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ABSTRACT

Background: Pediatric high grade glioma (pHGG) remains a fatal disease. Increased access to richly annotated
biospecimens and patient derived tumor models will accelerate pHGG research and support translation of research
discoveries. This work describes the pediatric high grade glioma set of the Children’s Brain Tumor Tissue Consortium
(CBTTC) from the first release (October 2018) of the Pediatric Brain Tumor Atlas (PBTA).

Methods: pHGG tumors with associated clinical data and imaging were prospectively collected through the CBTTC
and analyzed as the Pediatric Brain Tumor Atlas (PBTA) with processed genomic data deposited into PedcBioPortal
for broad access and visualization. Matched tumor was cultured to create high grade glioma cell lines analyzed by
targeted and WGS and RNA-seq. A tissue microarray (TMA) of primary pHGG tumors was also created.

Results: The pHGG set included 87 collection events (73 patients, 60% at diagnosis, median age of 9 yrs, 55% female,
46% hemispheric). Analysis of somatic mutations and copy number alterations of known glioma genes were of
expected distribution (36% H3.3, 47% TP53, 24% ATRX and 7% BRAF VG600E variants). A pHGG TMA (n=77),
includes 36 (53%) patient tumors with matched sequencing. At least one established glioma cell line was generated
from 23 patients (32%). Unique reagents include those derived from a H3.3 G34R glioma and from tumors with
mismatch repair deficiency.

Conclusion: The CBTTC and PBTA have created an openly available integrated resource of over 2,000 tumors,
including a rich set of pHGG primary tumors, corresponding cell lines and archival fixed tissue to advance

translational research for pHGG.

KEY WORDS: pediatric high grade glioma, patient derived cell lines, tumor resource, CBTTC, PBTA, ATRX
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IMPORTANCE OF STUDY

High-grade gliomas (HGG) remain the leading cause of cancer death in children. Since molecularly heterogeneous,
preclinical studies of pediatric HGG will be most informative if able to compare across groups. Given their relatively
rarity, there are few readily available biospecimens and cellular models to inform preclinical laboratory and genomic
translational research. Therefore, the aim of this CBTTC study was to highlight the panel of pediatric HGG cases
whose primary tumors have undergone extensive genomic analysis, have clinical data, available imaging and

additional biospecimens, including tumor, nucleic acids, cell lines and FFPE tissue on a tissue microarray (TMA).
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INTRODUCTION

Pediatric high grade glioma is a leading cause of pediatric cancer death, with most children dying of their
disease within 2 years of diagnosis. Recent large genomic studies have shown that pHGGs arise along embryonic
developmental lineages and are genomically and spatially distinct. ' > Anatomically midline tumors (e.g. thalamic,
pontine) often have recurrent mutations in 3.3 K27M (38% of all non-brainstem pHGG), and have earned the WHO
classification of diffuse midline K27M mutant gliomas. In contrast, anatomically hemispheric tumors are more likely
to have recurrent mutations in /3.3 G34R/V, IDHI and SETDZ2. Additional recurrent mutations occur in TP53, ATRX
and BRAF. Indeed, these discoveries are prompting the development of H3.3 K27M targeted therapies and improved
interpretation of high grade glioma clinical trial results. > *

In order to advance biological studies and clinical translation of these genomic discoveries in pHGG, it is
necessary to 1) increase the availability of pre-clinical models linked to patient biospecimens as well as publicly
available pHGG genomic datasets and 2) present the linked genomics data and clinical annotations in a manner that
is accessible to the general scientific community. The Children’s Brain Tumor Tissue Consortium (CBTTC) is an
international multi-institution biorepository that aims to integrate genomic and molecular research with biorepository
management. Here we describe the generation and characterization of a highly annotated set of non-brainstem
pediatric high grade glioma reagents freely available to the community to accelerate research of this devastating

disease.

MATERIALS AND METHODS

General and laboratory methods:

CBTTC biorepository query. The CBTTC (cbttc.org) is a collaborative, multi-institutional research program
dedicated to the study of childhood brain tumors. The consortium currently includes 16 institutions worldwide (see
Appendix). The CBTTC open source biorepository (https://eig.research.chop.edu/cbttc/) is available to member and
non-member investigators through a submission request system. A research proposal request for biospecimens and/or
data (clinical, imaging, histology slides, genomics) goes through a peer review process to approve specimen
distribution and data sharing.’ After approval, the specimens are delivered to investigators while CBTTC data is

available for viewing and download from the Gabriella Miller Kids First Data Resource Center (KF-DRC,
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https://kidsfirstdrc.org). Clinical reports can be downloaded as PDFs and Aperio SVS histology images viewed with

QuPath. ° Pre- and post-operative MRI images and reports are also available for a subset of the CBTTC subjects.

