mode: groups of bouts occupying
189 different areas of the behavioral space that tend to transition in one direction preferentially over
190 the other. Each transition mode is associated with a singular value, which describes the extent to
191  which the mode contributes to all the transitions recorded in the data.

192

193 Despite there being more than 3 million possible transitions between points in the behavioral
194  space, we found that two symmetric and one antisymmetric transition mode accounted for most
195 of the transitions in the data (Figure 3B, elbow in the singular values). Symmetric modes are
196 represented by a single vector and antisymmetric modes by a pair of vectors; and each cluster in
197 the behavioral space contributes either a positive or negative weight to each of these vectors
198 (Figure 3 —figure supplement 1B). Therefore, to visualize which transitions were represented
199 by each mode, we mapped these weights back into the behavioral space (Figure 3C,D). The first
200 symmetric transition mode necessarily reflects the overall distribution of bouts in the behavioral
201  space, since a majority of transitions occur between the most common types of bouts. The second
202  symmetric mode separates low amplitude prey capture swims from spontaneous swims (Figure
203  3C). This indicates that animals often chain multiple low amplitude swims together, are less likely
204 to chain low amplitude swims into spontaneous swims, and likewise less likely to chain
205  spontaneous swims into low amplitude swims. The first antisymmetric transition mode represents

206 transitions through different prey capture regions of the behavioral space (Figure 2D and Figure
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Figure 3. Behavior is composed of seven modules with distinct kinematics and dynamics. (A) Bouts are
chained into sequences. Top: tail tip angle trace from Figure 1C with bouts color-coded according to
position in the behavioral space. Bottom: same sequence plotted as a sequence through the behavioral
space. (B) Singular-value decomposition (SVD) of the transition frequency matrix (from all observed
transitions between bout pairs). The transition frequency matrix was smoothed and decomposed into its
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symmetric and antisymmetric components to identify transitions that occur in both directions and those that
predominantly occur in only one direction (see Figure 3 — figure supplement 1; Methods). Top: singular
values of the symmetric component of the transition matrix. Bottom: singular values of the antisymmetric
component of the transition matrix. (C) First two symmetric transition modes. Symmetric transition modes
describe transitions that occur within a group of bouts. (D) First antisymmetric transition mode. An
antisymmetric transition mode encodes cyclic transitions through different groups of bouts. (E) Pipeline for
generating a hybrid kinematic-transition space using re-weighted isomap embedding. Distances between
exemplars in the behavioral space are rescaled by the distances between exemplars in the transition space
defined by the transition modes. Bouts in the new space are clustered using hierarchical clustering. (F)
Seven behavioral modules identified by hierarchical clustering in the kinematic-transition space. Top left:
exemplars in the original behavioral space colored according to module. Subpanels show: individual tail
angle traces in color with the average in black (top left); tail kinematics of a representative bout (bottom);
tail reconstruction of the representative bout (right). See also Figure 3 —figure supplement 1,2.

207  3D). This suggests that transitions between different regions of the behavioral space tend to follow
208 the sequence: asymmetric turn, low amplitude swim, which is then followed by either a “late prey
209  capture swim” or spontaneous turn. In conclusion, we find different behavioral dynamics during
210 self-generated spontaneous swimming and goal-oriented prey capture sequences in the zebrafish
211 larva. Spontaneous swimming contains transitions between forward swims and turns that do
212  appear to follow a specific sequence. On the other hands, prey capture sequences appear to be
213  more structured, with bout kinematics systematically altered in a similar way over the course of
214  the behavior each time it occurs.

215

216  Bouts are organized into modules that tile the behavioral space

217

218 Bouts for exploratory and prey capture behavior form a continuum, and transitions between

219 different regions of the behavioral space are explained by few transition modes. This suggested
220 to us that behavior might be organized into modules, where each module represents a cluster of
221  bouts with similar kinematics as well as similar transitions to and from other modules. Therefore,
222  we generated a new kinematic-transition space, which contained information about both bout
223  kinematics (from our behavioral embedding) and chaining structure (from our transition modes).
224  We rescaled the graph distance between exemplars obtained using DTW by the corresponding
225 distance between exemplars in a Euclidean space defined by transition modes; and proceeded
226  with isomap embedding using this graph (Figure 3E; see Methods). Hierarchical clustering
227 revealed seven modules that tile the original behavioral space (Figure 3F), many of which
228  correspond to previously described bout types (Marques et al., 2018; McElligott and O’Malley,
229  2005; Patterson et al., 2013). We call these modules J-turns, orientations, “slow 1” swims, capture

230 strikes, “slow 2” swims, burst swims and routine turns. J-turns, orientations, “slow 1” swims and

11
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231  capture strikes predominantly occurred during periods of eye convergence, and thus we term
232  them prey capture modules (Figure 3 — figure supplement 2). In addition to these prey capture
233  modules, we also identified three spontaneous swimming modules, “slow 2” swims, routine turns
234  and burst swims, which predominantly occurred when the eyes were not converged. Thus, we
235 find that despite the close juxtaposition of motifs in our behavioral space, nonetheless zebrafish
236 larvae specifically recruit bouts from different regions of this space for different behavioral tasks.
237  These regions correspond to behavioral modules that are not only kinematically distinct, but also
238  occupy different positions within a behavioral chain.

239

240  Prey capture sequences follow non-random, short-memory transition rules

241

242  Next, we investigated the temporal organization of prey capture and spontaneous swimming. On

243 the one hand, behavior could be organized hierarchically, with animals switching between
244 swimming states during which they preferentially perform bouts from only a subset of modules.
245  Alternatively, animals could generate stereotyped sequences through modules, with individual
246  modules shared between multiple sequences. To distinguish these possibilities, we constructed
247  afamily of models with different levels of memory about past behavior and tested the efficacy of
248  these models in predicting the next bout in behavioral sequences (Figure 4A,B). In the first model,
249 larvae randomly transitioned between bouts, with no impact from previous ones. This
250 “memoryless” model provided a baseline performance against which other models could be
251 compared. Next, we considered a first order Markov model in which the next bout in the sequence
252 depends only on the last bout performed. Such a model outperformed the random model in
253  predicting bouts following J-turns, orientations, “slow 1” swims, “slow 2” swims, and burst swims
254  (Figure 4B; 30, 61, 29, 13, 106% improvement respectively). We subsequently built higher-order
255  Markov models with a longer memory that considered multiple previous bouts in the sequence.
256  Doing so continued to improve our ability to predict bouts following “slow 1” swims and capture
257  strikes (14 and 4% improvement respectively), and “slow 2” swims, turns and burst swims (4, 12,
258  13% improvement respectively); but notably not those following J-turns and orientations (Figure
259  4B). From this analysis, we conclude that, during spontaneous swimming, previous bouts in a
260 chain influence the future behavior of the animal. In contrast, during prey capture swimming,

261  actions more than a single bout in the past have minimal observable influence on future bouts.

12
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Figure 4. A stimulus-response loop drives predictable sequences through prey capture modules. (A)
Example of a hypothetical bout sequence color-coded according to the behavioral module. We constructed
a series of Markov models to predict the next bout in behavioral sequences. (B) Markov modelling of
behavioral sequences. Five models were tested with different memory lengths of previous bouts in the
sequence. Shaded areas represent 95% confidence interval across all occurrences of each module. Stars
indicate improvement over previous model to predict future bouts (p value < 0.05, Student’s t-test, Holm-
Bonferroni correction). (C) Ethogram of zebrafish behavior. Colored circles represent behavioral modules,
gray arrows indicate transition probabilities between modules. (D) Transition probabilities significantly
higher than chance (p-value < 0.05, Mann-Whitney U test, Holm-Bonferroni correction). Arrows show fold
change in probability compared to shuffled data. (E) Average transformation of the visual scene produced
by prey capture modules. Maps show average pixel intensity (prey) around fish across all bouts before (left)
and after (middle) each module, expressed as a z-score (normalized using mean and standard deviation
of 90,000 randomly selected frames). Difference is shown on the right. Images are thresholded using 95t
percentile. Contour shows outline of the fish. See also Figure 4 — figure supplement 1.
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262  We next asked which specific behavioral transitions accounted for the stereotypy we observed in
263  prey capture module chaining. We found that animals are more likely to transition from J-turns
264  and orientations to “slow 1” forward swims than the reverse (Figure 4C). Transitions in the
265  sequence, J-turn, orientation, “slow 17, capture strike, were more than 1.5 times more likely to
266  occur than expected by chance (Figure 4D). Moreover, we found the majority of transitions
267  between prey capture and spontaneous modules were less likely than chance (18 / 24 transition
268  pairs). Transitions within spontaneous modules (“slow 2" swims, burst swims and routine turns)
269  were significantly overrepresented (6 / 6 transition pairs). However, in contrast to the stereotyped
270  sequences we observed during prey capture, switching between spontaneous modules was more
271  stochastic. We also found a high incidence of repetitive behaviors — performing the same module
272  more than once successively in a behavioral chain (5 / 7 transitions to same module). Collectively,
273  these results demonstrate a hierarchical organization to zebrafish behavior, with different modules
274  and chaining dynamics underlying spontaneous and prey capture swimming.

