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Abstract 
 

Background: Multi-phenotype genome-wide association studies (MP-GWAS) of correlated traits have 

greater power to detect genotype–phenotype associations than single-trait GWAS. However, no multi-

phenotype analysis method exists for epigenome-wide association studies (EWAS).  

Results: We extended the SCOPA approach developed by us to “methylSCOPA” software in C++ by 

‘reversely’ regressing DNA hyper/hypo-methylation information on a linear combination of phenotypes. 

We evaluated two models of association between DNA methylation and fasting glucose (FG) and insulin 

(FI) levels: Model 1, including FG, FI, and three measured potential confounders (body mass index [BMI], 

fasting serum triglyceride levels [TG], and waist/hip ratio [WHR]), and Model 2, including FG and FI 

corrected for the effects of BMI, TG, and WHR. Both models were additionally corrected for participant 

sex and smoking status (current/ever/never). We meta-analyzed the cohort-specific MP-EWAS results 

with our novel software META-methylSCOPA, mapped genomic locations to CGCh37/hg19, and adopted 

P<1×10-7 to denote epigenome-wide significance. We used the Illumina Infinium HumanMethylation450K 

BeadChip array data from the Northern Finland Birth Cohorts (NFBC) 1966/1986. We quality-controlled 

the data, regressed out the effects of measured potential confounders, and normalized the methylation 

signal intensity and FI data. The MP-EWAS included data for 643/457 individuals from NFBC1966 and 

NFBC1986, respectively (total N=1,100). 

In Model 1, we detected epigenome-wide significant association in the MP-EWAS meta-analysis at 

cg13708645 (chr12:121,974,305; P=1.2×10-8) within KDM2B gene. Single-trait effects within KDM2B were 

on FI, BMI, and WHR. Model with effect on BMI and WHR showed the strongest association at this locus, 

while effect on FI in single-phenotype analysis was driven by the effect of adiposity. In Model 2, the 

strongest association was at cg05063096 (chr3:143,689,810; P=2.3×10-7) annotated to C3orf58 with 

strongest effect on FI in single-trait analysis and multi-phenotype effect on FI and WHI within Model 1. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/656918doi: bioRxiv preprint 

https://doi.org/10.1101/656918
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

We characterized the effects of established EWAS loci for diabetes and its risk factors and detected 

suggestive (p<0.01) associations at six markers including PHGDH, TXNIP, SLC7A11, CPT1A, MYO5C and 

ABCG1, through the dissection of the multi-phenotype effects in Model 1. 

Conclusions: We implemented MP-EWAS in methylSCOPA and demonstrated its enhanced power over 

single-trait EWAS for correlated phenotypes in large-scale data. 

Keywords: Methylation, Epigenome-wide association study, Multivariate analysis, Reverse regression, 

Correlation, Meta-analysis 

Background 
 

Multi-phenotype genome-wide association studies (MP-GWAS) of correlated traits are more powerful, 

give better precision of estimates, and provide enhanced biological insight, i.e. suggestion of potential 

pleiotropic effects, as compared to single-phenotype GWAS1–6. We have previously developed an MP-

GWAS method using the “reverse regression” approach in which allele dosage is regressed on a linear 

combination of phenotypes, implemented into the software tool SCOPA and meta-analysis tool 

METASCOPA7. However, no multi-phenotype epigenome-wide association study (MP-EWAS) method 

exists, although EWAS have recently gained increased attention due to advances in technology and thus 

lowered costs of measuring epigenetic regulation. 

 

DNA methylation is a type of epigenetic regulation and is most widely used within EWAS. Methylation 

refers to the attachment of methylation groups to the DNA molecule. Methylation of CpG islands within 

a gene’s promoter usually implies that that the gene is not transcribed. DNA methylation is tissue-specific, 

reversible, and inheritable. Usually, the cytosine copies on both strands are either methylated or 

unmethylated. 
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In correlated traits, there is a considerable, although incomplete, overlap between the measures of 

glucose homeostasis and type 2 diabetes (T2D). For instance, the genetic correlation between fasting 

glucose levels (FG) and fasting insulin levels (FI) estimated by cross-trait LD Score regression is 0.31, and 

the genetic correlations between FG and T2D and between FI and T2D are 0.58 and 0.48, respectively8.  

