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Abstract

Background: Multi-phenotype genome-wide association studies (MP-GWAS) of correlated traits have
greater power to detect genotype—phenotype associations than single-trait GWAS. However, no multi-
phenotype analysis method exists for epigenome-wide association studies (EWAS).

Results: We extended the SCOPA approach developed by us to “methylSCOPA” software in C++ by
‘reversely’ regressing DNA hyper/hypo-methylation information on a linear combination of phenotypes.
We evaluated two models of association between DNA methylation and fasting glucose (FG) and insulin
(F1) levels: Model 1, including FG, Fl, and three measured potential confounders (body mass index [BMI],
fasting serum triglyceride levels [TG], and waist/hip ratio [WHR]), and Model 2, including FG and FI
corrected for the effects of BMI, TG, and WHR. Both models were additionally corrected for participant
sex and smoking status (current/ever/never). We meta-analyzed the cohort-specific MP-EWAS results
with our novel software META-methylSCOPA, mapped genomic locations to CGCh37/hgl19, and adopted
P<1x107 to denote epigenome-wide significance. We used the Illumina Infinium HumanMethylation450K
BeadChip array data from the Northern Finland Birth Cohorts (NFBC) 1966/1986. We quality-controlled
the data, regressed out the effects of measured potential confounders, and normalized the methylation
signal intensity and Fl data. The MP-EWAS included data for 643/457 individuals from NFBC1966 and
NFBC1986, respectively (total N=1,100).

In Model 1, we detected epigenome-wide significant association in the MP-EWAS meta-analysis at
cg13708645 (chr12:121,974,305; P=1.2x10%) within KDM2B gene. Single-trait effects within KDM2B were
on Fl, BMI, and WHR. Model with effect on BMI and WHR showed the strongest association at this locus,
while effect on Fl in single-phenotype analysis was driven by the effect of adiposity. In Model 2, the
strongest association was at c¢g05063096 (chr3:143,689,810; P=2.3x107) annotated to C3orf58 with

strongest effect on Fl in single-trait analysis and multi-phenotype effecton Fl and WHI within Model 1.
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We characterized the effects of established EWAS loci for diabetes and its risk factors and detected
suggestive (p<0.01) associations at six markers including PHGDH, TXNIP, SLC7A11, CPT1A, MYO5C and
ABCG1, through the dissection of the multi-phenotype effects in Model 1.

Conclusions: We implemented MP-EWAS in methylSCOPA and demonstrated its enhanced power over
single-trait EWAS for correlated phenotypes in large-scale data.

Keywords: Methylation, Epigenome-wide association study, Multivariate analysis, Reverse regression,

Correlation, Meta-analysis

Background

Multi-phenotype genome-wide association studies (MP-GWAS) of correlated traits are more powerful,
give better precision of estimates, and provide enhanced biological insight, i.e. suggestion of potential
pleiotropic effects, as compared to single-phenotype GWAS'®. We have previously developed an MP-
GWAS method using the “reverse regression” approach in which allele dosage is regressed on a linear
combination of phenotypes, implemented into the software tool SCOPA and meta-analysis tool
METASCOPA’. However, no multi-phenotype epigenome-wide association study (MP-EWAS) method
exists, although EWAS have recently gained increased attention due to advances in technology and thus

lowered costs of measuring epigenetic regulation.

DNA methylation is a type of epigenetic regulation and is most widely used within EWAS. Methylation
refers to the attachment of methylation groups to the DNA molecule. Methylation of CpG islands within
a gene’s promoter usually implies that that the gene is not transcribed. DNA methylation is tissue-specific,
reversible, and inheritable. Usually, the cytosine copies on both strands are either methylated or

unmethylated.
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In correlated traits, there is a considerable, although incomplete, overlap between the measures of
glucose homeostasis and type 2 diabetes (T2D). For instance, the genetic correlation between fasting
glucose levels (FG) and fasting insulin levels (Fl) estimated by cross-trait LD Score regression is 0.31, and
the genetic correlations between FG and T2D and between Fl and T2D are 0.58 and 0.48, respectively®.
The study of glycaemic traits in healthy individuals can provide insights about the pathophysiology of T2D,
and the (epi)genetic study on these phenotypes can inform on the molecular mechanisms leading to T2D
— also those influenced by individual’s lifestyle and environmental exposures, as they have been shown
to leave a mark onthe individual’s epigenome®. One of the advantages of studying glycaemic traits, rather
than T2D, is that sample sizes can be much larger, as they are independent of T2D prevalence. Indeed,
genome-wide methylation in blood has been associated with body mass index, T2D and measures of
glucose metabolism®12, However, no study has previously aimed at unravelling the epigenetics of these
traits by taking into account their correlations with each other, most likely due to the lack of appropriate

methodology.

