

1 The Impact of Antimalarial Resistance on the Genetic Structure of *Plasmodium falciparum* in the
2 DRC

3
4 Robert Verity^{1,2}, Ozkan Aydemir^{2,3}, Nicholas F. Brazeau^{3,4}, Oliver J. Watson¹, Nicholas J. Hathaway⁴,
5 Melchior Kashamuka Mwandagaliwa⁵, Patrick W. Marsh², Kyaw Thwai³, Travis Fulton⁶, Madeline
6 Denton⁶, Andrew P. Morgan⁶, Jonathan B. Parr⁶, Patrick K. Tumwebaze⁷, Melissa Conrad⁸, Philip J.
7 Rosenthal⁸, Deus S. Ishengoma⁹, Jeremiah Ngondi¹⁰, Julie Gutman¹¹, Modest Mulenga¹², Douglas E.
8 Norris¹³, William J. Moss¹⁴, Benedicta A Mensah¹⁵, James L Myers-Hansen¹⁵, Anita Ghansah¹⁵,
9 Antoinette K Tshefu⁵, Azra C. Ghani¹, Steven R. Meshnick³, Jeffrey A. Bailey^{2,*}, Jonathan J.
10 Juliano^{3,6,16,*,+}

11
12 1: Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious
13 Disease Epidemiology, Imperial College London, UK

14 2: Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA

15 3: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina,
16 Chapel Hill, USA

17 4: Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA,
18 USA

19 5: Kinshasa School of Public Health, Hôpital Général Provincial de Référence de Kinshasa, Kinshasa,
20 Democratic Republic of Congo

21 6: Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North
22 Carolina at Chapel Hill, Chapel Hill, NC, USA

23 7: Infectious Disease Research Collaboration, Kampala, Uganda

24 8: Department of Medicine, University of California- San Francisco, San Francisco, CA, USA

25 9: National Institute for Medical Research, Tanga, Tanzania

26 10: RTI International, Dar es Salaam, Tanzania

27 11: Malaria Branch, Center for Global Health, Centers for Disease Control, Atlanta, GA, USA

28 12: Tropical Disease Research Centre, Ndola, Zambia

29 13: Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of
30 Public Health, Baltimore, MD, USA

31 14: Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD,
32 USA

33 15: Noguchi Memorial Institute of Medical Research, University of Ghana, Accra, Ghana

34 16: Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at
35 Chapel Hill, Chapel Hill, NC, USA

36 37 #: Co-first authors

38 39 *: Co-last authors

+corresponding

40 **ABSTRACT**

41

42 The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known
43 about the spatial and genetic structure of the parasite population in that country. We sequenced 2537
44 *Plasmodium falciparum* infections, including a nationally representative population sample from DRC
45 and samples from surrounding countries, using molecular inversion probes - a novel high-throughput
46 genotyping tool. We identified an east-west divide in haplotypes known to confer resistance to
47 chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identified highly related parasites over
48 large geographic distances, indicative of gene flow and migration. Our results were consistent with a
49 background of isolation by distance combined with the effects of selection for antimalarial drug
50 resistance. This study provides a high-resolution view of parasite genetic structure across a large
51 country in Africa and provides a baseline to study how implementation programs may impact parasite
52 populations.

53 **BACKGROUND**

54

55 Malaria remains one of the largest global public health challenges, with an estimated 219 million cases
56 worldwide in 2017¹. Despite decades of scale-up in control, there has been a recent resurgence,
57 particularly in high transmission countries in sub-Saharan Africa¹. In addition, the emergence of
58 antimalarial resistance poses a major threat to current control and elimination efforts worldwide, and
59 new tools are needed to quantify the changing landscape of drug resistance on timescales relevant to
60 malaria control programmes. Genomics has emerged as a useful method for better understanding
61 parasite populations that can be leveraged to support the design of effective interventions against a
62 continually evolving parasite.

63

64 Data from genomic studies provides information that is complementary to epidemiological data², and
65 can help to answer several key questions, including how parasites are transmitted, how drug resistance
66 spreads, and how malaria control efforts impact the diversity of the parasite population. However, to
67 date, efforts to use genomics to inform malaria control efforts have suffered from three major
68 limitations. First, much of the work has been conducted in low transmission regions, such as Asia and
69 transmission fringe regions of Africa, leaving it unclear how useful information can be gathered in the
70 highest transmission settings. Some of these high burden regions have experienced increasing malaria
71 prevalence in recent years and are now the center of strategic plans for control efforts^{3,4}. Second, most
72 genomic studies in Africa have relied upon convenience sampling from a few sites usually collected for
73 other purposes, rather than population-representative samples. Lastly, studies have either relied on
74 relatively few genetic markers, providing limited insight into the complete genome, or on expensive
75 whole genome sequencing, limiting the number of samples studied. Overcoming these limitations is
76 essential for genomics to have broader impacts on malaria control.

77

78 Within Africa, parasite populations have been shown to vary significantly between East and West, as
79 demonstrated by their distinct antimalarial drug susceptibilities and population genetics^{5,6}. However, few
80 genomic studies have incorporated samples from central Africa, limiting our understanding of the
81 connectivity of parasite populations across the continent. The Democratic Republic of the Congo (DRC)
82 is the largest malaria-endemic country in Africa, borders nine countries and harbors approximately 11%
83 of global *P. falciparum* malaria cases¹. The DRC harbors a large, understudied parasite population that
84 likely serves as a bridge between African parasite populations. Limited previous work has shown that
85 the DRC represents a watershed between East and West African drug resistant parasite populations for
86 sulfadoxine-pyrimethamine and chloroquine resistance⁷⁻⁹. More recently, parasite population structuring

87 due to mutations at these and other loci associated with antimalarial resistance has been confirmed
88 within the DRC¹⁰. However, studies focusing on hypervariable surface antigen diversity or neutral
89 microsatellites have been unable to detect significant structure in the parasite population^{10,11}, likely due
90 to a lack of high-quality genome-wide signal. A better understanding of parasite populations and the
91 spread of antimalarial resistance in the DRC will allow for the design of more effective interventions
92 accounting for evolutionary forces.

93

94 To address this knowledge gap, we leveraged a recent advance in malaria genomics, high-throughput
95 molecular inversion probe (MIP) capture and sequencing, to characterize and map parasite population
96 structure and antimalarial resistance profiles in the DRC and to define the connections of parasites
97 within the DRC to East and West African parasite populations¹². This approach provides a cost-
98 effective and scalable method of genome interrogation, without the expense or informatic complexities
99 of whole genome sequencing. We previously employed MIPs to comprehensively genotype known
100 antimalarial resistance genes in several hundred samples from the DRC¹⁰. Here, we introduce an
101 expanded MIP panel targeted at 1834 single nucleotide polymorphisms (SNPs) distributed throughout
102 the *P. falciparum* genome, and designed to quantify differentiation and relatedness between samples.
103 Using this panel of genome-wide SNP MIPs, in combination with the previous drug resistance MIP
104 panel, we evaluated the parasite population diversity in 2537 parasite isolates from the DRC and
105 surrounding countries in East and West Africa. We used this information to quantify relatedness of and
106 gene-flow between parasites over large geographic scales and to assess the origins of antimalarial
107 resistance mutations.

108 **RESULTS**

109

110 **Sample quality and filtering:** We obtained 2537 samples collected in 2013-2015 from the DRC and
111 surrounding countries (DRC=2039, Ghana=194, Tanzania=120, Uganda=63, Zambia=121). All
112 samples were sequenced using two separate MIP panels: a genome-wide panel designed to capture
113 overall levels of differentiation and relatedness, and a drug resistance panel designed to target
114 polymorphic sites known to be associated with antimalarial resistance¹⁰. The genome-wide panel
115 included 739 ostensibly geographically informative SNPs, chosen on the basis of high differentiation
116 (F_{ST}) between surrounding African countries in publicly available genomic sequences made available
117 by the Pf3K project (see **Supplemental Text 1** and **Supplemental Table 1**), and 1151 putatively
118 neutral SNPs distributed throughout the genome, with an overlap of 56 SNPs that were both neutral
119 and geographically informative. The drug resistance panel included SNPs in known and putative drug
120 resistance genes and has been described elsewhere¹⁰. The median number of unique molecular
121 identifiers (UMIs) per MIP was 31 (range: 1-8,490) for the genome-wide panel, and 10 (range: 1-
122 32,511) for the drug resistance panel. Complete UMI depth distributions are shown in **Supplemental**
123 **Figure 1**. After filtering for samples and loci with sufficient UMI coverage, we were left with 1382
124 samples and 1079 loci from the genome-wide panel, and 674 samples and 1000 loci from the drug
125 resistance panel, with an overlap of 452 samples between both panels. In addition to these samples,
126 114 controls consisting of known mixtures were sequenced and used to assess the accuracy of allele
127 calls and frequencies. Expected versus measured allele frequencies for each SNP, calculated from
128 these controls, are shown in **Supplemental Figure 2**.