The study of glycaemic traits in healthy individuals can provide insights about the pathophysiology of T2D, 

and the (epi)genetic study on these phenotypes can inform on the molecular mechanisms leading to T2D 

– also those influenced by individual’s lifestyle and environmental exposures, as they have been shown 

to leave a mark on the individual’s epigenome9. One of the advantages of studying glycaemic traits, rather 

than T2D, is that sample sizes can be much larger, as they are independent of T2D prevalence. Indeed, 

genome-wide methylation in blood has been associated with body mass index, T2D and measures of 

glucose metabolism10–12. However, no study has previously aimed at unravelling the epigenetics of these 

traits by taking into account their correlations with each other, most likely due to the lack of appropriate 

methodology.  

 

Our aims in the current work were two-fold. First, we aimed to extend the reverse regression approach 

for methylation data and implement it in a software tool. We addressed this aim by developing 

methylSCOPA (Software for COrrelated Phenotype Analysis with methylation data), which is the SCOPA 

extension for DNA methylation data. methylSCOPA association summary statistics can also be aggregated 

across EWAS through fixed-effects meta-analysis, implemented in META-methylSCOPA, which is the 

META-SCOPA extension for MP-EWAS meta-analysis. Analogous to META-SCOPA, this enables application 

of reverse regression in large-scale international consortia efforts where, for instance, ethical concerns 

and legal restrictions preclude joint analysis of individual-level genome-wide DNA methylation and 

phenotype data from different studies. Second, we aimed to test the method for epigenetic effects on FG 

& FI variability. We report one novel methylation probe associated with FG and FI from these analyses  
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and dissect the multi-phenotype epigenetic effects at 11 established methylation marks for metabolic 

traits.  
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Implementation 

Reverse regression model of multiple correlated phenotypes 

methylSCOPA extends the SCOPA analysis framework7 to the analysis of DNA methylation data. 

Specifically, this means that methylSCOPA allows for methylation (instead of genotype as in SCOPA) data 

as input, and that it analyses methylation data analogous to the way in which SCOPA analyses genotype 

dosage data. 

 

DNA methylation assays in tissue samples return at any given site an average methylation percentage for 

a mixture of cells. These percent methylation values are continuous and range from 0 to 10013. In 

methylSCOPA we model these percent methylation values as a function of the observed phenotypes using 

linear reverse regression, analogous to how SCOPA models the genotype at a single-nucleotide 

polymorphism (SNP) as a function of the observed phenotypes. Therefore, analogous to expression (1) 

from Mägi et al.7, considering a sample of unrelated individuals with 𝐽 phenotypes denoted by 

𝑦1 , 𝑦2 , … , 𝑦𝐽 , in methylSCOPA we model the DNA methylation value 𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑖  at a particular probe 

for individual i as 

𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛𝑖 = 𝛼 +∑ 𝛽𝑗
𝑗

𝑦𝑖𝑗 + 𝜖𝑖  

In this expression, 𝑦𝑖𝑗  denotes the phenotypic value for individual 𝑖, phenotype 𝑗; 𝛽𝑗  denotes the effect of 

the 𝑗th phenotype on the degree of DNA hyper/hypomethylation at the probe (analogous to the effect 𝛽𝑗  

of the 𝑗th phenotype on genotype at the SNP under consideration in the SCOPA model); and 𝜖𝑖~𝑁(0,𝜎
2), 

where 𝜎2 is the residual variance. We recommend that covariates relevant to the multi-phenotype effects 

should be included in the model; otherwise, confounding factors should be regressed out of the 

phenotypes and resulting residuals should be used instead.  
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For further dissection of epigenome-wide significant (p<110-7) multiple-phenotype association signals, 

the analysis of different phenotype combinations is enabled. We assess the model fit within each 

phenotype combination through the use of the Bayesian Information Criterion (BIC), with the smallest 

value indicating the best fit.  