Our aims in the current work were two-fold. First, we aimed to extend the reverse regression approach
for methylation data and implement it in a software tool. We addressed this aim by developing
methylSCOPA (Software for COrrelated Phenotype Analysis with methylation data), which is the SCOPA
extension for DNA methylation data. methylSCOPA association summary statistics can also be aggregated
across EWAS through fixed-effects meta-analysis, implemented in META-methylSCOPA, which is the
META-SCOPA extension for MP-EWAS meta-analysis. Analogous to META-SCOPA, this enables application
of reverse regression in large-scale international consortia efforts where, for instance, ethical concerns
and legal restrictions preclude joint analysis of individual-level genome-wide DNA methylation and
phenotype data from different studies. Second, we aimed to test the method for epigenetic effects on FG

& Fl variability. We report one novel methylation probe associated with FG and Fl from these analyses
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and dissect the multi-phenotype epigenetic effects at 11 established methylation marks for metabolic

traits.
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Implementation

Reverse regression model of multiple correlated phenotypes

methylSCOPA extends the SCOPA analysis framework” to the analysis of DNA methylation data.
Specifically, this means that methylSCOPA allows for methylation (instead of genotype as in SCOPA) data
as input, and that it analyses methylation data analogous to the way in which SCOPA analyses genotype

dosage data.

DNA methylation assays in tissue samples return at any given site an average methylation percentage for
a mixture of cells. These percent methylation values are continuous and range from 0 to 100%3. In
methyISCOPA we model these percent methylation values as a function of the observed phenotypes using
linear reverse regression, analogous to how SCOPA models the genotype at a single-nucleotide
polymorphism (SNP) as a function of the observed phenotypes. Therefore, analogous to expression (1)
from Migi et al.’, considering a sample of unrelated individuals with | phenotypes denoted by
Y1,Y2, -, Yy, in methylSCOPA we model the DNA methylation value Methylation; at a particular probe

for individual i as
Methylation; = a + Z Bjyijte
j

In this expression, y;; denotes the phenotypic value for individual i, phenotype j; B; denotes the effect of
the jth phenotype on the degree of DNA hyper/hypomethylation at the probe (analogous to the effect B;
of the jth phenotype on genotype atthe SNP under consideration in the SCOPA model); and 6i~N(0,O'2),
where o2 is the residual variance. We recommend that covariates relevant to the multi-phenotype effects
should be included in the model; otherwise, confounding factors should be regressed out of the

phenotypes and resulting residuals should be used instead.
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For further dissection of epigenome-wide significant (p<1x10”7) multiple-phenotype association signals,
the analysis of different phenotype combinations is enabled. We assess the model fit within each
phenotype combination through the use of the Bayesian Information Criterion (BIC), with the smallest

value indicating the best fit.

Meta-analysis of multiple EWAS of the same set of correlated phenotypes is enabled through the
application of the method for the synthesis of regression slopes!?, similarly to METASCOPA’. We further
implemented model selection for the signals reaching epigenome-wide significance in the meta-analysis
by using the ‘meta-Bayesian Information Criterion’ (meta-BIC) value. Following the notation from

Bohning®®, the likelihood is defined as

——exp{— 1/, (1; - 1,)2/07}

2mo?

and the meta-likelihood as

k
gmexp{—l/z(zi—li)z/df}
The value of the Bayesian Information Criterion is calculated as in Wit et al.®
BIC =1n(n) k — 21In(L)
where
L = maximized value of likelihood function
n = (combined) sample size
k = number of parameters estimated by the model
Therefore, the value of the meta-log-likelihood can simply be computed as the sum of the log-likelihoods
of the individual studies, and the ‘meta-BIC’ value for the meta-analysis result can subsequently be

computed based on that sum, i.e., based on the meta-log-likelihood.
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methyISCOPA and META-methyISCOPA

As methyISCOPA and META-methyISCOPA are the extensions for methylation data analysis of SCOPA and
META-SCOPA’, respectively, installation procedures, command line options, and output columns for
methylSCOPA and META-methylSCOPA are largely analogous to those for SCOPA and META-SCOPA,

respectively and are detailed in the tutorial provided along the software.

