

1 **Comparative analyses of saprotrophy in *Salisapilia sapeloensis* and diverse plant
2 pathogenic oomycetes reveal lifestyle-specific gene expression**

3

4 **Running title:** Oomycete saprotrophy and plant pathogen evolution

5

6 **Authors:**

7 Sophie de Vries^{1*}, Jan de Vries^{1,2}, John M. Archibald¹, Claudio H. Slamovits^{1*}

8

9 1 – Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax,
10 NS B3H 4R2, Canada

11

12 2 – Institute of Microbiology, Technische Universität Braunschweig, 38106
13 Braunschweig, Germany

14

15 * shared corresponding authors:

16 Sophie de Vries sophie.devries@dal.ca

17 Claudio H. Slamovits claudio.slamovits@dal.ca

18

19 **Keywords**

20 Oomycetes, EvoMPMI, plant pathogenicity, lifestyle evolution, saprotrophy, oomycete
21 diversity, CAZymes, gene expression, comparative transcriptomics

22

23

24 **Conflict of interest:** The authors declare no conflict of interest.

25

26 **Funding:** SdV thanks the Killam Trusts for an Izaak Walton Postdoctoral Fellowship.
27 JdV thanks the German Research Foundation (DFG) for a Research Fellowship
28 (VR132/1-1) and a Return Grant (VR132/3-1). CHS and JMA acknowledge funding by
29 from the Natural Sciences and Engineering Research Council of Canada (CHS:
30 Discovery grant RGPIN/05754-2015; JMA: RGPIN-2014-05871).

31

32 **Abstract**

33 Oomycetes include many well-studied, devastating plant pathogens. Across oomycete
34 diversity, plant-infecting lineages are interspersed by non-pathogenic ones.
35 Unfortunately, our understanding of the evolution of lifestyle switches is hampered by a
36 scarcity of data on the molecular biology of saprotrophic oomycetes, ecologically
37 important primary colonizers of dead tissue that can serve as informative reference
38 points for understanding the evolution of pathogens. Here, we established *Salisapilia*
39 *sapeloensis* growing on axenic litter as a tractable system for the study of saprotrophic
40 oomycetes. We generated multiple transcriptomes from *S. sapeloensis* and compared
41 them to (a) 22 oomycete genomes and (b) the transcriptomes of eight pathogenic
42 oomycetes grown under 13 conditions (three pathogenic lifestyles, six hosts/substrates,
43 and four tissues). From these analyses we obtained a global perspective on the gene
44 expression signatures of oomycete lifestyles. Our data reveal that oomycete
45 saprotrophs and pathogens use generally similar molecular mechanisms for
46 colonization, but exhibit distinct expression patterns. We identify *S. sapeloensis*' specific
47 array and expression of carbohydrate-active enzymes and regulatory differences in
48 pathogenicity-associated factors, including the virulence factor EpiC2B. Further, *S.*
49 *sapeloensis* was found to express only a small repertoire of effector genes. In
50 conclusion, our analyses reveal lifestyle-specific gene regulatory signatures and
51 suggest that, in addition to variation in gene content, shifts in gene regulatory networks
52 might underpin the evolution of oomycete lifestyles.

53

54 **Introduction**

55 Oomycetes encompass a great diversity of ecologically and economically relevant
56 pathogens of plants [1,2]. These include, for example, the (in)famous *Phytophthora*
57 *infestans*, the cause of the Irish potato famine [2]. In addition to the plant pathogenic
58 genera other lineages are pathogens of animals [3,4]. Interspersed amongst the
59 diversity of pathogenic oomycete lineages are (apparently) non-pathogenic lineages
60 with saprotrophic lifestyles [5,6,7] (for an overview see Figure 1a). How saprotrophy
61 arises in oomycetes is, however, not yet clear and depends strongly on the character of
62 the last common ancestor of oomycetes. Two hypotheses have been considered: i) the

63 last common ancestor was a pathogen and the saprotrophic lineages have arisen
64 several times independently or ii) saprotrophy is the ancestral state in oomycetes [8].

65
66 Saprotrrophic oomycetes are thought to play important ecological roles as colonizers
67 and decomposers of organic matter, and by making organic debris more accessible to
68 detritivores [7]. Furthermore, hybridization between saprotrophic and pathogenic
69 *Phytophthora* spp. has been hypothesized to drive distant host jumps of this pathogenic
70 lineage [7]. Additionally, the lifestyle of a microbe (pathogenic vs. non-pathogenic)
71 depends on its environment, and potentially non-pathogenic organisms can be
72 opportunistic pathogen under some environmental conditions [9,10,11,12]. Hence, any
73 given saprotrophic oomycete lineage might in fact be a latent pathogen; we cannot
74 exclude the possibility that they are able to colonize and exploit living plants. Despite
75 the ecological functions of oomycete saprotrophs and their possible contributions to
76 pathogenicity, how saprotrophs colonize their substrates and if and how they differ from
77 pathogens remains little understood. Few genomic studies have begun to address this
78 question.

79
80 Genomic data from *Thraustotheca clavata*, a saprotroph from the Saprolegniales,
81 provided the first insights into the molecular biology of a saprotrophic oomycete [13].
82 The *in silico* secretome of *T. clavata* is similar in its predicted functions to the
83 secretomes of oomycete pathogens. This is in agreement with genomic analyses of
84 fungi showing that saprotrophs utilize a similar molecular toolkit as fungal pathogens
85 [14,15]. This molecular toolkit includes, among other things, carbohydrate-active
86 enzymes (CAZymes) for substrate degradation and cell wall remodelling, as well as
87 other degradation-relevant enzymes such as peptidases and lipases, and sterol-binding
88 elicitors [13,14,15]. Differences between pathogens and saprotrophs are, for example,
89 found in the size of gene families, such as the cutinase family, which is required for
90 successful pathogen infection but much smaller in numbers in the genomes of fungal
91 saprotrophs [15]. The CAZyme content of fungi also seems to be shaped by lifestyles,
92 hosts and substrates [16]. In a study of 156 fungal species, degradation profiles were

93 found to be strongly substrate-dependent, although on similar substrates the ecological
94 role (pathogen or saprotroph) was relevant [17].

95
96 One of the principal ideas in studying the genomics of filamentous microbes is that the
97 history of the changes in their lifestyles can be inferred from their genomes [18,19].
98 Indeed, expansions or reductions of specific gene families can speak to the relevance of
99 such genes for a certain lifestyle. Yet, gene presence / absence data does not provide
100 insight into the *usage* of these genes by an organism with a given lifestyle. Moreover, as
101 noted above, it cannot be ruled out that some saprotrophic oomycetes are latent
102 pathogens—conclusions based on genomic data alone should be taken with caution. It
103 is here that large-scale transcriptomic and proteomic analyses have the potential to
104 provide deeper insight. Indeed, analysis of gene expression patterns is a powerful
105 discovery tool for gaining global insight into candidate genes involved in distinct
106 lifestyles, e.g., with virulence-associated and validated candidates being up-regulated
107 during infection [20,21,22,23]. Such data underpin the notion that plant pathogenicity is
108 at least partly regulated on the level of gene expression. Assuming that saprotrophic
109 interactions are also at least partially regulated on the transcript level, we can study
110 their molecular biology and differences relative to pathogens via gene expression
111 analyses during a saprotrophic interaction.

112
113 Here we established the first axenic system for the study of saprotrophy in oomycetes.
114 This system entailed the oomycete *Salisapilia sapeloensis* grown on sterilized marsh
115 grass litter. Using this system, we applied a comparative transcriptomic approach to
116 investigate molecular differences (a) within one saprotrophic interaction across three
117 different conditions and (b) between the saprotrophic and several pathogenic
118 interactions. Our data show *S. sapeloensis* in a successful saprotrophic interaction in
119 which it actively degrades litter. These data are corroborated by the fact that CAZymes
120 were found to be highly responsive in litter-associated and litter-colonizing mycelium.
121 Comparing *S. sapeloensis* to plant pathogenic oomycetes, we identified transcriptomic
122 signatures of saprotrophy and pathogenicity. Our data point to differences in regulatory
123 networks that may shape the evolution of oomycete lifestyles.

124

125 **Results and discussion**

126 ***Salisapilia sapeloensis*: tractable saprotrophy under axenic lab conditions**

127 Oomycetes have evolved both pathogenic as well as saprotrophic lifestyles. While many
128 pathogenic oomycetes are being investigated in depth, little is known about the
129 molecular basis of saprotrophic oomycetes. Comparative functional genomics of plant-
130 microbe interactions in the context of different lifestyles can yield vital clues about what
131 distinguishes the lifestyles of pathogens from those of non-pathogenic ones. To enable
132 broad comparative functional genomic investigations of oomycete biology, we are
133 studying *Salisapilia sapeloensis* for three main reasons: i) it is a peronosporalean
134 oomycete, ii) it has an interesting phylogenetic position basal to many plant pathogenic
135 oomycetes [24] (see also Figure 1a) and iii) its natural substrate is known and easily
136 accessible.

137

138 *S. sapeloensis* was originally isolated from the litter of the marsh grass
139 *Spartinia alterniflora* [24]. To study *S. sapeloensis* in the lab, we created axenic marsh
140 grass litter (MGL). We then inoculated corn meal medium (CMM, control) as well as
141 MGL submersed in salt water with mycelium of *S. sapeloensis* (Figure 1b,c).

142

143 The mycelium of *S. sapeloensis* grew well in both medium and the salt water next to the
144 litter (Figure 1b-d). To study if and how *S. sapeloensis* associated with the litter, we
145 investigated the inoculated MGL microscopically. *S. sapeloensis* was frequently
146 observed around the edges of axenic MGL (Figure 1e,g) and grew into its furrows
147 (Figure 1f,h,i, Figure S1). The mycelium associated closely with leaf tissue in the
148 furrows (Figure 1f) and was also observed growing inside the tissue (Figure 1j,k,l).
149 Additionally, we noted that the water surrounding the inoculated tissue turned yellow in
150 color (Figure 2a)—likely a result of litter degradation, further supporting the notion that
151 *S. sapeloensis* utilizes axenic MGL as a substrate. Overall, *S. sapeloensis* thrived on
152 the litter. Within seven days it produced enough biomass for our downstream analyses.
153 Hence, *S. sapeloensis* is capable of colonizing and surviving on MGL, as the MGL

154 contained no additional nutrients but those encased in the tissue of the marsh grass
155 leaves.

156

157 **Molecular signatures of litter colonization**

158 To more fully elucidate how *S. sapeloensis* colonizes and lives off litter, we isolated
159 RNA in biological triplicates and performed RNAseq on cultures growing under three
160 conditions: *S. sapeloensis* grown in regular CMM medium (henceforth called CMMm), in
161 water next to MGL (MGLw) and on MGL (MGLi; Figure S2). *De novo* assembly resulted
162 in 7777 unique genes (Dataset S1a). Of those, 4592 were oomycete-affiliated and 2656
163 were orphans (Dataset S1b,c); the remaining 529 genes had a taxonomic affiliation to
164 other organisms and have hence been omitted from downstream analyses. Unless
165 otherwise mentioned, downstream analyses focused on the strict oomycete-affiliated
166 dataset. Overall, 1628 oomycete-affiliated genes were differentially expressed in at least
167 one comparison (MGLi vs. CMMm, MGLi vs. MGLw and MGLw vs. CMMm; Benjamini-
168 Hochberg adjusted P [FDR]≤0.05; Dataset S1d). Of those 1628 genes with differential
169 expression, 90% (1472 genes) are found in the pairwise comparison of MGLi vs.
170 CMMm. In agreement with different sets of biochemical cues delivered by the two
171 nutritional resources in our growth conditions, the expression profiles of MGLi were
172 more similar to MGLw than to CMMm (Figure 2b). Nonetheless, 145 oomycete-affiliated
173 genes showed differential expression patterns (FDR≤0.05; Dataset S1d) between MGLi
174 and MGLw. These are, therefore, candidate genes specifically associated with the
175 colonization and on-site degradation of the litter.

176

177 Next, we determined which pathways the saprotroph requires for litter colonization. To
178 do so, we classified the assembled genes using the KEGG pathways as well as BRITE
179 functional hierarchies (Dataset S2a); we then determined which umbrella categories in
180 that classification were most responsive in *S. sapeloensis* (Figure 2c). Here we define
181 'responsiveness' as the number of KEGG orthologs with a cumulative 2-fold change
182 (\log_2 (fold change [FC]) ≥1 or ≤-1) in a given umbrella category in pairwise comparisons
183 of MGLi, MGLw and CMMm.

184

185 Among the 50 most responsive KEGG pathways/BRITE hierarchy terms, three showed
186 exclusively an induction ($\log_2 \text{FC} \geq 1$) upon exposure to MGL. These are ‘Chaperone
187 and folding catalysts’, ‘Vitamin B6 metabolism’, and ‘Lysosome’ (Figure 2c). ‘Chaperone
188 and folding catalysts’ suggests an association with stress: Of the 48 KEGG orthologs
189 present in the ‘Chaperone and folding catalysts’ pathway, 34 belonged to the heat
190 shock protein family: 12 were annotated as DnaJ KEGG orthologs, one was annotated
191 as a DnaK KEGG ortholog and 19 were annotated as other heat-shock protein (HSP)
192 KEGG orthologs. This corresponds to 15 DnaJ-encoding, two DnaK (HSPA09)-
193 encoding and 26 HSP-encoding genes (Dataset S2b). All except four HSP-encoding
194 genes had a $\text{TPM}_{\text{TMM-normalized}} \geq 1$, i.e., 39 genes were sufficiently expressed. In this
195 dataset seven of the 39 genes are significantly higher expressed in litter-associated
196 treatments (i.e., MGLi or MGLw vs. CMMm; Figure 2d). In a study by Benz et al. [25],
197 transcripts for stress-associated proteins—such as DnaK—showed an up-regulation in
198 the saprotrophic fungus *Neurospora crassa* when exposed to different plant cell wall-
199 associated carbon sources. Hence, our data suggest that *S. sapeloensis* experiences
200 stress when colonizing and degrading the plant tissue as well. It is conceivable that
201 toxic degradants and stored plant compounds trigger such stress in the saprotrophic
202 oomycete. Alternatively, this observation could be the result of secretion stress, which
203 has also been observed in saprotrophic fungi [26]. This hypothesis is supported by the
204 responsiveness of other KEGG pathways/BRITE hierarchy terms, such as ‘Protein
205 processing in the ER’ or ‘Membrane trafficking’ (Figure 2c).