 

Meta-analysis of multiple EWAS of the same set of correlated phenotypes is enabled through the 

application of the method for the synthesis of regression slopes14, similarly to METASCOPA7. We further 

implemented model selection for the signals reaching epigenome-wide significance in the meta-analysis 

by using the ‘meta-Bayesian Information Criterion’ (meta-BIC) value. Following the notation from 

Bohning15, the likelihood is defined as  

1

√2𝜋𝜎𝑖
2
exp⁡{−1

2⁄ (𝜆̂𝑖 − 𝜆𝑖 )2/𝜎𝑖
2} 

and the meta-likelihood as  

∏ 1

√2𝜋𝜎
𝑖
2
exp⁡{−1 2⁄ (𝜆𝑖−𝜆𝑖)2/𝜎𝑖

2} 

𝑘

𝑖=1

 

The value of the Bayesian Information Criterion is calculated as in Wit et al.16 

𝐵𝐼𝐶 = ln(𝑛) 𝑘 − 2 ln(𝐿̂) 

where 

𝐿̂ = maximized value of likelihood function 

𝑛 = (combined) sample size 

𝑘 = number of parameters estimated by the model 

Therefore, the value of the meta-log-likelihood can simply be computed as the sum of the log-likelihoods 

of the individual studies, and the ‘meta-BIC’ value for the meta-analysis result can subsequently be 

computed based on that sum, i.e., based on the meta-log-likelihood. 
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methylSCOPA and META-methylSCOPA 

As methylSCOPA and META-methylSCOPA are the extensions for methylation data analysis of SCOPA and 

META-SCOPA7, respectively, installation procedures, command line options, and output columns for 

methylSCOPA and META-methylSCOPA are largely analogous to those for SCOPA and META-SCOPA, 

respectively and are detailed in the tutorial provided along the software.  

 

Required file formats 

Similarly to SCOPA7, methylSCOPA requires phenotype data in GEN/SAMPLE format utilized by the 

IMPUTE and SNPTESTv.2. The methylation data file format required by the software is described in the 

tutorial available online http://www.imperial.ac.uk/people/h.draisma/research.html.  

 

Case study 
Study populations 

To implement our novel methylSCOPA and META-methylSCOPA methods and tools, we performed an 

MP-EWAS of two correlated glycaemic traits: FI and FG in two independent cohorts, followed by their 

meta-analysis. These two independent cohorts are the Northern Finland Birth Cohorts (NFBC) 1966/1986 

which cover almost all births in the two northernmost provinces of Finland between the expected dates 

of delivery falling in 196617 (N=12,058 live-born children) and between 1s t of July 1985 and 30th June 198618 

(N=9,432 live-born children). The children born to the cohort have been followed up throughout their 

lives, and here, we used data from the 31-year clinical examination for NFBC1966 and from the 15/16 year 

clinical examination for the NFBC1986. FI and FG were measured after overnight fasting and processed 

according to the standard protocol. The methylation data were obtained from the Illumina Infinium 
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HumanMethylation450K BeadChip array for 807 randomly selected subjects that had provided fasting 

blood samples at the 31-year clinical examination (NFBC1966) and for 15-16-year-old individuals 

(NFBC1986). After quality control, the MP-EWAS included data for 643/457 individuals from NFBC1966 

and NFBC1986, respectively. All the individuals included in the study have provided written informed 

consent (or parents of the participants of NFBC1986). The study was approved by the ethical committees 

of the University of Oulu and Imperial College London (Approval:18IC4421). 

