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ABSTRACT

The Democratic Republic of the Congo (DRC) harbors 11% of global malaria cases, yet little is known
about the spatial and genetic structure of the parasite population in that country. We sequenced 2537
Plasmodium falciparum infections, including a nationally representative population sample from DRC
and samples from surrounding countries, using molecular inversion probes - a novel high-throughput
genotyping tool. We identified an east-west divide in haplotypes known to confer resistance to
chloroquine and sulfadoxine-pyrimethamine. Furthermore, we identified highly related parasites over
large geographic distances, indicative of gene flow and migration. Our results were consistent with a
background of isolation by distance combined with the effects of selection for antimalarial drug
resistance. This study provides a high-resolution view of parasite genetic structure across a large
country in Africa and provides a baseline to study how implementation programs may impact parasite

populations.
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BACKGROUND

Malaria remains one of the largest global public health challenges, with an estimated 219 million cases
worldwide in 2017". Despite decades of scale-up in control, there has been a recent resurgence,
particularly in high transmission countries in sub-Saharan Africa’. In addition, the emergence of
antimalarial resistance poses a major threat to current control and elimination efforts worldwide, and
new tools are needed to quantify the changing landscape of drug resistance on timescales relevant to
malaria control programmes. Genomics has emerged as a useful method for better understanding
parasite populations that can be leveraged to support the design of effective interventions against a

continually evolving parasite.

Data from genomic studies provides information that is complementary to epidemiological data?, and
can help to answer several key questions, including how parasites are transmitted, how drug resistance
spreads, and how malaria control efforts impact the diversity of the parasite population. However, to
date, efforts to use genomics to inform malaria control efforts have suffered from three major
limitations. First, much of the work has been conducted in low transmission regions, such as Asia and
transmission fringe regions of Africa, leaving it unclear how useful information can be gathered in the
highest transmission settings. Some of these high burden regions have experienced increasing malaria
prevalence in recent years and are now the center of strategic plans for control efforts®**. Second, most
genomic studies in Africa have relied upon convenience sampling from a few sites usually collected for
other purposes, rather than population-representative samples. Lastly, studies have either relied on
relatively few genetic markers, providing limited insight into the complete genome, or on expensive
whole genome sequencing, limiting the number of samples studied. Overcoming these limitations is

essential for genomics to have broader impacts on malaria control.

Within Africa, parasite populations have been shown to vary significantly between East and West, as
demonstrated by their distinct antimalarial drug susceptibilities and population genetics®®. However, few
genomic studies have incorporated samples from central Africa, limiting our understanding of the
connectivity of parasite populations across the continent. The Democratic Republic of the Congo (DRC)
is the largest malaria-endemic country in Africa, borders nine countries and harbors approximately 11%
of global P. falciparum malaria cases'. The DRC harbors a large, understudied parasite population that
likely serves as a bridge between African parasite populations. Limited previous work has shown that
the DRC represents a watershed between East and West African drug resistant parasite populations for

sulfadoxine-pyrimethamine and chloroquine resistance’. More recently, parasite population structuring
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due to mutations at these and other loci associated with antimalarial resistance has been confirmed
within the DRC'?. However, studies focusing on hypervariable surface antigen diversity or neutral
microsatellites have been unable to detect significant structure in the parasite population'®', likely due
to a lack of high-quality genome-wide signal. A better understanding of parasite populations and the
spread of antimalarial resistance in the DRC will allow for the design of more effective interventions

accounting for evolutionary forces.

To address this knowledge gap, we leveraged a recent advance in malaria genomics, high-throughput
molecular inversion probe (MIP) capture and sequencing, to characterize and map parasite population
structure and antimalarial resistance profiles in the DRC and to define the connections of parasites
within the DRC to East and West African parasite populations'?. This approach provides a cost-
effective and scalable method of genome interrogation, without the expense or informatic complexities
of whole genome sequencing. We previously employed MIPs to comprehensively genotype known
antimalarial resistance genes in several hundred samples from the DRC'. Here, we introduce an
expanded MIP panel targeted at 1834 single nucleotide polymorphisms (SNPs) distributed throughout
the P. falciparum genome, and designed to quantify differentiation and relatedness between samples.
Using this panel of genome-wide SNP MIPs, in combination with the previous drug resistance MIP
panel, we evaluated the parasite population diversity in 2537 parasite isolates from the DRC and
surrounding countries in East and West Africa. We used this information to quantify relatedness of and
gene-flow between parasites over large geographic scales and to assess the origins of antimalarial

resistance mutations.
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RESULTS