206
207 Vitamin B6 is a precursor of pyridoxal phosphate, a co-factor for protein synthesis [27].
208 Hence, the elevation of the KEGG pathway ‘Vitamin B6 metabolism’ in *S. sapeloensis*
209 exposed to MGL might be related to protein degradation and protein biosynthesis. This
210 is in agreement with the presence of several amino acid synthesis-related KEGG
211 pathways/BRITE hierarchy terms among the 50 most responsive categories (Figure 2c).
212 An elevation of the KEGG-pathway “Lysosome” further indicates an increase in
213 degradation of biological material, in agreement with a saprotrophic lifestyle. Given that
214 stress-associated genes also are up-regulated during saprotrophy in fungi [25], the
215 increase of the BRITE term ‘Chaperone and folding catalysts’, and the KEGG-pathways

216 'Vitamin B6 metabolism' and 'Lysosome' in MGLi or MGLw vs. CMMm indicates a
217 general change in functional degradation in *S. sapeloensis*. We therefore investigated
218 the direction of responsiveness in KEGG-pathways associated with degradation in more
219 detail.

220

221 The MGLw and MGLi samples contained no nutritional carbon source other than the
222 grass litter. In this situation, *S. sapeloensis* thus had to live off the litter. Our macro- and
223 microscopic investigations (Figure 1b-l, 2a) suggest that *S. sapeloensis* is capable of
224 doing so. This observation is now underpinned by the responsiveness of the KEGG
225 pathways 'Lysosome' and 'Starch and sucrose metabolism', and the BRITE terms
226 'Transporters', 'Membrane trafficking', and 'Peptidases' (Figure 2c). Both 'Transporters'
227 and 'Membrane trafficking' are among the three most responsive KEGG
228 pathways/BRITE hierarchy terms. Both have KEGG orthologs induced and reduced in
229 transcript abundance in the pairwise comparisons. Their responsiveness hence speaks
230 not just to a mere induction but to specific differential up- and down-regulation as well.
231 'Membrane trafficking' contains 164 KEGG orthologs of which 14 responded to the
232 growth condition: 10 KEGG orthologs, corresponding to 10 genes, were increased in
233 MGLi and MGLw vs. CMMm ($\log_2(\text{FC}) \geq 1$, Dataset S2), while four KEGG orthologs,
234 corresponding to four genes, were reduced in MGLi and MGLw vs. CMMm ($\log_2(\text{FC}) \leq -1$,
235 Dataset S2). Therefore, we observed an overall tendency for an induction of
236 'Membrane trafficking'. Indeed, in fungi the responsiveness of the secretory pathway
237 components is correlated with the degradation of plant material [25,28]. Such
238 connections are also likely to exist in oomycetes. Moreover, both visual clues (Figure
239 2a) and the responsiveness of degradation-associated KEGG pathways/BRITE
240 hierarchy terms provide evidence of *S. sapeloensis* actively degrading the litter
241 substrate.

242

243 We next focused on the degradation-associated responsive categories, i.e., 'Peptidase'
244 and 'starch and sucrose metabolism'. The BRITE term 'Peptidase' included 77 KEGG
245 orthologs, 73 of which had an average $\text{TPM}_{\text{TMM-normalized}} \geq 1$ (Figure 2e). 'Peptidase' is
246 induced in MGLw vs. CMMm, and more KEGG orthologs have an induced transcript

247 abundance than a reduced transcript abundance when MGLi is compared to CMMm
248 (Figure 2c). 27 peptidase-encoding genes were differentially expressed in one of the
249 three comparisons (FDR≤0.05). Of those 27 peptidase-encoding genes, 56% (i.e., 15
250 genes) are up-regulated in either MGLi or MGLw vs. CMMm (Figure 2e). In agreement
251 with the KEGG ortholog analyses, the majority of the up-regulated peptidase-encoding
252 genes is further attributable to the comparison of MGLw against CMMm. This suggests
253 that mycelium growing next to the litter majorly contributes to the degradation of
254 proteins in *S. sapeloensis*.

255

256 The alterations in gene expression in the KEGG pathway 'starch and sucrose
257 metabolism' suggest a remodelling of carbon-based degradation upon the change of
258 substrate. Such remodelling is expected, because CMMm, MGLi and MGLw represent
259 different carbon sources, with CMMm, for example, being enriched in starch compared
260 to MGL or the salt water. Likewise, MGL will have long carbon-chains, such as
261 cellulose, which might reach the salt water in an already pre-processed condition. The
262 molecular differences observed when we dissect the components of this pathway align
263 with the differences in carbon sources: For example, the KEGG ortholog endo-1,4- β -D-
264 glucanase (EC 3.2.1.4), composed of 10 endo-1,4- β -D-glucanase-encoding genes, is
265 overall induced ($\log_2 [FC] > 1$, Dataset S2) in MGLi vs. MGLw and CMMm. Three of the
266 10 endo-1,4- β -D-glucanase-encoding genes contribute to both the induction in MGLi vs.
267 MGLw and MGLi vs. CMMm (*Salisap3873_c0_g6*, *Salisap3873_c0_g7* and
268 *Salisap3873_c0_g8*; Dataset S1d). Endo-1,4- β -D-glucanase is involved in the
269 degradation of glucans found in leaves [29], highlighting the ability of *S. sapeloensis* to
270 degrade leaf litter. This is further illustrated by the extent to which the three endo-1,4- β -
271 D-glucanase-encoding genes that caused the overall induction were up-regulated: All
272 three genes were on average 87-fold up-regulated (FDR≤0.05) in MGLi vs. CMMm and
273 49-fold up-regulated (FDR≤0.05) in MGLi vs. MGLw. One of the three genes
274 (*Salisap3873_c0_g8*) even increased by 248-fold in MGLi vs. CMMm (FDR = $5.8 \cdot 10^{-46}$)
275 and 109-fold in MGLi vs. MGLw (FDR = $5.3 \cdot 10^{-33}$).

276

277 In contrast to the overall induction of endo-1,4- β -D-glucanase, the KEGG ortholog
278 phosphoglucomutase (represented by one gene in the database, *Salisap4157_c0_g2*)
279 has a reduced transcript abundance in MGLi vs CMMm ($\log_2(\text{FC}) < -1$; Dataset S2a).
280 This is substantiated by the differential gene expression analysis, showing that the
281 single phosphoglucomutase-encoding gene is significantly down-regulated by 2-fold
282 ($\text{FDR} = 5.7 \times 10^{-10}$) in MGLi vs. CMMm. Phosphoglucomutase is associated with starch
283 catabolism [30,31], illustrating the reduced availability of starch in litter compared to
284 corn meal-based medium. Taken together, the visual and molecular data show that *S.*
285 *sapeloensis* acts as a saprotroph in our axenic set-up—making it an apt system for
286 studying oomycete saprotrophy *in vitro*.

287
288 Notably, all four degradation-associated categories had KEGG orthologs specifically
289 responsive ($\log_2 \text{FC} > 1 / < -1$) in MGLi vs MGLw (Figure 2c). This suggests that MGLw
290 has a slightly different metabolism than MGLi. This makes sense given that the water
291 next to the litter presumably contains pre-processed organic compounds. We therefore
292 interpret this different regulation of biochemical and metabolic pathways as a division of
293 labor, in which mycelium growing on litter (i.e. proximal) mainly degrades large carbon-
294 components into smaller pieces that are further processed by mycelium grown in the
295 surrounding water (i.e. distal). Such division of labor has been observed across different
296 mycelial parts in *Sclerotinia sclerotiorum*, an ascomycete growing as a septate
297 mycelium [32]. Peyraud and colleagues [32] hypothesized that cooperation of distinct
298 mycelial parts in a multicellular mycelium may be of an advantage to the pathogen.
299 Indeed, their study indicated that the division in metabolic tasks would improve plant
300 colonization. Given that the mycelium of *S. sapeloensis* is also septate [24] (see also
301 Figure 1d), such division of labor is likewise feasible. Similar to *S. sclerotiorum*, the two
302 distinct parts of *S. sapeloensis* show significant differences with regard to the
303 degradation of plant material. Hence, even though *S. sapeloensis* acts as a saprotroph
304 in our system, it is capable of division of labor, which may give it an advantage in
305 colonizing the dead plant tissue.

306
307 ***S. sapeloensis* expresses a distinct degradation enzyme profile**

308 The transcriptomic ‘fingerprints’ of *S. sapeloensis* show that the saprotroph actively
309 degrades MGL. Degradation of plant material is, however, not restricted to saprotrophy,
310 but is also essential for plant pathogenicity [29]. To analyse if and how degradation
311 processes differ between *S. sapeloensis* and oomycete pathogens, we first explored
312 putative orthologous genes between *S. sapeloensis* and 16 peronosporalean plant
313 pathogens and second analyzed those genes unique to *S. sapeloensis*. We identified
314 on average 1376 genes in *S. sapeloensis* with no detectable ortholog in at least one
315 pathogen; 705 of these genes (51.2%) are entirely unique to *S. sapeloensis* (Dataset
316 S3). Among these unique genes, 191 (27% of 705) have significantly different
317 expression (FDR≤0.05) in MGLi compared to CMMm (Dataset S3c). Similarly, 22% (153
318 genes) were differentially regulated in MGLw vs. CMMm (FDR≤0.05), but only 31
319 (4.3%) are differentially expressed in MGLi vs. MGLw. To identify the gross molecular
320 functions of the differentially regulated, unique genes we performed a Gene Ontology
321 (GO-)enrichment analysis for the categories MGLi vs CMMm and MGLw vs. CMMm.
322 This analysis pointed to a specific enrichment in hydrolase activity (Figure 3a), and
323 implies that *S. sapeloensis* has a novel profile of degradation enzyme compared to the
324 oomycete plant pathogens.

325
326 To further investigate the mechanisms underlying the degradation of litter and how they
327 differ to those involved in the degradation of living plant material, we predicted the
328 functional composition of the CAZyme repertoire of *S. sapeloensis*. *S. sapeloensis*
329 expressed in total 149 genes predicted to encode CAZymes (134 with TPM_{TMM-}
330 $normalized \geq 1$ in at least one treatment; Dataset S4). Given that our dataset is a
331 transcriptome, *S. sapeloensis* likely harbors more CAZyme-encoding genes in its
332 genome than it expresses. However, the relative representation of CAZyme-encoding
333 genes in the transcriptome of *S. sapeloensis* can give us some insights into their
334 relevance for its saprotrophic lifestyle in our *in vitro* system. To get a measure on this
335 relative representation (in absence of genomic data from *S. sapeloensis*), we analysed
336 22 genomes from diverse oomycetes to estimate the average amount of CAZyme-
337 encoding genes.

338

339 We detected between 242 (*Albugo candida*, 1.8% of the protein-coding repertoire) and
340 731 (*Phytophthora parasitica*, 2.6% of the protein-coding repertoire) CAZyme-encoding
341 genes in the oomycete genomes (Dataset S4a). On average, the oomycete genomes
342 harboured 431 ± 139 CAZyme-encoding genes. Assuming a similar amount for the
343 saprotroph, *S. sapeloensis* expresses $38.2\% \pm 12.2\%$ of the average CAZyme repertoire.
344 The distribution of numbers of CAZyme-encoding genes detected in the *S. sapeloensis*
345 transcriptome was similar to that encoded in genomes of plantpathogenic oomycetes,
346 with the exception of polysaccharide lyases (PLs) (Figure 3b). This reduced
347 representation of PLs in the saprotroph (relative to the plant pathogenic oomycetes)
348 may be because of its substrate: Monocot cell walls have lower pectin content than their
349 dicot counterparts [33]. The most abundant PLs in oomycetes (PL1 and PL3; Dataset
350 S4a) are involved in pectin and pectate degradation [29] and most plant pathogens in
351 our dataset infect dicots. *S. sapeloensis* in contrast colonizes a monocot, explaining the
352 low number of PLs expressed. Therefore, *S. sapeloensis* expresses an overall
353 representative number of CAZyme-encoding genes.

354

355 In contrast to the Peronosporales and Albugonales, all Saprolegniales (regardless of
356 trophism) showed an increase in carbon binding module (CBM)-containing proteins
357 (Figure 3b). Overall, the CAZyme repertoire of *S. sapeloensis* is more similar to that of
358 the other plant pathogens than to the saprolegnian saprotroph. The representation of
359 the six major CAZyme categories in a genome is, therefore, rather determined by
360 phylogenetic position than lifestyle (Figure 1a). Nevertheless, our GO-term analyses
361 showed that *S. sapeloensis*' unique genes were associated with CAZyme-encoding
362 genes. While, at this point, we cannot exclude that these gains are lineage-specific to *S.*
363 *sapeloensis*, we observe that this picture mirrors what we know from fungi, where the
364 lifestyle does shape the CAZyme repertoire [16]. We hence suspected that the
365 differences in the CAZyme repertoire might be found in specific families, to which we
366 next turned our attention.

367

368 **Pathogenicity-associated CAZyme families are not expressed during the**
369 **saprotrophic interaction**

370 In peronosporalean plant pathogens, CAZymes in general and glycosyl hydrolases
371 (GHs) in particular, constitute a large fraction of the genes that were suggested to have
372 been horizontally acquired from fungi, thus furthering peronosporalean plant
373 pathogenicity [34]. *S. sapeloensis*, whose phylogenetic placement is basal to the
374 peronosporalean plant pathogens (Figure 1a), does not express these particular GH
375 families in any of the here tested conditions (Dataset 4), supporting their relevance for
376 plant pathogenicity. This hints that *S. sapeloensis* does not express pathogenicity-
377 associated CAZyme families during a saprotrophic interaction. To substantiate this
378 finding, we next mined *S. sapeloensis*' transcriptome for those CAZyme families that are
379 induced during infection, using *Phytophthora infestans* as the reference point. Induced
380 CAZyme families during infection of potato tubers by *P. infestans* are Carbohydrate
381 esterase 8 (CE8), GH28, GH53, GH78, PL1, PL2 and PL3 [35]. Of these seven families
382 only two (PL1 and PL3) were found to be expressed in *S. sapeloensis* (Dataset S4a).
383 Hence, as we hypothesized based on the GO-term enrichment analyses (Figure 3a),
384 the saprotroph seems to use different CAZyme families compared to plant pathogens.