 

Quality control of the methylation data 

Methylation data was quality controlled as follows: we 1) removed duplicate samples, 2) filtered based 

on methylation detection P-value, 3) performed subset quantile normalization of raw methylation signal 

intensity values19, 4) removed methylation data batch effects using the pipeline CPACOR20, 5) detected 

and removed methylation data outliers as well as samples with gender mismatch, 6) applied white blood 

cell type composition correction, using “Houseman estimates”21, 7) transformed the values resulting from 

the previous step (step 6) to “beta” values, 8) applied inverse normal transformation to the methylation 

“beta” values, and finally 9) calculated residuals of the inverse normal-transformed methylation “beta” 

values by linear regression, using as covariates the Houseman estimates, first 30 control probe PC scores, 

participant sex, smoking status (current/ever/never as defined in keeping with the definitions as used for 

NFBC1966 and NFBC1986 within the CARTA consortium [Morris et al., BMJ Open 2015;5:e008808], and 

also including an additional category ‘unknown’ for participants with missing data on smoking status), and 

– in the case of Model 2 analysis – BMI, TG, and WHR. 

 

Phenotype definitions, imputation and transformations 

We used fasting plasma glucose values (mmol/l) and fasting circulating insulin values (pmol/l) as the main 

variables of interest in our MP-EWAS. FG was used as such whereas we applied natural log-transformation 
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to FI. We excluded from the analyses non-fasting individuals, pregnant women, diabetic individuals 

defined as fasting plasma glucose>=7mmol/l; 2-hour post oral glucose tolerance test glucose 

>=11.1mmol/L, HbA1c>=6.5%; diagnosis of type 1 or type 2 diabetes; or on diabetes treatment [oral and 

insulin] and individuals on lipid-lowering medication (ATC code “A10”). We then imputed the phenotype 

data for males and females separately with random forest (MisForest in R). We included use of oral 

contraceptives for the imputation model for females and additionally for both we included other available 

indicators of metabolic health, such as blood pressure and metabolomic data. The data for both sexes 

were combined after imputation. Finally, we regressed out participant sex and smoking status 

(current/ever/never/unknown), and – in the case of Model 2, see below – BMI, TG, and WHR from the FI 

and FG values. In fixed-effects meta-analysis of NFBC1966 and NFBC1986 using the functions “escalc” and 

“rma” in the “R” package ‘metafor’, the Pearson’s product-moment correlation between the resulting FG 

and FI residuals used for Model 2 analysis was 0.23 (P<0.0001). 

 

MP-EWAS 

We fitted two models: Model 1 allows for the detection of effects that might be shared across ‘phenotypes 

of interest’ (FG and FI in this case) and measured potential confounders, i.e. confounders were included 

in the same model. The confounders considered were triglycerides (TG), body mass index (BMI) and 

waist/hip ratio (WHR). We regressed out the effect of sex and smoking status 

(current/ever/never/unknown) from these confounders, similarly as we did for the measurements of FG 

and FI. Model 2 includes multi-phenotype EWAS of FI/FG corrected for measured potential confounders 

and allows for the detection of effects that are unique to the phenotypes of interest, i.e. which are not 

shared with the measured potential confounders. In other words, Model 2 had the measured potential 

confounders TG, BMI and WHR regressed out from the FG and FI values prior to model fitting. 

Mathematically, the two MP-EWAS models fitted were as follows: 
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1. Methylation probe “beta” residuals valuei  = β0 + β1FGresi  + β2ln(FI)resi  + β3BMIres + β4TGres + 

β5WHRres+ ei   

2. Methylation probe “beta” residuals valuei  = β0 + β1FGresi  + β2ln(FI)resi  + ei   

where i=1,...,n, FGres = fasting glucose residuals, ln(FI)res = residuals of natural log-transformed fasting 

insulin, BMIres = body mass index, TGres = fasting serum triglyceride level and WHRres = waist/hip ratio. 