Sample quality and filtering: We obtained 2537 samples collected in 2013-2015 from the DRC and
surrounding countries (DRC=2039, Ghana=194, Tanzania=120, Uganda=63, Zambia=121). All
samples were sequenced using two separate MIP panels: a genome-wide panel designed to capture
overall levels of differentiation and relatedness, and a drug resistance panel designed to target
polymorphic sites known to be associated with antimalarial resistance'®. The genome-wide panel
included 739 ostensibly geographically informative SNPs, chosen on the basis of high differentiation
(Fst) between surrounding African countries in publicly available genomic sequences made available
by the Pf3K project (see Supplemental Text 1 and Supplemental Table 1), and 1151 putatively
neutral SNPs distributed throughout the genome, with an overlap of 56 SNPs that were both neutral
and geographically informative. The drug resistance panel included SNPs in known and putative drug
resistance genes and has been described elsewhere '°. The median number of unique molecular
identifiers (UMIs) per MIP was 31 (range: 1-8,490) for the genome-wide panel, and 10 (range: 1-
32,511) for the drug resistance panel. Complete UMI depth distributions are shown in Supplemental
Figure 1. After filtering for samples and loci with sufficient UMI coverage, we were left with 1382
samples and 1079 loci from the genome-wide panel, and 674 samples and 1000 loci from the drug
resistance panel, with an overlap of 452 samples between both panels. In addition to these samples,
114 controls consisting of known mixtures were sequenced and used to assess the accuracy of allele
calls and frequencies. Expected versus measured allele frequencies for each SNP, calculated from

these controls, are shown in Supplemental Figure 2.

Complexity of infection: Initial analyses focused on the genome-wide MIP panel only. Complexity of
infection (COI) for each sample was estimated using THE REAL McCOIL" (Supplemental Figure 3).
The mean COIl was estimated at 2.2 (range 1 - 8) for the study as a whole. We observed significant
differences in COI between countries (Ghana: 1.55 (non-parametric bootstrap 95% CI: 1.39 - 1.73),
DRC: 2.23 (2.15 - 2.31), Tanzania: 2.17 (1.83 - 2.51), Zambia: 2.68 (2.39 - 3.00), Uganda 2.18 (1.87 -
2.51), and within the DRC we observed a statistically significant relationship between COIl and P.
falciparum prevalence by microscopy at both the province and cluster levels (Supplemental Figure 4),

with higher COls observed at higher prevalences.

Population structure: We explored population structure through principal component analysis (PCA)
evaluated on within-sample allele frequencies at all 1079 genome-wide loci. We found the same

separation between East and West Africa described in previous studies (Figure 1) as well as finer
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structure between regions within East Africa. DRC samples comprised a continuum between the East

and West African clusters.
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Figure 1 The first two (a) and three (b) principal components calculated from within-sample allele frequencies using the
genome-wide MIP panel. Colors indicate country of origin of each sample.

The relative contribution of each locus to each principal component was quantified through normalized
loading values. Relative contributions to the first four principal components are shown in Figure 2. After
the fourth principal component the percent variance explained by subsequent components plateaued
(Supplemental Figure 5). For principal component 1 (PC1) large contributions came from loci
distributed throughout the genome, and a relatively larger contribution (65.2%) came from putatively
geographically informative SNPs (non-parametric bootstrap, p<0.001). In contrast, contributions to PC2
were concentrated in a region on chromosome seven in close proximity to P. falciparum chloroquine
resistance transporter (pfcrt), a known drug resistance locus, suggesting that resistance to chloroquine
or amodiaquine may be driving differentiation along this secondary axis. For PC3, locus contributions
were concentrated in three genic regions: PF3D7_0215300 (8.5%), PF3D7_0220300 (5.0%), and
PF3D7_1127000 (4.3%). The first and largest of these encodes an acyl-CoA synthetase and is part of a
diverse gene family known to undergo extensive gene conversion and recombination'. For PC4 we
observed a region of high locus contribution on chromosome eight in close proximity to the known
antifolate drug resistance gene dihydropteroate synthase (dhps). Combined, these results suggest that