275

276  Prey capture sequences are maintained through tight stimulus-response loops

277

278  We reasoned that changes in the visual stimulus received by fish as they orients towards and

279 approach prey might cause switching between behavioral modules during prey capture. If such
280 changes are reproducible, they might form the basis of a stimulus-response chain, in which
281 completion of one bout generates the appropriate stimulus for releasing the next bout. To test
282 this, we reconstructed the visual experience of zebrafish performing prey capture sequences from
283  ourraw video data (see Methods). Doing so, we inferred the average stimulus that fish see before
284  the onset of each behavioral module; and how the fish’s actions transform the visual scene
285 (Figure 4E). Larvae initiate hunting sequences with a J-turn or orientation about 50% of the time
286  (Figure 3-figure supplement 2), and we find these bring the prey from the lateral to the anterior
287  visual field. We found this new stimulus to be correlated with the onset of “slow 1” swims, which
288  bring the prey to a stereotyped position in the near-anterior visual field. Prey in the near-anterior
289  visual field was associated with the onset of capture strikes. Thus, the successive transformation
290 of the visual scene as a result of the fish’s own motion could account for the stereotyped sequence
291 through behavioral modules we observe during prey capture. In contrast, we do not observe
292  stereotyped stimuli associated with spontaneous modules (Figure 4 — figure supplement 1),
293  suggesting behavioral switching during this swimming state is likely mediated by internal neural
294  processes.

295
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296 Prey capture chains conclude with a distance-dependent choice of strike type
297

298  Curiously, we noted that the most variable module in our data, the capture strike, seemed to be

299  associated with the most stereotyped sensory stimulus — a paramecium in the near-anterior visual
300 field. To investigate the source of this variation, we examined the prey capture strike further, with
301 the goal of uncovering latent structure in this behavior masked by larger differences between
302  bouts represented in our behavioral space. Our first hypothesis was that variation in capture
303  strikes would be the result of a mixture of “long” and “short” capture dynamics (Marques et al.,
304  2018). Capture strike durations clearly form a bimodal distribution, with one peak around 100 ms
305 and a second peak around 200 ms (Figure 5A). Across all capture strike durations, however, we
306 noticed that fish consumed the prey after a stereotyped time, and that long capture strikes resulted
307 from a second, spontaneous-like bout being triggered immediately after the capture event. From
308 this, we concluded that long capture dynamics were the result of bout concatenation, and so we
309 hypothesized that variation in capture strikes was largely due to the post-capture phase.

310

311 To examine the stereotypy of the initial capture phase, we re-embedded capture strikes to
312  produce a behavioral sub-space using our PCA-DTW-isomap pipeline, taking into account only a
313  short 50 ms window before jaw opening (Figure 5B; see Methods). Doing so revealed two clearly
314  separated clusters in the capture strike sub-space, suggesting that larvae capture prey with one
315  of two distinct maneuvers (Figure 5C). These two clusters displayed markedly different postural
316  dynamics (Figure 5D). We termed the two capture strike maneuvers the attack swim (blue cluster)
317 and the S-strike (orange cluster) (Figure 5E and Video 3). S-strikes are immediately followed by
318 a post-capture bout, possibly as a means to stabilize the animal in the water following the
319  explosive capture maneuver. In contrast, only about half of attack swims lead into a post-capture
320 bout (Figure 5A). These results reveal variation in bout dynamics exhibited by zebrafish larvae
321 while striking at prey, suggesting that this behavior does not represent a single stereotyped
322  movement, but rather two possible capture strategies employed by fish in different contexts.

Figure 5. Zebrafish larvae perform distinct capture swims depending on prey position. (A) Captures strikes
consist of a capture phase and a variable post-capture phase. Top: kernel density estimation of capture
strike duration for attack swims (blue) and s-strikes (orange), shown as a stacked histogram. Middle: tail tip
angle over time for capture strikes, defined by points in behavioral space containing > 50% late prey capture
swims (see figure 2D). Grey window indicates initial 50 ms capture phase. Bottom: kernel density estimation
showing when prey are consumed. (B) Pipeline for generating capture strike sub-space from initial capture

phases. Strikes are represented by trajectories through postural space. Pairwise distances between all
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strikes, computed using DTW, are used to generate the sub-space with isomap embedding. (C) K-means
clustering in the capture strike sub-space reveals two types of strike maneuver. (D) Trajectories through
postural space for the two capture strike clusters. (E) Representative examples of an attack swim and an
S-strike. Tail kinematics (left) and reconstructed bout (right). (F) Normalized average prey density around
the fish 250 ms prior to (top) and at the onset of (bottom) each type of capture strike. White contour shows
outline of fish. Bright spots either side of the fish contour at onset of S-strikes signify fin abduction (white
arrows). Right: maximum prey density along axial and horizontal axes in the anterior visual field (measured
from white arrowhead). (G) Difference in maximum prey density between S-strikes and attack swims as a
function of distance from the fish 500 ms (dark blue), 250 ms (teal) and 0 ms (yellow) prior to strike onset.

*p-value < 0.01, permutation test on the absolute maximum z-score difference; n.s. not significant.
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323 To test if the two kinematically distinct capture maneuvers might be selected in response to
324  different stimuli, we investigated the evolution of prey position around the fish over time for hunting
325  sequences that resulted in either an attack swim or an S-strike, respectively (Video 4). We found
326  prey position in the anterior visual field for the two types of strike started to diverge approximately
327 250 ms prior to the onset of the two maneuvers (Figure 5F,G). S-strikes occurred with a higher
328  probability when prey was centered in the anterior visual field and 0.5 mm away within 250 ms of
329 the onset of the swim (Figure 5F,G). For attack swims, prey became centered later in the bout
330 chain and occurred within 0.25 mm of the fish. This difference was less prominent at the onset of
331 the strike, suggesting that by this point the animal has already committed to one capture
332  maneuver. In support of this, larvae characteristically abduct their pectoral fins prior to the onset
333  of the S-strike but not the attack swim (McClenahan et al., 2012) (Figure 5F, white arrows).
334  Together, these results indicate that the distance to the prey determines the choice of capture
335 maneuver, with the S-strike recruited for prey located further than 0.25 mm, and the attack swim
336  used to capture nearer prey.