We meta-analyzed the cohort-specific MP-EWAS results with META-methylSCOPA, mapped genomic 

locations to CGCh37/hg19, and adopted P<1×10-7 to denote epigenome-wide significance. From the 

META-methylSCOPA meta-analysis results, we filtered out associations involving probes that could be 

cross-reactive, polymorphic, or have been suggested to be excluded from analysis for any other reason by 

Chen et al. [Chen et al., Epigenetics. 2013 Jan 11;8(2)] (their files “List of cross-reactive probes” and “List 

of polymorphic CpGs”), Naeem et al. [Naeem et al., 2017;  Zhou et al., 2017] (column “MASK.general” as 

in their file “hm450.hg19.manifest.tsv.gz” and columns “MASK_general_FIN” and “MASK_general_EUR” 

as in their file “hm450.hg19.manifest.pop.tsv.gz” as on 

“http://zwdzwd.github.io/InfiniumAnnotation#download” [accessed 2019-05-19 BST]). 

 

Results and discussion 
 

Our MP-EWAS (Figure 1) of 466,342 methylation probes and FG and FI using methylSCOPA and META-

methylSCOPA resulted in one epigenome-wide significant signal at cg13708645 (chr12:121,974,305; 

P_Model1=1.2×10-8; P_Model2=0.48) within KDM2B (Table 1, Figure 1), and one at suggestive (P<10-6) 

significance at cg05063096 (chr3:143,689,810; P_Model1=2.0×10-7; P_Model2=2.3×10-7) within C3orf58 

(Table 1, Figure 2).  
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The locus at KDM2B has the most pronounced association with FI, BMI and WHR in univariate analyses 

(Table 2). It was not significant in Model 2. Model selection for this locus though metaBIC identified BMI 

and WHR as the most significant phenotype combination (Table 3), the effect on FI at this locus was driven 

through its effect on obesity phenotypes. The locus at C3orf58, identified within Model 2 with suggestive 

significance, showed stronger effect (Table 1), when additional phenotypes were considered in Model 1. 

The strongest phenotype effects at C3orf58 were on combination of FI and WHR, while the effect on FI in 

univariate analysis would have not led to the detection of this efpigenetic effect.  

The univariate analyses showed that these signals would not have been detected in traditional EWAS for 

each trait separately, thus, indicating the improved power from the joint analysis of the correlated traits.   

We also characterized several established FG/FI or other relevant phenotype-associated EWAS signals 

through our MP-EWAS approach. A recent large-scale study in 4,808 (discovery) and 11,750 (replication) 

non-diabetic individuals by Liu et al. reported nine novel differentially methylated sites in whole blood 

with P<1.27×10-7: sites in LETM1, RBM20, IRS2, MAN2A2 genes and 1q25.3 region were associated with 

FI; sites in FCRL6, SLAMF1, APOBEC3H genes and 15q26.1 region were associated with FG22. We show that 

of the sites associated with FI, 1q25.3 and FAM92B (not replicated in the original study) were also 

nominally (P<0.05) associated in our study, (Table 4).  Similarly of the FG-associated sites, BRE (not 

replicated in the original study) was nominally associated in our study (Table 4).  

Another study by Zaghlool et al.23 aimed at elucidating the molecular pathways of 20 previously 

established CpG sites by using multi-omics data in 359 samples from the multi-ethnic Qatar Metabolomics 

Study on Diabetes. We observe associations at nominal significance at six of these 20 sites and 

demonstrate associations within Model 1 at PHGDH, TXNIP, SLC7A11, CPT1A, MYO5C and ABCG1 through 

the dissection of multi-phenotype effects within our relatively small study sample (Table 5). 
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Conclusions 
 

We have extended the multi-phenotype analyses to the EWAS framework and implemented this in the 

publicly available software tools methylSCOPA and METAmethylSCOPA. The application of the method to 

glycaemic traits demonstrated its enhanced power over single-trait EWAS for correlated phenotypes in 

large-scale data and the ability to characterize signals that are associated with correlated phenotypes.  
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Availability and requirements 

Project name: methylSCOPA. 

Availability: the methylSCOPA and META-methylSCOPA tutorial can be found on 

“http://www.imperial.ac.uk/people/h.draisma/research.html”. The methylSCOPA and META-

methylSCOPA software can be found on “http://doi.org/10.5281/zenodo.1137744” and on 

“https://doi.org/10.5281/zenodo.1286392”, respectively. 