geography and drug resistance are both contributors to the observed population structure.
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The relationship between the PCA results and the spatial distribution of parasites was explored by
plotting raw principal component values against the geographic location of samples (Figure 3a-3d). For
PC1 this revealed a complex pattern of spatial variation, containing both north-south and east-west
clines. For PC2 and PC4 the maps essentially recapitulate the known geographic distribution of pfcrt
and dhps resistance mutations, respectively (Figure 3e-3f). For PC3 the map indicates some east-west
spatial structuring that is not explained by known markers of antimalarial resistance and warrants

further investigation.
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Figure 2 The relative contribution (%) of each locus to the first four principal components. Chromosomes are plotted in order,
separated by vertical white gridlines. Point colors indicate sites that were chosen in the design based on Fst values to be
geographically informative (blue) or not (red).
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Figure 3 Panels (a) to (d) show the mean principal component value per DHS cluster. Panels (e) and (f) show estimated
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Identity by Descent: The relatedness of all pairs of samples was explored through pairwise identity by
descent (IBD), estimated using a maximum likelihood approach. IBD has advantages over simpler
statistics like identity by state (IBS) in that it takes account of allele frequency distributions, and so
provides an objective measure of relatedness that can be compared between studies'®. The overall
distribution of pairwise IBD was found to be heavy-tailed, consisting of a large body of weakly related

samples and a tail of very highly related samples (Figure 4).
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Figure 4 A histogram of pairwise identity by descent (IBD) between all samples, estimated by maximum likelihood. Inset
shows the heavy tail of the distribution, with some pairs of samples having IBD > 0.9.

Mean IBD was significantly higher within clusters compared to between clusters (0.06 vs. 0.02, two-
sample t-test, p<0.001). When plotted against geographic separation there was a clear fall-off of IBD
with distance (Figure 5a), consistent with the classical pattern expected under isolation-by-
distance'®"”. Focussing on the tail of highly related samples, which includes the major strain in complex
infections, there were 12 sample pairs with a relatedness greater than IBD=0.9. Comparison of raw
allele frequency distributions confirmed that these were likely clones (Supplemental Figure 6). These
highly related pairs were found more often within the same cluster than in different clusters (7 vs. 5
respectively, chi-squared test, p<0.001), suggesting the presence of local clonal transmission chains.
The five between-cluster highly related pairs (Figure 5b) were spread over large geographic distances
(281-1331 km), far beyond the normal expected scale of the breakdown in genetic relatedness (Figure

5a), suggesting recent long distance migration.
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Figure 5 Panel (a) shows the mean IBD between clusters, binned by the spatial distance between clusters. Vertical lines show
95% confidence intervals. Panel (b) shows the spatial distribution of highly related (IBD>0.9) parasite pairs. Black areas
indicate major water bodies, including the Congo River.

Prevalence of markers of resistance: Based on previous findings of an east-west divide in molecular
markers of antimalarial resistance in the DRC?®, all samples in the DRC were divided by
geographically-weighted K-means clustering into two populations (Supplemental Figure 7). The
prevalence of every mutation identified by the drug resistance MIP panel was calculated in eastern and
western DRC, as well as at the country level. Table 1 gives a summary of all mutations that reached a
prevalence >5% in any geographic unit, and a complete list of all identified mutations along with their
prevalence is given in Supplemental Table 2. Note that in the dhps mutation G437A the reference is
resistant, hence this is re-coded as A437G and prevalence values indicate the prevalence of the
reference allele. Estimated prevalences of these alleles in the DRC as a whole were broadly similar to
previously published estimates'®. However, we did identify several polymorphisms in known and
putative resistance genes not previously reported in the DRC, including kelch K189T and pfatp6

N569K, both of which have been described at appreciable frequencies elsewhere in Africa’®2°.