129

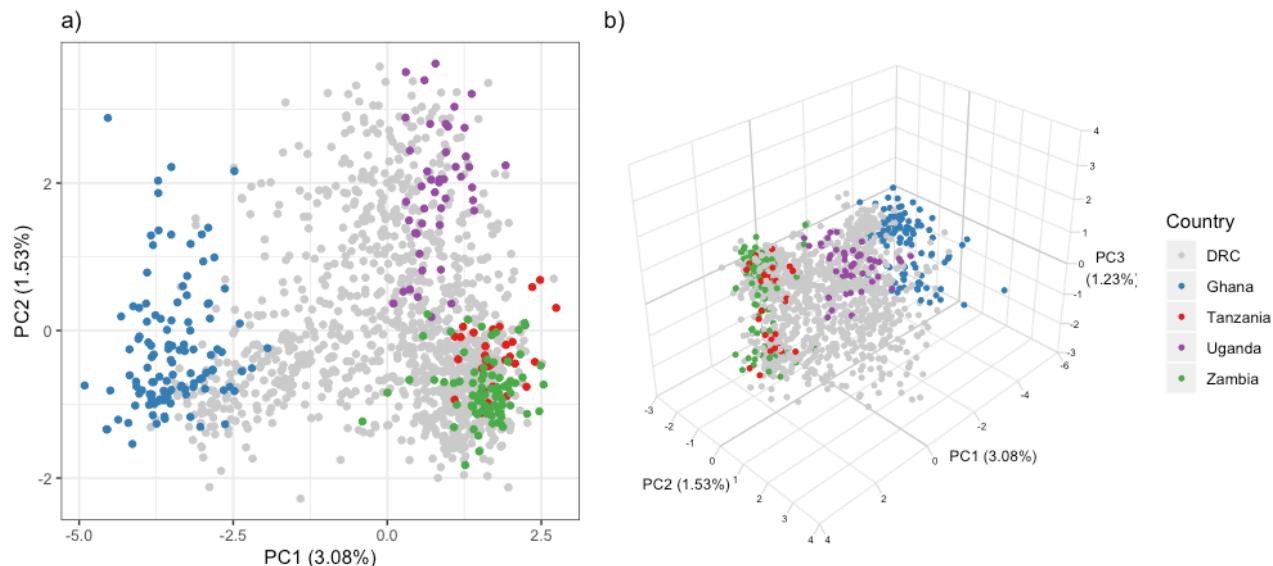
130 **Complexity of infection:** Initial analyses focused on the genome-wide MIP panel only. Complexity of
131 infection (COI) for each sample was estimated using THE REAL McCOIL¹³ (**Supplemental Figure 3**).
132 The mean COI was estimated at 2.2 (range 1 - 8) for the study as a whole. We observed significant
133 differences in COI between countries (Ghana: 1.55 (non-parametric bootstrap 95% CI: 1.39 - 1.73),
134 DRC: 2.23 (2.15 - 2.31), Tanzania: 2.17 (1.83 - 2.51), Zambia: 2.68 (2.39 - 3.00), Uganda 2.18 (1.87 -
135 2.51), and within the DRC we observed a statistically significant relationship between COI and *P.*
136 *falciparum* prevalence by microscopy at both the province and cluster levels (**Supplemental Figure 4**),
137 with higher COIs observed at higher prevalences.

138

139 **Population structure:** We explored population structure through principal component analysis (PCA)
140 evaluated on within-sample allele frequencies at all 1079 genome-wide loci. We found the same
141 separation between East and West Africa described in previous studies (**Figure 1**) as well as finer

142 structure between regions within East Africa. DRC samples comprised a continuum between the East
143 and West African clusters.

144



145

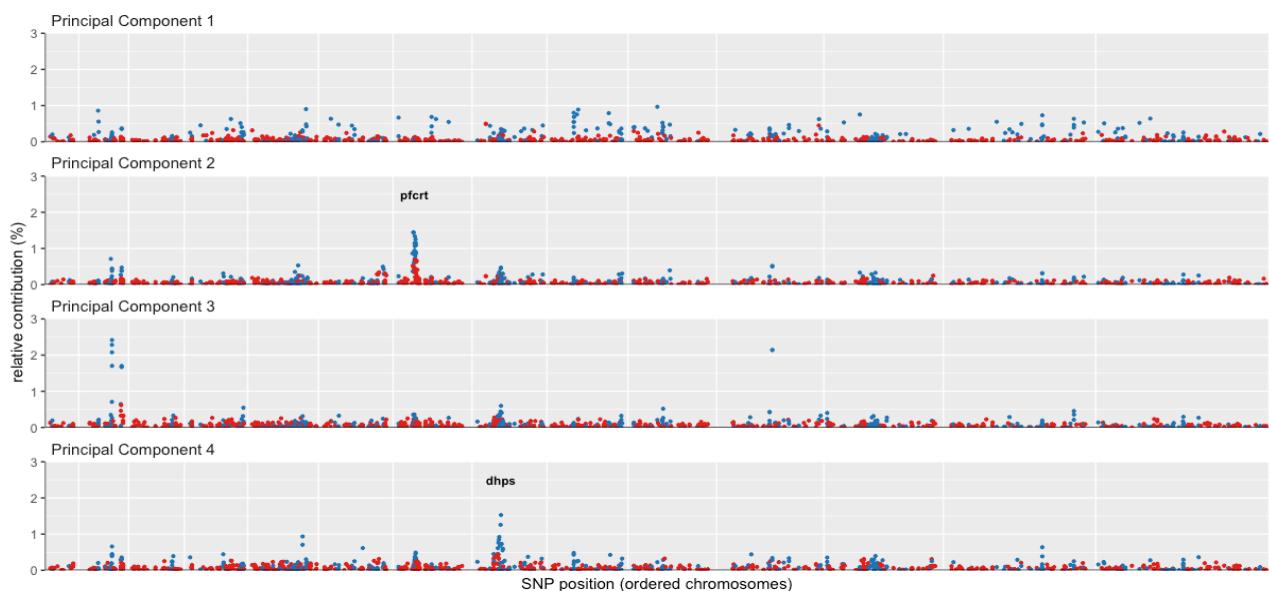
146 **Figure 1** The first two (a) and three (b) principal components calculated from within-sample allele frequencies using the
147 genome-wide MIP panel. Colors indicate country of origin of each sample.

148

149 The relative contribution of each locus to each principal component was quantified through normalized
150 loading values. Relative contributions to the first four principal components are shown in **Figure 2**. After
151 the fourth principal component the percent variance explained by subsequent components plateaued
152 (**Supplemental Figure 5**). For principal component 1 (PC1) large contributions came from loci
153 distributed throughout the genome, and a relatively larger contribution (65.2%) came from putatively
154 geographically informative SNPs (non-parametric bootstrap, $p < 0.001$). In contrast, contributions to PC2
155 were concentrated in a region on chromosome seven in close proximity to *P. falciparum* chloroquine
156 resistance transporter (*pfCRT*), a known drug resistance locus, suggesting that resistance to chloroquine
157 or amodiaquine may be driving differentiation along this secondary axis. For PC3, locus contributions
158 were concentrated in three genic regions: PF3D7_0215300 (8.5%), PF3D7_0220300 (5.0%), and
159 PF3D7_1127000 (4.3%). The first and largest of these encodes an acyl-CoA synthetase and is part of a
160 diverse gene family known to undergo extensive gene conversion and recombination¹⁴. For PC4 we
161 observed a region of high locus contribution on chromosome eight in close proximity to the known
162 antifolate drug resistance gene dihydropteroate synthase (*dhtps*). Combined, these results suggest that
163 geography and drug resistance are both contributors to the observed population structure.