Operating system(s): Linux. 

Programming language: C++ (including files from the ALGLIB project for statistical analysis and the TCLAP 

project for command line argument parsing). 

Any restrictions on use by academics: none. 
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Table 1. Lead cgIDs in META-methylSCOPA meta-analysis of fasting glucose (FG) and fasting insulin (FI) in 1,100 individuals from NFBC1966 and 

NFBC1986 in Models 1 and 2. Measured potential confounders body mass index (BMI), triglycerides (TG) and waist-to-hip ratio (WHR) were 

included in Model 1 whereas their effects were regressed out in Model 2.  

Model Locus  Lead cgID Chr Positiona (bp) FG effect 

(SE) 

FI effect 

(SE) 

BMI effect 

(SE) 

TG effect 

(SE) 

WHR effect 

(SE) 

P-value 

1 KDM2B cg13708645 12 121,974,305 -0.002 

(0.003) 

0.004 

(0.004) 

0.001 

(4.6×10-4) 

-4.7×10-4 

(0.002) 

0.075 

(0.027) 

1.2×10-8 

1 C3orf58 cg05063096 3 143,689,810 0.002 

(7.9×10-4) 

-0.006 

(0.001) 

7.0×10-5 

(1.2×10-4) 

0.002 

(6.4×10-4) 

0.022 

(0.007) 

2.0×10-7 

2 KDM2B cg13708645 12 121,974,305 -0.002 

(0.003) 

0.005 

(0.004) 

   0.48 

2 C3orf58 cg05063096 3 143,689,810 0.002 

(7.9×10-4) 

-0.006 

(0.001) 

   2.3×10-7 

Chr: chromosome. SE: standard error. FG: fasting plasma glucose level. FI: fasting circulating insulin level. BMI: body mass index. TG: fasting serum 

triglyceride level. WHR: waist-to-hip ratio 

aPosition reported for NCBI build GRCh37 (UCSC hg19 assembly) 
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Table 2. Univariate EWAS meta-analysis at lead cgIDs of FI and FG in 1,100 individuals from NFBC1966 and NFBC1986. Measured potential 

confounders body mass index (BMI), triglycerides (TG) and waist-to-hip ratio (WHR) were included in Model 1 whereas their effects were regressed 

out in Model 2.  

Model Locus Lead cgID Chr Positiona 
(bp) 

FG FI BMI TG WHR 

Effect 
(SE) 

P-value Effect 
(SE) 

P-value Effect 
(SE) 

P-value Effect 
(SE) 

P-value Effect 
(SE) 

P-value 

1 KDM2B cg13708645 12 121,974,305 0.002 
(0.003) 

0.60 0.013 
(0.004) 

1.7×10-4 0.002 
(4×10-4) 

2.6×10-9 0.005 
(0.002) 

0.044 0.128 
(0.023) 

1.9×10-8 

1 C3orf58 cg05063096 3 143,689,810 0.001 
(8×10-4) 

0.11 -0.003 
(9×10-4) 

0.002 1×10-4 
(1×10-4) 

0.39 9×10-4 
(6×10-4) 

0.14 0.016 
(0.006) 

0.006 

2 KDM2B cg13708645 12 121,974,305 -0.001 

(0.003) 

0.71 0.004 

(0.004) 

0.30       

2 C3orf58 cg05063096 3 143,689,810 0.001 
(8×10-4) 

0.16 -0.005 
(0.001) 

1.0×10-6       

Chr: chromosome. SE: standard error. FG: fasting plasma glucose level. FI: fasting circulating insulin level. BMI: body mass index. TG: fasting serum 

triglyceride level. WHR: waist-to-hip ratio 

aPosition reported for NCBI build GRCh37 (UCSC hg19 assembly) 
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Table 3. Dissection of the multiple phenotype association signals for the lead cgIDs in the MP-EWAS of 

fasting glucose (FG) and fasting insulin (FI) in 1,100 individuals from NFBC1966 and NFBC1986 in 

Models 1 and 2. The values displayed are the differences in metaBIC from that of the null model. 