Geographic distribution of haplotypes: Previous studies have demonstrated that mutations
associated with antimalarial resistance are clustered into east-west groupings within DRC®'°. Focusing
on the 107 samples from DRC that were identified as monoclonal from The REAL McCOIL analysis, we
explored the joint distribution of all combinations of mutant haplotypes in both the dhps and crt genes.
Raw combinations of mutations were visualized using the UpSet package in R?', and the spatial

distribution of haplotypes in the DRC was explored by plotting these same mutant combinations against
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their corresponding DHS cluster locations (Figure 6). Our results for dhps recapitulate those found
previously, showing a clear east-west divide with the K540E and A581G mutants concentrated in the
east, and S436A and A437G concentrated in the west. For crt we also find evidence of an east-west
divide, with haplotypes containing N326S and F325C concentrated in the east and those containing

I356T concentrated in the west.

prevalence
gene chromosome position mutation name overall DRC DRC West DRC East Ghana Uganda Zambia
atp6 chrl 267007 1723V 1.1 0.3 0.7 0.0 4.2 7.3 0.0
atp6 chrl 267257 G639D 2.0 1.8 2.9 1.0 0.0 7.3 0.0
atp6 chrl 267467 N569K 24.1 21.9 18.8 24.0 16.7 41.5 28.9
atp6 chrl 267882 E431K 15.3 17.0 18.8 15.7 16.7 9.8 6.7
atp6 chrl 267970 L402V 7.1 8.2 10.1 6.9 12.5 0.0 2.2
dhfr-ts chra 748239 N51I 83.0 79.5 81.2 78.4 75.0 100.0 97.8
dhfr-ts chr4 748262 C59R 71.2 63.2 63.0 63.2 95.8 95.1 97.8
dhfr-ts chrd 748410 S108N 97.8 97.1 97.1 97.1 100.0 100.0 100.0
dhfr-ts chr4 748577 1164L 3.1 0.6 0.0 1.0 0.0 29.3 0.0
mdrl chr5 958145 N86Y 12.4 14.3 18.8 11.3 16.7 7.3 0.0
mdrl chr5 958440 Y184F 37.4 36.5 39.9 34.3 58.3 31.7 37.8
mdrl chr5 958484 T199S 13 0.0 0.0 0.0 0.0 14.6 0.0
mdrl chr5 958584 S232Y 2.7 3.5 5.1 2.5 0.0 0.0 0.0
mdrl chr5 961625 D1246Y 4.4 2.9 3.6 2.5 0.0 24.4 0.0
crt chr7 403620 M74l 30.3 28.7 37.7 225 16.7 85.4 0.0
crt chr7 403621 N75E 30.3 28.7 37.7 22.5 16.7 85.4 0.0
crt chr7 403625 K76T 30.3 28.7 37.7 22.5 16.7 85.4 0.0
crt chr7 404407 A220S 28.1 24.6 31.9 19.6 8.3 100.0 0.0
crt chr7 405600 1356T 7.1 9.4 21.0 1.5 0.0 0.0 0.0
dhps chr8 549681 S436A 15.0 17.3 28.3 9.8 37.5 0.0 0.0
dhps chr8 549685 A437G 73.2 67.3 72.5 63.7 95.8 100.0 82.2
dhps chr8 549993 K540E 25.4 17.0 9.4 22.1 0.0 85.4 48.9
dhps chr8 550117 A581G 8.2 6.1 2.2 8.8 0.0 34.1 4.4
k13 chri3 1726431 K189T 14.8 14.9 18.8 12.3 54.2 0.0 6.7
mdr2 chrl4 1956202 1492V 23.2 21.3 22.5 20.6 20.8 31.7 31.1
mdr2 chrl4 1956408 F423Y 31.4 30.1 28.3 31.4 29.2 36.6 37.8

Table 1 Prevalence (%) of mutations identified by the drug resistance MIP panel. Includes all mutations that reached a
prevalence >5% in any given geographic unit.

Selective sweep and haplotype analysis: Using the drug resistance MIPs and genome-wide SNP
MIPs combined, the extended haplotypes of the monoclonal infections were determined for 200kb
upstream and downstream of each putative drug resistance allele that had at least 5% overall
prevalence in the DRC. The CVIET haplotype within the crt gene showed a signal of positive selection,
with longer haplotype blocks in western DRC as compared to eastern DRC (Figure 7; p’XP-EHHp <
0.05). In the east, patterns of haplotype homozygosity are consistent with positive selection for the
derived 1356T haplotype (Supplemental Figure 8), although a XP-EHHp statistic could not be
calculated for this locus because the derived haplotype was absent in western DRC, supporting the

geographic localization of the I356T mutation in the east (Figure 6).
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Figure 6 The spatial distribution of all combinations of mutant haplotypes for dhps and crt from the monoclonal DRC samples.
Panels (a) and (c) are UpSet plots showing the number of times each combination of mutations was seen for dhps and crt,
respectively. Panels (b) and (d) show these same haplotypes on a map of DRC. Colours correspond horizontally between
panels, i.e. between (a) and (b), and between (c) and (d), with the exception of wild-type haplotypes (grey) which are not
shown in panels (b) and (d).