385
386 To highlight CAZymes families with specific relevance for saprotrophy, we determined
387 which genes were up-regulated during litter colonization. *S. sapeloensis* expressed
388 mainly GHs, glycosyltransferases (GTs) and CEs (Figure 3b,c). In agreement with litter
389 degradation, 19.0% of GH-encoding and 27.8% of CE-encoding genes showed a
390 $TPM_{TMM\text{-normalized}} > 100$ in MGLi (Figure 4a, Dataset S4c). Overall, 37 CAZyme-encoding
391 genes were up-regulated in litter-associated growth vs. growth on CMMm (FDR ≤ 0.05).
392 We analysed the relative expression of four of those genes (*Salisap4165_c1_g3*
393 [*CE10*], *Salisap3316_c0_g4* [*GH1*], *Salisap3873_c0_g7* [*GH6*] and *Salisap1930_c0_g1*
394 [*GT57*]) using qRT-PCR (Figure 4b). The up-regulation in MGLi vs CMMm in all four
395 genes was confirmed for three of them (*Salisap4165_c1_g3* [*CE10*],
396 *Salisap3316_c0_g4* [*GH1*] and *Salisap3873_c0_g7* [*GH6*]). *Salisap1930_c0_g1* (*GT57*)
397 was the only gene up-regulated in MGLw vs. CMMm in the transcriptomic data; this was
398 likewise confirmed. One of the most expressed genes in the entire CAZyme dataset
399 was *Salisap3873_c0_g7*, one of the three *GH6* that we already noted in the KEGG
400 analyses. *Salisap3873_c0_g7* was not only up-regulated in MGLi vs. CMMm (FDR =

401 4.8×10^{-15}) but also MGLi vs. MGLw (FDR = 1×10^{-5} ; Figure 4a,b, Dataset S1d), further
402 supporting its relevance in litter degradation. Across all CAZyme categories, 7.6% (10 of
403 131 genes with a calculatable $\log_2[FC]$) were specifically up-regulated in MGLi vs.
404 MGLw; only 2.3% (3 of 131 genes) were down-regulated (Figure 4c). Together this
405 amounts to 8.9% of the genes that are differentially regulated genes in MGLi vs. MGLw.
406 These data underpin the importance of differential regulation of CAZyme-encoding
407 genes for—at least our case of—oomycete saprotrophy. Among these litter-specific up-
408 regulated genes in *S. sapeloensis* are two CEs, six GHs and all PLs. Taken together,
409 these results suggest that PLs, GHs and CEs play important roles in litter degradation.
410

411 To find additional CAZyme families with a relevance in oomycete saprotrophy, we
412 analyzed if and which CAZyme-encoding gene families have an enriched expression in
413 *S. sapeloensis*. We reasoned that given the similar distribution pattern of CAZyme
414 categories in the transcriptome and the oomycete genomes (Figure 3b), the relative
415 amount of any CAZyme family specifically required for saprotrophy would be enhanced
416 compared to the average relative representation in oomycete genomes. To that end we
417 calculated the percentage of CAZyme-encoding genes in the transcriptome of *S.*
418 *sapeloensis* and in the genomes of the other oomycetes (Figure 3c, Dataset S4b). We
419 defined enrichment of a CAZyme-encoding family in the transcriptome as an at least
420 two-fold increase in relative abundance of this family compared to its average
421 abundance in the oomycete genomes (averaged over 22 genomes). Of the 191
422 CAZyme families detected, eight were more abundantly expressed than expected
423 (Figure 3c). These eight families correspond to 14 GH-, five GT- and one mixed GH/GT-
424 encoding gene (Figure 3c). Of these, seven were up-regulated in association with litter
425 (MGLi and MGLw vs. CMMm; FDR ≤ 0.05 ; Dataset S1d). Six induced genes
426 corresponded to the GH1 family (*Salisap3316_c0_g4*, *Salisap3316_c0_g3*,
427 *Salisap3316_c0_g1*, *Salisap3477_c0_g1*, *Salisap3477_c0_g3* and *Salisap3920_c3_g1*)
428 and one belonged to GT58 (*Salisap 2235_c0_g1*). Only one gene, a GH1
429 (*Salisap3316_c0_g4*) is expressed specific to the colonization of litter, showing a 3.2-
430 fold up-regulation (FDR=0.026; Dataset 1b). The GH1 family is generally involved in

431 cellulose-degradation [29], highlighting the GH1 family, and especially
432 *Salisap3316_c0_g4*, as a candidate CAZyme important for the saprotrophic lifestyle.

433

434 In summary, a large fraction of *S. sapeloensis*' differentially regulated genes (i.e. FDR
435 ≤ 0.05) in MGLi vs. MGLw encoded CAZymes. Additionally, CAZyme-encoding genes
436 were highly responsive (strong changes in transcript levels and differential regulation) in
437 comparisons between litter-associated growth and growth on CMM. This can be
438 attributed to the changes in carbon sources that are degraded in MGLi, MGLw and
439 CMMm. Likewise, CAZyme-encoding genes of fungi contribute a major fraction to the
440 differential transcriptome after changes in carbon sources [25,36]. Additionally, our data
441 highlights a distinct profile of CAZyme-encoding genes that are used during saprotrophy
442 compared to plant pathogenicity. Taken together, this suggests that fungi and
443 oomycetes co-opt their molecular biology in similar ways to similar lifestyles.
444 Saprotry may hence have convergently evolved similar degradation mechanisms in
445 these two groups of organisms.

446

447 ***Salisapilia sapeloensis*' expression profile during litter decomposition is distinct
448 from that of two plant pathogenic relatives during infection**

449 We next sought to identify other hallmark genes of oomycetes associated with
450 saprotrophy as opposed to plant pathogenicity. For this, we compared the global gene
451 expression data from *S. sapeloensis* in MGLi vs. CMMm with published transcriptome-
452 derived expression data from (i) *Phytophthora infestans* and (ii) *Pythium ultimum*
453 infecting potato tubers vs. CMMm [23] (Figure 5). *S. sapeloensis* is ideal for this
454 comparison because of its phylogenetic position basal to *Phytophthora* and *Pythium*
455 [24] (Figure 1a). Moreover, the two pathogens have different modes of a pathogenic
456 lifestyle: *P. infestans* is a hemibiotrophic pathogen. It requires a living host in its early
457 infection stage (biotrophic phase) and later induces host cell death to use the
458 degradants as a nutrient source (necrotrophic phase). In contrast, *P. ultimum* is a
459 necrotrophic pathogen. It immediately kills its host after infection to utilize the
460 degradants.

461

462 To identify how similar the expression between *S. sapeloensis* and the two pathogens is
463 when comparing data from infection vs. litter colonization, we calculated how many
464 genes showed concordant trends in expression. First, we identified orthologs between
465 *S. sapeloensis*, *P. infestans* and *P. ultimum* (Figure 5a). Second, we calculated the
466 $\log_2(\text{FC})$ between MGLi and CMMm for *S. sapeloensis* and between infection and
467 CMMm for the two pathogens. Using these data, we asked if the expression of
468 orthologous genes in the three species was higher (up; $\log_2(\text{FC}) \geq 1$), lower (down;
469 $\log_2(\text{FC}) \leq -1$) or similar (no change; $-1 < \log_2(\text{FC}) < 1$) upon the encounter of plant
470 tissue compared to CMMm. An ortholog was counted as showing a concordant trend in
471 two species if expression was higher (up) in both species, lower (down) in both species
472 or similar (no change) in both species (Figure 5b). We further analysed concordant
473 trends in expression between litter colonization and an early infection phase and
474 between litter colonization and a late infection phase. This was done to account for the
475 fact that *P. infestans* changes from biotrophy to necrotrophy during infection, which is
476 also accompanied by a switch in expression [23].

477

478 Overall, *S. sapeloensis* and the pathogens had similar patterns of gene expression
479 ($62.0 \pm 5.9\%$; Figure 5b; Dataset S5a). Hereby, the early necrotrophic phase of the two
480 pathogens, (i.e. in the hemibiotroph *P. infestans* the late infection stage; in the
481 necrotroph *P. ultimum* the early infection stage) showed more concordant trends to
482 saprotrophy than the biotrophic (early infection stage of *P. infestans*) and late
483 necrotrophic (late infection stage of *P. ultimum*) phase (Figure 5b). These similarities
484 are not surprising—yet they are confirmatory of our approach and align with what we
485 know about the biology of the lifestyles: Since in both saprotrophy and necrotrophy the
486 oomycete is eventually confronted with dead tissue, it is only logical that the
487 transcriptional response to these cues is partially overlapping. In contrast the transition
488 between biotrophy to necrotrophy requires a switch from a transcriptional program that
489 is outlined to keep a host alive to a transcriptional program outlined to kill a host. In
490 agreement hemibiotrophic pathogens show strong transcriptional shifts between their
491 biotrophic and necrotrophic phases [23,37,38]. Hence, a strong transcriptional
492 difference between a saprotrophic interaction, in which *S. sapeloensis* feeds on dead

493 plant tissue, compared to the biotrophic phase in the hemibiotroph *P. infestans*, where
494 its physiology is optimized to keep the host alive, is only expected.

495

496 The main constituent of the orthologs with concordant regulatory trends between the
497 pathogens and the saprotroph were those that showed no change (Figure 5b). Only
498 0.69-1.85% of the concordantly regulated orthologs were also responsive (up- or down-
499 regulated) upon colonization or infection. Hence a large fraction of the litter-responsive
500 transcriptome of *S. sapeloensis* has distinct regulatory trends compared to the two
501 pathogens. This means that those genes whose function is associated with the
502 degradation of litter are not induced during infection of a plant pathogen, albeit that both
503 the saprotroph and the pathogen have a functional copy of the respective gene.
504 Conducting the comparison between *P. infestans* and *P. ultimum* we found that the
505 relative amount of concordant regulatory trends between the two pathogens was two
506 times higher than what was observed for the comparison between saprotroph and either
507 pathogen (Figure 5b). This indicates that the signaling required by two different
508 pathogens for the infection of a living plant is more similar to each other than the
509 signaling required for the colonization of dead plant material by a saprotroph.

510

511 To gain insight into the responsiveness of genes that show discordant trends, i.e. genes
512 that are uniquely-regulated in the organisms, we first identified the uniquely regulated
513 genes and second asked whether they are induced or reduced or showed no change in
514 expression between infection or colonization vs. CMMm (Dataset S5a-c). Of all
515 orthologs identified in *P. infestans* and *S. sapeloensis* as well as *P. ultimum* and
516 *S. sapeloensis*, $32.7 \pm 6.2\%$ were uniquely regulated across all four comparisons. This
517 corresponds to 938 ± 178 genes. The pathogens had more uniquely regulated genes that
518 were induced or reduced compared to the saprotroph: $16.8 \pm 3.6\%$ (152 ± 11 genes) of
519 all uniquely-regulated genes were induced or reduced in the saprotroph colonizing the
520 litter (MGLi) vs. CMMm, while $37.1 \pm 10.2\%$ (354 ± 131 genes) were induced or reduced
521 in the pathogens infecting their hosts vs CMMm (Dataset S5a).

522

523 On balance, our data show that *S. sapeloensis* has distinct gene expression compared
524 to the two oomycete pathogens. Such differences in expression suggest that the
525 underlying gene regulatory networks of *S. sapeloensis*, respond differently to the
526 colonization of dead plant material than those of *P. infestans* and *P. ultimum* do towards
527 infection. Next stands the question of which genes are differently regulated in the
528 saprotroph and the two pathogens and whether those genes show a connection to
529 virulence.

530

531 **Pathogenicity-associated genes show different expression profiles in *Salisapilia***
532 ***sapeloensis* and two plant pathogenic relatives**

533 To identify genes whose expression differs between *S. sapeloensis* and the pathogens,
534 we investigated the regulatory trends of genes that are shared by *S. sapeloensis* and
535 the pathogens *P. infestans* and *P. ultimum*. To identify unique profiles that set the
536 pathogens apart from the saprotroph, we focused on the top-100 up-regulated
537 orthologous genes with discordant regulatory trends (Dataset S5b). Among these
538 genes, we found an *elicitin-like* candidate (*Salisap4220_c11_g2*). Its putative protein
539 product was slightly shorter than its ortholog in *P. infestans*, but possessed both a
540 signal peptide (SP) and Elicitin domain similar to the ortholog of *P. infestans* (Figure 5c).
541 This *elicitin-like* gene was uniquely induced in the late phase of *P. infestans* ($\log_2(\text{FC}) >$
542 1), while it was down-regulated in *S. sapeloensis* colonizing litter ($\log_2(\text{FC}) = -1.3$,
543 $\text{FDR} = 3.5 \times 10^{-7}$, Figure 5d). Likewise, the protease inhibitor *EpiC2B*
544 (*Salisap1031_c0_g1*), a virulence factor of *P. infestans* [39], was uniquely induced
545 during early and late infection but showed no change in expression in *S. sapeloensis* in
546 MGLi compared to CMMm (Figure 5d). Despite the different regulation, structural
547 analyses revealed that the putative protein product of the *EpiC2B* ortholog of *S.*
548 *sapeloensis* was similar in structure compared to *PiEpiC2B*. It has a cystatin-like
549 domain similar to the cystatin domain of *PiEpiC2B* (Figure 5c). Both are located N-
550 terminally right behind the SP and are of similar length. These results show that the
551 saprotroph *S. sapeloensis* generally possesses pathogenicity-associated genes.
552 However, their expression is different from those in pathogens. This raises the question

553 whether *S. sapeloensis* could also act as an unrecognized, possibly latent pathogen,
554 but uses different gene regulatory networks during its saprotrophic interaction.