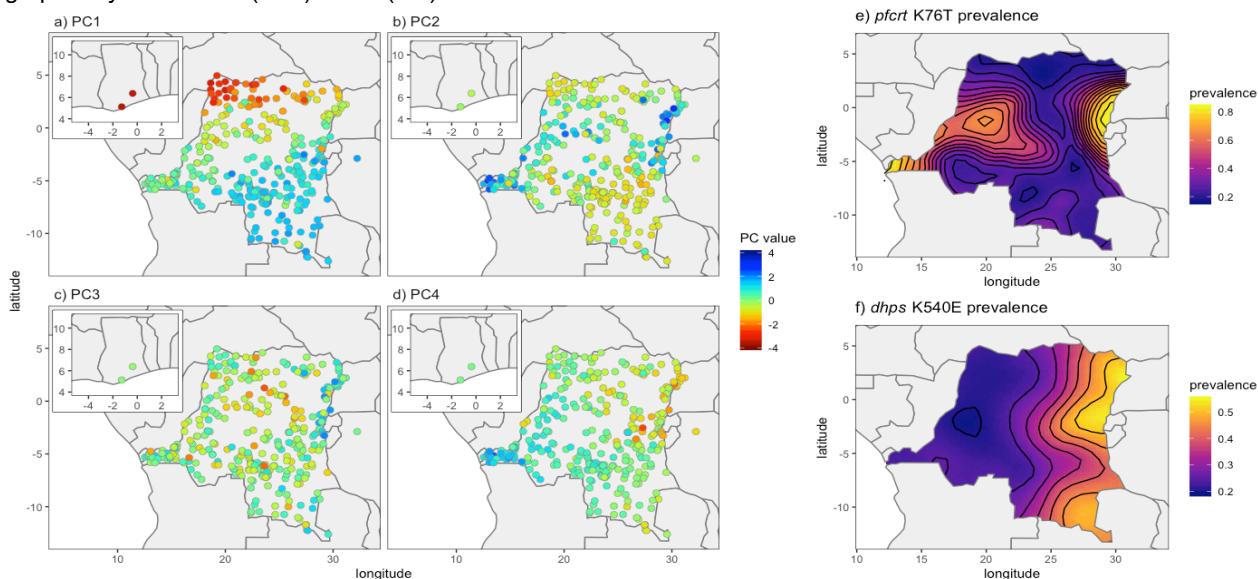
164

165 The relationship between the PCA results and the spatial distribution of parasites was explored by
166 plotting raw principal component values against the geographic location of samples (**Figure 3a-3d**). For
167 PC1 this revealed a complex pattern of spatial variation, containing both north-south and east-west
168 clines. For PC2 and PC4 the maps essentially recapitulate the known geographic distribution of *pfCRT*
169 and *dhps* resistance mutations, respectively (**Figure 3e-3f**). For PC3 the map indicates some east-west
170 spatial structuring that is not explained by known markers of antimalarial resistance and warrants
171 further investigation.



172

173 **Figure 2** The relative contribution (%) of each locus to the first four principal components. Chromosomes are plotted in order,
174 separated by vertical white gridlines. Point colors indicate sites that were chosen in the design based on F_{ST} values to be
175 geographically informative (blue) or not (red).

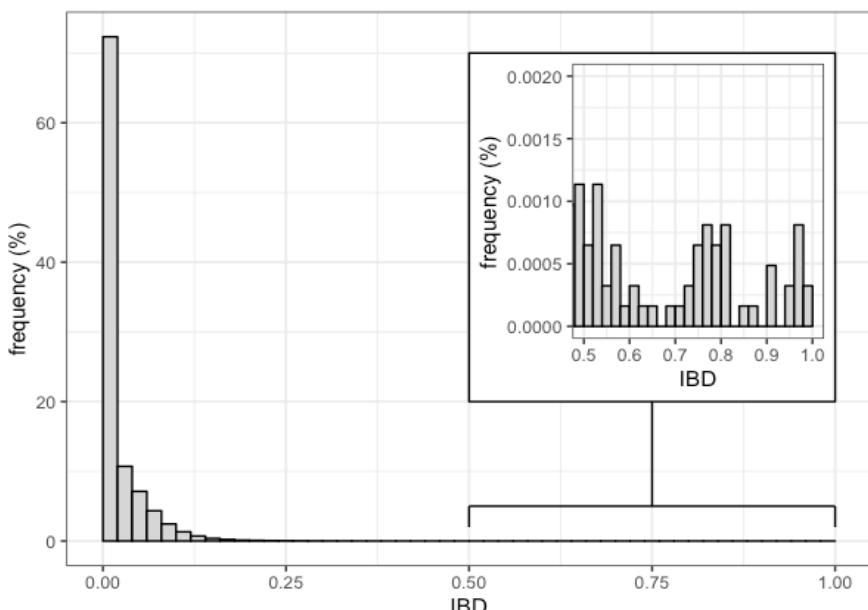


176

177 **Figure 3** Panels (a) to (d) show the mean principal component value per DHS cluster. Panels (e) and (f) show estimated
178 distributions of the prevalence of molecular markers of resistance for *pfCRT* and *dhps*.

179

180 **Identity by Descent:** The relatedness of all pairs of samples was explored through pairwise identity by
181 descent (IBD), estimated using a maximum likelihood approach. IBD has advantages over simpler
182 statistics like identity by state (IBS) in that it takes account of allele frequency distributions, and so
183 provides an objective measure of relatedness that can be compared between studies¹⁵. The overall
184 distribution of pairwise IBD was found to be heavy-tailed, consisting of a large body of weakly related
185 samples and a tail of very highly related samples (**Figure 4**).
186

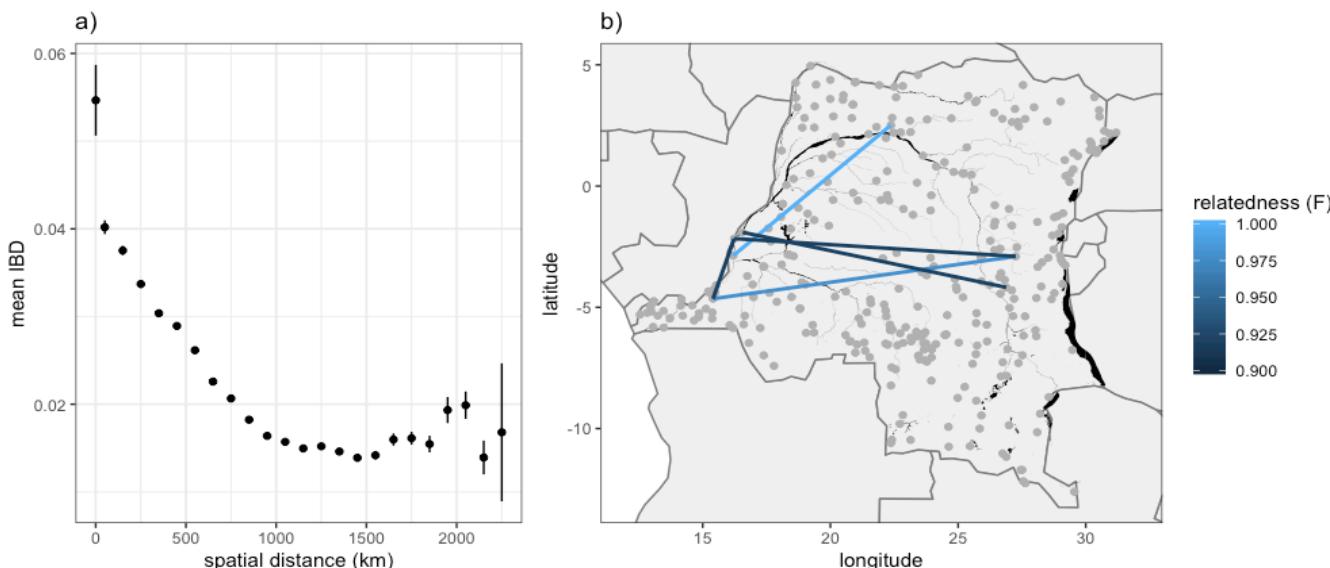


187

188 **Figure 4** A histogram of pairwise identity by descent (IBD) between all samples, estimated by maximum likelihood. Inset
189 shows the heavy tail of the distribution, with some pairs of samples having IBD > 0.9.
190