Mutations in dhps were more difficult to interpret. This gene has undergone multiple selective sweeps
associated with increasing drug resistance. The most recently introduced mutation into the DRC, dhps
A581G, showed relatively conserved local haplotypes around the mutation in both eastern and western
DRC (Supplemental Figure 9). Extended haplotypes around the other mutations (Supplemental
Figures 10 and 11) are inconsistent with a classical hard sweep, perhaps due to selection on multiple
independent haplotypes or to interference between A581G and other linked alleles. Finally, we did not
detect any strong signals of differing patterns of recent positive selection between the eastern and
western DRC among the dhfr and mdr2 genes (Supplemental Table 3, Supplementary Figure 12).
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Figure 7. EHH and Bifurcation Plots for pfcrt K76T from the monoclonal samples with no missing genotype data. Panels (a)
and (b) display EHH curves 200 kb upstream and downstream from the K76T core SNP in centimorgans among the samples
from the eastern DRC and western DRC. Panels (c) and (d) show haplotype bifurcation plots with respect to the core allele
ancestry and the eastern DRC and western DRC for a subsetted region. Position is considered in kilobases, and segregating
sites for each haplotype are displayed at the nodes. Overall, there is strong evidence for recent positive selection of the pfcrt
CVIET haplotype in the west that is mitigated in the east.
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DISCUSSION

Here we provide the first large-scale, robustly sampled study of falciparum malaria in central Africa
using MIP capture and sequencing, a novel high-throughput genotyping approach that is appropriate for
large population based surveys. Using a panel of probes designed to detect genome-wide SNPs,
combined with a second panel targeting drug resistance genes, we were able to show that the parasite
population in the DRC contains a signal of differentiation by geographic separation, consistent with the
classical pattern of isolation by distance. This background population structure is overlaid with the clear
impacts of drug resistance mutations, which cause distinct structure between East and West African
parasite populations. Additionally, the use of relatively dense genome-wide SNPs allowed us to carry
out relatedness analysis, revealing a handful of cases where human hosts separated by many
hundreds of kilometers were infected by essentially identical clones. Given the rapid breakdown of
distinct genotypes by recombination in high transmission areas, it is highly likely that these events
represent relatively recent infection and migration events. With this in mind, it is interesting to note that
pairwise links of high relatedness tend to fall along the Congo River, an important route of
transportation in DRC. Lastly, the combination of the two MIP panels allowed us to examine extended
haplotypes surrounding drug resistance genes, revealing rapid breakdown of haplotypes in the

population and different signals of selection in East vs. West DRC.

We previously investigated population structure using MIPs targeting 20 microsatellites in the DRC',
failing to detect a strong signal of population structure based upon these markers. Here we leveraged
the same 552 samples as the previous study, plus additional samples from the DRC and neighboring
countries, to identify clear structure with an improved SNP-based genotyping method. Our ability to
detect population structure in the present study is likely due to several factors. First, the new SNP panel
contains nearly two orders of magnitude more markers than the previous panel. While this new SNP
MIP panel expanded the number of loci interrogated, we have yet to achieve the full potential of MIPs.
Specifically, massively increased, multiplexed probe sets that target additional portions of the genome
are feasible. MIPs have now been used in human studies to detect as many as 55,000 markers in a
single reaction®?. Second, a large number of genome-wide SNPs in this study were chosen based on
high Fsr values in publicly available samples from surrounding countries. This increases our power to
detect geographic differentiation, but comes at the cost of not being able to comment on the relative
importance of geography vs. drug resistance, which would require random genetic sampling or
alternatively whole genomes. Similarly, we should be cautious when interpreting spatial clines in

population structure from our data, as we may have greater power to detect structure along some axes
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than others due to the unequal distribution of surrounding countries in publicly available samples,

although in general we have good representation in both the East-West and North-South directions.