Required file formats

Similarly to SCOPA’, methylSCOPA requires phenotype data in GEN/SAMPLE format utilized by the
IMPUTE and SNPTESTv.2. The methylation data file format required by the software is described in the

tutorial available online http://www.imperial.ac.uk/people/h.draisma/research.html.

Case study
Study populations

To implement our novel methylSCOPA and META-methylSCOPA methods and tools, we performed an
MP-EWAS of two correlated glycaemic traits: FI and FG in two independent cohorts, followed by their
meta-analysis. These two independent cohorts are the Northern Finland Birth Cohorts (NFBC) 1966/1986
which cover almost all births in the two northernmost provinces of Finland between the expected dates
of delivery falling in 19667 (N=12,058 live-born children) and between 15tof July 1985 and 30t June 19868
(N=9,432 live-born children). The children born to the cohort have been followed up throughout their
lives, and here, we used data from the 31-year clinical examination for NFBC1966 and from the 15/16 year
clinical examination for the NFBC1986. FI and FG were measured after overnight fasting and processed

according to the standard protocol. The methylation data were obtained from the Illumina Infinium
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HumanMethylation450K BeadChip array for 807 randomly selected subjects that had provided fasting
blood samples at the 31-year clinical examination (NFBC1966) and for 15-16-year-old individuals
(NFBC1986). After quality control, the MP-EWAS included data for 643/457 individuals from NFBC1966
and NFBC1986, respectively. All the individuals included in the study have provided written informed
consent (or parents of the participants of NFBC1986). The study was approved by the ethical committees

of the University of Oulu and Imperial College London (Approval:181C4421).

Quality control of the methylation data

Methylation data was quality controlled as follows: we 1) removed duplicate samples, 2) filtered based
on methylation detection P-value, 3) performed subset quantile normalization of raw methylation signal
intensity values'®, 4) removed methylation data batch effects using the pipeline CPACOR??, 5) detected
and removed methylation data outliers as well as samples with gender mismatch, 6) applied white blood
cell type composition correction, using “Houseman estimates”??, 7) transformed the values resulting from
the previous step (step 6) to “beta” values, 8) applied inverse normal transformation to the methylation
“beta” values, and finally 9) calculated residuals of the inverse normal-transformed methylation “beta”
values by linear regression, using as covariates the Houseman estimates, first 30 control probe PC scores,
participant sex, smoking status (current/ever/never as defined in keeping with the definitions as used for
NFBC1966 and NFBC1986 within the CARTA consortium [Morris et al., BMJ Open 2015;5:e008808], and
also including an additional category ‘unknown’ for participants with missing data on smoking status), and

—in the case of Model 2 analysis — BMI, TG, and WHR.

Phenotype definitions, imputation and transformations
We used fasting plasma glucose values (mmol/l) and fasting circulating insulin values (pmol/l) as the main

variables of interest in our MP-EWAS. FG was used as such whereas we applied natural log-transformation
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to Fl. We excluded from the analyses non-fasting individuals, pregnant women, diabetic individuals
defined as fasting plasma glucose>=7mmol/l; 2-hour post oral glucose tolerance test glucose
>=11.1mmol/L, HbAlc>=6.5%; diagnosis of type 1 or type 2 diabetes; or on diabetes treatment [oral and
insulin] and individuals on lipid-lowering medication (ATC code “A10”). We then imputed the phenotype
data for males and females separately with random forest (MisForest in R). We included use of oral
contraceptives for the imputation model for females and additionally for both we included other available
indicators of metabolic health, such as blood pressure and metabolomic data. The data for both sexes
were combined after imputation. Finally, we regressed out participant sex and smoking status
(current/ever/never/unknown), and —in the case of Model 2, see below —BMI, TG, and WHR from the FI
and FG values. In fixed-effects meta-analysis of NFBC1966 and NFBC1986 using the functions “escalc” and
“rma” in the “R” package ‘metafor’, the Pearson’s product-moment correlation between the resulting FG

and Fl residuals used for Model 2 analysis was 0.23 (P<0.0001).