337

338  Variable tail kinematics combine with stereotyped jaw movements to capture prey from below
339

340 Fish must coordinate their tail movements during capture strikes with jaw movements that

341  generate suction to draw the prey into their mouths (Hernandez et al., 2002; Patterson et al.,
342  2013). The degree of stereotypy in jaw movements is unknown, and it is possible that they, too,
343 form discrete modules that are part of the prey capture chain. Therefore, we modified our
344  recording setup and simultaneously observed tail and jaw kinematics of zebrafish larvae during
345  prey capture (Figure 6A,B; see Methods). We tracked the position and pitch of larvae as well as
346 the base of the jaw and elevation of the cranium (Figure 6B,C and Video 5). We found that the
347  majority of jaw movements performed by zebrafish larvae were initiated immediately after a swim
348 bout (Figure 6D), suggesting a stereotyped, sequential activation of these two types of
349  movement. We then applied our PCA-DTW-isomap embedding pipeline to generate a behavioral
350 space of jaw movements (Figure 6E,F). In this space, we could identify two well-separated
351 clusters (Figure 6F). The larger cluster corresponds to a relatively slow, low amplitude depression
352  of the lower jaw with little or no movement of the cranium (Figure 6G, left). Another type of jaw
353 movement was rare but highly stereotyped, comprising a rapid, large amplitude depression of the
354  lower jaw concurrent with cranial elevation (Figure 6G, right; Video 6). This movement was
355 exclusively associated with attempts to capture prey. Inspecting the bouts preceding incidents of

356  capture-associated jaw movements, we identified three distinct capture actions performed by
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357  zebrafish larvae (Figure 6H). These include S-strikes and attack swims, in addition to low-
358 amplitude or absent tail movements corresponding to a purely “suction” capture (Hernandez et
359 al., 2002; Patterson et al., 2013). Thus, different capture strategies in zebrafish larvae emerge by
360 combining variable tail kinematics with stereotyped jaw kinematics in a sequential chain.

361

362  We observed that hunting episodes of zebrafish larvae were associated with both changes in
363  pitch and moving up and down in the water column (Figure 6C). On average, larvae have a
364  preferred orientation of 7° in the water and rotate to 12° prior to the onset of a capture, suggesting
365 that fish adjust their pitch as well as their azimuth over the course of a hunting sequence (Figure
366  6l). Analyzing the prey position around the fish prior to the onset of captures revealed a preferred
367  position in the immediate anterior and slightly dorsal visual field (Figure 6J). Such a configuration
368 implies that capture strikes are initiated when prey fall on the temporal-ventral retina and that
369 cranial elevation and jaw opening then create downward suction of prey into the up-turned mouth
370 of the fish. Spontaneous jaw movements were associated with prey near the head of the fish,

371  suggesting that these movements may serve olfactory or gustatory functions.

Figure 6. Capture strikes chain into a single stereotyped jaw movement. (A) Schematic of the setup used
to record behavior simultaneously from above and from the side. (B) Example frame; insets are overlaid
with tail and jaw tracking. (C) Jaw and tail kinematics from three seconds of behavioral recording. Top:
depression of the jaw (black) and elevation of the cranium (gray). Arrowheads show onset of automatically
identified jaw movements. Spontaneous movements (green); capture strikes (magenta). Middle: tail
tracking. Bouts are color-coded according to nearest exemplar in behavioral space. Bottom: pitch of the
fish in the water. (D) Cross-correlation between bout onsets and jaw movements onsets. (E) Pipeline for
generating a jaw movement behavioral space. Jaw kinematics are transformed into postural dynamics with
principal component analysis (PCA). Isomap embedding using DTW distances between jaw postural time
series generates behavioral space. (F) HDSCAN clustering in the jaw behavioral space reveals two types
of jaw movement. (G) Jaw depression (top) and cranial elevation (bottom) for the two types of jaw
movement in zebrafish larvae. Colored traces: individual movements. Black lines: average. (H) Larvae can
chain into capture jaw movements from three types of tail movement. Example of an S-strike, attack swim,
and no tail movement that preceded the shown capture jaw movement (bottom). (1) Pitch of fish in the water
prior to swims that chain into spontaneous and capture jaw movements. * two-tailed p-value < 0.01,
unpaired Student’s t-test. (J) Normalized average prey density around the fish at the onset of bouts that
chained into a spontaneous jaw movement (top) or a capture jaw movement (middle). White contour: outline
of fish in average image. Anterior is left. Images are aligned and rotated so that the fish is in a horizontal
position. Bottom: z-score difference between capture and spontaneous images. Red indicates higher
density preceding a capture maneuver.
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372 Genetic disruptions of visual processing perturb behavioral chaining
373

374  Ourresults suggest that prey capture in zebrafish is maintained through a stimulus-response loop,

375  which drives predictable transitions between behavioral modules. These transitions are triggered
376 by changes in the visual stimulus the fish receives as the behavior progresses. Therefore, we
377  hypothesized that genetic mutants with different visual impairments should have selective deficits
378 in behavioral chaining during prey capture. In zebrafish larvae, prey capture depends on vision,
379 and is impaired in darkness as well as in blind mutants (Gahtan et al., 2005; Patterson et al.,
380  2013). Prey capture circuitry includes retinal ganglion cells (RGCs) and the optic tectum (Bianco
381 and Engert, 2015; Gahtan et al., 2005; Semmelhack et al., 2014). In lakritz mutants (lak™?*!) (Kay
382 etal, 2001; Neuhauss et al., 1999), RGCs fail to develop, and, consequently, these fish are blind
383  (Figure 7A, bottom left). We reasoned that if vision drives transitions into and through prey
384  capture, these swims should be absent in lak-/-. To test this, we recorded the behavior of lak-/-
385  and sibling controls (mix of lak+/- and lak+/+) in the presence of prey and mapped their bouts into
386  our canonical behavioral space (Figure 7B, top). We found a 58% reduction in the number of
387  prey capture bouts performed by mutants compared to controls (Figure 7C, left; controls, 39.3%
388 £ 0.04, n=6; mutants, 16.5% * 0.04, n=6; mean + SD). This could be explained by a decreased
389  probability of initiating prey capture modules in mutants, as well as a failure to sustain sequences
390 for more than a single bout once initiated (Figure 7D,E; spontaneous sequence lengths: controls
391 1.72 £ 0.08, mutants 2.23 + 0.18; prey capture sequence lengths: controls 2.06 + 0.13, mutants
392 1.38 +£0.10; mean £ SD). These differences were reflected in the SVD of the transition frequency
393  matrices of controls and mutants (Figure 7 — figure supplement 1A-E). While the first two
394  symmetric and first antisymmetric transition modes of controls closely matched wildtypes in the
395 canonical dataset (Figure 7 — figure supplement 1B,C, dot products 0.96, 0.88 and 0.72,
396 respectively), transition modes involving prey capture swims were disrupted in mutants (Figure 7
397 —figure supplement 1D,E, dot products 0.59, 0.13 and 0.06). Thus, depriving animals of visual
398 inputs selectively disrupts the initiation of prey capture modules.

399

400  Next, we tested the behavior of blumenkohl mutants (blu®*") (Neuhauss et al., 1999), which carry
401 a mutation in a vesicular glutamate transporter, vglut2a. Blu-/- mutants grow larger RGC axonal
402  arbors in the tectum, which is proposed to decrease visual acuity in these animals (Figure 7A,
403  bottom right) (Smear et al., 2007). Consequently, blu-/- mutants are less efficient hunters of small
404 prey items. According to our model, these mutants should be able to initiate prey capture

405 sequences, but we predicted their blurred vision would prevent them from receiving the
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406  appropriate stimuli required to connect subsequent bouts in the behavioral chain. We found that
407  both blu-/- and blu+/- sibling controls exhibited the full behavioral repertoire of wild-types (Figure
408 7B, bottom); however, mutants performed 30% fewer prey capture bouts compared to controls
409  (Figure 7C, right; controls, 39.0% + 0.09, n=18; mutants, 27.2% * 0.09, n=19; mean = SD). The
410 transition modes of controls were indistinguishable from wildtype (Figure 7 — figure supplement
411  1F-H, dot products 0.95, 0.93 and 0.87), but were disrupted in mutants, suggesting that behavioral
412  chaining was affected in these animals (Figure 7 —figure supplement 1F,l,J, dot products 0.64,
413  0.08, 0.10).