191 Mean IBD was significantly higher within clusters compared to between clusters (0.06 vs. 0.02, two-
192 sample t-test, $p < 0.001$). When plotted against geographic separation there was a clear fall-off of IBD
193 with distance (**Figure 5a**), consistent with the classical pattern expected under isolation-by-
194 distance^{16,17}. Focussing on the tail of highly related samples, which includes the major strain in complex
195 infections, there were 12 sample pairs with a relatedness greater than IBD=0.9. Comparison of raw
196 allele frequency distributions confirmed that these were likely clones (**Supplemental Figure 6**). These
197 highly related pairs were found more often within the same cluster than in different clusters (7 vs. 5
198 respectively, chi-squared test, $p < 0.001$), suggesting the presence of local clonal transmission chains.
199 The five between-cluster highly related pairs (**Figure 5b**) were spread over large geographic distances
200 (281-1331 km), far beyond the normal expected scale of the breakdown in genetic relatedness (**Figure**
201 **5a**), suggesting recent long distance migration.

202



203

204 **Figure 5** Panel (a) shows the mean IBD between clusters, binned by the spatial distance between clusters. Vertical lines show
205 95% confidence intervals. Panel (b) shows the spatial distribution of highly related (IBD>0.9) parasite pairs. Black areas
206 indicate major water bodies, including the Congo River.
207

208 **Prevalence of markers of resistance:** Based on previous findings of an east-west divide in molecular
209 markers of antimalarial resistance in the DRC^{8,9}, all samples in the DRC were divided by
210 geographically-weighted K-means clustering into two populations (**Supplemental Figure 7**). The
211 prevalence of every mutation identified by the drug resistance MIP panel was calculated in eastern and
212 western DRC, as well as at the country level. **Table 1** gives a summary of all mutations that reached a
213 prevalence >5% in any geographic unit, and a complete list of all identified mutations along with their
214 prevalence is given in **Supplemental Table 2**. Note that in the *dhps* mutation G437A the reference is
215 resistant, hence this is re-coded as A437G and prevalence values indicate the prevalence of the
216 reference allele. Estimated prevalences of these alleles in the DRC as a whole were broadly similar to
217 previously published estimates¹⁰. However, we did identify several polymorphisms in known and
218 putative resistance genes not previously reported in the DRC, including *kelch* K189T and *pfatp6*
219 N569K, both of which have been described at appreciable frequencies elsewhere in Africa¹⁸⁻²⁰.
220

221 **Geographic distribution of haplotypes:** Previous studies have demonstrated that mutations
222 associated with antimalarial resistance are clustered into east-west groupings within DRC^{8,10}. Focusing
223 on the 107 samples from DRC that were identified as monoclonal from The REAL McCOIL analysis, we
224 explored the joint distribution of all combinations of mutant haplotypes in both the *dhps* and *crt* genes.
225 Raw combinations of mutations were visualized using the UpSet package in R²¹, and the spatial
226 distribution of haplotypes in the DRC was explored by plotting these same mutant combinations against

227 their corresponding DHS cluster locations (**Figure 6**). Our results for *dhps* recapitulate those found
 228 previously, showing a clear east-west divide with the K540E and A581G mutants concentrated in the
 229 east, and S436A and A437G concentrated in the west. For *crt* we also find evidence of an east-west
 230 divide, with haplotypes containing N326S and F325C concentrated in the east and those containing
 231 I356T concentrated in the west.

232

gene	chromosome	position	mutation name	prevalence						
				overall	DRC	DRC West	DRC East	Ghana	Uganda	Zambia
atp6	chr1	267007	I723V	1.1	0.3	0.7	0.0	4.2	7.3	0.0
atp6	chr1	267257	G639D	2.0	1.8	2.9	1.0	0.0	7.3	0.0
atp6	chr1	267467	N569K	24.1	21.9	18.8	24.0	16.7	41.5	28.9
atp6	chr1	267882	E431K	15.3	17.0	18.8	15.7	16.7	9.8	6.7
atp6	chr1	267970	L402V	7.1	8.2	10.1	6.9	12.5	0.0	2.2
dhfr-ts	chr4	748239	N51I	83.0	79.5	81.2	78.4	75.0	100.0	97.8
dhfr-ts	chr4	748262	C59R	71.2	63.2	63.0	63.2	95.8	95.1	97.8
dhfr-ts	chr4	748410	S108N	97.8	97.1	97.1	97.1	100.0	100.0	100.0
dhfr-ts	chr4	748577	I164L	3.1	0.6	0.0	1.0	0.0	29.3	0.0
mdr1	chr5	958145	N86Y	12.4	14.3	18.8	11.3	16.7	7.3	0.0
mdr1	chr5	958440	Y184F	37.4	36.5	39.9	34.3	58.3	31.7	37.8
mdr1	chr5	958484	T199S	1.3	0.0	0.0	0.0	0.0	14.6	0.0
mdr1	chr5	958584	S232Y	2.7	3.5	5.1	2.5	0.0	0.0	0.0
mdr1	chr5	961625	D1246Y	4.4	2.9	3.6	2.5	0.0	24.4	0.0
crt	chr7	403620	M74I	30.3	28.7	37.7	22.5	16.7	85.4	0.0
crt	chr7	403621	N75E	30.3	28.7	37.7	22.5	16.7	85.4	0.0
crt	chr7	403625	K76T	30.3	28.7	37.7	22.5	16.7	85.4	0.0
crt	chr7	404407	A220S	28.1	24.6	31.9	19.6	8.3	100.0	0.0
crt	chr7	405600	I356T	7.1	9.4	21.0	1.5	0.0	0.0	0.0
dhps	chr8	549681	S436A	15.0	17.3	28.3	9.8	37.5	0.0	0.0
dhps	chr8	549685	A437G	73.2	67.3	72.5	63.7	95.8	100.0	82.2
dhps	chr8	549993	K540E	25.4	17.0	9.4	22.1	0.0	85.4	48.9
dhps	chr8	550117	A581G	8.2	6.1	2.2	8.8	0.0	34.1	4.4
k13	chr13	1726431	K189T	14.8	14.9	18.8	12.3	54.2	0.0	6.7
mdr2	chr14	1956202	I492V	23.2	21.3	22.5	20.6	20.8	31.7	31.1
mdr2	chr14	1956408	F423Y	31.4	30.1	28.3	31.4	29.2	36.6	37.8

233
 234 **Table 1** Prevalence (%) of mutations identified by the drug resistance MIP panel. Includes all mutations that reached a
 235 prevalence >5% in any given geographic unit.

236

237 **Selective sweep and haplotype analysis:** Using the drug resistance MIPs and genome-wide SNP
 238 MIPs combined, the extended haplotypes of the monoclonal infections were determined for 200kb
 239 upstream and downstream of each putative drug resistance allele that had at least 5% overall
 240 prevalence in the DRC. The CVIET haplotype within the *crt* gene showed a signal of positive selection,
 241 with longer haplotype blocks in western DRC as compared to eastern DRC (**Figure 7**; $p'XP-EHH_D <$
 242 0.05). In the east, patterns of haplotype homozygosity are consistent with positive selection for the
 243 derived I356T haplotype (**Supplemental Figure 8**), although a XP-EHH_D statistic could not be
 244 calculated for this locus because the derived haplotype was absent in western DRC, supporting the
 245 geographic localization of the I356T mutation in the east (**Figure 6**).