Processed Genomic Data. Next generation sequencing of over 1200 tumors from the CBTTC was completed in 2018
and deposited in the KF-DRC, as part of the Pediatric Brain Tumor Atlas (PBTA) as described below. Once approved,
data is available for local download, analysis in the cloud-based data sharing platform CAVATICA or visualization
of processed data in PedcBioPortal.” For this study, CBTTC pHGG/PNET tumor sequences from the PBTA release 1
date of 10/30/18 were re-harmonized in 3/2019 and uploaded into PedcBioPortal (https://pedcbioportal.org), with
proteomic data available for select cases. ~ Somatic mutations and copy number alterations in known pHGG and
mismatch repair genes from PedcBioPortal were included if they were considered likely pathogenic by the OncoKB

level of evidence tiers 1- 4. 8

Human Subject Research Protections. All subjects were consented to tissue and data collection through CBTTC
institutional IRB approved protocols. The KF-DRC is recognized as a National Institutes of Health (NIH) trusted

partner for data sharing protections.

Identification of pHGG specimens for cell line generation. A search of the CBTTC biorepository (>3000 unique
patients) in November 2017, revealed 37 non-brainstem pHGG tumors that had been stored in freezing media and
available for tissue dissociation and cell culture generation as described below. As it is now recognized that up to 30%
of tumors previously identified as Primitive Neuroectodermal Tumors (PNETs) are pHGGs, * PNETs were included

in the search, but only included if a H3.3 G34R (n=2) or K27M (n=1) mutation was present.

Tissue dissociation and cell culture. All cell lines were generated by the CBTTC from prospectively collected tumor
specimens stored in Recover Cell Culture Freezing media (Gibco, cat. 12648010) and dissociated as described in the
Supplementary Methods. Up to three culture conditions were initiated based on the number of cells. For FBS cultures,
a minimum density of 3 x10° cells/ml were plated in DMEM/F-12 medium supplemented with 20% fetal bovine serum
(Hyclone, cat. SH30910.03), 1% GlutaMAX (Gibco, cat. 35050061), 100 U/mL penicillin-streptomycin and 0.2%

Normocin (Invitrogen, cat. ant-nr-1). The remaining cells were plated in serum-free Neurobasal-A media (Gibco,
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10888022) supplemented with 1% GlutaMAX, 1x B-27 supplement minus vitamin A (Gibco, cat. 12587010), 1x N-2
supplement (Gibco, cat. 17502001), 20 ng/ml epidermal growth factor (PeproTech, cat. AF-100-15B), 20 ng/ml basic
fibroblast growth factor (PeproTech, cat. 100-18B), 10 ng/ml platelet-derived growth factor AA (100-13A), and 10
ng/ml platelet-derived growth factor BB (PeproTech, cat. 100-14B), 4pg/ml heparin (StemCell, cat. 07980), 100U/mL
penicillin-streptomycin and 0.2% Normocin. Serum-free culture conditions included cells plated directly into media
(SF) or on an extracellular Geltrex matrix denoted SF-ECM (Life Technologies, cat. A1413302) according to the
manufacturer’s thin-gel method. Serum-free cells were initiated in culture with a minimum density of 1x10° cells/ml.
In cases where low cell counts prevented generation of a SF-ECM line at dissociation, established FBS cells were

transitioned to the SF-ECM condition by the Cole laboratory staff at the lowest passage possible.

Genomic Methods:

DNA/RNA extraction, library preparation and sequencing. DNA extraction from 10-20 mg frozen tissue or
2x1076 cells pellet was performed at Biorepository Core (BioRC) at Children’s Hospital of Philadelphia (CHOP).
Briefly, tissue was lysed using a Qiagen TissueLyser II (Qiagen, USA) set at 2x30 sec at 18Hz using 5 mm steel beads.
Qiagen AllPrep DNA/RNA/miRNA Universal kit including a CHCI3 extraction was utilized according to
manufacturer’s protocol. DNA and RNA quantity and quality was assessed by PerkinElmer DropletQuant UV-VIS
spectrophotometer (PerkinElmer, USA) and an Agilent 4200 TapeStation (Agilent, USA) for RINe and DINe (RNA
Integrity Number equivalent and DNA Integrity Number equivalent). Library preparation and sequencing was
performed by the NantHealth sequencing center. Briefly, DNA sequencing libraries were prepared for tumor and
matched-normal DNA using the KAPA Hyper prep kit (Roche, USA); tumor RNA-Seq libraries were prepared using
KAPA Stranded RNA-Seq with RiboErase kit. Whole genome sequencing (WGS) was performed at an average depth
of coverage of 60X for tumor samples and 30X for germline. RNA samples were sequenced to an average of 200M
reads. All samples were sequenced on the Illumina HiSeq platform (X/400) (Illumina, San Diego, USA) with 2 x
150bp read length. For the cell line sequencing, samples labelled with “CL-adh” correspond to the adherent FBS cell

lines and those labelled “CL-susp” are the “S” serum free lines.

Variant calling and copy number alteration detection. The somatic variant and copy number variation detection

workflow was setup using CWL (Common Workflow Language) on CAVATICA. The workflow uses BWA-MEM
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v0.7.17 '° to align reads to the GRCh38 reference and SAMBLASTER v0.1.24 to mark duplicate reads, extract
discordant/split reads '', and sort the final BAM file. Base Quality Score Recalibration was applied using a model
derived from known SNPs and InDels of HapMap, 1000 Genomes, dbSNP138, and Mills Gold Standard Calls
databases. GATK4 v4.0.3.0 HaplotypeCaller was used to generate germline gVCF files, merge BAMs, and convert to
CRAM as for both germline and tumor samples. Strelka2 v2.9.3 was applied on the aligned tumor-normal pairs to call
point somatic mutations and short indels detection '2, Control-FREEC v8.70 was used to detect copy number
alterations (CNAs) >, and MANTA v1.4.0 was used for large structural variant detection. * The single nucleotide
variants and indels were then annotated by SnpEff v4.3t and Variant-Effect-Predictor v93. '*'* Only select mismatch
repair (MSH2, MSH6, PMS2, POLE) and glioma-associated (H3F3A, TP53, ATRX, BRAF, IDHI, NFI) gene
mutations that ‘PASSED’ Strelka?2 filters and had predicted protein damaging effects were used for further analysis.
For CNAs, both the Wilcoxon test and Kolmogorov-Smirnov test were performed and events < 10kb in length with
p-value > 0.01 were filtered out.

Matched normal blood DNA was screened for rare (ExXAC MAF <0.001) damaging mutations and focal
deletions in a select panel of mismatch repair deficiency hereditary predisposition genes (MSH2, MSH6, POLE, MLH 1
and PMS2). Only those determined to be Pathogenic or likely Pathogenic by InterVar ' or previously reported ' were

used for further analysis.

Tumor mutation burden analysis. To obtain somatic variants in the coding region, only somatic variants overlapping
a consensus exome region (https://github.com/AstraZeneca-NGS/reference data) were used. The total base pair length
of the exome bed was calculated to be 159697302 bp, which was then used to calculate the Tumor Mutation Burden

(TMB) per sample as: (Total variants in coding region/length of exome bed (bp)*1000000.

RNA expression quantification. Sequencing data generation and read quality control checks were performed by the
NantHealth sequencing center. RNAseq reads were aligned to hg38 reference and gene isoforms quantified using the
Toil workflow (STAR v2.61d, RSEM v1.3.1). '® FPKM (Fragments Per Kilobase of transcript per Million) and TPM
(Transcripts Per Million) values were generated. FPKM values were uploaded to PedcBioPortal and we used the TPM

values for visualizing the RNAseq data for all the CBTTC samples.
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Cell line - primary tumor comparison

Expression comparison

Primary tumor samples and matched cell line RNAseq expression data were filtered to retain genes that are expressed
(> 1 TPM). We used 589 patient tumors as a reference set: 99 Ependymoma, 87 High-grade glioma/astrocytoma
(WHO grade III/IV), 269 Low-grade glioma/astrocytoma (WHO grade I/I1), and 134 Medulloblastoma tumors. We
identified the 5000 most variable genes in pediatric tumors, then further restricted the analysis by filtering to genes
expressed in both our primary and cell lines samples. This set of 3203 genes was log2 transformed for the reference
set, cell lines, and primary tissue samples and pairwise spearman correlation was performed among disease type, cell
lines, and their corresponding primary tissues.