414

415  We found the most significant changes in the blu-/- behavior affected transitions into and out of
416  “slow 1” swims, recruited during prey capture, and burst swims, recruited during spontaneous
417  swimming (Figure 7F). We predicted that blurred vision in the mutants could prevent them from
418 receiving the appropriate stimulus necessary to initiate “slow 1” swims during prey capture.
419  Therefore, we investigated the prey position around blu-/- animals during hunting sequences. This
420 revealed that blu-/- mutants perform orientations when prey were closer to the animals than in
421  controls (Figure 7G, left). We also found that prey were closer prior to the onset of “slow 1” swims
422  in blu-/-, and was in a less reproducible location (Figure 7G, right). We reasoned that the nearer
423  position required to orient towards prey in mutants would result in them initiating prey capture less
424  frequently, and indeed we found that blu-/- perform more spontaneous bouts before initiating a
425  prey capture swim (Figure 7H, top, spontaneous sequence lengths: controls 1.84 + 0.22, mutants
426  2.16 £ 0.2; mean £ SD). Second, we predicted that the less stereotyped prey position prior to
427  “slow 17 swims would impair mutants’ ability to maintain prey capture sequences. Indeed, we
428 found that prey capture sequences in blu-/- were slightly truncated (Figure 7H, bottom, prey
429  capture sequence lengths: controls 1.97 + 0.20, mutants 1.75 = 0.16; mean £ SD). Thus, our fine-
430 grained analysis reveals a specific deficit in visually driven chaining of prey capture sequences

431  that likely results from a blurred visual map in the optic tectum.

Figure 7. Behavioral chaining is disrupted in lakritz and blumenkohl mutants. (A) Developmental phenotype
of lakritz (lak) and blumenkohl (blu) mutants. In lak-/- RGCs fail to form. In blu-/- RGC arbors overgrow in
the tectum. Lak controls are a mix of lak+/- and lak+/+ siblings. Blu controls are blu+/- siblings. (B) Bouts
from lak and blu can be mapped into the canonical behavioral space using DTW, enabling comparison of
different behavioral datasets. (C) Proportion of bouts that are mapped to prey capture exemplars. Error
bars indicate standard deviation. * two-sided p value < 0.01 Mann-Whitney U test. Difference between
control groups is not significant (p > 0.4). (D) Ethogram of lak behavior. Controls (left), mutants (middle),
and fold change in transition probabilities between these groups (right). Only statistically significantly
differences between groups are shown (p < 0.05 Mann-Whitney U test with Holm-Bonferroni correction).
(E) Spontaneous (top) and prey capture (bottom) sequences in lak. Left: probability that sequence is
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Figure 7. Behavioral chaining is disrupted in lakritz and blumenkohl mutants.
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aborted after a given number of bouts. Right: average sequence length. * two-sided p value < 0.01 Mann-
Whitney U test. (F) Ethogram of blu behavior. Controls (left), mutants (middle), and fold change in transition
probabilities between these groups (right). Only statistically significantly differences between groups are
shown (p < 0.05 Mann-Whitney U test with Holm-Bonferroni correction). (G) Normalized average prey
density before and after orientations and “slow 1” swims for blu controls (top) and mutants (bottom). Images
are thresholded using 95™ percentile. (H) Spontaneous (top) and prey capture (bottom) sequences in blu.
Left: probability that sequence is aborted after a given number of bouts. Right: average sequence length. *
two-sided p-value < 0.01 Mann-Whitney U test. See also Figure 7 — figure supplement 1.

432  Discussion

433

434 A thorough quantification of the actions performed by an animal, and how the environment
435 influences these actions, is a prerequisite for understanding the sensorimotor transformations
436  performed by the brain to realize behavior (Krakauer et al., 2017). Our unsupervised analysis
437  reveals that zebrafish swim bouts lie on a behavioral continuum. We group bouts into seven
438 behavioral modules that are differentially recruited during spontaneous swimming and prey
439  capture. During prey capture, we find that the location of prey in the visual scene likely triggers a
440  specific behavioral module, whose movement transforms the prey stimulus, leading to the next
441  bout in the chain. Thus, iterative bout chaining positions the prey in the center of the anterior
442  dorsal visual field through a stimulus-response loop. Once the prey has reached this position, the
443  fish releases one of three distinct capture maneuvers, determined by the remaining distance to
444  the prey. Further decomposition of these capture maneuvers revealed that distinct predation
445  strategies arise through combining a stereotyped jaw movement with distinct types of swim bout.
446  Genetic manipulation of visual processing disrupted the stimulus-response loop, preventing prey
447  capture initiation in blind animals, and impairing the maintenance of the behavior in animals with
448  blurry vision.

449

450 One of the challenges of linking behavior to neural activity is finding suitable representations that
451 link these two domains (Brown and Bivort, 2018). Postural modes identified through PCA have
452  previously been used to describe spontaneous swimming in zebrafish and crawling behavior in
453  C. elegans and Drosophila larvae (Girdhar et al., 2015; Stephens et al., 2008; Szigeti et al., 2015).
454  We found that the first three eigenfish in our data form a harmonic series (Figure 1E), with the
455  second and third modes describing the sinusoidal oscillation of the tail during a bout and the first
456 mode accounting for turning. These are similar to the basis vectors used to describe postural
457  dynamics in fly maggots and nematodes, suggesting that such modes may serve as a common

458  framework for finding equations of motion across taxa. In the future it may be possible to relate
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459 trajectories in this space to specific structural or dynamical motifs in the neural circuits that
460 produce locomotion across species (Kato et al., 2015).

461

462  Different unsupervised approaches have not provided a consensus on whether behavior is
463  organized into distinct modules with stereotyped kinematics (Berman et al., 2014; Marques et al.,
464  2018) or whether such modules represent extremes of a continuum (Katsov et al., 2017; Szigeti
465 et al, 2015). Non-linear embedding algorithms, such as t-SNE, have become popular for
466  analyzing high-dimensional behavioral data (Berman et al., 2014; Marques et al., 2018); however,
467  such representations separate behaviors along arbitrary dimensions and tend to exaggerate the
468  distances between clusters. Our isomap embedding approach revealed a continuum of swim
469  bouts used by zebrafish larvae during hunting and spontaneous swimming (Figure 2B). This
470  showed that swim bouts predominantly vary in swimming speed and turning degree (Figure 2 —
471  figure supplement 1C). When we inspected the prey capture strike further, however, we found
472  evidence of modularity in this particular behavior (Figure 5). Moreover, we used our method to
473  explore the kinematics of jaw movements, demonstrating that it generalizes to different types of
474  movement patterns (Figure 6). In addition, we demonstrate that different datasets can be bridged
475  into the same behavioral space, aiding the identification of behavioral deficits in mutants (Figure
476 7). Thus, our method provides a suitable alternative to stochastic embedding algorithms as it can
477  capture both continuity and discreteness in a variety of behavioral datasets.

478

479  Classically, two general models have been proposed to explain how animals chain behavioral
480 modules into sequences. Hierarchical models propose that behavioral switching is stochastic, yet
481  structured over various timescales (Berman et al., 2016; Seeds et al.,, 2014). In contrast,
482  sequential models predict recurring, stereotyped behavioral chains (Long et al., 2010). These are
483  not mutually exclusive, and it has been suggested that both might contribute to spontaneous
484  behaviors in Drosophila (Berman et al., 2016; Katsov et al., 2017). The extent to which these
485 mechanisms contribute to the production of behavioral sequences in zebrafish was not known.
486  We found that larvae preferentially form sequences consisting of either spontaneous or prey
487  capture modules (Figure 3C,D and Figure 4C,D), suggesting a hierarchical organization in their
488 behavior. We found bout chains to be more stereotyped during prey capture, hinting that an
489  underlying mechanism drives sequential activation of modules during this behavior (Figure 2D,
490 Figure 3D and Figure 4B-D). Predictable behavioral sequences can be driven by either internal
491 neural mechanisms or feedback from the environment (Coen et al., 2014; Long et al., 2010).

492  Previous reports have suggested that zebrafish larvae reflexively react to the current position of
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493  a prey object in the visual field when generating their bouts (Patterson et al., 2013; Trivedi and
494  Bollmann, 2013). Our results suggest that a stimulus-response loop links successive bouts in a
495 behavioral chain and drives stereotyped sequences through prey capture modules, with little
496 influence from previous behaviors (Figure 4). Short integration windows for deciding the next
497  behavioral action have also been observed in thermal navigation of larvae (Haesemeyer et al.,
498 2015) and social affiliation of juvenile zebrafish (Larsch and Baier, 2018). Thus, stimulus-
499 response loops driving behavioral chaining might not be specific to prey capture, but provide a
500 more general mechanism underlying goal-directed behavior in zebrafish.