555

556 We investigated further whether *S. sapeloensis* expresses other members of pathogen-
557 associated gene families and whether those showed discordant or concordant
558 regulatory trends. We parsed our dataset of detected orthologs (Dataset S3b) for (i) all
559 protease inhibitor-encoding genes (*Epi* and *EpiC*), (ii) *elicitin-like* sequences, (iii)
560 members of the *Nep1-like* (*NLP*) family, and (iv) Cellulose binding elicitor lectin (CBEL)-
561 encoding genes based on annotations in the *P. infestans* genome. All of these families
562 have been shown to induce disease symptoms and/or are required for successful plant
563 infection [39,40,41,42,43,44,45]. This survey revealed expression of a mere two *CBEL*
564 orthologs (*Salisap3205_c0_g1* and *Salisap3882_c0_g5*) in *S. sapeloensis* (even when
565 considering those transcripts with a TPM<1). We detected no orthologs for *NLPs* or
566 other elicitin-, *Epi*-, and *EpiC*-encoding genes.

567

568 The putative protein products of the two *SsCBEL* orthologs are similar in structure to
569 their counterparts in *P. infestans* (Figure 5c). *Salisap3205_c0_g1* has four PAN/Apple
570 domains distributed across the entire protein sequence. Cellulose-binding domains
571 alternate with the PAN/Apple domains, supporting its putative function as a CBEL
572 protein. It however lacks a SP. This is likely due to the sequence being partial at the N-
573 terminus. The second *SsCBEL* ortholog, *Salisap3882_c0_g5*, translates *in silico* into a
574 protein with two PAN/Apple domains and two Cellulose binding domains, each located
575 in front of a PAN/Apple domain. Additionally, we observe an N-terminal SP.

576

577 Like the *Epic2B* and *elicitin-like* orthologs, the two CBEL orthologs showed unique
578 regulatory trends (Figure 5d). One of the orthologs was reduced in *P. infestans* during
579 infection ($\log_2[\text{FC}] < -1$), while *S. sapeloensis* showed no change in expression on litter
580 and CMM. The other CBEL-encoding ortholog was specifically induced in the
581 necrotrophic phase of *P. infestans* ($\log_2[\text{FC}] > 1$), but down-regulated in *S. sapeloensis*
582 ($\text{FC}_{\log 2}=-1.7$, $\text{FDR}=3.1*10^{-17}$ Figure 5d). These data show that on the one hand
583 *S. sapeloensis* does express, and hence encode, members of gene families associated

584 with a pathogen's ability to successfully infect a living plant host. On the other hand,
585 only few of those genes are expressed and if so, they show discordant expression
586 patterns in *S. sapeloensis* and *P. infestans*. Overall this allows for the possibility that *S.*
587 *sapeloensis* is capable of a pathogenic interaction but it is not using these factors during
588 saprotrophy. Alternatively, the protein products of these pathogenicity-associated genes
589 could be co-opted for a different use in *S. sapeloensis*.

590

591 ***Salisapilia sapeloensis* expresses few RxLR and SSP effector candidates**

592 To be able to infect living plants, pathogens also counteract the plant immune system
593 by secreting proteins, called cytoplasmic effectors, into the host cells or their apoplast
594 [46,47]. We have already investigated the expression of several of such pathogenicity-
595 associated genes in the previous sections. Here we now focus on Crinklers (CRNs),
596 RxLRs and small secreted peptides (SSPs) that are present in several oomycetes
597 [48,49,50]. Yet, only few orthologous effectors exist between the different oomycetes
598 [20,51]. We therefore used a heuristic and HMM search to identify initial candidates for
599 RxLRs and CRN. For SSPs we used EffectorP2.0 [52]. Because these are secreted,
600 cytoplasmic effectors we further determined candidate genes without a transmembrane
601 domain (TM domain) and with a SP.

602

603 Using this approach, we identified four RxLR and 27 SSP and no CRN candidates
604 across the oomycete-affiliated and orphan gene dataset (Figure 6a). One putative RxLR
605 was also annotated as an SSP candidate, resulting in 30 effector candidates. In total,
606 10/30 effector candidates showed a significant up-regulation (FDR ≤ 0.05) in association
607 with litter (MGLi vs. MGLw and/or vs. CMMm) (Figure 6b, Dataset S6).

608

609 Thus, overall, *S. sapeloensis* expressed a few cytoplasmic effector-encoding genes.
610 This further supports the possibility that *S. sapeloensis* could be an opportunistic or
611 latent pathogen. Intriguingly, and in contrast to the above identified pathogenicity-
612 associated genes, some of the cytoplasmic effector-encoding genes were up-regulated
613 in *S. sapeloensis*. This is in agreement with an early up-regulation of some effector-

614 encoding genes in *P. infestans* [35] and might be related to priming for infection of a
615 possible host.

616

617 **Common gene expression patterns of *Phytophthora infestans* and *Pythium***
618 ***ultimum* differ from those in *Salisapilia sapeloensis***

619 To gain more insights into genes that show a saprotroph- or pathogen-associated
620 regulation of gene expression, we honed in on those genes that we identified as having
621 a unique regulation in either *S. sapeloensis* or both pathogens. We asked whether we
622 can identify genes that are induced in both pathogens during infection, but not during
623 colonization of litter; we reason that those genes might have a wider-distributed role in
624 pathogenicity. Here we focused again on the top-100 induced genes in any of the four
625 conditions (*P. infestans* and *P. ultimum*, early and late infection phase; Dataset S5b)
626 and compared them to all uniquely induced genes in the corresponding condition of the
627 other pathogen (i.e. *P. infestans* early infection, vs. *P. ultimum* early infection). We
628 counted only those that are induced in the same condition in the two different
629 pathogens.

630

631 Among those genes uniquely induced in either of the conditions we again found nutrient
632 transporter- and CAZyme-encoding genes (Dataset S5b), adding further evidence to a
633 distinct degradation profile of the pathogens and the saprotroph. Apart from the nutrient
634 transporters and CAZymes, we identified aquaporin-encoding genes as well as a
635 cysteine protease family C1-related-encoding gene (Dataset S5b). Aquaporins are also
636 a type of transporters, they allow water permeability across membranes, but are also
637 implicated in transport of for example reactive oxygen species or glycerol [53,54]. All
638 three aquaporin candidates possess an Aquaporin-like domain spanning the entire
639 protein as well as six TM domains (Figure 5e). The latter speak for their integration in
640 the oomycetes' membranes. Aquaporins are involved in pathogenicity in fungal,
641 apicomplexan and bacterial pathogens [53,54,55]. The induction of the aquaporin-
642 encoding genes (*PITG_09355* and *PYU1_G001231*) in the two distinct oomycete
643 pathogens during infection suggests some importance during the infection process of
644 these oomycetes (Figure 5f). This is corroborated by the contrasting response in *S.*

645 *sapeloensis* (*Salisap3159_c0_g2*; Figure 5f). Cysteine proteases from hosts and
646 pathogens act in the plant-pathogen interface [56]. In oomycetes C1 family proteases
647 are also present in the *in silico* secretomes of the pathogens [49]. In agreement, the
648 putative protein products of the two pathogens encode a SP (Figure 5e). We could not
649 detect a SP in *S. sapeloensis*' ortholog. However, we noted that the sequence was
650 rather short, seemed to include only a partial Papain-like cysteine peptidase domain
651 and was missing the Immunoglobulin E set domain (Figure 5e). It is therefore likely that
652 it is a partial sequence. Similar to Aquaporins, an induction in both *P. infestans* and *P.*
653 *ultimum* during late infection supports a role in pathogenicity (Figure 5f).

654

655 The differences in gene expression patterns suggest that *S. sapeloensis* and the
656 pathogens invoke different gene regulatory networks. In support of this we also found a
657 C3H transcription factor (TF) that was specifically induced in both pathogens during an
658 early infection phase vs. CMMm, but its ortholog (*Salisap4203_c0_g1*) was not
659 differentially expressed in *S. sapeloensis* in MGLi vs. CMMm (Dataset1d). TFs are up-
660 stream in a hierarchical gene regulatory network. Even slight changes in their
661 expression can result in i) strong changes of in the expression of their target genes or ii)
662 activation of entirely different gene regulatory networks. The latter can be the case if a
663 TF interacts with other TFs, for example by forming a complex with them: Binding
664 specificity or affinity is defined by the combination of TFs [57]. If the expression of the
665 regulatory complex is no longer co-opted, other TF-TF interactions may occur, which in
666 turn will cause a different down-stream expression pattern.

667

668 **Gene expression of TF-encoding genes is associated with saprotrophy in 669 *Salisapilia sapeloensis***

670 *P. infestans* and *P. ultimum* are only two pathogens and more closely related to each
671 other than to *S. sapeloensis*. Additionally, the transcriptomic data that we used to
672 estimate the concordant regulatory trends was generated from tuber infections, not leaf.
673 For a more unbiased view, we hence extended our analysis to eight oomycete
674 pathogens with three different pathogenic lifestyles (four biotrophs, three hemibiotrophs,
675 one necrotroph), five different hosts and four different tissue types (Figure 7; Dataset

676 S5d,e). As discussed above, minor switches in TF binding or expression may alter
677 expression of many genes simultaneously. Because of the distinct expression patterns
678 observed in the previous analyses, we therefore focused on the candidate genes
679 encoding for TFs.

680

681 The transcriptome of *S. sapeloensis* featured 47 TF-encoding genes, 40 of which had a
682 $\text{TPM}_{\text{TMM-normalized}} \geq 1$. These 40 TFs are from 14 TF families. The genomes of the eight
683 pathogen species encoded on average 35 ± 3 TFs that were orthologous to the 40 TFs of
684 *S. sapeloensis*. We detected the most TF orthologs in *P. ultimum* (38) and the least in
685 *Albugo laibachii* (30). Two TF candidate genes of *S. sapeloensis*, both belonging to the
686 Myb-related family, had no ortholog in any of the eight plant pathogens (Figure 7a). Five
687 TF candidate genes were, when its orthologs were present in the pathogens, more
688 highly expressed in *S. sapeloensis* than in the pathogens ($\log_2[\text{FC}] \geq 1$; Figure 7a;
689 Dataset S5d). These included a bZIP-, two Myb-related-, a NF-YB-, and a Nin-like-
690 candidate. On the flip side, no TF-candidate had a consistently higher expression
691 across all pathogens compared to *S. sapeloensis*.

692

693 In view of the large number of genes that are responsive to either colonization or
694 infection and exhibit discordant regulatory trends, the TF data warrants attention.
695 Together, these data suggest that gene regulatory networks are differently wired during
696 saprotrophy and pathogenicity. In this context it can either be that i) similar components
697 of the networks (i.e. if orthologs exist) have to interact differently, because of the distinct
698 expression levels or ii) new components can be added or can replace existing factors in
699 the gene regulatory networks. Both cases will alter downstream expression patterns,
700 such as we have observed, and are not mutually exclusive. Our data on transcript
701 investment in TF-encoding genes across several pathogenic oomycetes and *S.*
702 *sapeloensis* hence represent additional support for the usage of slightly altered gene
703 regulatory networks by the saprotroph and the pathogens. The data further give us
704 seven TF candidates that we analysed in more depth. Domain predictions using Interpro
705 (Figure 7b) identified one Myb domain in the four Myb-related TF candidates, which is
706 typical for Myb-related TFs [58,59]. Likewise, we confirmed the presence of the bZIP

707 domain in the bZIP candidate, the NF-YB domain in the NF-YB candidate and one
708 RWP-RK and Myb domain in the Nin-like candidate, typical for these TFs [59,60].
709 Interpro further predicted DNA binding sites in all seven candidates.

710
711 Higher transcript investment does not necessarily mean that those genes are also up-
712 regulated during litter colonization, therefore we investigated their expression in the
713 *S. sapeloensis* transcriptome. Of the seven TFs, five were up-regulated in either MGLi
714 or MGLw vs. CMMm (FDR ≤ 0.05). The other two showed no differential expression in
715 these comparisons. Of the five TF-encoding genes, the bZIP-encoding gene was only
716 up-regulated in MGLw vs. CMMm. while three Myb-related-encoding and the NF-YB-
717 encoding gene were up-regulated in both MGLi and MGLw vs. CMMm (Figure 7c). This
718 also included the two Myb-related-encoding genes that had no orthologs in the other
719 plant pathogens (*Salisap1292_c0_g1* and *Salisap2621_c0_g1*). We further tested two
720 TF-encoding genes (one Myb-related-encoding gene, *Salisap3868_c0_g1* and the NF-
721 YB-encoding gene *Salisap4629_c0_g1*) using qRT-PCR (Figure 7d). Both genes were
722 up-regulated in MGLi and MGLw compared to CMMm (p-value < 0.001). Hence, the qRT-
723 PCR confirmed the transcriptomic data in both cases. Overall, these data suggest that
724 the majority of the TFs we identified with our screening are also important in litter
725 colonization and/or degradation.

726
727 To get a better picture of the putative role of our candidate TFs, we used the
728 bioinformatic tool *clust* to predict co-expression patterns of the five TF candidates up-
729 regulated in both MGLi and MGLw vs. CMMm with other genes in our transcriptome.
730 Co-expression analyses are a powerful tool to identify genes involved in the same
731 biological processes, including the potential regulatory relationships between TFs and
732 candidates for downstream target genes [61,62,63,64,65]. In most cases, co-expression
733 analyses consider positively co-expressed genes. The caveat of such analyses with
734 regard to TF-target relationships is that it can only identify TFs that are positive
735 regulators with immediate impact on the expression of the target genes. The idea is that
736 in these cases the target gene has a similar gene expression pattern as it's regulating
737 TF. Despite this caveat, co-expression analyses have successfully identified regulatory

738 relationships between TFs and target genes [63,65]. As we are currently missing
739 genome data for *S. sapeloensis* we used this approach to get a rough idea of possible
740 target candidates.