Somatic Mutational Signature Analysis

The deconstructSigs R package v1.8.0 ' was used to determine sample-level trinucleotide mutational matrices for
all non-silent somatic mutations. Cosine similarities were then calculated for each of the 30 COSMIC signatures

using the “genome” normalization mode for BSgenome.Hsapiens.UCSC.hg38.
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RESULTS
The CBTTC cohort of pHGG primary tumors represent the spectrum of disease.

The clinical co-variates, genomics and biospecimens of the pHGG set in this study are shown in Table 1,
Table S1 and Figure 1. The cohort includes 81 pHGG and H3.3 mutant PNET primary tumors with both WGS and
RNA-seq from PedcBioPortal from 70 participants. An additional two cases (7316-1746 and 7316-599) with
established cell lines and one case with proteomic data (7316-37) were included in the cohort. Therefore, the final set
includes 73 participants representing 87 collection events from diagnosis and or progression/relapse. Tumors were
from participants with a median age of 9 years old at diagnosis, with 97% of our cohort less than 18 years old at
diagnosis. The cohort was balanced by sex as 55% of participants were female. The majority (60% of the tumors)
were from initial or diagnostic specimens and nearly half (46%) were from a hemispheric location. There were two
cases (7316-913, 7316-24) of secondary malignant glioma from patients treated with prior craniospinal radiation for
medulloblastoma. Analysis of OncoKB somatic mutations and copy number alterations of a selected set of recurrently
mutated pHGG genes were of an expected and representative distribution with 47% TP53, 36% H3.3, 24% ATRX and
7% BRAF V600E variants (Table S2 and Figure 1A).

As evident from the Oncoprint (Figure 1A) and as analyzed in PedcBioPortal, we were able to identify
previously known co-occurring and mutually exclusive pHGG mutations. These include mutually exclusive H3.3 G34
and K27M mutations' and co-occurring mutations of ATRX with H3.3 G34R?® or NFI*'. In this study, however, we
also found that tumors with high confidence PolE mutations™ and ultra-hypermutation, also had significant co-

occurrence of ATRX mutations (Bonferroni adj p value 0.013).

CBTTC patient-derived pHGG biospecimens and resources are highly annotated and molecularly
characterized.
PHGG cell lines

The CBTTC biorepository had 37 pHGG tumor tissues stored in freezing media that were dissociated and
cultured with four different culturing conditions, resulting in over 80 lines. At least one culture grew from 23/37 (62%)
dissociation events from 23/73 (31%) patients in our cohort (Figure 1B). Information including prior patient therapy,
culture and growing conditions including orthotopic xenografts, doubling times and validation status are described in

Table 2 and Table S3. A subset of the cell lines from patients was sequenced by WGS and RNA-seq by the CBTTC
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or targeted Sanger sequencing where primary tumor variants could be identified (Figures 1B and 2 and Table S2). Of
the 23 unique patient lines, pHGG driver mutations found in patient tumors validated in 13 derived cell lines, did not
validate in four, and six pairs did not harbor known HGG mutations. For the 7316-445 cell line there was absent
ATRX protein expression of the tumor on the pHGG TMA (not shown) and in the cell line by Western blot (Figure
3H). The 7316-2189 participant had a family history of childhood brain cancer and clinical diagnosis of Turcot
Syndrome on the pathology report (Table S1). The 7316-2189 primary tumor and cell line both had low PMS2
expression by FPKM on RNA sequencing and a previously described germline PMS2 mutation.'” The cell line panel
represents the spectrum of pHGG genomics with eight unique patient cell lines with H3.3 mutations (35%), six with
TP53 mutations (26%), one with a BRAF V600E mutation and one with a KRAS Q61H mutation. It is noteworthy that
all cell lines matched their corresponding primary tumor identity by STR profiling, and also clustered with the cohort
of 87 High-grade glioma/astrocytoma (WHO grade III/IV) by expression profiling (Figure 2A). Further studies will
determine whether the cell lines that did not validate by sequencing represent non-tumor tissue or are sub-clones of
the primary tumors.