501

502  Zebrafish larvae move in a three dimensional water column, and make full use of this environment
503  during natural behaviors (Horstick et al., 2017). It was recently proposed that a specialized UV-
504  sensitive zone in the ventral retina could facilitate targeting prey from below (Zimmermann et al.,
505 2018). We demonstrate that larvae do indeed orient themselves beneath the prey over the course
506 of a hunting sequence (Figure 61,J). Furthermore, we found that larvae capture prey with a single
507  stereotyped jaw movement that includes dorsal flexion of the cranium (Figure 6F-H, Video 5 and
508 Video 6). This movement likely generates downward suction during strikes. Moreover, this jaw
509 movement is either produced in isolation, or in combination with an attack swim or S-strike
510 maneuver, both of which are similarly stereotyped and occur when prey reach a specific location
511 inthe visual field (Figure 5C-G and Video 4). These results provide compelling evidence that jaw
512 morphology has co-evolved with sensory and motor circuits to reduce the complexity of capturing
513 prey in a three-dimensional environment. Producing invariant actions in response to stereotyped
514  “releasing” stimuli has long been considered an efficient way to ensure reproducible outcomes in
515 innate behaviors (Ewert, 1987; Tinbergen, 1951). By linking three different releasing stimuli to
516 three stereotyped motor programs, all sharing a common jaw movement, the developing nervous
517  system of the zebrafish larva has evolved an efficient means to produce reliable, flexible behavior
518  with a limited number of neurons.

519

520  Whether behaviors exist in a continuum or as stereotyped, invariant motor patterns have different
521 implications for their underlying neural circuit implementation. Behavioral continua, such as the J-
522  turns, orientations and “slow 1” swims that occur during prey capture, may be encoded in a
523  topographic motor map, where the position of prey in the visual field is transformed into a graded
524  motor output. Such a map has been identified in the optic tectum of zebrafish larvae and its
525  projections to the hindbrain (Helmbrecht et al., 2018). We found that blu mutants, which have

526  Dblurred retinotectal maps, had difficulty sustaining prey capture sequences. This suggests that
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527 the visuo-motor transformations normally performed by the tectum during prey capture are
528 disrupted in these mutants. Furthermore, the gradual transformation of the visual stimulus
529 received by fish over a prey capture sequence suggests that the animal is trying to position the
530 prey at a specific point in the temporal-ventral retina (Figure 4E, Figure 5F,G and Video 4). When
531 the eyes are converged, this point would result in the prey being represented bilaterally in the
532  anterior regions of both tecta. This region could contain specialized circuitry for implementing the
533  appropriate capture maneuver, depending on the distance to the prey. Rather than a continuous
534  motor map, we posit the S-strike and attack swim are driven by separate command-like neuronal
535 populations, or alternatively by different activity levels within a common population. Similarly, a
536 dedicated neural circuit may control the stereotyped jaw movement we observe during strikes
537 (Figure 6 and Video 6). Thus, we propose that different neural architectures underlie the pursuit
538 and capture of prey in zebrafish larvae. Our work provides a computational framework for
539 interrogating the production and chaining of motor modules during this behavior in a genetically
540 tractable vertebrate.

541

542

543  Methods

544

545  Fish

546

547  For experiments relating to Figure 1-6 we obtained TLN (nacre) embryos from an outcross of
548 TLN homozygous to TL/TLN heterozygous adults. Until 3 days post fertilization (dpf) embryos
549  were raised in Danieau’s solution (17 mM NaCl, 2 mM KCI, 0.12 mM MgSO,, 1.8 mM Ca(NO3),
550 1.5 mM HEPES) at a density of 60 embryos per 50 ml at 28 °C with a 14h-10h light-dark cycle.
551  Thereafter, embryos were transferred to new dishes containing fish system water and raised at a
552  density of 30 larvae per 50 ml until behavioral testing at 7 dpf or 8 dpf. At 5 dpf and 6 dpf, a few
553  drops of dense paramecia culture (Paramecium multimicronucleatum, Carolina Biological Supply
554  Company, Burlington, NC) were added to each dish and larvae were allowed to feed ad libitum.
555

556  For experiments relating to Figure 7, we used lakritz (Iak™®*') and blumenkohl (blu®?®*") mutants
557  (Neuhauss et al., 1999) in a TL background. Lak mutants were obtained from a heterozygous in
558 cross. Homozygous mutants could be clearly identified by their dark color compared to sibling
559  controls (mixture of heterozygotes and wild types) in a visual background adaptation (VBA) assay.

560 Blu mutants were obtained by outcrossing heterozygous females to homozygous males. Similarly
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561 to lak, mutants could be identified unambiguously with a VBA assay. Larvae were raised as
562 described above, except they were not fed at 5 and 6 dpf, and thus their naive prey capture ability
563 was assayed at 7 dpf. This was to minimize potential confounding effects of experience-
564  dependent improvement in prey capture efficacy between groups.

565

566  Free-swimming behavioral assay

567

568 Free-swimming prey capture experiments relating to Figure 1-5 and Figure 7 were conducted

569 using a custom-built behavioral setup. Behavior arenas were produced by flooding a 35 mm petri
570 dish with 2% agarose (Biozym, Germany), with an acrylic square (15 x 15 mm, 5 mm deep) placed
571 in the center. Once the agarose had set, the acrylic square was removed producing a hollow
572  chamber with transparent walls. Single larvae were introduced to the chamber along with a drop
573  of culture containing approximately 50-100 paramecia. The chamber was filled to the top with fish
574  system water and a glass coverslip was placed over the chamber to flatten the meniscus. This
575 provided a clean, transparent chamber where behavior could be observed and tracked.

576

577 Behavior experiments were performed in a climate-controlled box kept at 28 + 1 °C between 3
578 and 12 hours after lights on. Each larva was recorded for 20 minutes using a high speed camera
579 (PhotonFocus, MV1-D1312-160-CL, Switzerland), fitted with an objective (Sigma 50 mm /2.8 ex
580 DG Macro, Japan), connected to a frame grabber (Teledyne DALSA X64-CL Express, Ontario,
581 Canada). The camera was positioned over the behavior arena, which was lit from below with a
582  custom-built infrared LED array. Behavior was filmed at 500 frames per second with a frame size
583  of 500 x 500 pixels covering an area slightly larger than the arena (Figure 1B), providing a final
584  resolution of approximately 0.03 mm/pixel. The aperture of the camera objective was adjusted
585  such that the fish was in focus throughout the entire depth of the arena. Recording was performed
586  using StreamPix 5 software (NorPix, Quebec, Canada) and individual trials were initiated through
587  a custom written Python script. Each 20 minute session was split into 20x 1 minute recording
588 trials, with < 1 second between the end of one trial and the beginning of the next, to keep video
589 files to a manageable size. If frames were dropped during a trial, the recording was stopped to
590 prevent problems in subsequent analyses. Videos were compressed offline in VirtualDub with
591  Xvid compression before tracking was performed.

592

593  Free-swimming behavioral assay in three dimensions

594
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595 To record behavior simultaneously from above and from the side, we designed a new chamber
596 (Figure 6A). A 3 ml transparent, unfrosted plastic cuvette was with flooded with 2% agarose. An
597 acrylic rod (20 x 5 x 5 mm) was inserted into the liquid agarose, which was allowed to set, after
598  which the rod was removed leaving behind a hollow chamber. As before, individual larvae were
599 introduced into the chamber with a drop of paramecia culture topped up with fish system water.
600 The opening was plugged with a small piece of acrylic cut to match the cross section of the
601 chamber (5 x 5 mm). The cuvette was placed on its side on top of a glass coverslip suspended
602 above a mirror angled at 45°. The high speed camera was positioned above this setup in such a
603 way as to allow the fish in the chamber as seen from above as well as the reflected side view
604  from the mirror to be visible within the field of view of the camera. The IR LED array was rotated
605 by 90°, allowing the chamber to be illuminated from the side and from below (via the mirror) with
606 a single light source. We reduced the aperture of the camera objective so that the entire arena
607  was in focus in both views and offset the decrease in luminance by increasing the exposure time
608 of each frame. Consequently, for this experiment we achieved a frame rate of 400 fps. As
609 described above, data from each fish was split into 20x 1 minute recording trials.