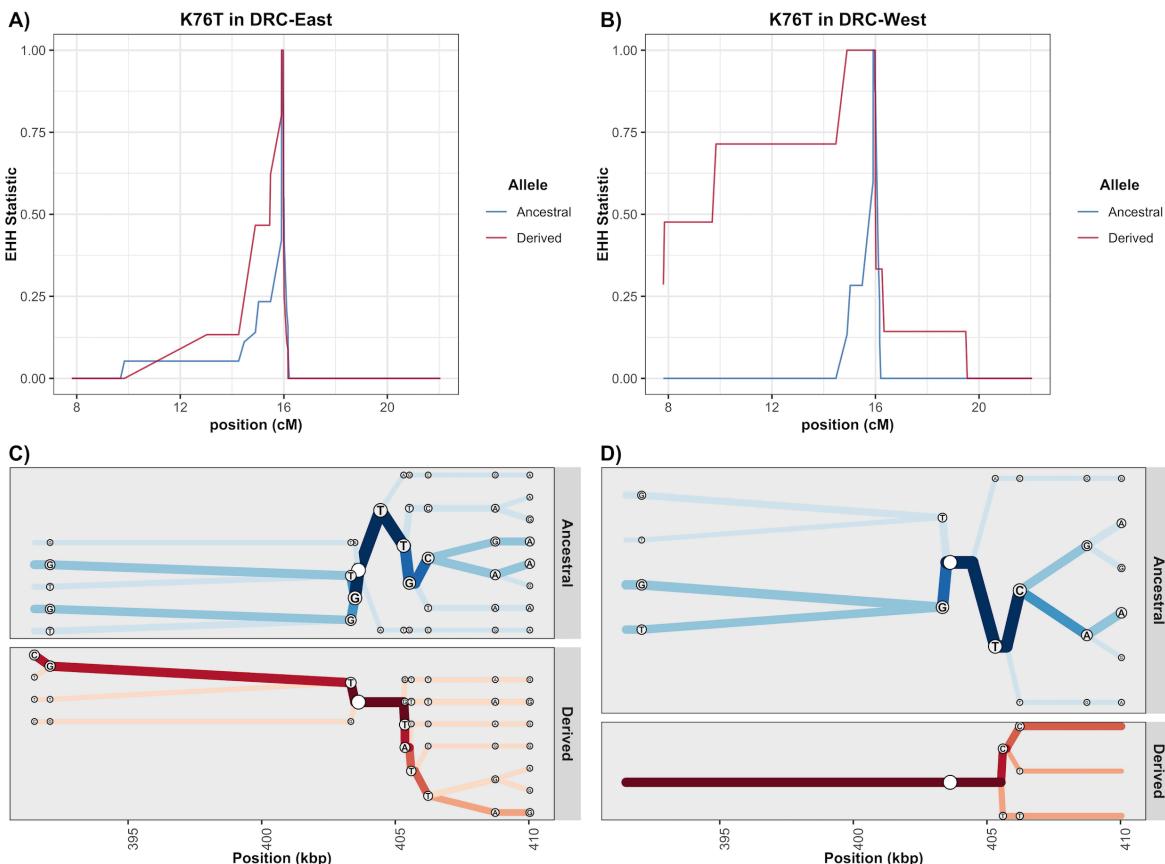
246

247 **Figure 6** The spatial distribution of all combinations of mutant haplotypes for *dhps* and *crt* from the monoclonal DRC samples.
248 Panels (a) and (c) are UpSet plots showing the number of times each combination of mutations was seen for *dhps* and *crt*,
249 respectively. Panels (b) and (d) show these same haplotypes on a map of DRC. Colours correspond horizontally between
250 panels, i.e. between (a) and (b), and between (c) and (d), with the exception of wild-type haplotypes (grey) which are not
251 shown in panels (b) and (d).

252

253 Mutations in *dhps* were more difficult to interpret. This gene has undergone multiple selective sweeps
254 associated with increasing drug resistance. The most recently introduced mutation into the DRC, *dhps*
255 A581G, showed relatively conserved local haplotypes around the mutation in both eastern and western
256 DRC (**Supplemental Figure 9**). Extended haplotypes around the other mutations (**Supplemental**
257 **Figures 10 and 11**) are inconsistent with a classical hard sweep, perhaps due to selection on multiple
258 independent haplotypes or to interference between A581G and other linked alleles. Finally, we did not
259 detect any strong signals of differing patterns of recent positive selection between the eastern and
260 western DRC among the *dhfr* and *mdr2* genes (**Supplemental Table 3, Supplementary Figure 12**).

261



262

263 **Figure 7.** EHH and Bifurcation Plots for *pfcrt* K76T from the monoclonal samples with no missing genotype data. Panels (a)
264 and (b) display EHH curves 200 kb upstream and downstream from the K76T core SNP in centimorgans among the samples
265 from the eastern DRC and western DRC. Panels (c) and (d) show haplotype bifurcation plots with respect to the core allele
266 ancestry and the eastern DRC and western DRC for a subsetted region. Position is considered in kilobases, and segregating
267 sites for each haplotype are displayed at the nodes. Overall, there is strong evidence for recent positive selection of the *pfcrt*
268 CVIET haplotype in the west that is mitigated in the east.

269 **DISCUSSION**

270

271 Here we provide the first large-scale, robustly sampled study of *falciparum* malaria in central Africa
272 using MIP capture and sequencing, a novel high-throughput genotyping approach that is appropriate for
273 large population based surveys. Using a panel of probes designed to detect genome-wide SNPs,
274 combined with a second panel targeting drug resistance genes, we were able to show that the parasite
275 population in the DRC contains a signal of differentiation by geographic separation, consistent with the
276 classical pattern of isolation by distance. This background population structure is overlaid with the clear
277 impacts of drug resistance mutations, which cause distinct structure between East and West African
278 parasite populations. Additionally, the use of relatively dense genome-wide SNPs allowed us to carry
279 out relatedness analysis, revealing a handful of cases where human hosts separated by many
280 hundreds of kilometers were infected by essentially identical clones. Given the rapid breakdown of
281 distinct genotypes by recombination in high transmission areas, it is highly likely that these events
282 represent relatively recent infection and migration events. With this in mind, it is interesting to note that
283 pairwise links of high relatedness tend to fall along the Congo River, an important route of
284 transportation in DRC. Lastly, the combination of the two MIP panels allowed us to examine extended
285 haplotypes surrounding drug resistance genes, revealing rapid breakdown of haplotypes in the
286 population and different signals of selection in East vs. West DRC.

287

288 We previously investigated population structure using MIPs targeting 20 microsatellites in the DRC¹⁰,
289 failing to detect a strong signal of population structure based upon these markers. Here we leveraged
290 the same 552 samples as the previous study, plus additional samples from the DRC and neighboring
291 countries, to identify clear structure with an improved SNP-based genotyping method. Our ability to
292 detect population structure in the present study is likely due to several factors. First, the new SNP panel
293 contains nearly two orders of magnitude more markers than the previous panel. While this new SNP
294 MIP panel expanded the number of loci interrogated, we have yet to achieve the full potential of MIPs.
295 Specifically, massively increased, multiplexed probe sets that target additional portions of the genome
296 are feasible. MIPs have now been used in human studies to detect as many as 55,000 markers in a
297 single reaction²². Second, a large number of genome-wide SNPs in this study were chosen based on
298 high F_{ST} values in publicly available samples from surrounding countries. This increases our power to
299 detect geographic differentiation, but comes at the cost of not being able to comment on the relative
300 importance of geography vs. drug resistance, which would require random genetic sampling or
301 alternatively whole genomes. Similarly, we should be cautious when interpreting spatial clines in
302 population structure from our data, as we may have greater power to detect structure along some axes

303 than others due to the unequal distribution of surrounding countries in publicly available samples,
304 although in general we have good representation in both the East-West and North-South directions.
305

306 The flexible nature of MIP panels allows for multiplex detection of SNPs associated with drug
307 resistance in any known or putative resistance loci for which they are designed. This allowed for a more
308 detailed evaluation of molecular markers associated with antimalarial resistance than has previously
309 been possible in the DRC. To date, studies of antimalarial resistance markers in the DRC have
310 focused primarily on *pfCRT* (K76T), *dhfr* (N51I, C59R, S108N, I164L), *dhps* (I431V, S436A, A437G,
311 K540E, A581G, A613S), *pfMDR* (N86Y, F184Y, D1246Y), and a few *kelch* mutations²³⁻²⁹. The data
312 suggests that mutations associated with artemisinin resistance remained absent in the country as of
313 2014. The World Health Organization identified 9 mutations within the K13 propeller region that are
314 validated in terms of their clinical phenotype of artemisinin resistance, and a further 11 mutations that
315 are candidates associated with the phenotype of delayed clearance.³⁰ We identified 14 mutations within
316 the K13 gene (**Supplemental Table 2**), although none of these correspond to validated or candidate
317 artemisinin resistance mutations.