Somatic mutations in cancer genomes may be caused by infidelity of the DNA replication machinery,
exogenous or endogenous mutagen exposures, enzymatic modification of DNA, or defective DNA repair.> To further
characterize our set, we compared previously reported somatic mutational signatures of the cell lines to their parental
tumors (Fig 2B and Table S5).** All cell lines displayed the somatic mutational Signature 1 corresponding to
spontaneous deamination of 5-methylcytosine (5SmC), which is found in most cancer samples. Additional mutational
signatures in the cell lines and parental tumors include those of homologous recombination deficiency (HRD)
(Signature 3 in 7316-1769), prior alkylator therapy (TMZ) (Signature 11 in 7316-1746 and 7316-3058) and a double
nucleotide substitution signature previously reported in breast cancer (BR) and medulloblastoma (MB) (Signature 8
in 7316-1763 and 7316-195). One of the most prevalent signatures were those for mismatch repair (MMR) deficiency

(7316-2189) as described further below.

Additional CBTTC pHGG Resources
In addition to the cell lines, for each of the tumors in the CBTTC there are additional banked biospecimens
including tumor tissue, tumor in freezing media, blood, plasma, CSF and both tumor and blood derived nucleic acids

(Table S1). Of the pHGG cohort in this study, 36 patient tumors are also available on a tissue microarray (TMA)

10
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(Figure 1B), along with an additional 40 pHGG and control tissues. This valuable resource will enable researchers to
examine the tumor microenvironment, discover cell surface immunotherapy target proteins or perform validation
studies of the corresponding proteomic dataset. Finally, to facilitate integrative studies, most of the tumors in the
pHGG set have corresponding redacted operative reports, pathology and radiology reports along with the relevant

MRI images and histology slides (Figure 1B and Table S4).

Use-case examples demonstrate the potential value of integrated resources to study pHGG
Resources to study hyper-mutation in pHGG

Pediatric high grade gliomas are one of the most common tumors in individuals with constitutional mismatch
repair deficiency (CMMRD).” They have germline loss of function of a mismatch repair gene (including PMS2,
MSH2, MLHI or MSHG6) and frequently acquire secondary somatic POLE or POLD mutations leading to ultra-
hypermutant genomes with a high tumor mutational burden (TMB) > 100 mut/Mb. '"** It is these patients whose
tumors have an exceptional clinical response to immune checkpoint inhibition ** and require close tumor surveillance
screening. * Individuals with germline POLE mutations often acquire secondary MMR somatic mutations and are

hyper-mutant with 10-100 mut/Mb. 7

In our panel of pHGG, six patients (eight tumors) harbored germline mismatch
repair mutations and hyper-mutation (Figure 1A) and one patient’s tumor is hyper-mutant without an identified
germline variant (7316-2307). Four (7316-515 / 2085, 7316-2640, 7316-2189, 7316-212) had germline loss of
function PMS2 or MSH6 mutations with high confidence somatic POLE mutations (Tables S2 and S6). ** As predicted,
these tumors were ultra-hypermutant with a TMB > 100 mut/Mb and had a somatic mutational Signature 15 (Figure
2B and Table S5) indicative of defective DNA mismatch repair. 2> One tumor (7316-2980) had a germline PolE
mutation and secondary MSH2 mutation and hyper-mutation (28 mut/Mb). Finally, three tumors (7316-2594/3058
and 7316-2756) were from two participants with heterozygous germline MSH2 mutations (Lynch syndrome).
Typically, individuals with Lynch syndrome do not develop cancer until adulthood. Additionally, the tumors from
patient PT_JNEV57VK (7316-2594 / 7316-3058) were hyper-mutant. It is possible there were other genetic factors
that contributed to glioma tumorigenesis at a young age, and therapeutic factors (i.e. radiation or alkylator therapy)
that promoted tumor hyper-mutation.

Three of the hyper-mutant tumors were generated into cell lines (7316-2189, 7316-212 and 7316-3058).

Interestingly, we defined the 7316-2189 tumor as ultra-hypermutant (TMB = 327 Mut/Mb), but its matched cell line

11
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was defined as hypermutant (TMB = 14.05 Mut/Mb). To further investigate, we ran somatic mutational signature
analysis and found that the 7316-2189 tumor harbored a predominant signature 15 (cosine similarity = 0.91),
supporting defective mismatch repair (MMR) in this tumor (Figure 2B). The predominant signature in the 7316-2189
matched cell line was signature 26 (cosine similarity = 0.91), an alternative trinucleotide context and signature of

defective MMR, suggesting that even though the cell line is not ultra hypermutant, it still retains MMR deficiency.”