610

611 To record jaw movements during prey capture with higher spatial resolution in Video 6, we used
612 two cameras (PhotonFocus, MV1-D1312-160-CL, Switzerland) and two light sources and filmed
613 a number of fish swimming in a custom-built transparent chamber. We waited for one of the fish
614 to start hunting a paramecium in the field of view of both cameras and manually triggered the
615 recording. Frame acquisition was synchronized using StreamPix 5 and a dual camera frame
616 grabber.

617

618 Tail and eye tracking

619

620 Tracking was performed using custom-written Python scripts. Each frame was tracked

621 independently. Each frame was divided by a background image, calculated as the median of
622 every 100" frame over all trials from a given animal. The frames were then thresholded and
623  contours extracted using OpenCV. The largest contour in the image was taken as the outline of
624  the fish and all other pixels were discarded. Then, the histogram of pixel values of the fish was
625 normalized and a second threshold was applied to find the three largest contours within the fish,
626  corresponding to the two eyes and swim bladder. The eyes were identified automatically as the
627  two contours with the nearest centroids and left and right identities were assigned using the sign

628  of the vector product between lines connecting the swim bladder to these two points. The heading
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629  of the fish was defined by a vector starting in the center of the swim bladder and passing through
630 the midpoint between the eye centroids. The angle of each eye was calculated from the image

631 moments of their contours and was defined as:

632
1 2
633 —* grctan (&)
2 Uzo — Up2
634

635  Where u;; is the corresponding central moment. The eye angles in an egocentric reference were
636 calculated as the difference between the heading angle and absolute orientation of eyes, and eye
637  convergence defined as the difference between the eye angles (Figure 2 — figure supplement
638 2A). A 100 ms median filter was applied to smooth the traces obtained from each eye while
639  preserving edges. The two thresholds used for tracking were set manually for each fish. In frames
640 where the eye contours could not be detected through thresholding, we instead applied a
641  watershed algorithm to obtain contours and then proceeded as above.

642

643 Due to the dark pigmentation of lak and blu mutants, there was insufficient contrast to segment
644  the eyes from the surrounding skin using either thresholding or watershed analysis. For this
645 reason, eye tracking could not be performed in these animals. To calculate the heading in this
646 case, we used the second threshold to segment the head and body of the fish from the tail, for
647  which we identified the minimum enclosing triangle using OpenCV. The heading was then defined
648 as a vector passing through the apex and centroid of this triangle, and the position of the swim
649 bladder estimated as lying midway between these two points.

650

651  To track the tail of the fish, we skeletonized the contour obtained after applying the first threshold
652 described above. We started the tracking from the point on this skeleton nearest to the swim
653 bladder. We used a custom-written algorithm to identify the longest path through the skeletonized
654 image that started at this point, ended at the tip of a branch, and began in the opposite direction
655 of the heading vector. We then linearly interpolated 51 equally spaced points along this path to
656  obtain the final tail points.

657

658  Thetail tip angle was defined as the angle between the midline of the fish (provided by the heading
659  vector) and a vector between the center of the swim bladder and the last point of the tail. This
660 angle is used to help visualize the sinusoidal oscillation of the tail in Figure 1, 3, 5, and 6, but was

661 not used as the basis of any analysis in the paper.
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662

663  We vectorized the tracked tail points for kinematic analysis in a similar manner to what has been
664  previously described (Girdhar et al., 2015; Stephens et al., 2008). Briefly, we calculated the angle
665 between the midline (defined by the heading vector) and a vector drawn between each adjacent
666  pair of tail points, providing a 50 dimensional representation of the tail in each frame. A three
667  frame median filter was applied to the heading angle and tail kinematics to remove single frame
668  noise.

669

670 The mean tail tip curvature was computed as the mean of the last ten points of the tail angle
671  vector, and was used for bout segmentation. Bouts were detected by applying a threshold to the
672  smoothed absolute value of the first derivative of this mean tail tip curvature. Uncharacteristically
673  long bouts detected with this method were further split by finding turning points in the smoothed
674  absolute value of the mean tail tip curvature convolved with a cosine kernel.

675

676  Jaw tracking

677

678  As for the single view setup, each frame was tracked independently offline using custom-written
679  Python scripts. Each frame was divided by a background image, calculated as the median of
680 every 100" frame over a recording trial. The upper and lower halves of the frame were tracked
681 separately. The lower half of the frame, containing the image of the fish as seen from above, was
682 tracked as described above. Fish were only tracked from the side when their heading was within
683  +45° of the imaging plane to minimize artifacts arising as a result of foreshortening. Frames were
684  thresholded and contours extracted using OpenCV. The largest contour in the image was taken
685 as the outline of the fish and all other pixels were discarded. Then, the histogram of pixel values
686  of the fish was normalized and a second threshold was applied to find a contour enclosing the
687 head and body of the fish. The pitch and angle of the cranium were calculated using image
688 moments of these two contours respectively, with cranial elevation defined as the difference
689  between them.

690

691 To find the point of the base of the jaw, we first defined point, p, as the centroid of the head-body
692  contour and vector, v, defined by the cranium angle (i.e. orientation of this contour in the frame).
693 We extended vector v from p until it intersected the fish contour at point q. Next, we found the

694  midpoint of pq, called c¢. We then extended a vector orthogonal to v from c until it intersected the
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695 fish contour at the base of the jaw, h. Jaw depression was defined as the Euclidean distance,
696 ||ch|.

697

698 The cranial elevation angle and hyoid depression were smoothed with an edge-preserving five-
699 frame median filter. Then, we applied a high-pass filter by subtracting the baseline of these two
700 kinematic features over a recording. To compute this baseline, we first calculated a 250 ms rolling
701  minimum, and then computed the one-second rolling mean of this rolling minimum. This provided
702 a relatively stable baseline for identifying jaw movements, despite changes in elevation and
703  azimuth of the fish over a recording. To segment jaw movements, we identified periods when the
704  baseline-adjusted jaw depression, smoothed with a 50 ms rolling average, was above a
705  predetermined threshold and defined movement onset and offset as turning points in this
706  smoothed trace.

707

708 Embedding postural dynamics in a behavioral space

709

710 To generate our behavioral space, we excluded any bouts during which the tail of the fish hit the

711  wall of the behavior chamber. This was to ensure that only the fish’s self-generated motion — and
712  not motion artifacts introduced from distortion of the tail by the wall — was considered when
713  mapping the behavioral space. Consequently, not all the bouts we observed could be mapped
714  into the space.

715

716  Todescribe bouts in terms of their postural dynamics, we performed principal component analysis
717  (PCA) on the tail kinematics across all bout frames. Data were normalized before applying PCA
718 by subtracting the mean tail shape and dividing by the standard deviation.

719

720  The next step in generating the behavioral space involved computing the distance between every
721  pair of bouts with dynamic time warping (DTW) (Sakoe and Chiba, 1978). DTW finds an alignment
722  between two time series that minimizes a cost function, which is the sum of the Euclidean
723  distances between each pair of aligned points. In our analysis, we only allowed trajectories to be
724  warped within a 10 ms time window. For bouts of different lengths, we padded the end of the
725  shorter bout with zeros until it was the same length as the longer bout. We performed each
726  alignment twice, reversing the sign of all the values for one of the trajectories the second time,
727 and considered the distance between two bouts to be: min(DTW (ty,t,), DTW (¢, —t;)), thus
728  effectively ignoring the left/right polarity of the bouts.
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729

730  For generating the behavioral space in Figure 2, we performed a round of affinity propagation
731  (Frey and Dueck, 2007) prior to embedding, using the negative DTW distance between a given
732  pair of bouts as a measure of their similarity. We used the median similarity between bouts as the
733  preference for the clustering. Doing so provided 2,802 clusters, of which we excluded any clusters
734  containing fewer than three bouts, thus ensuring that only repeatedly observable motor patterns
735  were used for generating the behavioral space. As a final quality check, we manually inspected
736  every cluster exemplar and removed incorrectly identified bouts, which usually was the result of
737  tracking artifacts from a paramecium crossing the tail of the fish. The final number of clusters that
738 we embedded was 1,744.