318
319 Beyond looking at mutations within drug resistance genes, differences in extended haplotypes around
320 drug resistance genes have been used to understand evolution and spread³¹. Though not originally
321 designed for this purpose, the genome wide MIP panel can be leveraged for conducting similar
322 analyses. For example, the differences in **CVIET** EHH between the West and East suggests that the
323 **CVIET** haplotype in the West has potentially been more recently introduced, has experienced less
324 breakdown through recombination, or has undergone stronger recent positive selection as compared to
325 the East. Redesign of the selected targets with denser sampling around known drug resistance genes
326 will allow for more robust assessment of these selected regions.

327
328 DRC's location in central Africa and the enormous number of malaria cases in the country means that
329 malaria control in Africa likely depends on improving our understanding on Congolese malaria. This
330 represents the largest study of *falciparum* population genetics in the DRC and, unlike other large
331 population genetic studies of malaria in Africa, leverages a nationally representative sampling
332 approach. Thus, this study provides the first data on fine-scale genetic structure of parasites at a
333 national scale in Africa, and provides a baseline that can be used to study how implementation
334 programs impact parasite populations in the region. The newly implemented MIP platform represents a
335 highly scalable and cost-effective means of providing genome-wide genetic data, relative to whole

336 genome sequencing ¹⁰. The highly flexible nature of the platform allows it to be rapidly scaled in terms
337 of targets and samples leading it to be applicable across malaria endemic countries.

338 **METHODS**

339

340 **Study Populations:** Chelex-extracted DNA from dried blood spots, collected as part of the 2013-2014
341 DRC Demographic Health Survey (DHS), was tested using quantitative real-time PCR as described
342 previously^{32,33}. Previously published DRC samples¹⁰ were included (n=589), and used to set a Ct
343 threshold of <30 which was applied to the remaining DRC samples (n=1450), resulting in a total of 2039
344 DRC samples sent for sequencing. These samples represented 369 of the overall 539 DHS clusters. In
345 addition, dried blood spot samples from 4 further counties were used: Ghana (n=194), Tanzania
346 (n=120), Uganda (n=63) and Zambia (n=121). Samples from Ghana were collected in 2014 from
347 symptomatic RDT and/or microscopy positive individuals presenting at health care facilities in Begoro
348 (n=94) and Cape Coast (n=98)³⁴. Samples from Tanzania were collected in 2015 from symptomatic
349 RDT-positive patients of all ages at Kharumwa Health Center in Northwest Tanzania³⁵. Samples from
350 Uganda were collected in 2013 from RDT-positive symptomatic patients at Kanungu in Southwest
351 Uganda³⁶. Finally, samples from Zambia were collected in 2013 from RDT positive individuals from a
352 community survey of all ages in Nchelenge District in northeast Zambia on the border with the DRC. All
353 non-DRC samples were Chelex extracted, except for the Ghanaian samples which were extracted
354 using QiaQuick per protocol (Qiagen, Hilden, Germany).

355

356 **MIP Design:** We used two distinct MIP panels - a genome-wide panel designed to capture overall
357 levels of differentiation and relatedness, and a drug resistance panel designed to target polymorphic
358 sites known to be associated with antimalarial resistance. The drug resistance MIP panel has been
359 described previously¹⁰. When selecting targets for the genome-wide panel, we used the publicly
360 available *P. falciparum* whole genome sequences provided by the Pf3k and *P. falciparum* Community
361 projects from the MalariaGEN Consortium. This consisted of sample sets from Cameroon (n=134),
362 DRC (n=285), Kenya (n=52), Malawi (n=369), Nigeria (n=5), Tanzania (n=66) and Uganda (n=12)
363 (**Supplemental Table 1**). The genomic sequence from these samples underwent alignment, variant
364 calling, and variant-filtering following the Pf3k strategy consistent with the Genome Analysis Toolkit
365 (GATK) Best Practices with minor modifications³⁷⁻⁴⁰. Full details of the bioinformatic pipeline used in
366 MIP design are given in the **Supplemental Text**. Samples from Nigeria and Uganda were dropped
367 after variant calling due to small sample sizes, and the final filtered sequences were used to calculate
368 Weir and Cochran's F_{ST} ⁴¹ with respect to country for each biallelic locus. The 1,000 loci with the highest
369 F_{ST} values were considered for MIP design as phylogeographically informative loci. Of these 1,000
370 potential loci, 739 were identified as regions that were suitable for MIP-probe design. Separately, from
371 the combined SNP file, we identified 1595 loci that had a minor-allele frequency greater than 5%, had

372 an F_{ST} value between 0.005 and 0.2, and were annotated by SNPEff as functionally silent mutations.
373 These loci were identified as putatively neutral SNPs, and 1151 were found to be suitable for MIP
374 design. The distribution of MIPs is shown in **Supplemental Figure 13** and MIP sequences and targets
375 are shown in **Supplemental Table 4**.

376

377 **Capture and Sequencing:** In addition to patient samples, control samples were known mixtures of 4
378 strains of genomic DNA from malaria at the following ratios: 67% 3D7 (MRA-102, BEI Resources,
379 Manasas, VA), 14% HB3 (MRA-155), 13% 7G8 (MRA-154) and 6% DD2 (MRA-156). They were also
380 represented at two different parasite densities (29 and 467 parasites/ μ l). MIP capture and sequencing
381 library preparation were carried out as previously described¹⁰. Drug resistance libraries were
382 sequenced on Illumina MiSeq instrument using 250 bp paired end sequencing with dual indexing using
383 MiSeq Reagent Kit v2. Genome-wide libraries were sequenced on Illumina Nextseq 500 instrument
384 using 150 bp paired end sequencing with dual indexing using Nextseq 500/550 Mid-output Kit v2.
385 Sequencing reads have been deposited into the NCBI SRA (Accession numbers: pending).

386

387 **Variant Calling and filtering:** Variant calling was performed as described previously¹⁰. Within each
388 sample, variants were dropped if they had a Phred-scaled quality score of <20. Across samples, variant
389 sites were dropped if they were observed only in one sample, or if they had a total UMI count of less
390 than 5 across all samples. This data set was considered the final raw data used for additional filtering.
391

392

393 Additional filters were applied to both genome-wide and drug resistance datasets prior to carrying out
394 analysis. Sites were restricted to SNPs, and in the case of the genome-wide panel these were filtered
395 to the pre-designed biallelic target SNP sites. Any variant that was represented by a single UMI in a
396 sample, or that had a within-sample allele frequency (WSAF = UMI count/coverage) less than 1%, was
397 eliminated. Any site that was invariant across the entire dataset after this procedure was dropped.

398

399 Samples were assessed for quality in terms of the proportion of low-coverage sites, where low-
400 coverage was defined as fewer than 10 supporting UMIs. Samples with >50% low-coverage loci were
401 dropped. Variant sites were then assessed by the same means in terms of the proportion of low-
402 coverage samples, and sites with >50% low-coverage samples were dropped. Samples were then
403 combined with metadata, including geographic information, and were only retained if there were at least
404 10 samples in a given country. This resulted in dropping Tanzanian samples from the drug resistance
405 dataset, but no other countries were dropped. Post-filtering, genome-wide data consisted of 1382
406 samples (DRC = 1111, Ghana = 114, Tanzania = 30, Uganda = 45, Zambia = 82) and 1079 loci, and

405 drug resistance data consisted of 674 samples (DRC = 557, Ghana = 29, Uganda = 43, Zambia = 45)
406 and 1000 loci.