Availability of a H3.3 G34R mutant pHGG cell line

The development of preclinical cell and murine models of H3.3 K27M mutant midline glioma has
significantly advanced the understanding of this histone biology in pHGG and also led to biomarker based clinical
trials.” However, the H3.3 G34R mutation is less common, occurring in 7% of pHGG and 16.2% of hemispheric
tumors.' Since there are fewer of these tumors, the models are also scarce, hindering discovery efforts for this subset
of patients. In our pHGG set, there were two pHGG and two PNETs with a H3.3 G34R mutation, and as expected,
were from adolescents with hemispheric tumors (Fig 1A). We were able to generate and characterize the 7316-158
H3.3 G34R line and examine additional resources to study this unique subset of pHGG. The resources include the
7316-158 MRI imaging (Figure 3A), diagnostic H&Es (Figure 3B) and immunohistochemistry slides. In addition, this
tumor is on the pHGG TMA and shows protein loss of ATRX staining (Figure 3C). There are additional variants of
interest as demonstrated on the tumor Circos plot (Figure 3D). The 7316-158 cell line (Figure 3E) was validated for
the H3.3 G34R mutation (Figure 3F) and absent ATRX protein (Figure 3H), and provides a resource for high
throughput drug or genetic testing (Figure 3G, S1). Finally, the cell line from the matched recurrent specimen (7316-
5317, Table S1) also has a validated H3.3 G34R mutation. While the primary tumor sequence will be released in the

upcoming updated PBTA2 release, the 7317-5317 cell line is currently available for distribution by the CBTTC.

DISCUSSION

Pediatric high grade gliomas remain incurable, emphasizing the need for collaborative efforts to openly share
data and biospecimens to advance the care for children and adolescents with this rare disease. For example, integration
of international pHGG genomic datasets in PedcBioPortal from the CBTTC (this study), the Herby Trial, Pacific
Neuro-Oncology (PNOC) 003 clinical trial and International HGG consortium results in over 1500 cases of pHGG

and diffuse intrinsic pontine glioma (DIPG)."?*?’ These datasets are expected to increase, lending statistical power to
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analysis of subsets of pHGG to advance discoveries and collaborations. For example, the second release of data for
the CBTTC/PBTA is expected in 2019 and will include additional paired diagnosis and relapse specimens. Moreover,
because the PedcBioPortal platform integrates with other non-brain tumor pediatric and adult cancer genomic datasets,
the statistical power of discovery is further augmented. The same concept applies to pHGG models including cellular
cultures, patient derived xenografts or murine models.”® Each has their unique advantages and limitations, but
integration is essential to drive the field forward and necessary for cross-validation studies.

A unique aspect to the CBTTC is the prospective nature of the data collection and the open availability of
data and biospecimens for follow up validation or additional discovery efforts. The CBTTC expects that the data and
reagents generated from CBTTC specimens are returned to the scientific community as it is recognized that there is
greater knowledge that can be learned from collaborative integrative analysis of tumors within a set. Finally, the need
to share data and work collaboratively is not only scientifically rational, but is also mandated by the patients and
parents who have supported this effort through donation of specimens, data and philanthropy.

This is the first report that focuses on the pHGG data and biospecimens that are available from the CBTTC
and PBTA. The two use-cases describe patient cohorts that comprise subtypes of pHGG. We highlight the hyper-
mutant pHGG cases and also H3.3 G34R 7316-158 cell line, which is one of the first published available lines of its
kind. Additional subsets include 1) specimens from multiple events which could evaluate resistance or response to
therapy (n =11 patients), 2) secondary malignant glioma (n=3) and 3) analysis of tumor with recurrent mutations such
as NFI or ATRX. Additional analyses of the set could include evaluation of the noncoding genome, structural variant
analyses and interrogation of germline variation. There are also likely unique opportunities for neuro-radiologists and
computational biologists to examine imaging characteristics of these highly characterized tumors.

There are several future initiatives that will enhance the existing pHGG data set and future CBTTC / PBTA
studies. The CBTTC clinical data subcommittee recently completed a large data review and bioinformatics effort to
provide clinical outcome data, including survival statistics for the CBTTC cohort to be available on PedcBioPortal.
There are several current and prospective partnerships with the CBTTC to advance research and therapy for children
with brain tumors. For example, a cohort tumors presented in this manuscript is included in the study of multi-omic
single cell analyses as part of the NIH Cancer Moonshot Human Tumor Atlas Network (HTAN) and also Project
HOPE. In addition, the CBTTC will continue its strong partnership with the Pacific Neuro-Oncology Consortium