739

740  Since affinity propagation identifies an exemplar to represent each cluster, we produced our final
741  behavioral space by performing isomap embedding (Tenenbaum et al., 2000) of these exemplars.
742  For the isomap embedding, we constructed a nearest-neighbors graph of the exemplars using
743  their DTW distances, and calculated the minimum distance between each pair of points in this
744  graph. The isomap components correspond to the eigenvectors of this graph distance matrix.
745

746  Eye convergence analysis

747

748  To identify periods of eye convergence, we calculated a kernel density estimation (Gaussian

749  kernel, bandwidth=2.0) of the eye convergence angles across all frames for a given fish. This
750 distribution was bimodal (eyes converged or unconverged) and therefore we defined the eye
751  convergence threshold as the antimode (least frequent value between the two modes). To identify
752  spontaneous, early, mid, and late prey capture bouts, we calculated the mean eye convergence
753 angle over the first and last 20 ms of a bout, and concluded the eyes were converged if this
754  number was above the threshold. Bouts were classified as spontaneous if the eyes were
755  unconverged at the beginning and end of a bout; early prey capture if the eyes were unconverged
756 at the beginning and converged at the end of the bout; mid prey capture if the eyes were
757  converged at the beginning and end of the bout; and late prey capture if the eyes were converged
758 at the beginning and unconverged at the end of the bout.

759

760  Mapping kinematic features and eye convergence into the behavioral space

761
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762  With our PCA-DTW-isomap approach, each point in the behavioral space represents a small
763  cluster of bouts. For each bout, we calculated the mean speed, angle through which the fish
764  turned, maximum angular velocity of the fish, and the time at which the maximum angular velocity
765  occurred (turn onset). In Figure 2 — figure supplement 1C, we show the median of each of these
766  features over a cluster. Similarly, we could calculate the proportion of bouts in each cluster that
767  occurred during spontaneous, early, mid, or late prey capture as defined above. The prey capture
768 index was defined as:

769

270 # prey capture bouts in cluster — # spontaneous bouts in cluster
# bouts in cluster

771

772  Mapping mutant bouts into the behavioral space

773

774  To map mutant bouts into the behavioral space, we extracted tail kinematics and identified bouts
775 as described above (see tail and eye tracking). The postural dynamics of each mutant bout was
776  projected onto the first three principal components obtained from the canonical dataset (Figure
777  1D,E) to bring it into the same space as bouts from that dataset. Then, each mutant bout was
778  mapped to one of the 1,744 exemplars identified in “embedding postural dynamics in a behavioral
779  space” using dynamic time warping (DTW), with the nearest exemplar having the smallest DTW
780 distance to the bout. In this way, each mutant bout could be projected into the three dimensional
781 behavioral space defined by the 1,744 exemplars. In Figure 7B, we show a kernel density
782  estimation of all bouts from a given condition over the first two dimensions of the behavioral space.
783

784  Since we could not perform eye tracking in the mutants (see tail and eye tracking), we instead
785  calculated the proportion of bouts performed by each fish that were mapped to a prey capture
786  motif, defined as those having a prey capture index > 0. This provided each fish with a “prey
787  capture score”. We then compared the prey capture scores of fish with different genotypes with
788  three two-sided Student’s t-tests (independent samples) comparing lak controls to lak mutants,
789 blu controls to blu mutants, and lak mutants to blu mutants.

790

791  Singular value decomposition (SVD) of behavioral transitions

792

793  To identify transition modes, we generated a transition frequency matrix, M, where M;; contains

794  the number of transitions from behavioral motif j to behavioral motif i, where each behavioral
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795  motif is a small cluster of bouts in the behavioral space (see embedding postural dynamics in a
796  behavioral space). This matrix included all the transitions from all animals for a given experiment.
797

798  Since there are more than 3 million (1,7442) possible transitions between motifs, and only 44,154
799 transitions in our largest dataset, the matrix M is necessarily sparse. This would hinder the
800 identification of common dynamical motifs, and so we performed smoothing on matrix M by
801  Dblurring similar transitions into each other. To achieve this, we took advantage of the fact that
802 nearby points in our behavioral space encode bouts with similar postural dynamics. We computed
803  aweighting matrix, W, where W;; = e~ ¥ E@ip)), E(p;, p;) is the Euclidean distance between a pair
804  of points in the three-dimensional behavioral space, and a is a smoothing factor (see Figure 3 —
805 figure supplement 1).

806

807  We normalized matrix W so that the columns summed to one and then smoothed the transitions
808 in matrix M with the transformation: M0, = WMWT.

809

810 To distinguish between symmetric transitions (i.e. those that occur in both direction), and
811  antisymmetric transitions (i.e. those in which transitions in one direction outweigh those in the
812  other), we decomposed the smoothed matrix, Mg, 00:n, iNtO its symmetric and antisymmetric parts,
813  where:

814

815 Msmooth = Msymmetric + Mantisymmetric
816 Msymmetric =% (Msmooth + MsTmooth)
817 Mantisymmetric = % (Msmooth - Ms,Tmooth)
818

819 The symmetric and antisymmetric transition modes were found by taking the SVD of these two
820 matrices respectively.

821

822  Every real or complex matrix, 4, can be factorized using the singular-value decomposition (SVD)
823 into three matrices such that:

824

825 A=USVT

826
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827  The columns of U and rows of VT define two sets of orthonormal basis vectors and S is a diagonal
828  matrix containing the singular values, ordered from largest to smallest. The SVD describes the
829 transformation performed by matrix, A. Under this transformation, each row of the matrix, V7, is
830 mapped to the corresponding column of U and scaled by the associated singular value. Therefore,
831 this decomposition provides an unbiased description of the most common transitions between
832  behavioral motifs.

833

834 A symmetric matrix, such as Mgymmerric: geometrically defines a scaling transformation.
835  Consequently, its singular-value decomposition is the same as its eigendecomposition: spaces U
836 and V are the same and S contains the eigenvalues. As such, the n‘" transition mode of
837  Msymmetric CAN be written:

838

839 V,,.0,. V%

840

841  Where v, is the singular vector with corresponding singular value, a,,. In Figure 3C and Figure
842 7 - figure supplement 1, we show motifs with positive or negative loadings to each singular
843  vector separately.

844

845  An antisymmetric matrix, such as Mgy tisymmetric,» d€scribes a set of orthogonal rotations. As such,
846  spaces U and V are related by a 90° rotation and each transition mode can be written:

847

848 @1 V) (fn o ”) (;:)

849

850 Where v, and v, are orthonormal, and g,, is the corresponding singular value. Positive values in
851 w; map to positive values in v,, positive values in v, map to negative values in v, negative
852  values in v; map to negative values in v, and negative values in v, map to positive values in v;:

853

e d U;
854 T l
v, <« vy

855
856  These are the four transformations we represent in Figure 3D and Figure 7 —figure supplement
857 1.
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858

859  To determine whether transition modes were disrupted in mutants, we mapped mutant and control
860 bouts into the behavioral space and computed the SVD of their transition frequency matrices. We
861 compared the dot products of sibling control transition modes to transition modes obtained from
862 the canonical dataset, and the dot products of mutant transition modes to sibling control transition
863 modes (Figure 7 — figure supplement 1). We determined whether transition modes were
864  significantly disrupted in mutants with a permutation test.