741
742 In total, the transcriptomic data was broken into 19 clusters of co-expressed genes (C0-
743 C18). These 19 clusters contained 2165 of the 4592 oomycete-affiliated genes (Figure
744 S3); another 1434 genes were not co-expressed with a sufficient number of genes and
745 were hence not sorted into any cluster. Of the five TF-encoding genes, three were found
746 to be co-expressed with other genes in the transcriptome, and two had a unique
747 expression profile. The three genes included two Myb-related (*Salisap1292_c0_g1* and
748 *Salisap3868_c0_g1*) and the NF-YB (*Salisap4629_c0_g1*) candidate genes (Figure 7e).

749
750 The Myb-related-encoding gene *Salisap1292_c0_g1* clustered with 342 other genes in
751 cluster C0, while the Myb-related-encoding gene *Salisap3868_c0_g1* and the NF-YB-
752 encoding gene *Salisap4629_c0_g1* are co-expressed with 250 other genes in cluster
753 C1 (Figure 7e). Both clusters encompass genes that exhibit an elevated expression in
754 MGLi and MGLw compared to CMMm. This is in agreement with the up-regulation of
755 the three TF-encoding genes in MGLi and MGLw vs. CMMm (Figure 7c,d). Neither C0
756 nor C1 showed any GO-term enrichment. We visualized the annotation of all
757 differentially expressed genes that are up-regulated in MGLi vs. CMMm (FDR ≤ 0.05) for
758 C0 and C1 (excluding all annotations as hypothetical and uncharacterized proteins;
759 Figure S4). Several distinct functional groups were represented in C0 and C1, which
760 explains the absence of any enrichment of ontologies. However, we again noticed the
761 presence of many CAZyme- and transporter-encoding genes among the C0 and C1
762 cluster. Hence these genes show a similar expression with the investigated candidate
763 TF-encoding genes. Our previous analyses revealed distinct gene expression patterns
764 between *S. sapeloensis* and two plant pathogens, suggesting that degradation and
765 nutrition uptake has pathogen- and saprotroph-specific patterns. This now allows for a
766 correlation of saprotroph-specific expression of TF-encoding genes with the expression
767 of degradation- and nutrient uptake-associated genes.

768

769 **A putative link between expression of CAZyme-encoding genes and transcription**
770 **factor-encoding genes highlighted by comparative transcriptomics**

771 The results from the clustering primed us to further investigate the distribution of
772 CAZyme-encoding genes across the 19 clusters. In total, 72 of the 149 CAZyme-
773 encoding genes are present in a cluster. Of those 20 (27.8%) are found in either C0 or
774 C1 and are hence associated with both litter and litter-associated growth of
775 *S. sapeloensis*. In both clusters are CAZymes from the families AA, CBM, CE, GH and
776 GT, but not PL. In agreement with their clustering most of the genes in C0 (six of seven)
777 and C1 (seven of 13) were differentially up-regulated in MGLi and/or MGLw vs. CMMm
778 (FDR ≤ 0.05).

779

780 We next asked whether CAZyme-encoding genes show a lifestyle-associated transcript
781 investment, as observed for the TF-encoding genes (Figure 7f). To answer this
782 question, we first searched for orthologs of the 149 CAZyme-encoding genes from *S.*
783 *sapeloensis* in the eight genomes of the plant pathogens. For 24 (i.e. 16.1%) we found
784 no orthologs across the targeted plant pathogens, which suggests that they are either
785 undetectable by this approach due to an extremely high divergence or lineage-specific
786 acquisitions in *S. sapeloensis*. These likely lineage-specific genes were distributed
787 across all CAZyme-categories (except GH/GT and PL). In agreement with the GO-term
788 analyses for genes unique to *S. sapeloensis* (Figure 3a), the majority of them (16 of 24
789 genes) encoded GHs (Figure 7f, Dataset S5e); these data, again, highlight the unique
790 CAZyme-repertoire of *S. sapeloensis*. In five of the seven categories (AA, CE, GH, GT
791 and GH/GT) we found CAZyme-encoding genes in which either *S. sapeloensis* or all
792 pathogens invest a much higher fraction of the transcript budget ($\log_2 [FC] \geq 1$; Figure 7f,
793 Dataset S5e). This included 26 genes (belonging to AA, CE, GH, GT) with a higher
794 transcript investment in *S. sapeloensis* and one (belonging to GH/GT) with a higher
795 transcript investment in all pathogens. Of the 50 genes that either had higher
796 expression levels in *S. sapeloensis* or had no orthologs in any of the pathogens, 18
797 were up-regulated in MGLi and/or MGLw vs. CMMm (FDR < 0.05 , Figure 7g). Taken
798 together, these 18 genes are likely relevant for saprotrophy in *S. sapeloensis* and are
799 used differently in oomycete pathogens.

800
801 To link the expression of CAZyme-encoding genes and TF-based gene regulation, we
802 compared the transcript investment data from CAZyme- and TF-encoding genes with
803 the clustering analyses. This pinpointed five CAZyme-encoding genes i) into which
804 *S. sapeloensis* invested much higher transcript levels compared to the pathogens and ii)
805 that were co-expressed with one of the Myb-related- or NF-YB-encoding genes. These
806 five genes include one AA6-, two CE1- and two CE10-encoding genes (AA6:
807 *Salisap4163_c0_g3*; CE1: *Salisap3051_c0_g2*, *Salisap3972_c0_g1*; CE10:
808 *Salisap2638_c0_g1*, *Salisap3486_c0_g1*). Each cluster (C0 and C1) contains one CE1
809 and one CE10 genes. The AA6-encoding gene is clustered in C1. Three genes were
810 sufficiently expressed in all three conditions so that a $\log_2(\text{FC})$ could be calculated
811 (*Salisap4163_c0_g3* [AA6], *Salisap2638_c0_g1* [CE10] and *Salisap3486_c0_g1*
812 [CE10]). Indeed, all three genes were significantly up-regulated in MGLi and MGLw vs.
813 CMMm (FDR \leq 0.05; Figure 7g). Overall, this makes the AA6- and the four CE-encoding
814 gene candidates relevant for tissue degradation in oomycete saprotrophy compared to
815 pathogenicity. Additionally, the involvement of the three TFs in regulating the expression
816 of the AA6-encoding and four CE-encoding genes is possible.

817
818 **Conclusion**
819 Oomycetes are an exceptionally diverse group of microorganisms. They include many
820 lineages with pathogenic and non-pathogenic lifestyles; lifestyles that evolved multiple
821 times throughout the evolutionary history of the group. This makes oomycetes an
822 excellent group to study the evolution of microbial lifestyles. Comparisons between
823 saprotrophic and pathogenic interactions can reveal vital clues about what, at the
824 molecular and biochemical level, distinguishes a pathogen from a non-pathogen. We
825 have established a first reference point for the differential regulation of gene expression
826 that occurs during oomycete saprotrophy. Investigation of *S. sapeloensis* allowed us to
827 contrast pathogenic and non-pathogenic gene expression patterns. Due to the distinct
828 expression responses to infection and litter colonization we hypothesize that
829 *S. sapeloensis* may have evolved slight alterations in gene regulatory networks.
830 Whether *S. sapeloensis* is capable of invoking gene regulatory patterns associated with

831 pathogenicity remains to be determined. Because the organism possesses
832 pathogenicity-associated factors, we cannot rule out the possibility that it is a latent or
833 opportunistic pathogen (as is also observed for *Aphanomyces stellatus*, for which a
834 genome was also published very recently [50]). Given their environment/host,
835 saprotrophs may be capable of modulating their gene regulatory networks towards
836 either remaining saprotrophic or becoming virulent. We have shown how the
837 evolutionary history of these lifestyles can be studied from the perspective of global
838 gene expression patterns. Such analyses can, in turn, inform the study of extant
839 pathogens by revealing new candidate genes for genetic investigations of lifestyle
840 specificity and change.

841

842 **Methods**

843

844 **Growth conditions and inoculation of marsh grass litter**

845 *Salisapilia sapeloensis* (CBS 127946) was grown on corn meal agar (1.8% sea salt;
846 corn meal extract [60g/l]; 1.5% agar) at 21°C in the dark. *Spartina alterniflora* was
847 collected at 44°40' N, 63°25' W, washed, cut in small pieces and autoclaved (marsh
848 grass litter). Autoclaved litter was transferred to 24-well plates containing sterile salt
849 water (1.8% sea salt) and inoculated with agar plugs with 2-6 days old mycelium of
850 *S. sapeloensis*. As a control mycelium of *S. sapeloensis* was transferred to 24-well
851 plates containing liquid CMM (1.8% sea salt). Inoculation and control were incubated in
852 the dark at 21°C for 7days. For each treatment three biological replicates (i.e. three
853 distinct 24-well-plates per treatment) were prepared.

854

855 **Staining and Microscopy**

856 Light microscopy was done using an Axioplan II (Axiocam HRC colour camera; Zeiss).
857 Trypan blue staining was performed according to [66]. For laser scanning confocal
858 microscopy (LSM 710 [Zeiss]), mycelium was stained with 1% calcofluor white,
859 prepared from powder (Fluorescent Brightener 28, Sigma Aldrich) solved in water
860 according to [67].

861

862 **DNA extraction and identification of marsh grass**

863 DNA was extracted with Edwards buffer [68]. We amplified (PrimeSTAR® Max DNA
864 Polymerase; TaKaRa) the *ribulose-1,5-bisphosphate carboxylase/oxygenase large*
865 *subunit (RbcL)* and the *partial18S-ITS1 (internal transcribed spacer 1)-5.8S-ITS2-*
866 *partial28S* region using rbcLa-F [69]/ rbcLa-R [70] and rbcLa-F/rbcLajf634R [71] for
867 *RbcL* and *ITS2-S2F* [72]/*ITS4* [73] for the *partial18S-ITS1-5.8S-ITS2-partial28S* region.
868 PCR products were purified (Monarch® PCR & DNA Cleanup Kit 5µg; New England
869 BioLabs) and sequenced from both sides with Eurofins Genomics. After quality
870 assessment, we generated consensus sequences (accessions: MH926040,
871 MH931373). Blastn [74] was used against NCBI nt. The *partial18S-ITS1-5.8S-ITS2-*
872 *partial28S* sequence retrieved two equally good hits (100% coverage, 99.718% identity,
873 e-value 0): both hits were to *Sporobolus alterniflorus* (synonyme: *Spartina alterniflora*).
874 The *RbcL* sequence retrieved *Sporobolus maritimus* and *Spartina alterniflora* (99%
875 coverage, 100% identity, e-value 0). Of the two only *S. alterniflora*'s range includes
876 Nova Scotia.

877

878 **RNA extraction and Sequencing**

879 Biological triplicates per treatment (3x *S. sapeloensis* grown in liquid CMM, 3x salt water
880 and 3xMGL) were harvested for RNA extraction. For mycelium grown directly in liquid
881 CMM or salt water close to MGL four wells per biological replicate were pooled and
882 ground in 1ml TRIzol™ using a Tenbroeck homogenizer. For *S. sapeloensis* colonizing
883 MGL, 12 wells of litter were combined per one biological replicate and ground in liquid
884 nitrogen using mortar and pestle and 100mg powder was extracted using TRIzol™.
885 RNA was treated with DNase I. RNA concentration was assessed using an Epoch
886 spectrophotometer (BioTek) and quality was assessed using a formamide gel. The RNA
887 was sent to Genome Québec (Montréal, Québec, Canada), who analyzed RNA using a
888 Bioanalyzer. Nine libraries (biological triplicates, three treatments) were prepared with
889 high-quality RNA and sequenced using the Illumina HiSeq4000 platform for 100 paired-
890 end (PE) reads. In total, we obtained 344,505,280 million paired reads; 312,999,896
891 million paired reads remained after trimming and filtering for quality (Figure S2).

892

893 **Data processing and taxonomic annotation**

894 Quality of the raw data was analyzed using FastQC v. 0.11.5
895 (www.bioinformatics.babraham.ac.uk/projects/fastqc). Trimming and adapter removal
896 was done using Trimmomatic v. 0.36 [75] (settings:
897 ILLUMINACLIP:<custom_adapter_file>:2:30:10:2:TRUE HEADCROP:10 TRAILING:3
898 SLIDINGWINDOW:4:20 MINLEN:36). Trimmed reads were re-analyzed with FastQC v.
899 0.11.5 and are available within Bioproject PRJNA487262. We pooled all read data for a
900 *de novo* assembly using Trinity v. 2.5.0 [76] with Bowtie2 v. 2.3.3.1 [77], producing
901 44669 isoforms that were taxonomically annotated using DIAMOND blastx v0.8.34.96
902 [78]: All isoforms were queried against the nr database (June 2017). Hits that were
903 recognized as statistically significant (e-value cutoff 10^{-5}) were kept and sorted
904 according to taxonomy. Isoforms with a hit to an oomycete protein were assigned to the
905 oomycete-affiliated dataset.

906

907 **Differential expression analyses**

908 Abundance estimates for all different isoforms were calculated using Bowtie2 v. 2.3.3.1
909 and RSEM v. 1.2.18 [78] and TPM_{TMM-normalized} values were calculated. Differential gene
910 expression was analyzed based on the read counts using edgeR v. 3.20.9 (limma v.
911 3.34.9; [80]), which models the data as negative binomial distributed and uses an
912 analogous test to the Fisher's exact test to calculate statistical significance. Afterwards
913 a Benjamini–Hochberg false discovery rate correction was applied. Data from all
914 conditions were hierarchically clustered according to their similarity in per-gene
915 expression change (\log_2 -transformed) from the median-centered expression per
916 transcript. A representative isoform (the isoform with the highest expression) was
917 identified, retrieving 8023 unique genes. After a NCBI contamination screening, 7777
918 genes were deposited at GenBank (Figure S2; Bioproject PRJNA487262).