407
408 **Complexity of Infection:** We applied THE REAL McCOIL categorical method to the SNP genotyped
409 samples to estimate the COI of each individual¹³. Details of the analysis are in the **Supplementary**
410 **Text.**

411
412 **Analysis of population structure:** WSAFs were calculated for all genome-wide SNPs, with missing
413 values imputed as the mean per locus. Principal component analysis (PCA) was carried out on WSAFs
414 using the *prcomp* function in R version 3.5.1. The relative contribution of each locus was calculated
415 from the loading values as $|l_i| / \sum_{i=1}^L |l_i|$, where $|l_i|$ is the absolute value of the loading at locus i , and
416 L is the total number of loci. PCA results were explored in a spatial context by taking the mean of the
417 raw principal component values over all samples in a given DHS cluster, and plotting this against the
418 geoposition of the cluster.

419
420 **Identity by descent analysis:** Pairwise identity by descent (IBD) was calculated between all samples
421 from the genome-wide SNPs. We used Malécot's⁴² definition of f as the probability of identity by
422 descent, where f_{uv} can be defined as the probability of a randomly chosen locus being IBD between
423 samples u and v . At locus i , let A denote the reference allele, which occurs at population allele
424 frequency p_i , and let a denote the non-reference allele, which occurs at population allele frequency
425 $q_i = 1 - p_i$. Assuming that both samples u and v are monoclonal, let X_{ui} denote the observed allele at
426 locus i in sample u , and equivalently let X_{vi} denote the observed allele in sample v . Then the
427 probabilities of all possible observed allele combinations between the two samples can be written:

428
429
$$Pr(X_{ui} = A, X_{vi} = A | f_{uv}) = f_{uv}p_i + (1 - f_{uv})p_i^2 \quad (eq1)$$

430
$$Pr(X_{ui} = A, X_{vi} = a | f_{uv}) = (1 - f_{uv})p_i q_i$$

431
$$Pr(X_{ui} = a, X_{vi} = A | f_{uv}) = (1 - f_{uv})p_i q_i$$

432
$$Pr(X_{ui} = a, X_{vi} = a | f_{uv}) = f_{uv}q_i + (1 - f_{uv})q_i^2$$

433
434 from which we can calculate the likelihood of a given value of f_{uv} over all loci as:

435
436
$$L(f_{uv} | X_u, X_v) = \prod_{i=1}^L Pr(X_{ui}, X_{vi} | f_{uv}). \quad (eq2)$$

438 In practice, population allele frequencies (p_i) were calculated using the mean WSAF for that locus over
439 all samples. Samples were then coerced to monoclonal by calling the dominant allele at every locus.
440 The likelihood was evaluated using **eq2** in log-space for a range of values of f_{uv} distributed between 0
441 and 1 in equal increments of 0.02. The maximum likelihood estimate $\hat{f}_{uv} = \text{argmax}_f L(f | X_u, X_v)$ was
442 calculated between all sample pairs. Hereafter the terms “IBD” and \hat{f}_{uv} are used interchangeably.
443

444 Mean IBD was calculated within and between DHS clusters, and compared using a two-sample t-test.
445 Sample pairs were also binned into groups based on geographic separation (great circle distance) in
446 100km bins, with an additional bin at distance 0km to capture within-cluster comparisons. Mean and
447 95% confidence intervals of IBD were calculated for each group. Finally, sample pairs with IBD>0.9
448 were identified, and explored in terms of their WSAFs and their spatial distribution.
449

450 **Estimating mutation prevalence from drug resistance panel:** Given previous findings of an East-
451 West divide in molecular markers of antimalarial resistance in the DRC^{8,9}, all samples in the DRC were
452 divided by geographically-weighted K-means clustering into two populations. The prevalence of every
453 mutation identified by the drug resistance MIP panel was then calculated in East and West DRC, as
454 well as at the country level. Prevalences in each DHS cluster were used to produce smooth prevalence
455 maps using PrevMap version 1.4.2 in R⁴³, using the method described in Aydemir et. al. (2018)¹⁰.
456

457 **Analysis of monoclonal haplotypes:** Results of the previous COI analysis on the genome-wide SNPs
458 with THE REAL McCOIL were used to identify samples that were monoclonal with a high degree of
459 confidence. Samples were defined as monoclonal if the upper 95% credible interval did not include any
460 COI greater than one. This resulted in 408 monoclonal samples, of which 143 overlapped with the drug
461 resistance MIP dataset and therefore could be used to explore the joint distribution of mutations in drug
462 resistance genes. 107 of these were from DRC. Analysis focussed on the *dhps* and *crt* genes. Raw
463 combinations of mutations were visualized using the UpSet package in R²¹, and the spatial distribution
464 of haplotypes was explored by plotting these same mutant combinations against DHS cluster
465 geoposition.
466

467 **Extended haplotype homozygosity analysis:** In order to improve our power to detect hard-sweeps
468 and capture patterns of linkage-disequilibrium with EHH statistics among putative drug resistance
469 SNPs, we combined the genome-wide and the drug resistance filtered biallelic SNPs into a single
470 dataset. Details of this analysis are described in the **Supplemental Text**.
471

472 All associated EHH calculations were carried out using the R-package rehh, and were truncated when
473 fewer than two haplotypes were present or the EHH statistic fell below 0.05^{44,45}. In addition, we allowed
474 EHH integration calculations to be made without respect to “borders,” which were frequent due to the
475 MIP-probe design. Although this would result in an inflated integration statistic if the EHH statistic had
476 not yet reached 0 within the region of investigation, this problem was mitigated by only comparing
477 between subpopulations, and not between loci. EHH decay, bifurcation plots, and haplotype plots were
478 adapted from the rehh package objects and modified using ggplot⁴⁶.

479 **Acknowledgements:** This work was supported by the National Institutes of Health (R01AI107949,
480 R01AI139520, K24AI134990, R21AI121465, F30AI143172, U19AI089680). RV is funded by a Skills
481 Development Fellowship: this award is jointly funded by the UK Medical Research Council (MRC) and
482 the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement
483 and is also part of the EDCTP2 programme supported by the European Union. The authors would also
484 like to thank everyone who participated in the studies and all members of the study teams in Ghana,
485 Zambia, Uganda and Tanzania. The authors would like to thank the DHS Program and USAID for the
486 collection and access to samples from the DRC Demographic Health Survey.

487

488 **Ethics Approval:** This study was approved by the Internal Review Board at UNC and the Ethics
489 Committee of the Kinshasa School of Public Health.

490

491 **Authors Contributions:** R.V., O.A., N.F.B., J.A.B. and J.J.J contributed data analysis, writing and
492 experimental design. O.J.W. contributed data analysis and writing. N.J.H. and A.P.M. contributed
493 software design. M.K.M., J.P., M.C., P.J.R., P.T., D.S.I., J.G., J.N., D.E.N., W.M., M.M., J.L.M.H., A.G.,
494 B.M., and A.K.T. contributed samples from studies conducted at their sites and reviewed the
495 manuscript. A.C.G. contributed to analysis design and reviewed the manuscript. K.T., P.K.M., T.F., and
496 M.D. contributed laboratory analysis. S.R.M. contributed coordination with DRC investigators,
497 experimental design and writing.