(PNOC) which is a multi-institution clinical trials network that facilitates rapid translation between basic, translational
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and clinical scientists to rapidly advance treatments for children with malignant brain tumors, including pediatric high-

grade glioma.
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# %

DEMOGRAPHICS, n=73
CLINICAL EVENT

initial 44 60 %

recc./progressive 20 27 %

both 5 7%

SMN 3 4%

unknown 1 1%
LOCATION

midline 37 51 %

hemispheric 34 46 %

unknown 2 3%
SEX

female 40 55 %

male 33 45 %
AGE AT DIAGNOSIS median range

9yrs 0.2-26

TP53 33 47 %
H3.3 25 36 %
ATRX 17 24 %
NF1 19 27 %
BRAF V600E 5 7%
IDH1 3 4%
gMMR 6 8%
RESOURCES, n=73
WGS/RNAseq 70 96 %
tumor proteomics 21 29 %
operative reports 66 90 %
radiology reports 28 38 %
radiology images 29 40 %
pathology reports 63 86 %
histology images 62 85 %
TMA 36 49 %
cell line 23 31%

Table 1. Summary of CBTTC pHGG cohort of the Pediatric Brain Tumor Atlas 1.
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Figure 1. The CBTTC PBTAI1 cohort and oncoprint. A. Integrated Oncoprint of the 73 participants in the complete pHGG
cohort, with a corresponding key on the right. The demographic data such as event, age at diagnosis, sex and location were
downloaded from CBTTC. Availability of WGS/RNAseq and tumor proteomics (red denotes both initial and recurrence) and select
somatic pHGG genes (TP53, H3F34, ATRX, NF1, BRAF, IDHI, POLE, MSH2, MSHG6) as annotated by OncoKB were downloaded
from PedcBioPortal or KF-DRC. Germline variants in MSH2, MSH6, POLE and PMS2 and mutational burden were analyzed
locally in CAVATICA. The bar graph of age and mutational on the oncoprint are approximate from Table S1 and S5 values. B.
Oncoprint of resources available for the pHGG set with a descriptive key on the right. Availability of operative, radiology and
pathology reports and imaging was downloaded from the KF-DRC manifest. Availability of pHGG FFPE samples on the TMA,

cell line availability and sequencing were determined locally. Abbreviations: dx.: diagnosis; recc.:

recurrence; NGS = next

generation sequencing.
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EETRER v v 1o ST EUENT ooy oacmoss eveT PO Loomon LT e e
731624 PT_TGQY3X3W  C22878 15 F HGG SMN XRT/chemo  Cerebellum |DLV16\?1:37| AE (7d), S (>7d)
7316-85 PT_3AWKWXEV ~ C28290 2 M HGG Initial None  Temporal Lobe BRAF VBOOE  AE (7d), S (4d)
7316-158 PT OBZETMOM (36285 17 M PNET Initial None Frontal Lobe H3F3A G34R AE (3d)
7316161 PT Z4BF2NSB 34809 16 M HGG Initial None  Temporal Lobe AE (6d)
7316-195 PT_Y5KY6KN9 C56826 9 M HGG Initial None Cerebellum HsggisK;?M S/(-\:s(t:.ii)%d)
7316212 PT_FHOTJ5P2 (60393 18 F HGG  Recurrence TMZf(FéTCNU Frontal Lobe A7 (3d)
7316339 PT_MQYPSOW1 (70848 1 F HGG Initial None  Temporal Lobe A7 (4d)
7316-388 PT_4XB3YTJM  C340710 5 F HGG Initial None Thalamus ~ H3F3A K27M AE (2d)
7316-440 PT KEQ53KRH  C107010 9 F HGG Initial None Thalamus ~ TP53 S94* AE (est. 3d)
7316-445 PT 89XRZBSG (94956 18 M HGG Initial None  Temporal Lobe CCA+ /ATRX- AE (6d)
7316-599 C89052 1 F HGG Initial None Thalamus H3F3A K27M AE (3d)
7316-870 PT_PSHHJJPH C116727 10 F HGG  Progressive’  None H';mizsmi”sc; AE (>7d)
7316913 PT 4347ZBEX  C216603 21 F HGG SMN XRT/chemo Temporal Lobe  WGS A fsei}"d‘;d)'
7316-1102 PT _5BWZAONT ~ C292125 12 F PNET Initial None Ventricles ~ H3F3A K27M A/ (est. 4d)
73161746 PT_C2D4JXS1  C337143 6 F HGG Initial ™Z Cerebellum  KRAS Q61H SA(Zs(S.dgH)
73161763 PT Z4PJAGKT C377856 10 F HGG Initial None Thalamus ~ H3F3A K27M S (3d)
73161769 PT JSFBMK5V  C88806 17 M HGG  Progressive 1\ )éEI/‘IRN Midline HS;’;’ﬁSK;M S (4d)
73161956 PT P2NGYMG5 C597288 12  F HGG Initial None Cerebellum AE (est. >7d)
73162140 PT_QDGVJKEO C466170 19 M HGG  Progressive XRT Frontal Lobe Al (>7d)
7316-2151 PT_HNZNZ635 C801468 6 M HGG Progressive® None Thalamus Af
73162176 PT_VAJNSQP8  C624225 16 F HGG Initial None Midline A7 (3d)
7316-2189 PT VIM2STE3  C641691 9 F HGG  Progressive Nivolumab H‘;mizsm‘?:; Low PMS2 A7 (est. >7d)
7316-3058 PT_JNEV57VK  C714384 8 M HGG Progressive TM;(,Rl-BrEV Thalamus AH'?;?(ARE%QAC AE (6d), S (3d)