919

920 ***In silico* protein prediction**

921 We predicted protein sequences for all major isoforms i) with a taxonomic affiliation to
922 oomycetes (oomycete-affiliated dataset) and ii) with no hit in the databases (i.e.
923 potential orphan genes [unassigned dataset]). For the oomycete-affiliated dataset, we

924 predicted all possible reading frames using EMBOSS' getorf [81] and then used blastx
925 [74] against i) a database containing all hits retrieved from the DIAMOND blast output
926 and ii) an oomycete proteome database consisting of the protein sequences of 22
927 oomycete genomes (Table S1) using the unique genes as query. Based on the best
928 blast hit we determined the most-likely open reading frame and protein sequence. For
929 the unassigned dataset, we used the bioperl script longorf
930 (<https://github.com/bioperl/bioperl-live/blob/master/examples/longorf.pl>) with the option
931 *strict*.

932

933 **Functional annotation**

934 For functional annotations we used EggNOG-mapper 4.5 [82] and GhostKOALA [83],
935 with the KEGG database *genus prokaryotes and family eukaryotes*. Further, we
936 performed a blastp [74] search against our DIAMOND output and oomycete proteome
937 database (e-value cutoff of 10^{-5}). Differentially expressed genes were manually
938 annotated using these data. If databases produced contradicting results, we used CD
939 search [84] to identify protein domains within the predicted sequences and chose the
940 better supported annotation.

941

942 **Prediction of putative CAZymes**

943 To predict the CAZymes of *S. sapeloensis* and 22 oomycetes we used HMMER3 [85]
944 on dbCAN [86]. Sometimes the same sequence was predicted to belong to more than
945 one family of CAZymes. We divided those cases in two groups: Group I contains
946 sequences with HMM-hits with different functional specificity (e.g. CBM and GH
947 domains). Here we retained the more specific annotation (i.e. GH, not CBM). Group II
948 contains sequences that had hits with similar functional specificity (e.g. GT and GH).
949 Here we used CD search to validate the presence of the domains [84]. If only one of the
950 two domains was found using this approach, we changed the annotation accordingly.
951 Otherwise, we kept both annotations (category *mixed*).

952

953 **CAZyme family enrichment**

954 To analyze the distribution of CAZyme families, we calculated the percentage of
955 CAZymes in the transcriptome of *S. sapeloensis* and 22 oomycetes genomes
956 ([13,20,87,88,89,90,91,92,93,94,95]; Table S1) with different lifestyles and hosts. We
957 compared the CAZyme profile of *S. sapeloensis* with that of the other oomycetes'
958 genomes. We defined enrichment of expression of CAZyme subfamilies as
959 $\log_2(\text{CAZyme-subfamily}_{\text{Salisapilia}} [\%] / (\bar{\emptyset} \text{ CAZyme-subfamily}_{\text{other oomycetes}} + \text{SD}) [\%]) \geq 1$.

960

961 **Prediction of transcription factors**

962 Transcription factors (TF) were predicted using PlantTFDB 4.0 [96] with the oomycete-
963 affiliated dataset as input. This database uses HMMER-based approach to identify TF
964 domains based on Pfam and published domains to identify TFs and can therefore be
965 used outside of the plant kingdom to identify common eukaryotic TFs.

966

967 **Prediction of putative effector proteins**

968 Putative effectors were predicted using the oomycete-affiliated and the unassigned
969 dataset, since effectors often show low conservation between species [20] and can be
970 orphan genes. To predict RxLR-dEER type effectors we used an HMMER-based search
971 using HMMER 3.1b1 [85] with the HMM-profile from [51] and a heuristic search
972 identifying the RxLR-dEER motif in the first 150 amino acids [46]. The putative Crinkler
973 type effectors were identified as in [49] using a heuristic search for LFLA[R/K]X and
974 LYLA[R/K]X between the residues 30 to 70. SSPs were predicted using EffectorP 2.0
975 [52]. Only considering sequences with a $\text{TPM}_{\text{TMM-normalized}} > 1$, we further required the
976 absence of TM domains (i.e. no domain predicted by either TMHMM v. 2.0 [97],
977 Phobius [98] or TOPCONS2 [99]) and the presence of a SP (predicted by two
978 algorithms independently).

979

980 To predict the SPs, we used SignalP3-HMM [100], SignalP4.1-HMM [101], Phobius [98]
981 and TOPCONS2 [99]. We used both SignalP3 and SignalP4.1, because SignalP3-HMM
982 can be a better predictor of SPs for oomycete effector proteins [102]. The prediction of
983 SPs requires intact N-termini. We screened for sequences with intact N-termini using a
984 perl script, resulting in 3242 oomycete-affiliated usable protein sequences. For the

985 unassigned protein sequence dataset, an intact N-terminus was a requirement for
986 translation.

987

988 **Comparative transcriptomics**

989 Sequence orthologs between *S. sapeloensis* and the eight oomycetes
990 [21,23,95,103,104] (Table S1) were estimated using a reciprocal blastp approach.
991 Protein sequences that found each other reciprocally were designated as orthologs (e-
992 value cutoff = 10^{-5}).

993

994 We analysed co-regulation of *S. sapeloensis* and other oomycetes during growth on
995 their plant substrate by comparing differential RNAseq data from orthologous
996 sequences of *S. sapeloensis* and the pathogens *P. infestans* and *P. ultimum*.
997 Expression data from the colonization of litter versus growth in liquid CMM was
998 compared to expression data from early and late infection stages in potato tubers
999 versus early and late growth on CMM. The latter was obtained from [23] (Table S1). We
1000 asked whether an ortholog shows co-regulation (i.e. both are up-regulated [$FC \geq 1$],
1001 down-regulated [$FC \leq -1$] or show no change [$FC > -1$ and < 1] in the plant-associated
1002 stage compared to the medium growth stage). For comparison, we also asked how
1003 much co-regulation the pathogens show to each other during infection versus growth on
1004 medium.

1005

1006 We compared RNAseq data between *S. sapeloensis* and eight plant pathogens from
1007 the Peronosporales and Albugonales (different lifestyles, different hosts and tissues;
1008 Table S1). Some of these oomycetes are biotrophs and cannot grow outside their hosts.
1009 Therefore, we calculated the transcript budget (%TPM or %CPM) to estimate how much
1010 transcript an oomycete invests into a gene during infection/colonization and compared it
1011 between orthologous genes from the different oomycetes.

1012

1013 For *S. sapeloensis* we used TPM_{TMM-normalized} values from litter-colonizing samples. For
1014 *P. infestans* and *P. ultimum* we used CPM_{TMM-normalized} values [23] for the late infection
1015 stage. For *Albugo candida*, *Albugo laibachii*, *Hyaloperonospora arabidopsis*,

1016 *Phytophthora parasitica*, *Phytophthora sojae* and *Plasmopara halstedii*, we downloaded
1017 transcriptome data for progressed infection stages (Table S1). Reads were analyzed
1018 with FastQC v. 0.11.5, trimmed with Trimmomatic v. 0.36 [75] (settings: HEADCROP:10
1019 TRAILING:3 SLIDINGWINDOW:4:20 MINLEN:36) and mapped to the corresponding
1020 species' transcript sequences using RSEM v. 1.2.18 [79] with Bowtie v. 2.3.3.1 [77]. The
1021 data from the different oomycete species is made comparable by only using either
1022 $\log_2(\text{FC})$ or transcript budget (relative transcript investment). Both of these serve to
1023 normalize the data within a given dataset before comparisons across species.

1024

1025 **Protein sequence and structure analyses**

1026 Protein domain structures were predicted using CD search [84] and InterPro [105].

1027

1028 **Co-expression analyses**

1029 We used clust [106] to study co-expression in our transcriptomic dataset. As input, we
1030 used TPM_{TMM-normalized} values and normalized accordingly from all treatments for all 4592
1031 oomycete-affiliated genes in the oomycete-affiliated dataset. The settings were: Cluster
1032 tightness 7, minimum cluster size 11, lowly expressed and flat genes were filtered out
1033 prior to clustering, using a 25-percentile cutoff. Retained genes were expressed higher
1034 than the cutoff in at least one condition.

1035

1036 **qRT-PCR**

1037 cDNA was created from 1000ng of RNA from MGLi, MGLw and CMMm using the
1038 iScriptTM cDNA Synthesis Kit (Bio-Rad). For all treatments we used three biological
1039 replicates. We designed primers for the qRT-PCR using NCBI primer BLAST (Table
1040 S2). Primers were tested on cDNA from *S. sapeloensis* using the PrimeSTAR[®] Max
1041 DNA Polymerase (TaKaRa). PCR products were sequenced at GENEWIZ (NJ, USA).

1042

1043 The qRT-PCR was conducted on a CFX ConnectTM Real-Time System (BioRad). We
1044 tested the expression of four CAZyme-encoding genes (*Salisap1930_c0_g1*,
1045 *Salisap3316_c0_g4*, *Salisap3873_c0_g7* and *Salisap4165_c1_g3*) and two TF-
1046 encoding genes (*Salisap3868_c0_g1* and *Salisap4629_c0_g1*) across RNA from all

1047 three treatments (MGLi, MGLw and CMMm) with three biological replicates per
1048 treatment and three technical replicates per biological replicate. As reference genes we
1049 used *H2A* (*Salisap2927_c0_g1*). *H2A* was selected as a reference gene based on its
1050 constant expression across all samples in the transcriptome. Its constant expression
1051 was further confirmed in the qRT-PCR. A standard curve with the dilutions 1, 1:10 and
1052 1:100 was performed using pooled cDNA from all conditions. We calculated the relative
1053 expression of the genes in MGLi and MGLw against CMMm using [107]. To calculate
1054 significant differences between expression we first calculated whether the data was
1055 normally distributed using a Shapiro-Wilk test [108]. Second, we tested whether the
1056 data we compared had the same variation and third, depending on the results we either
1057 performed a two-sampled t-test, a Welch two-sampled t-test or a Mann-Whitney U test
1058 [109]. All statistical analyses were performed in R v. 3.2.1.

1059

1060 **Acknowledgement**

1061 We thank Emma Blanche for technical assistance.

1062

1063 **Author Contributions**

1064 Conceptualization, S.d.V.; Methodology, S.d.V.; Validation, S.d.V.; Formal Analysis,
1065 S.d.V., J.d.V.; Investigation, S.d.V., J.d.V.; Data Curation, S.d.V., J.d.V.; Writing –
1066 Original Draft, S.d.V.; Writing – Review & Editing, S.d.V., J.d.V., J.M.A., and C.H.S.;
1067 Visualization, S.d.V., J.d.V.; Funding Acquisition, S.d.V., C.H.S.; Resources, J.M.A.,
1068 C.H.S.; Supervision, J.M.A. and C.H.S.

1069

1070 **Declaration of Interests**

1071 The authors declare no competing interests.

1072

1073 **References**

1074 [1] Thines M, Kamoun S. Oomycete-plant coevolution: recent advances and future
1075 prospects. Curr. Opn. Plant Biol. 2010; 13: 427 – 433.

1076

1077 [2] Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS, Dalio RJ, et al. The top 10
1078 oomycete pathogens in molecular plant pathology. *Mol. Plant Pathol.* 2015; 16: 413 –
1079 434.

1080

1081 [3] Phillips AJ, Anderson VL, Robertson EJ, Secombes, CJ, van West P. New insights
1082 into animal pathogenic oomycetes. *Trends Microbiol.* 2008; 16: 13 – 19.

1083

1084 [4] Derevnina L, Petre B, Kellner R, Dagdas YF, Sarowar MN, Giannakopoulou A, et al.
1085 Emerging oomycete threats to plants and animals. *Philos. Trans. R. Soc. Lond. B. Biol.*
1086 *Sci.* 2016; 371: 20150459.

1087

1088 [5] Diéguez-Uribeondo J, García MA, Cerenius L, Kozubíková E, Ballesteros I, Windels
1089 C, et al. Phylogenetic relationships among plant and animal parasites, and saprotrophs
1090 in *Aphanomyces* (Oomycetes). *Fungal Genet. Biol.* 2009; 46: 365 – 376.

1091

1092 [6] Beakes GW, Glockling SL, Sekimoto S. The evolutionary phylogeny of the oomycete
1093 “fungi”. *Protoplasma.* 2012; 249: 3 – 19.

1094

1095 [7] Marano AV, Jesus AL, de Souza JI, Jeronimo GH, Gonçalves DR, Boro MC, et al.
1096 Ecological roles of saprotrophic Peronosporales (Oomycetes, Straminipila) in natural
1097 environments. *Fungal Ecol.* 2016; 19: 77 – 88.

1098

1099 [8] Beakes GW, Thines M. Hyphochytriomycota and Oomycetes. In: Archibald JM,
1100 Simpson AGB, Slamovits CH, editors. *Handbook of the Protists.* Springer Cham; 2017.
1101 pp. 435 – 505.

1102

1103 [9] Koide RT, Sharda JN, Herr JR, Malcolm GM. Ectomycorrhizal fungi and the
1104 biotrophy–saprotrophy continuum. *New Phytol.* 2008; 178: 230 – 233.

1105

1106 [10] Porras-Alfaro A, Bayman P. Hidden fungi, emergent properties: endophytes and
1107 microbiomes. *Annu. Rev. Phytopathol.* 2011; 49: 291 – 315.

1108

1109 [11] Kuo H-C, Hui S, Choi J, Asiegbu FO, Valkonen JPT, Lee Y-H. Secret lifestyles of

1110 *Neurospora crassa*. *Sci. Rep.* 2014; 4: 5135.

1111

1112 [12] Charkowski AO. Opportunistic pathogens of terrestrial plants. In: Hurst CJ, editor.

1113 The Rasputin effect: when commensals and symbionts become parasitic. Springer

1114 International Publishing Switzerland; 2016. pp. 147 – 168.

1115

1116 [13] Misner I, Blouin N, Leonard G, Richards T, Lane CE. The secreted proteins of

1117 *Achlya hypogyna* and *Thraustotheca clavata* identify the ancestral oomycete secretome

1118 and reveal gene acquisitions by horizontal gene transfer. *Genome Biol. Evol.* 2015; 7:

1119 120 – 135. 7,

1120

1121 [14] Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, et al.