MP-EWAS

We fitted two models: Model 1 allows for the detection of effects that might be shared across ‘phenotypes
of interest’ (FG and Fl in this case) and measured potential confounders, i.e. confounders were included
in the same model. The confounders considered were triglycerides (TG), body mass index (BMI) and
waist/hip ratio (WHR). We regressed out the effect of sex and smoking status
(current/ever/never/unknown) from these confounders, similarly as we did for the measurements of FG
and Fl. Model 2 includes multi-phenotype EWAS of FI/FG corrected for measured potential confounders
and allows for the detection of effects that are unique to the phenotypes of interest, i.e. which are not
shared with the measured potential confounders. In other words, Model 2 had the measured potential
confounders TG, BMI and WHR regressed out from the FG and FlI values prior to model fitting.

Mathematically, the two MP-EWAS models fitted were as follows:

10
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1. Methylation probe “beta” residuals value; = Bo+ B1FGres; + BaIn(Fl)res; + BsBMires + B4TGres +
BsWHRres+ g;

2. Methylation probe “beta” residuals value;= Bo+ B1FGres; + BaIn(Fl)res; + g;

where i=1,...,n, FGres = fasting glucose residuals, In(Fl)res = residuals of natural log-transformed fasting

insulin, BMlIres = body mass index, TGres = fasting serum triglyceride level and WHRres = waist/hip ratio.

We meta-analyzed the cohort-specific MP-EWAS results with META-methylSCOPA, mapped genomic
locations to CGCh37/hgl9, and adopted P<1x107 to denote epigenome-wide significance. From the
META-methylSCOPA meta-analysis results, we filtered out associations involving probes that could be
cross-reactive, polymorphic, or have been suggested to be excluded from analysis forany other reason by
Chen et al. [Chen et al., Epigenetics. 2013 Jan 11;8(2)] (their files “List of cross-reactive probes” and “List
of polymorphic CpGs”), Naeem et al. [Naeem et al., 2017; Zhou et al., 2017] (column “MASK.general” as
in their file “hm450.hgl19.manifest.tsv.gz” and columns “MASK_general_FIN” and “MASK_general_EUR”
as in their file “hm450.hg19.manifest.pop.tsv.gz” as on

“http://zwdzwd.github.io/InfiniumAnnotationffdownload” [accessed 2019-05-19 BST]).

Results and discussion

Our MP-EWAS (Figure 1) of 466,342 methylation probes and FG and Fl using methylSCOPA and META-
methyISCOPA resulted in one epigenome-wide significant signal at cg13708645 (chr12:121,974,305;
P_Model1=1.2x10%; P_Model2=0.48) within KDM2B (Table 1, Figure 1), and one at suggestive (P<107)
significance at cg05063096 (chr3:143,689,810; P_Model1=2.0x107; P_Model2=2.3x107) within C30rf58

(Table 1, Figure 2).
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The locus at KDM2B has the most pronounced association with FI, BMI and WHR in univariate analyses
(Table 2). It was not significant in Model 2. Model selection for this locus though metaBIC identified BMI
and WHR as the most significant phenotype combination (Table 3), the effecton Fl at this locus was driven
through its effect on obesity phenotypes. The locus at C3orf58, identified within Model 2 with suggestive
significance, showed stronger effect (Table 1), when additional phenotypes were considered in Model 1.
The strongest phenotype effects at C3orf58 were on combination of Fl and WHR, while the effecton Fl in
univariate analysis would have not led to the detection of this efpigenetic effect.

The univariate analyses showed that these signals would not have been detected in traditional EWAS for
each trait separately, thus, indicating the improved power from the joint analysis of the correlated traits.
We also characterized several established FG/FI or other relevant phenotype-associated EWAS signals
through our MP-EWAS approach. A recent large-scale study in 4,808 (discovery) and 11,750 (replication)
non-diabetic individuals by Liu et al. reported nine novel differentially methylated sites in whole blood
with P<1.27x107: sites in LETM1, RBM20, IRS2, MAN2A2 genes and 1g25.3 region were associated with
FlI; sites in FCRL6, SLAMF1, APOBEC3H genes and 15026.1 region were associated with FG?2. We show that
of the sites associated with FI, 1g25.3 and FAM92B (not replicated in the original study) were also
nominally (P<0.05) associated in our study, (Table 4). Similarly of the FG-associated sites, BRE (not
replicated in the original study) was nominally associated in our study (Table 4).