The flexible nature of MIP panels allows for multiplex detection of SNPs associated with drug
resistance in any known or putative resistance loci for which they are designed. This allowed for a more
detailed evaluation of molecular markers associated with antimalarial resistance than has previously
been possible in the DRC. To date, studies of antimalarial resistance markers in the DRC have
focused primarily on pfert (K76T), dhfr (N511, C59R, S108N, 1164L), dhps (1431V, S436A, A437G,
K540E, A581G, A613S), pfmdr (N86Y, F184Y, D1246Y), and a few kelch mutations?*°. The data
suggests that mutations associated with artemisinin resistance remained absent in the country as of
2014. The World Health Organization identified 9 mutations within the K13 propeller region that are
validated in terms of their clinical phenotype of artemisinin resistance, and a further 11 mutations that
are candidates associated with the phenotype of delayed clearance.®® We identified 14 mutations within
the K13 gene (Supplemental Table 2), although none of these correspond to validated or candidate

artemisinin resistance mutations.

Beyond looking at mutations within drug resistance genes, differences in extended haplotypes around
drug resistance genes have been used to understand evolution and spread®'. Though not originally
designed for this purpose, the genome wide MIP panel can be leveraged for conducting similar
analyses. For example, the differences in CVIET EHH between the West and East suggests that the
CVIET haplotype in the West has potentially been more recently introduced, has experienced less
breakdown through recombination, or has undergone stronger recent positive selection as compared to
the East. Redesign of the selected targets with denser sampling around known drug resistance genes

will allow for more robust assessment of these selected regions.

DRC'’s location in central Africa and the enormous number of malaria cases in the country means that
malaria control in Africa likely depends on improving our understanding on Congolese malaria. This
represents the largest study of falciparum population genetics in the DRC and, unlike other large
population genetic studies of malaria in Africa, leverages a nationally representative sampling
approach. Thus, this study provides the first data on fine-scale genetic structure of parasites at a
national scale in Africa, and provides a baseline that can be used to study how implementation
programs impact parasite populations in the region. The newly implemented MIP platform represents a

highly scalable and cost-effective means of providing genome-wide genetic data, relative to whole
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genome sequencing '°. The highly flexible nature of the platform allows it to be rapidly scaled in terms

of targets and samples leading it to be applicable across malaria endemic countries.
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METHODS

Study Populations: Chelex-extracted DNA from dried blood spots, collected as part of the 2013-2014
DRC Demographic Health Survey (DHS), was tested using quantitative real-time PCR as described
previously*?23. Previously published DRC samples'® were included (n=589), and used to set a Ct
threshold of <30 which was applied to the remaining DRC samples (n=1450), resulting in a total of 2039
DRC samples sent for sequencing. These samples represented 369 of the overall 539 DHS clusters. In
addition, dried blood spot samples from 4 further counties were used: Ghana (n=194), Tanzania
(n=120), Uganda (n=63) and Zambia (n=121). Samples from Ghana were collected in 2014 from
symptomatic RDT and/or microscopy positive individuals presenting at health care facilities in Begoro
(n=94) and Cape Coast (n=98)**. Samples from Tanzania were collected in 2015 from symptomatic
RDT-positive patients of all ages at Kharumwa Health Center in Northwest Tanzania®®. Samples from
Uganda were collected in 2013 from RDT-positive symptomatic patients at Kanungu in Southwest
Uganda®®. Finally, samples from Zambia were collected in 2013 from RDT positive individuals from a
community survey of all ages in Nchelenge District in northeast Zambia on the border with the DRC. All
non-DRC samples were Chelex extracted, except for the Ghanaian samples which were extracted

using QiaQuick per protocol (Qiagen, Hilden, Germany).