1122 Genomic analysis of the necrotrophic fungal pathogens *Sclerotinia sclerotiorum* and

1123 *Botrytis cinerea*. *PLoS Genet.* 2011; 7: e1002230

1124

1125 [15] Ohm R, Feau N, Henrissat B, Schoch CJ, Horwitz BA, Barry KW, et al. Diverse

1126 lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen

1127 *Dothideomycetes* fungi. *PLoS Pathog.* 2012; 8: e1003037.

1128

1129 [16] Zhao Z, Liu H, Wang C, Xu J-R. Comparative analysis of fungal genomes reveals

1130 different plant cell wall degrading capacity in fungi. *BMC Genomics.* 2013; 14: 274.

1131

1132 [17] King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. Arsenal

1133 of plant cell wall degrading enzymes reflects host preference among plant pathogenic

1134 fungi. *Biotechnol. Biofuels.* 2011; 4: 4.

1135

1136 [18] Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why

1137 bigger can be better. *Nat. Rev. Microbiol.* 2012; 10: 417 – 430.

1138

1139 [19] Guttman DS, McHardy AC, Schulze-Lefert P. Microbial genome-enabled insights
1140 into plant-microorganism interactions. *Nat. Rev. Genet.* 2014; 15: 797 – 813.

1141

1142 [20] Haas BJ, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM, et al.
1143 Genome sequence and analysis of the Irish potato famine pathogen *Phytophthora*
1144 *infestans*. *Nature*. 2009; 461: 393 – 398.

1145

1146 [21] Asai S, Rallapalli G, Piquerez SJM, Caillaud MC, Furzer O, Ishaque N, et al.
1147 Expression profiling during *Arabidopsis*/Downy mildew interaction reveals a highly-
1148 expressed effector that attenuates response to salicylic acid. *Plos Pathog.* 2014; 10:
1149 e1004443.

1150

1151 [22] Zuluaga AP, Vega-Arreguín JC, Fei Z, Ponnala L, Lee SJ, Matas AJ, et al.
1152 Transcriptional dynamics of *Phytophthora infestans* during sequential stages of
1153 hemibiotrophic infection of tomato. *Mol. Plant. Pathol.* 2016; 17: 29 – 41.

1154

1155 [23] Ah-Fong AMV, Shrivastava J, Judelson HS. Lifestyle, gene gain and loss, and
1156 transcriptional remodeling cause divergence in the transcriptomes of *Phytophthora*
1157 *infestans* and *Pythium ultimum* during potato tuber colonization. *BMC Genomics*. 2017;
1158 18: 764.

1159

1160 [24] Hulvey J, Telle S, Nigrelli L, Lamour K, Thines M. Salisapiliaceae – a new family of
1161 oomycetes from marsh grass litter of southeastern North America. *Persoonia*. 2010. 25;
1162 109 – 116.

1163

1164 [25] Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR. A comparative
1165 systems analysis of polysaccharide-elicited responses in *Neurospora crassa* reveals
1166 carbon source-specific cellular adaptions. *Mol. Microbiol.* 2014; 91: 275 – 299.

1167

1168 [26] Guillemette T, van Peij NNME, Goosen T, Lanthaler K, Robson GD, van den
1169 Hondel CAMJJ, et al. Genomic analysis of secretion stress response in the enzyme-
1170 producing cell factory *Aspergillus niger*. *BMC Genomics*. 2007; 8: 158.

1171

1172 [27] Jansonius JN. Structure, evolution and action of vitamin B6-dependent enzymes.
1173 *Curr. Opin. Struc. Biol.* 1998; 8: 759 – 769.

1174

1175 [28] Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and
1176 essential transcription factors for cellulase gene expression in ascomycete fungi. *Proc.*
1177 *Natl. Acad. Sci. USA*. 2012; 109: 7397 – 7402.

1178

1179 [29] Kubicek CP, Starr CP, Glass NL. Plant cell wall-degrading enzymes and their
1180 secretion in plant-pathogenic fungi. *Ann. Rev. Phytopathol.* 2014; 52: 427 – 451.

1181

1182 [30] Colowick SP, Sutherland EW. Polysaccharide synthesis from glucose by means of
1183 purified enzymes. *J. Biol. Chem.* 1942; 144: 423 – 437.

1184

1185 [31] Preiss J. Regulation of the biosynthesis and degradation of starch. *Ann. Rev. Plant*
1186 *Physiol.* 1982; 33: 431 – 454.

1187

1188 [32] Peyraud R, Mbengue M, Barbacci A, Raffaele S. Intercellular cooperation in a
1189 fungal plant pathogen facilitates host colonization. *Proc. Natl. Acad. Sci. USA*. 2019;
1190 116: 3193 – 3201.

1191

1192 [33] Cosgrove DJ. Assembly and enlargement of the primary cell wall in plants. *Annu.*
1193 *Rev. Cell. Dev. Biol.* 1997; 13: 171 – 201.

1194

1195 [34] Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G, Paszkiewicz K, et
1196 al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in
1197 oomycetes. *Proc. Natl. Acad. Sci. USA*. 2011; 108: 15258 – 15263.

1198

1199 [35] Ah-Fong AMV, Kim KS, Judelson HS. RNA-seq of life stages of the oomycete
1200 *Phytophthora infestans* reveals dynamic changes in metabolic, signal transduction and
1201 pathogenesis genes and a major role for calcium signaling in development. *BMC*
1202 *Genomics*. 2017; 18: 198.

1203

1204 [36] Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, et al.
1205 The plant cell wall-decomposing machinery underlies the functional diversity of forest
1206 fungi. *Science*. 2011; 333: 762 – 765.

1207

1208 [37] Jupe J, Stam R, Howden AJM, Morris JA, Zhang R, Hedley PE, et al. *Phytophthora*
1209 *capsici*-tomato interaction features dramatic shifts in gene expression associated with a
1210 hemi-biotrophic lifestyle. *Genome Biol*. 2013; 14: R63.

1211

1212 [38] Evangelisti E, Gogleva A, Hainaux T, Doumane M, Tulin F, Quan C, et al. Time-
1213 resolved dual transcriptomics reveal early induced *Nicotiana benthamiana* root genes
1214 and conserved infection-promoting *Phytophthora palmivora* effectors. *BMC Biol*. 2017;
1215 15: 39.

1216

1217 [39] Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, Gu C, et al. An effector-
1218 targeted protease contributes to defense against *Phytophthora infestans* and is under
1219 diversifying selection in natural hosts. *Plant Physiol*. 2010; 154, 1794 – 1804.

1220

1221 [40] Gaulin E, Jauneau A, Villalba F, Rickauer M, Esquerré-Tugayé M-T, Bottin A. The
1222 CBEL glycoprotein of *Phytophthora parasitica* var. *nicotianae* is involved in cell wall
1223 deposition and adhesion to cellulosic substrates. *J. Cell Sci*. 2002; 115: 4565 – 4575.

1224

1225 [41] Khatib M, Lafitte C, Esquerré-Tugayé M-T, Bottin A, Rickauer M. The CBEL elicitor
1226 of *Phytophthora parasitica* var. *nicotianae* activates defence in *Arabidopsis thaliana* via
1227 three different signalling pathways. *New Phytol*. 2004; 162: 501 – 510.

1228

1229 [42] Gaulin E, Dramé N, Lafitte C, Torto-Alalibo T, Martinez Y, Ameline-Torregrosa C, et
1230 al. (2006). Cellulose binding domains of a *Phytophthora* cell wall protein are novel
1231 pathogen-associated molecular patterns. *Plant Cell*. 2006;18: 1766 – 1777.

1232

1233 [43] Kanneganti T-D, Huitema E, Cakir C, Kamoun S. Synergistic interactions of the
1234 plant cell death pathways induced by *Phytophthora infestans* Nep1-like protein
1235 PiNPP1.1 and INF1 Elicitin. *Mol. Plant Microbe In*. 2006; 19: 854 – 863.

1236

1237 [44] Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S. A
1238 *Phytophthora infestans* cystatin-like protein targets a novel tomato papain-like
1239 apoplastic protease. *Plant Physiol*. 2007; 143: 364 – 377.

1240

1241 [45] Jiang RHY, Tyler BM. Mechanisms and evolution of virulence in oomycetes. *Annu.*
1242 *Rev. Phytopathol*. 2012; 50: 295 – 318.

1243

1244 [46] Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, et al. A
1245 translocation signal for delivery of oomycete effector proteins into host plant cells.
1246 *Nature*. 2007; 450: 115 – 118.

1247

1248 [47] Wang S, Boevink PC, Welsh L, Zhang R, Whisson SC, Birch PRJ. Delivery of
1249 cytoplasmic and apoplastic effectors from *Phytophthora infestans* haustoria by distinct
1250 secretion pathways. *New Phytol*. 2017; 216: 205 – 215.

1251

1252 [48] Schornack S, van Damme M, Bozkurt TO, Cano LM, Smoker M, Thines M, et al.
1253 Ancient class of translocated oomycete effectors targets the host nucleus. *Proc. Natl.*
1254 *Acad. Sci. USA*. 2010; 107: 17421 – 17426.

1255

1256 [49] McGowan J, Fitzpatrick DA. Genomic, network, and phylogenetic analysis of the
1257 oomycete effector arsenal. *mSphere*. 2017; 2: e00408-17.

1258

1259 [50] Gaulin E, Pel MJC, Camborde L, San-Clemente H, Courbier S, Dupouy M-A, et al.
1260 Genomics analysis of *Aphanomyces* spp. identifies a new class of oomycete effector
1261 associated with host adaptation. *BMC Biol.* 2018; 16: 43.

1262

1263 [51] Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, et al.
1264 Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant
1265 pathogenic oomycetes. *Plant Cell.* 2007; 19: 2349 – 2369.

1266

1267 [52] Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved
1268 prediction of fungal effector proteins from secretomes with EffectorP 2.0. *Mol. Plant*
1269 *Pathol.* 2018; 19: 2094 – 2110.

1270

1271 [53] Promeneur D, Liu Y, Maciel J, Agre P, King LS, Kumar N. Aquaglyceroporin
1272 PbAQP during intraerythrocytic development of the malaria parasite *Plasmodium*
1273 *berghei*. *Proc. Natl. Acad. Sci. USA.* 2007; 104: 2211 – 2216.

1274

1275 [54] An B, Li B, Li H, Zhang Z, Qin G, Tian S. Aquaporin8 regulates cellular
1276 development and reactive oxygen species production, a critical component of virulence
1277 in *Botrytis cinerea*. *New Phytol.* 2016; 209: 1668 – 1680.

1278

1279 [55] Calamita G. The *Escherichia coli* aquaporin-Z water channel. *Mol. Microbiol.* 2000;
1280 37: 254 – 262.

1281

1282 [56] Shindoo T, van der Hoorn RAL. Papain-like cysteine proteases: key players at the
1283 molecular battlefields employed by both plants and their invaders. *Mol. Plant Pathol.*
1284 2008; 9: 119 – 125.

1285

1286 [57] Bemer M, van Dijk ADJ, Immink RGH, Angenent GC. Cross-family transcription
1287 factor interactions: an additional layer of gene regulation. *Trends Plant Sci.* 2017; 22: 66
1288 – 80.

1289

1290 [58] Xiang Q, Judelson HS. Myb transcription factors in the oomycete *Phytophthora* with
1291 novel diversified DNA-binding domains and developmental stage-specific expression.
1292 *Gene*. 2010; 453: 1 – 8.

1293

1294 [59] Wilhelmsson PKI, Mühlich C, Ulrich KK, Rensing SA. Comprehensive genome-
1295 Wide classification reveals that many plant-specific transcription factors evolved in
1296 streptophyte algae. *Genome Biol. Evol.* 2017; 9: 3384 – 3397.

1297

1298 [60] Schausser L, Roussis A, Stiller J, Stougaard J. A plant regulator controlling
1299 development symbiotic root nodules. *Nature*. 1999; 402: 191 – 195.

1300

1301 [61] Persson S, Wei H, Milne J, Page GP, Somerville C. Identification of genes required
1302 for cellulose synthesis by regression analysis of public microarray data sets. *Proc. Natl.*
1303 *Acad. Sci. USA*. 2005; 102: 8633 – 8638.

1304

1305 [62] Aoki K, Ogata Y, Shibata D. Approaches for extracting practical information from
1306 gene co.expression networks in plant biology. *Plant Cell Physiol.* 2007; 48: 381 – 390.

1307

1308 [63] Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, et al. Omics-
1309 based identification of *Arabidopsis* Myb transcription factors regulating aliphatic
1310 glucosinolate biosynthesis. *Proc. Natl. Acad. Sci. USA*. 2007; 104: 6478 – 6483.

1311

1312 [64] Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, et al. Co-
1313 expression tools for plant biology: opportunities for hypothesis generation and caveats.
1314 *Plant Cell Environ.* 2009; 32: 1633 – 1651.

1315

1316 [65] Fu F-F, Xue H-W. Coexpression analysis identifies Rice Starch Regulator1, a rice
1317 AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator.
1318 *Plant Physiol.* 2010; 154: 927 – 938.

1319

1320 [66] de Vries S, von Dahlen JK, Uhlmann C, Schnake A, Kloesges T, Rose LE.
1321 Signatures of selection and host-adapted gene expression of the *Phytophthora*
1322 *infestans* RNA silencing suppressor PSR2. Mol. Plant Pathol. 2017; 18: 110 – 124.
1323

1324 [67] Herburger K, Holzinger A. Aniline blue and Calcofluor white staining of callose and
1325 cellulose in the streptophyte green algae *Zygnema* and *Klebsormidium*. Bio Protoc.
1326 2016; 6: e1969.
1327

1328 [68] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the
1329 preparation of plant genomic DNA for PCR. Nucleic Acids Res. 1991; 19: 1349.
1330

1331 [69] Levin RA, Wagner WL, Hoch PC, Nepokroeff M, Pires JC, Zimmer EA, et al.
1332 Family-level relationships of Onagraceae based on chloroplast *rbcL* and *ndhF* data. Am.
1333 J. Bot. 2003; 90: 107 – 115.
1334

1335 [70] Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding
1336 *rbcL* gene complements the non-coding *trnH-psbA* spacer region. Plos One. 2007; 2:
1337 e508.
1338

1339 [71] Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG, Husband
1340 BC, et al. Multiple multilocus DNA barcodes from the plastid genome discriminate plant
1341 species equally well. Plos One. 2008; 3: e2802.
1342

1343 [72] Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the *ITS2* region as a
1344 novel DNA barcode for identifying medicinal plant species. Plos One. 2010; 5: e8613.
1345

1346 [73] White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal
1347 ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White
1348 TJ, editors. PCR protocols: A guide to methods and applications. Academic Press Inc,
1349 New York; 1990. pp. 315 – 322.
1350

1351 [74] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search
1352 tool. *J. Mol. Biol.* 1990; 215: 403 – 410.