Another study by Zaghlool et al.2® aimed at elucidating the molecular pathways of 20 previously
established CpG sites by using multi-omics data in 359 samples from the multi-ethnic Qatar Metabolomics
Study on Diabetes. We observe associations at nominal significance at six of these 20 sites and
demonstrate associations within Model 1 at PHGDH, TXNIP, SLC7A11, CPT1A, MYO5C and ABCG1 through

the dissection of multi-phenotype effects within our relatively small study sample (Table 5).
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Conclusions

We have extended the multi-phenotype analyses to the EWAS framework and implemented this in the
publicly available software tools methylSCOPA and METAmethylSCOPA. The application of the method to
glycaemic traits demonstrated its enhanced power over single-trait EWAS for correlated phenotypes in

large-scale data and the ability to characterize signals that are associated with correlated phenotypes.
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Availability and requirements

Project name: methylSCOPA.
Availability: the methylSCOPA and META-methyISCOPA tutorial can be found on

“http://www.imperial.ac.uk/people/h.draisma/research.html”. The methylSCOPA and META-

methylSCOPA software can be found on “http://doi.org/10.5281/zenodo.1137744” and on
“https://doi.org/10.5281/zenodo.1286392”, respectively.

Operating system(s): Linux.

Programming language: C++ (including files from the ALGLIB project for statistical analysis and the TCLAP
project for command line argument parsing).

Any restrictions on use by academics: none.
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Table 1. Lead cglIDs in META-methyISCOPA meta-analysis of fasting glucose (FG) and fasting insulin (FI) in 1,100 individuals from NFBC1966 and
NFBC1986 in Models 1 and 2. Measured potential confounders body mass index (BMI), triglycerides (TG) and waist-to-hip ratio (WHR) were

included in Model 1 whereas their effects were regressed out in Model 2.

Model Locus Lead cgID Chr Position2 (bp) FG effect Fl effect BMI effect TG effect WHR effect P-value
(SE) (SE) (SE) (SE) (SE)

1 KDM2B cg13708645 12 121,974,305 -0.002 0.004 0.001 -4.7x10+4 0.075 1.2x108
(0.003) (0.004) (4.6x104) (0.002) (0.027)

1 C3orf58 cg05063096 3 143,689,810 0.002 -0.006 7.0x105 0.002 0.022 2.0x107
(7.9x104) (0.001) (1.2x104) (6.4x104) (0.007)

2 KDM2B cgl13708645 12 121,974,305 -0.002 0.005 0.48
(0.003) (0.004)

2 C3orf58 cg05063096 3 143,689,810 0.002 -0.006 2.3x107
(7.9x10%) (0.001)

Chr: chromosome. SE: standard error. FG: fasting plasma glucose level. Fl: fasting circulating insulin level. BMI: body mass index. TG: fasting serum
triglyceride level. WHR: waist-to-hip ratio

aposition reported for NCBI build GRCh37 (UCSC hgl9 assembly)
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Table 2. Univariate EWAS meta-analysis at lead cgIDs of Fl and FG in 1,100 individuals from NFBC1966 and NFBC1986. Measured potential

confounders body mass index (BMI), triglycerides (TG) and waist-to-hip ratio (WHR) were included in Model 1 whereas their effects were regressed

out in Model 2.
Model Locus Lead cgID Chr | Positiona FG FI BMI TG WHR
(bp) Effect P-value Effect P-value Effect P-value Effect P-value Effect P-value

(SE) (SE) (SE) (SE) (SE)

1 KDM2B cg13708645 12 121,974,305 0.002 0.60 0.013 1.7x104 0.002 2.6x10° 0.005 0.044 0.128 1.9x10%
(0.003) (0.004) (4x104) (0.002) (0.023)