Potential confounders of body mass index (BMI), triglycerides (TG) and waist-to-hip ratio (WHR) were 

included in Model 1 whereas their effects were regressed out in Model 2. 

Model 
Model 1 
cg13708645 

Model 1 
cg05063096 

Model 2 
cg13708645 

Model 2 
cg05063096 

BMI -28.26 6.10   

BMI+FG -26.33 10.59   

BMI+FG+FI -21.73 -2.57   

BMI+FG+TG -21.23 15.91   

BMI+FG+TG+FI -16.57 -2.63   

BMI+FG+TG+WHR -23.45 14.77   

BMI+FG+TG+WHR+FI -17.88 -8.40   

BMI+FG+WHR -28.67 8.95   

BMI+FG+WHR+FI -23.11 -8.85   

BMI+FI -23.87 -4.17   

BMI+TG -23.21 11.51   

BMI+TG+FI -18.35 -3.33   

BMI+TG+WHR -25.69 10.29   

BMI+TG+WHR+FI -20.15 -8.57   

BMI+WHR -30.83 4.43   

BMI+WHR+FI -25.69 -9.87   

FG 0.18 3.98 1.70 4.68 

FG+FI -8.47 -3.53 7.09 -18.33 

FG+TG 2.47 8.97   

FG+TG+FI -2.85 -5.31   

FG+TG+WHR -19.33 9.73   

FG+TG+WHR+FI -16.97 -15.23   

FG+WHR -24.01 3.65   

FG+WHR+FI -22.47 -15.55   

FI -9.72 -4.96 5.66 -18.90 

TG 1.98 4.78   

TG+FI -3.75 -5.81   

TG+WHR -20.71 5.07   

TG+WHR+FI -18.89 -15.27   

WHR -25.22 -1.00   
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WHR+FI -24.71 -16.41   
 

BMI, body mass index; TG, triglycerides; WHR, waist-to-hip ratio. 
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Table 4. Sites reaching epigenome-wide significance in the study by Liu et al.22 and their associations 

in META-methylSCOPA meta-analysis within our study sample including 1,100 individuals from 

NFBC1966 and NFBC1986. Measured potential confounders body mass index (BMI), triglycerides (TG) 

and waist-to-hip ratio (WHR) were included in Model 1 whereas their effects were regressed out in 

Model 2.  

Locus CpG Chr Position Regulatory feature Trait 
Model 1 P-
value 

Model 2 P-
value 

FCRL6# cg00936728 1 159772194 NA Glucose 0.45 0.24 

SLAMF1# cg18881723 1 160616870 Promoter associated Glucose 0.74 0.68 

1q25.3# cg13222915 1 184598594 NA Insulin 0.014 0.24 

BRE cg20657709 2 28509570 NA Glucose 0.091 0.039 

LRPPRC cg01913188 2 44223249 Promoter associated Glucose 0.38 0.87 

IRAK2 cg14527942 3 10276383 NA Insulin 0.31 0.69 

LETM1# cg13729116 4 1859262 Promoter associated Insulin 0.41 0.53 

RBM20# cg15880704 10 112546110 NA Insulin 0.52 0.61 

IRS2# cg25924746 13 110432935 Promoter associated Insulin 0.014 0.77 

SPTB cg07119168 14 65225253 NA Glucose 0.84 0.33 

15q26.1# cg18247172 15 91370233 NA Glucose 0.025 0.05 

MAN2A2# cg20507228 15 91460071 
Promoter associated (Cell 
type specific)  

Insulin 
0.13 0.10 

FAM92B cg06709610 16 85143924 NA Insulin 0.077 0.080 

CD300A cg08087047 17 72461209 NA Glucose 0.51 0.28 

APOBEC3# cg06229674 22 39492189 NA Glucose 0.63 0.77 

#Replicated in Liu et al.  
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Table 5. Previously established sites for diabetes and its risk factors and their associations within our 

study sample including 1,100 individuals from NFBC1966 and NFBC1986. Measured potential 

confounders body mass index (BMI), triglycerides (TG) and waist-to-hip ratio (WHR) were included in 

Model 1 whereas their effects were regressed out in Model 2.  