498

499 **Competing Interests:** None

500 **REFERENCES**

- 501 1. WHO | World malaria report 2017. (2018).
- 502 2. Neafsey, D. E. & Volkman, S. K. Malaria Genomics in the Era of Eradication. *Cold Spring Harb. Perspect. Med.* **7**, (2017).
- 503 3. Malaria. *Bill & Melinda Gates Foundation* Available at: <https://www.gatesfoundation.org/What-We-Do/Global-Health/Malaria>. (Accessed: 2nd May 2019)
- 504 4. World Health Organization. *WHO: High Burden to High Impact. A targeted malaria response 2019*.
- 505 5. Pearce, R. J. *et al.* Multiple origins and regional dispersal of resistant dhps in African Plasmodium falciparum malaria. *PLoS Med.* **6**, e1000055 (2009).
- 506 6. Ocholla, H. *et al.* Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. *J. Infect. Dis.* **210**, 1991–2000 (2014).
- 507 7. Carrel, M. *et al.* The geography of malaria genetics in the Democratic Republic of Congo: A complex and fragmented landscape. *Soc. Sci. Med.* **133**, 233–241 (2015).
- 508 8. Taylor, S. M. *et al.* Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo. *Sci. Rep.* **3**, 1165 (2013).
- 509 9. Antonia, A. L. *et al.* A cross-sectional survey of Plasmodium falciparum pfcrt mutant haplotypes in the Democratic Republic of Congo. *Am. J. Trop. Med. Hyg.* **90**, 1094–1097 (2014).
- 510 10. Aydemir, O. *et al.* Drug Resistance and Population Structure of Plasmodium falciparum Across the Democratic Republic of Congo using high-throughput Molecular Inversion Probes. *J. Infect. Dis.* (2018). doi:10.1093/infdis/jiy223
- 511 11. Verity, R. *et al.* Plasmodium falciparum genetic variation of var2csa in the Democratic Republic of the Congo. *Malar. J.* **17**, 46 (2018).
- 512 12. O’Roak, B. J. *et al.* Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. *Science* **338**, 1619–1622 (2012).
- 513 13. Chang, H.-H. *et al.* THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. *PLoS Comput. Biol.* **13**, e1005348 (2017).
- 514 14. Bethke, L. L. *et al.* Duplication, gene conversion, and genetic diversity in the species-specific acyl-CoA synthetase gene family of Plasmodium falciparum. *Mol. Biochem. Parasitol.* **150**, 10–24 (2006).
- 515 15. Taylor, A. R., Jacob, P. E., Neafsey, D. E. & Buckee, C. O. Estimating relatedness between malaria parasites. doi:10.1101/575985
- 516 16. Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by

533 distance. *Genetics* **145**, 1219–1228 (1997).

534 17. J., A., Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory. *Population (French*
535 *Edition)* **26**, 977 (1971).

536 18. Talundzic, E. *et al.* Molecular Epidemiology of *Plasmodium falciparum* kelch13 Mutations in
537 Senegal Determined by Using Targeted Amplicon Deep Sequencing. *Antimicrob. Agents*
538 *Chemother.* **61**, (2017).

539 19. Torrentino-Madamet, M. *et al.* Limited polymorphisms in k13 gene in *Plasmodium falciparum*
540 isolates from Dakar, Senegal in 2012–2013. *Malaria Journal* **13**, 472 (2014).

541 20. Dahlström, S. *et al.* Diversity of the sarco/endoplasmic reticulum Ca(2+)-ATPase orthologue of
542 *Plasmodium falciparum* (PfATP6). *Infect. Genet. Evol.* **8**, 340–345 (2008).

543 21. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: Visualization of Intersecting
544 Sets. *IEEE Trans. Vis. Comput. Graph.* **20**, 1983–1992 (2014).

545 22. Turner, E. H., Lee, C., Ng, S. B., Nickerson, D. A. & Shendure, J. Massively parallel exon capture
546 and library-free resequencing across 16 genomes. *Nature Methods* **6**, 315–316 (2009).

547 23. Mvumbi, D. M. *et al.* Falciparum malaria molecular drug resistance in the Democratic Republic of
548 Congo: a systematic review. *Malaria Journal* **14**, (2015).

549 24. Leroy, D. *et al.* African isolates show a high proportion of multiple copies of the *Plasmodium*
550 *falciparum* plasmepsin-2 gene, a piperaquine resistance marker. *Malar. J.* **18**, 126 (2019).

551 25. Nkoli Mandoko, P. *et al.* Prevalence of *Plasmodium falciparum* parasites resistant to
552 sulfadoxine/pyrimethamine in the Democratic Republic of the Congo: emergence of highly resistant
553 pfdhfr/pfdhps alleles. *J. Antimicrob. Chemother.* **73**, 2704–2715 (2018).

554 26. Baraka, V. *et al.* Impact of treatment and re-treatment with artemether-lumefantrine and
555 artesunate-amodiaquine on selection of *Plasmodium falciparum* multidrug resistance gene-1
556 polymorphisms in the Democratic Republic of Congo and Uganda. *PLoS One* **13**, e0191922
557 (2018).

558 27. Ruh, E., Bateko, J. P., Imir, T. & Taylan-Ozkan, A. Molecular identification of sulfadoxine-
559 pyrimethamine resistance in malaria infected women who received intermittent preventive
560 treatment in the Democratic Republic of Congo. *Malar. J.* **17**, 17 (2018).

561 28. Mvumbi, D. M. *et al.* Molecular surveillance of *Plasmodium falciparum* resistance to artemisinin-
562 based combination therapies in the Democratic Republic of Congo. *PLoS One* **12**, e0179142
563 (2017).

564 29. Taylor, S. M. *et al.* Absence of putative artemisinin resistance mutations among *Plasmodium*
565 *falciparum* in Sub-Saharan Africa: a molecular epidemiologic study. *J. Infect. Dis.* **211**, 680–688
566 (2015).

567 30. World Health Organization. *Status report on artemisinin and ACT resistance*. (2017).

568 31. Project, M. P. F. C. & MalariaGEN Plasmodium falciparum Community Project. Genomic
569 epidemiology of artemisinin resistant malaria. *eLife* **5**, (2016).

570 32. et Suivi, M. du P. de la Mise en œuvre de la Révolution de la Modernité (MPSMRM), Ministere de
571 la Santé Publique (MSP) and ICF International. 2014. *Enquête Démographique et de Santé en*
572 *République Démocratique du Congo 2014*, (2013).

573 33. Pickard, A. L. *et al.* Resistance to antimalarials in Southeast Asia and genetic polymorphisms in
574 pfmdr1. *Antimicrob. Agents Chemother.* **47**, 2418–2423 (2003).

575 34. Abuaku, B. K. *et al.* Efficacy of Artesunate/Amodiaquine in the Treatment of Uncomplicated Malaria
576 among Children in Ghana. *Am. J. Trop. Med. Hyg.* **97**, 690–695 (2017).

577 35. Ngondi, J. M. *et al.* Surveillance for sulfadoxine-pyrimethamine resistant malaria parasites in the
578 Lake and Southern Zones, Tanzania, using pooling and next-generation sequencing. *Malar. J.* **16**,
579 236 (2017).

580 36. Tumwebaze, P. *et al.* Changing Antimalarial Drug Resistance Patterns Identified by Surveillance at
581 Three Sites in Uganda. *J. Infect. Dis.* **215**, 631–635 (2017).

582 37. McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
583 generation DNA sequencing data. *Genome Res.* **20**, 1297–1303 (2010).

584 38. Van der Auwera, G. A. *et al.* From FastQ data to high confidence variant calls: the Genome
585 Analysis Toolkit best practices pipeline. *Curr. Protoc. Bioinformatics* **43**, 11.10.1–33 (2013).

586 39. DePristo, M. A. *et al.* A framework for variation discovery and genotyping using next-generation
587 DNA sequencing data. *Nat. Genet.* **43**, 491–498 (2011).

588 40. The Pf3K Project. www.malariagen.net/data/pf3k-5 (2016).

589 41. Weir, B. S. & Cockerham, C. C. ESTIMATING F-STATISTICS FOR THE ANALYSIS OF
590 POPULATION STRUCTURE. *Evolution* **38**, 1358–1370 (1984).

591 42. Malécot, G. *The Mathematics of Heredity*. (W.H. Freeman, 1970).

592 43. Giorgi, E. & Diggle, P. J. PrevMap: An R Package for Prevalence Mapping. *Journal of Statistical*
593 *Software* **78**, (2017).

594 44. Gautier, M., Klassmann, A. & Vitalis, R. rehh 2.0: a reimplementation of the R package rehh to
595 detect positive selection from haplotype structure. *Mol. Ecol. Resour.* **17**, 78–90 (2017).

596 45. Gautier, M. & Vitalis, R. rehh: an R package to detect footprints of selection in genome-wide SNP
597 data from haplotype structure. *Bioinformatics* **28**, 1176–1177 (2012).

598 46. Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer New York, 2009).