1 C3orf58 cg05063096 3 143,689,810 0.001 0.11 -0.003 0.002 1x10+4 0.39 9x10+4 0.14 0.016 0.006
(8x104) (9%x104) (1x104) (6x104) (0.006)

2 KDM2B cgl13708645 12 121,974,305 -0.001 0.71 0.004 0.30
(0.003) (0.004)

2 C3orf58 cg05063096 3 143,689,810 0.001 0.16 -0.005 1.0x10%
(8x104) (0.001)

Chr: chromosome. SE: standard error. FG: fasting plasma glucose level. Fl: fasting circulating insulin level. BMI: body mass index. TG: fasting serum
triglyceride level. WHR: waist-to-hip ratio

aposition reported for NCBI build GRCh37 (UCSC hgl9 assembly)
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Table 3. Dissection of the multiple phenotype association signals for the lead cgIDs in the MP-EWAS of
fasting glucose (FG) and fasting insulin (Fl) in 1,100 individuals from NFBC1966 and NFBC1986 in

Models 1 and 2. The values displayed are the differences in metaBIC from that of the null model.

Potential confounders of body mass index (BMI), triglycerides (TG) and waist-to-hip ratio (WHR) were

included in Model 1 whereas their effects were regressed out in Model 2.

Model 1 Model 1 Model 2 Model 2

Model €g13708645 cg05063096 cg13708645 cg05063096
BMI -28.26 6.10

BMI+FG -26.33 10.59

BMI+FG+FI -21.73 -2.57

BMI+FG+TG -21.23 15.91

BMI+FG+TG+FI -16.57 -2.63

BMI+FG+TG+WHR -23.45 14.77

BMI+FG+TG+WHR+FI -17.88 -8.40

BMI+FG+WHR -28.67 8.95

BMI+FG+WHR+FI -23.11 -8.85

BMI+FI -23.87 -4.17

BMI+TG -23.21 11.51

BMI+TG+FI -18.35 -3.33

BMI+TG+WHR -25.69 10.29

BMI+TG+WHR+FI -20.15 -8.57

BMI+WHR -30.83 4.43

BMI+WHR+FI -25.69 -9.87

FG 0.18 3.98 1.70 4.68
FG+FI -8.47 -3.53 7.09 -18.33
FG+TG 2.47 8.97

FG+TG+FI -2.85 -5.31

FG+TG+WHR -19.33 9.73

FG+TG+WHR+FI -16.97 -15.23

FG+WHR -24.01 3.65

FG+WHR+FI -22.47 -15.55

Fl -9.72 -4.96 5.66 -18.90
TG 1.98 4.78

TG+FI -3.75 -5.81

TG+WHR -20.71 5.07

TG+WHR+FI -18.89 -15.27

WHR -25.22 -1.00
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WHR+FI -24.71 -16.41

BMI, body mass index; TG, triglycerides; WHR, waist-to-hip ratio.
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Table 4. Sites reaching epigenome-wide significance in the study by Liu et al.?? and their associations

in META-methyISCOPA meta-analysis within our study sample including 1,100 individuals from

NFBC1966 and NFBC1986. Measured potential confounders body mass index (BMI), triglycerides (TG)

and waist-to-hip ratio (WHR) were included in Model 1 whereas their effects were regressed out in

Model 2.
Locus CpG Chr | Position Regulatory feature Trait ‘I:g?::l 1p- :’alf::l 2P-
FCRLG# cg00936728 1| 159772194 | NA Glucose 0.45 0.24
SLAMF1# cg18881723 1| 160616870 | Promoter associated Glucose 0.74 0.68
1q25.3# cg13222915 1| 184598594 | NA Insulin 0.014 0.24
BRE g20657709 2| 28509570 | NA Glucose 0.091 0.039
LRPPRC cg01913188 2 | 44223249 | Promoter associated Glucose 0.38 0.87
IRAK2 g14527942 3| 10276383 | NA Insulin 0.31 0.69
LETM1# cg13729116 4 1859262 | Promoter associated Insulin 0.41 0.53
RBM20# cg15880704 | 10 | 112546110 | NA Insulin 0.52 0.61
IRS2# cg25924746 13 110432935 | Promoter associated Insulin 0.014 0.77
SPTB cg07119168 | 14 | 65225253 | NA Glucose 0.84 0.33
15¢26.1# cgl8247172 | 15| 91370233 | NA Glucose 0.025 0.05
MAN2A2# 820507228 | 15 | 91460071 :;sg;;:gi?fcs)“iate‘j (Cell Insulin 0.13 0.10
FAM92B cg06709610 | 16 | 85143924 | NA Insulin 0.077 0.080
CD300A cg08087047 | 17 | 72461209 | NA Glucose 0.51 0.28
APOBEC3# cg06229674 | 22 | 39492189 | NA Glucose 0.63 0.77