MIP Design: We used two distinct MIP panels - a genome-wide panel designed to capture overall
levels of differentiation and relatedness, and a drug resistance panel designed to target polymorphic
sites known to be associated with antimalarial resistance. The drug resistance MIP panel has been
described previously'®. When selecting targets for the genome-wide panel, we used the publicly
available P. falciparum whole genome sequences provided by the Pf3k and P. falciparum Community
projects from the MalariaGEN Consortium. This consisted of sample sets from Cameroon (n=134),
DRC (n=285), Kenya (n=52), Malawi (n=369), Nigeria (n=5), Tanzania (n=66) and Uganda (n=12)
(Supplemental Table 1). The genomic sequence from these samples underwent alignment, variant
calling, and variant-filtering following the Pf3k strategy consistent with the Genome Analysis Toolkit
(GATK) Best Practices with minor modifications®~*°. Full details of the bioinformatic pipeline used in
MIP design are given in the Supplemental Text. Samples from Nigeria and Uganda were dropped
after variant calling due to small sample sizes, and the final filtered sequences were used to calculate
Weir and Cochran’s Fst*' with respect to country for each biallelic locus. The 1,000 loci with the highest
Fst values were considered for MIP design as phylogeographically informative loci. Of these 1,000
potential loci, 739 were identified as regions that were suitable for MIP-probe design. Separately, from

the combined SNP file, we identified 1595 loci that had a minor-allele frequency greater than 5%, had
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an Fst value between 0.005 and 0.2, and were annotated by SNPEff as functionally silent mutations.
These loci were identified as putatively neutral SNPs, and 1151 were found to be suitable for MIP
design. The distribution of MIPs is shown in Supplemental Figure 13 and MIP sequences and targets

are shown in Supplemental Table 4.

Capture and Sequencing: In addition to patient samples, control samples were known mixtures of 4
strains of genomic DNA from malaria at the following ratios: 67% 3D7 (MRA-102, BEI Resources,
Manasas, VA), 14% HB3 (MRA-155), 13% 7G8 (MRA-154) and 6% DD2 (MRA-156). They were also
represented at two different parasite densities (29 and 467 parasites/ul). MIP capture and sequencing
library preparation were carried out as previously described'’. Drug resistance libraries were
sequenced on lllumina MiSeq instrument using 250 bp paired end sequencing with dual indexing using
MiSeq Reagent Kit v2. Genome-wide libraries were sequenced on lllumina Nextseq 500 instrument
using 150 bp paired end sequencing with dual indexing using Nextseq 500/550 Mid-output Kit v2.

Sequencing reads have been deposited into the NCBI SRA (Accession numbers: pending).

Variant Calling and filtering: Variant calling was performed as described previously'®. Within each
sample, variants were dropped if they had a Phred-scaled quality score of <20. Across samples, variant
sites were dropped if they were observed only in one sample, or if they had a total UMI count of less

than 5 across all samples. This data set was considered the final raw data used for additional filtering.

Additional filters were applied to both genome-wide and drug resistance datasets prior to carrying out
analysis. Sites were restricted to SNPs, and in the case of the genome-wide panel these were filtered
to the pre-designed biallelic target SNP sites. Any variant that was represented by a single UMI in a
sample, or that had a within-sample allele frequency (WSAF = UMI count/coverage) less than 1%, was
eliminated. Any site that was invariant across the entire dataset after this procedure was dropped.
Samples were assessed for quality in terms of the proportion of low-coverage sites, where low-
coverage was defined as fewer than 10 supporting UMIs. Samples with >50% low-coverage loci were
dropped. Variant sites were then assessed by the same means in terms of the proportion of low-
coverage samples, and sites with >50% low-coverage samples were dropped. Samples were then
combined with metadata, including geographic information, and were only retained if there were at least
10 samples in a given country. This resulted in dropping Tanzanian samples from the drug resistance
dataset, but no other countries were dropped. Post-filtering, genome-wide data consisted of 1382
samples (DRC = 1111, Ghana = 114, Tanzania = 30, Uganda = 45, Zambia = 82) and 1079 loci, and
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drug resistance data consisted of 674 samples (DRC = 557, Ghana = 29, Uganda = 43, Zambia = 45)
and 1000 loci.

Complexity of Infection: We applied THE REAL McCOIL categorical method to the SNP genotyped
samples to estimate the COI of each individual®. Details of the analysis are in the Supplementary
Text.

Analysis of population structure: WSAFs were calculated for all genome-wide SNPs, with missing
values imputed as the mean per locus. Principal component analysis (PCA) was carried out on WSAFs
using the prcomp function in R version 3.5.1. The relative contribution of each locus was calculated
from the loading values as |;|/Yf_, |l;|, where |[;|is the absolute value of the loading at locus i, and
L is the total number of loci. PCA results were explored in a spatial context by taking the mean of the
raw principal component values over all samples in a given DHS cluster, and plotting this against the

geoposition of the cluster.