865

866 Identification of behavioral modules

867

868  To identify behavioral modules, we combined information about bouts’ kinematics and transitions

869  to generate a new kinematic-transition hybrid space. The kinematic nearest-neighbors graph was
870  constructed from the DTW distances between exemplars as described above (embedding
871  postural dynamics in a behavioral space). We constructed a transition space from the vector
872 defining the second symmetric transition mode and the pair of vectors defining the first
873  antisymmetric transition mode, and then calculated an orthogonal basis for this space. The first
874  symmetric transition mode was excluded since it contains information about the prevalence of
875 each kinematic motif in the data, rather than how motifs are chained together. Then, we warped
876 the kinematic graph by multiplying the distances between adjacent nodes by the Euclidean
877 distance between the corresponding exemplars in the transition space to generate our hybrid
878 space. Then we proceeded with isomap embedding on this hybrid space, finding the shortest
879  distance between each pair of motifs and taking the eigenvectors of the resulting matrix. This
880 decomposition was dominated by two large eigenvalues, so we used a two-dimensional
881  kinematic-transition space and performed hierarchical clustering using Ward’s method (Figure
882  3E). We set the threshold for separating clusters based on what we considered to provide the
883  most parsimonious partitioning of bouts, referencing previously published literature and assessing
884  whether further subdivision of the space produced interpretable clusters.

885

886 In Figure 3F, we colored points in the original behavioral space based on the cluster they were
887 assigned in the hybrid kinematic-transition space. The transparency value in that graph was
888  determined by the number of nearest neighbors that were assigned the same cluster label.

889

36


https://doi.org/10.1101/656959
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/656959; this version posted May 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

890 To produce average traces for the tail tip angle, we aligned all exemplars belonging to a given
891 cluster using dynamic time warping and took the average of the aligned traces. The representative
892 examples we show are those whose tail tip angle traces were most similar to each average.

893

894  Modelling transitions between modules

895

896  For this analysis, we first identified every uninterrupted chain containing at least two bouts in our

897  data which could be assigned a behavioral module, i.e. only chains of bouts from within a single
898 recording trial (see free-swimming behavioral assay) and that could be embedded in the
899  behavioral space (see embedding postural dynamics in a behavioral space). We then tested the
900 ability of a series of Markov models — ranging from zeroth to fourth order — to predict each
901 subsequent bout. For this purpose, we modelled each module as a state in a Markov process
902 (allowing transitions to the same state, since fish can perform the same type of bout twice in a
903 row). Each of our models contained seven states, s;, s, ..., S7, and we denote the current state,
904  X,, the next state X;,,, the previous state X;_,, etc.

905

906 A zeroth order Markov model does not know the current state and therefore guesses the next
907  state based simply on the distribution of bouts across all states:

908

909 P(Xp41 =si 1 Xe =s;) = P(sy)

910

911 In afirst order Markov model, the current state is known. To predict the next state, we considered
912  all other times the current state was visited (X,,) and observed which bout occurred next in the
913 sequence:

914

915 PXpp1 =i 1 X =5) = P(Xns1 = 5; 1 Xy = 5)

916

917  For the second-order Markov model, we took into account the last two states in a chain when

918  predicting the next state:

919

920 P(Xipq =i | X = Sj, Xe—1 = sk) = P(Xnp1 =5 | Xpn = Sj, Xn-1 = Sk)
921

922 Similarly, for Markov models up to order, m, we predicted the next state:

923
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924 P(Xip1=5i| Xp = Sjy Xt—1 = Sk» or Xt—m+1 = Sn)
925 = P(Xpt1 =5i 1 Xp = SjyXn-1 = Sk» s Xnema1 = Sn)
926

927 In Figure 4B, we show the probability that a given model predicts the next bout correctly starting
928  from each behavioral module.

929

930 Ethogram analysis

931

932  The ethogram in Figure 4C,D shows the first-order Markovian transition probabilities across all

933 fish. To identify which transitions were significant, we used a permutation test. We shuffled the
934  order of bouts within each fish 1000 times and recomputed the first-order Markovian transition
935 probability matrices. This gave a distribution of transition probabilities between each pair of
936 modules from which we could calculate the one-tailed p-values. We considered significant
937 transitions as those that had a p-value < 0.05 after applying a Holm-Bonferroni correction (72 =
938 49 comparisons).

939

940 To identify significantly altered transition in the mutants, we computed an ethogram for each fish
941 and compared the distribution of transition probabilities across fish between groups with a series
942  of Mann-Whitney U tests. We always compared mutants to sibling controls, and considered
943  significant transitions as those that had a p-value < 0.05 after applying a Holm-Bonferroni
944  correction.

945

946  Spontaneous and prey capture chain analysis

947

948 To determine whether spontaneous and prey capture chains were disrupted in mutants, we

949  computed the number of transitions within the groups {slow 2, burst, turn} and {J-turn, orientation,
950 slow 1, capture strike} respectively, before a transition to a bout from the other group occurred.
951 For each animal, we calculated the mean number of transitions within a group, and compared the
952  distributions of these means between conditions, always comparing mutants to sibling controls,
953  with a two-tailed Mann-Whitney U test (Figure 7F,I).

954

955  Generating stimulus maps

956
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957  To obtain stimulus maps for Figure 4E and Figure 4 — figure supplement 1, we took the first
958 and last frames from the raw video data of each bout. We then performed background division
959 (see tail and eye tracking) and binarized the images using a low threshold to remove pixel noise.
960 We then aligned frames using the heading angle and swim bladder centroid obtained from the
961 tracking. Next, we split bouts based on eye convergence state and behavioral module, and
962 averaged the pre- and post-bout frames for each of these conditions. We then performed pixel-
963  wise normalization of these average images using the mean and standard deviation of ~90,000
964 frames randomly selected from periods when fish were not performing any bout. To obtain mirror-
965 symmetric stimulus maps, we calculated the average of each image with its reflection.

966

967 We obtained the stimulus maps for Figure 5F and Video 4 using the same process described
968 above: background division, thresholding, alignment, averaging, normalization. To obtain the
969  stimulus time series, we split captures into attack swims and S-strikes (see capture strike analysis
970  below), and aligned videos in time to the onset of each bout.

971

972  To obtain stimulus maps for jaw movements (Figure 6J), we identified the onset of the bouts that
973 immediately preceded each jaw movement. We calculated the average stimulus from the side for
974  frames corresponding to these bout onsets as described above for the top view: background
975 division, thresholding, binarization, alignment, averaging, normalization. We aligned frames using
976 the centroid of the contour outlining the head and the pitch of the fish in the water. Normalization
977  was performed with the average and standard deviation of ~18,000 randomly selected frames.
978

979  Capture strike analysis

980

981 For analysis relating to Figure 5, Video 3 and Video 4, we defined capture strikes as bouts that

982 were mapped to a kinematic motif that contains > 50% late prey capture bouts (Figure 2D). To
983 determine the moment of capture in Figure 5A, we selected 100 random capture strikes and
984  manually annotated the frames where the jaw was maximally extended.

985

986  For subsequent analysis, we only considered the 50 ms time window shown in Figure 5A (24-74
987 ms after the bout onset as determined by our bout segmentation algorithm) and proceeded with
988 our general DTW-isomap embedding algorithm as described above (see embedding postural
989 dynamics in a behavioral space). To generate the capture strike subspace, we computed the

990 DTW distance between each pair of strikes, only allowing warping within a 6 ms (3 frames) time
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991 window. We used the resulting pairwise distance matrix directly for isomap embedding, keeping
992 the first two dimensions. Note we did not perform an intermediate affinity propagation clustering
993 for this dataset. We then performed KMeans clustering (sklearn.cluster. KMeans) with # clusters
994 = 2to classify strikes.

995

996  Generating a behavioral space of jaw movements

997

998 To generate the jaw movement behavioral space in Figure 6F, we performed PCA on the jaw

999 depression and cranial elevation traces across movement frames (see jaw tracking). We
1000 calculated the DTW distance (warping bandwidth = 10 ms) between each pair of movements
1001 projected onto the first principal component (Figure 6E), and performed isomap embedding using
1002 the resulting distance matrix. To identify clusters, we used Hierarchical Density-Based Spatial
1003  Clustering of Applications with Noise (HDBSCAN) (hdbscan library, Python).
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