#Replicated in Liu et al.
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Table 5. Previously established sites for diabetes and its risk factors and their associations within our
study sample including 1,100 individuals from NFBC1966 and NFBC1986. Measured potential
confounders body mass index (BMI), triglycerides (TG) and waist-to-hip ratio (WHR) were included in

Model 1 whereas their effects were regressed out in Model 2.

Locus Trait CpG Chr Position Model 1 Model 2
P-value P-value

DHCR24 Obesity cg17901584 1 55353706 0.075 0.53

GFI1 Smoking cg09935388 1 92947588

PHGDH BMI, blood cg14476101 1 120255992 0.0056 0.031
pressure, liver
function

TXNIP T2D €g19693031 1 145441552 8.36E-04 0.051
Metabolite, cg23079012 2 8343710 0.94 0.55
lipid

ALPPL2 Smoking €g21566642 2 233284661 0.25 0.18

UGT2B15 Metabolite cg09189601 4 69514031 0.56 0.19

SLC7A11 Obesity cg06690548 4 139162808 0.0037 0.44

AHRR Smoking cg05575921 5 373378 0.40 0.12
Metabolite, cg06126421 6 30720080 0.26 0.45
protein,
smoking

LOC1001323546 BMI, blood cg18120259 6 43894639 0.15 0.087
pressure

SLC25A22 Metabolite, cg09441501 11 798350 0.56 0.67
T2D, BMI

CPT1A T2D and cg00574958 11 68607622 1.74E-07 0.91
obesity

€g13526915 14 24164078

MYO5C Obesity cg06192883 15 52554171 6.53E-04 0.48

TPM1 Metabolite, cg10403394 15 63349192 0.32 0.85
smoking

RARA Smoking €g19572487 17 38476024 0.72 0.93

F2RL3 Smoking cg03636183 19 17000585 0.42 0.56

SLC1A5 BMI, blood €g22304262 19 47287778 0.33 0.87
pressure

ABCG1 T2D and cg06500161 21 43656587 2.58E-06 0.077
obesity
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Figure 1. Results from the meta-analysis of MP-EWAS for FG and Fl from Model 1. A) Manhattan plot,
B) QQ-plot, and C) Regional association plot for the top signal. In the regional association plot, each
point represents a CpG passing quality control in the association analysis, plotted with their p-value (on
a —logyp scale) as a function of genomic position (NCBI build GRCh37, UCSC hg 19 assembly). The lead

CpG is represented by the circle with the red edge and black face. The color coding of all other CpGs

28


https://doi.org/10.1101/656918
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/656918; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

indicates Pearson correlation with the lead CpG in meta-analysis of NFBC1966 age 31 and NFBC1986
data. We performed the meta-analysis of the correlations between CpGs using function “escalc” from
the ‘metafor’ package in the statistical language and environment “R” [R package], and created the

signal plots using the coMET package. Gene annotations are taken from the University of California

Santa Cruz genome browser
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Figure 2. Results from the meta-analysis of MP-EWAS for FG and Fl from Model 2. A) Manhattan plot,
B) QQ-plot, and C) Regional association plot for the top signal. In the regional association plot, each
point represents a CpG passing quality control in the association analysis, plotted with their p-value (on

a —logye scale) as a function of genomic position (NCBI build GRCh37, UCSC hg 19 assembly). The lead
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CpG is represented by the circle with the red edge and black face. The color coding of all other CpGs
indicates Pearson correlation with the lead CpG in meta-analysis of NFBC1966 age 31 and NFBC1986
data. We performed the meta-analysis of the correlations between CpGs using function “escalc” from
the ‘metafor’ package in the statistical language and environment “R” [R package], and created the
signal plots using the coMET package. Gene annotations are taken from the University of California

Santa Cruz genome browser
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