Locus Trait CpG Chr Position Model 1 

P-value 

Model 2 

P-value 

DHCR24 Obesity cg17901584 1 55353706 0.075 0.53 

GFI1 Smoking cg09935388   1 92947588   

PHGDH BMI, blood 
pressure, liver 
function 

cg14476101 1 120255992 0.0056 0.031 

TXNIP T2D cg19693031 1 145441552 8.36E-04 0.051 
 

Metabolite, 
lipid 

cg23079012 2 8343710 0.94 0.55 

ALPPL2 Smoking cg21566642 2 233284661 0.25 0.18 

UGT2B15 Metabolite cg09189601 4 69514031 0.56 0.19 

SLC7A11 Obesity cg06690548 4 139162808 0.0037 0.44 

AHRR Smoking cg05575921 5 373378 0.40 0.12 
 

Metabolite, 

protein, 
smoking 

cg06126421 6 30720080 0.26 0.45 

LOC100132354ó BMI, blood 
pressure 

cg18120259 6 43894639 0.15 0.087 

SLC25A22 Metabolite, 
T2D, BMI 

cg09441501 11 798350 0.56 0.67 

CPT1A T2D and 
obesity 

cg00574958 11 68607622 1.74E-07 0.91 

 
 cg13526915  14 24164078   

MYO5C Obesity cg06192883 15 52554171 6.53E-04 0.48 

TPM1 Metabolite, 
smoking 

cg10403394 15 63349192 0.32 0.85 

RARA Smoking cg19572487 17 38476024 0.72 0.93 

F2RL3 Smoking cg03636183 19 17000585 0.42 0.56 

SLC1A5 BMI, blood 
pressure 

cg22304262 19 47287778 0.33 0.87 

ABCG1 T2D and 

obesity 

cg06500161 21 43656587 2.58E-06 0.077 
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C) 

 

Figure 1. Results from the meta-analysis of MP-EWAS for FG and FI from Model 1. A) Manhattan plot, 

B) QQ-plot, and C) Regional association plot for the top signal. In the regional association plot, each 

point represents a CpG passing quality control in the association analysis, plotted with their p-value (on 

a −log10 scale) as a function of genomic position (NCBI build GRCh37, UCSC hg 19 assembly). The lead 

CpG is represented by the circle with the red edge and black face. The color coding of all other CpGs 
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indicates Pearson correlation with the lead CpG in meta-analysis of NFBC1966 age 31 and NFBC1986 

data. We performed the meta-analysis of the correlations between CpGs using function “escalc” from 

the ‘metafor’ package in the statistical language and environment “R” [R package], and created the 

signal plots using the coMET package. Gene annotations are taken from the University of California 

Santa Cruz genome browser 
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C) 

 

 

Figure 2. Results from the meta-analysis of MP-EWAS for FG and FI from Model 2. A) Manhattan plot, 

B) QQ-plot, and C) Regional association plot for the top signal. In the regional association plot, each 

point represents a CpG passing quality control in the association analysis, plotted with their p-value (on 

a −log10 scale) as a function of genomic position (NCBI build GRCh37, UCSC hg 19 assembly). The lead 
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CpG is represented by the circle with the red edge and black face. The color coding of all other CpGs 

indicates Pearson correlation with the lead CpG in meta-analysis of NFBC1966 age 31 and NFBC1986 

data. We performed the meta-analysis of the correlations between CpGs using function “escalc” from 

the ‘metafor’ package in the statistical language and environment “R” [R package], and created the 

signal plots using the coMET package. Gene annotations are taken from the University of California 

Santa Cruz genome browser 
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