Table 2. pHGG cell line table. Summary of established pHGG glioma patient derived cell lines. The clinical event ID is also
called the “outside event ID” and is denoted by 7316-XXXX. It represents the base name of the cell line and the clinical event
from which the line was established. The KidsFirst ID is the participant ID and has the prefix “PT_”. The Research ID is the
CBTTC ID and starts with a “C”. Event age represents the age of the participant at the time of the event. Event designates
whether the specimen was collected as an initial sample, at the time of progression or definitive surgery, at recurrence or was a
second malignant neoplasm. The location summarizes the location of the tumor. The cell line validation column summarizes the
gene and /or method of cell line validation. The cell line type is a list of the best line per sample designated as A (for adherent), S
for suspension lines grown in serum free conditions, “f” for a line grown in fetal bovine serum, or “E” for an adherent line grown
on an extracellular matrix in serum free conditions. The doubling times were determined by one of the three described methods.
Details of the cell lines are found in Table S3.
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Figure 2. Parental primary tumor and cell line comparisons. A. Gene expression correlations of pHGG cell lines, parental
tumors and brain tumors in the Pediatric Brain Tumor Atlas Set clusters the pHGG cell lines, parental primary tumors (n=9) and
High-grade glioma (WHO grade III/IV) tumors (n=87). B. Mutational signatures of the pHGG cell lines (n=10) with corresponding
primary tumor (n=9) WGS. “F” is Adherent-FBS. “S” is suspension, serum-free. Type refers to mutational signature nomenclature
(COSMIC v2). TMB is the coding tumor mutational burden per Mb. SmC is a deamination of 5-methylctyosine to thymine
signature. HRD is homologous recombination defect associated signature. MMR 1is defective DNA mismatch repair associated
signature. BR and MB are abbreviations for breast cancer and medulloblastoma, respectively. TMZ is a temozolomide signature.
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7316-388, IC50 = 0.14 uM
== 7316-3058, IC50 = 0.22 uM

CELL LINE

ATRXm ctrl
ATRX wt ctrl
7316-158
7316-445
7316-445R
7316-3058

3
g 504 —— 7316-158,1C50 = 2.7 uM
=
04 283 kDa
log concentration (uM) 42 KDy g

Figure 3. Integrated resources from participant PT_9BZETMOM (C36285) and the corresponding primary tumor (7316-
158). A. Coronal MRI imaging demonstrates the pre-operative right frontal lobe tumor. B. Diagnostic H&E of the 7316-158
primary tumor. C. ATRX Immunohistochemistry of the 7316-158 tumor on the pHGG TMA shows absence of ATRX staining in
the tumor cells (blue), but positive (brown) staining in cells of the microenvironment. D. Circos plot of the WGS of the 7316-158
primary tumor showing mutations (outer ring), copy number variation (middle ring) and structural variants (inner circle). E. Light
microscopy of the 7316-158 cell line. F. Chromatogram of cell line DNA sequencing demonstrating the 7316-158 cell line H3.3
G34R mutation. G. Dose response curves of the 7316-158 (H3.3 G34R), 7316-3058 (H3.3 K27M) and 7316-388 (H3.3 K27M)
cell lines treated with the Weel inhibitor AZD1775. H. ATRX Western Blot demonstrating loss of ATRX protein in the 7316-
158 and control cell lines.
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