Identity by descent analysis: Pairwise identity by descent (IBD) was calculated between all samples
from the genome-wide SNPs. We used Malécot's*? definition of f as the probability of identity by
descent, where f,,,, can be defined as the probability of a randomly chosen locus being IBD between
samples u and v. At locus i, let A denote the reference allele, which occurs at population allele
frequency p;, and let a denote the non-reference allele, which occurs at population allele frequency

q; = 1 — p;. Assuming that both samples u and v are monoclonal, let X,,; denote the observed allele at
locus i in sample u, and equivalently let X,; denote the observed allele in sample v. Then the

probabilities of all possible observed allele combinations between the two samples can be written:

Pr(Xyi = A Xy = Al fw) = fuwbi + (1 = fun)p? (eq1)
Pr(Xyi = A Xpi = al fuv) = (1 = fur)pig
Pr(Xyi = a,Xvi = A fuv) = (1 = fur)Pig
Pr(Xui = &, Xy = a| f) = fuw@i + (1 — fun)aq?

from which we can calculate the likelihood of a given value of f,,, over all loci as:

L(fuv | Xu, Xy) = 14:1 Pr(Xui, Xvi | fuv)- (eq2)
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In practice, population allele frequencies (p;) were calculated using the mean WSAF for that locus over
all samples. Samples were then coerced to monoclonal by calling the dominant allele at every locus.
The likelihood was evaluated using eq2 in log-space for a range of values of f,,,, distributed between 0

and 1 in equal increments of 0.02. The maximum likelihood estimate f,,, = argmaxy L(f | Xy, X,,) was

calculated between all sample pairs. Hereafter the terms “IBD” and f,,,, are used interchangeably.

Mean IBD was calculated within and between DHS clusters, and compared using a two-sample t-test.
Sample pairs were also binned into groups based on geographic separation (great circle distance) in
100km bins, with an additional bin at distance Okm to capture within-cluster comparisons. Mean and
95% confidence intervals of IBD ware calculated for each group. Finally, sample pairs with IBD>0.9

were identified, and explored in terms of their WSAFs and their spatial distribution.

Estimating mutation prevalence from drug resistance panel: Given previous findings of an East-
West divide in molecular markers of antimalarial resistance in the DRC??, all samples in the DRC were
divided by geographically-weighted K-means clustering into two populations. The prevalence of every
mutation identified by the drug resistance MIP panel was then calculated in East and West DRC, as
well as at the country level. Prevalences in each DHS cluster were used to produce smooth prevalence

maps using PrevMap version 1.4.2 in R*}, using the method described in Aydemir et. al. (2018)'.

Analysis of monoclonal haplotypes: Results of the previous COI analysis on the genome-wide SNPs
with THE REAL McCOIL were used to identify samples that were monoclonal with a high degree of
confidence. Samples were defined as monoclonal if the upper 95% credible interval did not include any
COl greater than one. This resulted in 408 monoclonal samples, of which 143 overlapped with the drug
resistance MIP dataset and therefore could be used to explore the joint distribution of mutations in drug
resistance genes. 107 of these were from DRC. Analysis focussed on the dhps and crt genes. Raw
combinations of mutations were visualized using the UpSet package in R?', and the spatial distribution
of haplotypes was explored by plotting these same mutant combinations against DHS cluster

geoposition.

Extended haplotype homozygosity analysis: In order to improve our power to detect hard-sweeps
and capture patterns of linkage-disequilibrium with EHH statistics among putative drug resistance
SNPs, we combined the genome-wide and the drug resistance filtered biallelic SNPs into a single

dataset. Details of this analysis are described in the Supplemental Text.
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All associated EHH calculations were carried out using the R-package rehh, and were truncated when
fewer than two haplotypes were present or the EHH statistic fell below 0.05*4°. In addition, we allowed
EHH integration calculations to be made without respect to “borders,” which were frequent due to the
MIP-probe design. Although this would result in an inflated integration statistic if the EHH statistic had
not yet reached 0 within the region of investigation, this problem was mitigated by only comparing
between subpopulations, and not between loci. EHH decay, bifurcation plots, and haplotype plots were

adapted from the rehh package objects and modified using ggplot*.
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