1353

1354 [75] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
1355 sequence data. *Bioinformatics*. 2014; 30: 2114 – 2120.

1356

1357 [76] Grabherr MG, Haas BJ, Yassour M, Levin, JZ, Thompson DA, Amit I, et al. Full-
1358 length transcriptome assembly from RNA-Seq data without a reference genome. *Nat.*
1359 *Biotechnol.* 2011; 29: 644 – 652.

1360

1361 [77] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat.*
1362 *Methods*. 2012; 9: 357 – 359.

1363

1364 [78] Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
1365 DIAMOND. *Nat. Methods*. 2015; 12: 59 – 60.

1366

1367 [79] Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with
1368 or without a reference genome. *BMC Bioinformatics*. 2011; 12: 323.

1369

1370 [80] Robinson MD, McCarthy DJ, Smyth GK. edeR: A bioconductor package for
1371 differential expression analysis of digital gene expression data. *Bioinformatics*. 2010;
1372 26: 139 – 140.

1373

1374 [81] Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open
1375 Software Suite. *Trends Genet.* 2000; 16: 276 – 277.

1376

1377 [82] Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al.
1378 eggnog 4.5: a hierarchical orthology framework with improved functional annotations for
1379 eukaryotic, prokaryotic and viral sequences. *Nucleic Acids Res.* 2016; 44: D286 – D293.

1380

1381 [83] Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for
1382 functional characterization of genome and metagenome sequences. *J. Mol. Biol.* 2016;
1383 428: 726 – 731.

1384

1385 [84] Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. (2017).
1386 CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.
1387 *Nucleic Acids Res.* 2017; 45: D200 – D203.

1388

1389 [85] Mistry J, Finn RD, Eddy SR, Batte A, Punta M. (2013). Challenges in homology
1390 search: HMMER3 and convergent evolution of coiled-coil regions. *Nucleic Acids Res.*
1391 2013; 41: e121.

1392

1393 [86] Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for
1394 automated carbohydrate-active enzyme annotation. *Nucleic Acids Res.* 2012; 40: W445
1395 – W451.

1396

1397 [87] Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, et al. *Phytophthora*
1398 genome sequences uncover evolutionary origins and mechanisms of pathogenesis.
1399 *Science.* 2006; 313: 1261 – 1266.

1400

1401 [88] Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, et al. Signatures of
1402 adaptation to obligate biotrophy in the *Hyaloperonospora arabidopsis* genome.
1403 *Science.* 2010; 330: 1549 – 1551.

1404

1405 [89] Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, et al. Genome
1406 sequence of the necrotrophic plant pathogen *Pythium ultimum* reveals original
1407 pathogenicity mechanisms and effector repertoire. *Genome Biol.* 2010; 11: R73.

1408

1409 [90] Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-
1410 Seillantiz A, et al. Gene gain and loss during evolution of obligate parasitism in the
1411 white rust pathogen of *Arabidopsis thaliana*. *Plos Biol.* 2011; 9: e1001094.

1412

1413 [91] Adhikari BN, Hamilton JP, Zerillo MM, Tisserat N, Lévesque A, Buell R.

1414 Comparative genomics reveals insight into virulence strategies of plant pathogenic

1415 oomycetes. *Plos One*. 2013; 8: e75072.

1416

1417 [92] Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Löbach L, Christie J, et al. Distinctive

1418 expansion of potential virulence genes in the genome of the oomycete fish pathogen

1419 *Saprolegnia parasitica*. *Plos Genet*. 2013; 9: e1003272.

1420

1421 [93] Quinn L, O'Neill PA, Harrison J, Paskiewicz KH, McCracken AR, Cooke LR, et al.

1422 Genome-wide sequencing of *Phytophthora lateralis* reveals genetic variation among

1423 isolates from Lawson cypress (*Chamaecyparis lawsoniana*) in Northern Ireland. *FEMS*

1424 *Microbiol. Lett.* 2013; 344: 179 – 185.

1425

1426 [94] Sambles C, Schlenzig A, O'Neill P, Grant M, Studholme DJ. Draft genome

1427 sequences of *Phytophthora kernoviae* and *Phytophthora ramorum* lineage EU2 from

1428 Scotland. *Genom. Data*. 2015; 6: 193 – 194.

1429

1430 [95] Sharma R, Xia X, Cano LM, Evangelisti E, Kemen E, Judelson H, Oome S,

1431 Sambles C, van den Hoogen DJ, Kitner M, et al. Genome analyses of the sunflower

1432 pathogen *Plasmopara halstedii* provide insights into effector evolution in downy mildews

1433 and *Phytophthora*. *BMC Genomics*. 2015; 16: 741.

1434

1435 [96] Jin JP, Tian F, Yang DC, Meng YQ, Kong L, Luo JC, et al. PlantTFDB 4.0: toward a

1436 central hub for transcription factors and regulatory interactions in plants. *Nucleic Acids*

1437 *Res*. 2017; 45: D1040 – D1045.

1438

1439 [97] Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane

1440 protein topology with a hidden Markov model: application to complete genomes. *J. Mol.*

1441 *Biol*. 2001; 305: 567 – 580.

1442

1443 [98] Käll L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane
1444 topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res.
1445 2007; 35: W429 – W432.

1446

1447 [99] Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. The TOPCONS web server for
1448 consensus prediction of membrane protein topology and signal peptides. Nucleic Acids
1449 Res. 2015; 43: W401 – W407.

1450

1451 [100] Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal
1452 peptides: SignalP 3.0. J. Mol. Biol. 2004; 340: 783 – 795.

1453

1454 [101] Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating
1455 signal peptides from transmembrane regions. Nat Methods. 2011; 8; 785 – 786.

1456

1457 [102] Sperschneider J, Williams AH, Hane JK, Singh KB, Taylor JM. Evaluation of
1458 secretion prediction highlights differing approaches needed for oomycete and fungal
1459 effectors. Front. Plant. Sci. 2015; 6: 1168.

1460

1461 [103] Lin F, Zhao M, Baumann DD, Ping J, Sun L, Liu Y, et al. Molecular response to
1462 the pathogen *Phytophthora sojae* among ten soybean near isogenic lines revealed by
1463 comparative transcriptomics. BMC Genomics. 2014; 15: 18.

1464

1465 [104] Prince DC, Rallapalli G, Xu D, Schoonbeek H-j, Çevik V, Asai S, et al. *Albugo*-
1466 imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may
1467 contribute to suppression of non-host resistance to *Phytophthora infestans* in
1468 *Arabidopsis thaliana*. BMC Biol. 2017; 15: 20.

1469

1470 [105] Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, et al. InterPro in
1471 2019: improving coverage, classification and access to protein sequence annotations.
1472 Nucleic Acids Res. 2019; 47: D351 – D360.

1473

1474 [106] Abu-Jamous B, Kelly S. Clust: automatic extraction of optimal co-expressed gene
1475 clusters from gene expression data. *Genome Biol.* 2018; 19: 172.

1476

1477 [107] Pfaffl MW. A new mathematical model for relative quantification in real-time RT-
1478 PCR. *Nucleic Acids Res.* 2001; 29: e45.

1479

1480 [108] Shapiro SS, Wilk MB. An analysis of variance test for normality (complete
1481 samples). *Biometrika*. 1965; 52: 591 – 611.

1482

1483 [109] Mann HB, Whitney DR. On a test of whether one of two random variables is
1484 stochastically larger than the other. *Ann. Math. Stat.* 1947; 18: 50 – 60.

1485

1486 [110] McCarthy CGP, Fitzpatrick DA. Phylogenomic reconstruction of the oomycete
1487 phylogeny derived from 37 genomes. *mSphere*. 2017; 2, e00095-17.

1488

1489 [111] Bennett RM, Thines M. Revisiting *Salisapiliaceae*. *Fungal Systematics and*
1490 *Evolution*. 2019; 3: 171 – 184.

1491

1492 **Figure legends**

1493

1494 **Figure 1. *Salisapilia sapeloensis*' colonization of marsh grass litter.**

1495 (a) Oomycetes phylogeny. The lifestyles that occur in a specific lineage are indicated on
1496 the right of each lineages. Lifestyles include: plant (leaf icon) and animal (fish icon)
1497 pathogens and saprotrophs (log icon) its occurrences are according to Diéguez-
1498 Uribeondo et al. [5], Beakes et al. [6], and Marano et al. [7]. The cladogram is based on
1499 published phylogenetic studies [6,24,110]. We note that based on more recent
1500 phylogenetic analyses the Salisapiliaceae, to which the genus *Salisapilia* belongs, could
1501 also be sister to the Peronosporaceae, which includes the polyphyletic genus
1502 *Phytophthora* [111], and would hence be embedded between *Phytophthora* and
1503 *Pythium*. (b,c) An established, axenic system for cultivating *S. sapeloensis*; closeups of
1504 *S. sapeloensis* growing in wells with liquid CMM (b) and MGL (c). (d-g) Micrographs of

1505 *S. sapeloensis*. (d) *S. sapeloensis* growing in water around the MGL. Septae are
1506 highlighted by arrow heads. (f) *S. sapeloensis* growing in the litter's furrows and
1507 associated to leaf tissue (arrowhead). (e) Comparison of uninoculated and (g)
1508 inoculated MGL. (h,i) Calcofluor-white-stained (Fluorescent Brightener 28) *S.*
1509 *sapeloensis* growing into the furrows (labeled) and associating with leaf tissue
1510 (arrowheads; z-stacks reconstructed and projected from confocal micrographs; whole
1511 mount staining). It should be noted that calcofluor white stains both the cell walls of
1512 plants and oomycetes; more whole mount confocal micrographs can be found in Figure
1513 S1. (j-l) Micrographs of trypan blue stained leaf litter inoculated with *S. sapeloensis*.
1514

1515 **Figure 2. Transcriptomic profiling of the axenic saprotrophic system *Salisapilia***
1516 ***sapeloensis* during colonization of litter.**

1517 (a) Visual differences in the water next to uninoculated litter and litter inoculated with *S.*
1518 *sapeloensis*. (b) Left: Sampling strategy for MGLi and MGLw; right: hierarchically
1519 clustered expression values (\log_2 -transformed; median-centered) for CMMm, MGLw
1520 and MGLi. Higher expression than the median-centred expression is indicated in yellow,
1521 lower expression is indicated in purple. I, II and III indicates the biological replicates for
1522 each condition. (c) The 50 most responsive KEGG pathways/BRITE hierachies,
1523 indicating the overall number of KEGG orthologs in a given KEGG pathway/BRITE
1524 hierachy with an induced (white to orange) or reduced (white to dark purple) expression.
1525 (d) $\log_2(\text{FC})$ of the genes corresponding to KEGG orthologs in the umbrella category
1526 'Chaperone and folding catalysts'. Note that one KEGG ortholog can include more than
1527 one gene. Only genes with a $\text{TPM}_{\text{TMM-normalized}} \geq 1$ in at least one of the three conditions
1528 are shown. The y-axis indicates the $\log_2(\text{FC})$ when MGLi (blue) or MGLw (red) is
1529 compared to CMMm. The gene IDs are given below the bar graph for each gene and in
1530 brackets the corresponding KEGG ortholog is indicated. Overall functional categories
1531 are given below the gene IDs. Significant differences between MGLi or MGLw vs.
1532 CMMm are indicated by * p-value ≤ 0.05 , ** p-value ≤ 0.01 and *** p-value ≤ 0.001 . (e)
1533 $\log_2(\text{FC})$ of the genes corresponding to KEGG orthologs in the umbrella category
1534 'Peptidases'. The figure shows only genes with a $\text{TPM}_{\text{TMM-normalized}} \geq 1$ in at least one
1535 treatment. The comparison MGLi vs. CMMm is shown in blue and MGLw vs. CMMm is

1536 shown in red. The gene IDs are indicated below the bars. Below the gene IDs we noted
1537 the corresponding KEGG orthologs. Significant differences are given as * FDR ≤ 0.05 ,
1538 ** FDR ≤ 0.01 and *** FDR ≤ 0.001 .
1539

1540 **Figure 3. Comparative analyses of the CAZyme repertoire of *Salisapilia***
1541 ***sapeloensis*.**

1542 (a) GO-term enrichment of genes unique to *S. sapeloensis*, which are up-regulated in
1543 MGLi/MGLw vs. CMMm (GO-term frequency=circle size, $\log_2(p\text{-value})$ is indicated by
1544 the colors in the circle). The solid lines around the circles indicate an enrichment in
1545 MGLi/CMMm and the dotted lines around a circle indicate an enrichment in
1546 MGLw/CMMm. The blue background highlights lyase and hydrolase activity. (b)
1547 CAZyme distribution across oomycetes. (c) Heatmap showing the relative number of
1548 CAZymes in relation to the overall number of all analysed *in silico* translated proteins
1549 (%) in an oomycete species (total number of proteins is given to the right of each
1550 species name). The 23 oomycete species are noted on the left; their lifestyles are noted
1551 on the right. Every vertical line represents a CAZyme family. Highlighted are CAZyme-
1552 encoding gene families with an increased relative presence (i.e. $\log_2(\text{FC}) \geq 1$) in
1553 *S. sapeloensis*' transcriptome vs. oomycete genomes. These are hence gene families
1554 that are expressed more than expected. The relative presence is indicated from white =
1555 0% to yellow = 0.29%.

1556
1557 **Figure 4. Expression of CAZyme-encoding genes in *Salisapilia sapeloensis*.**

1558 (a) Expression of CAZyme-encoding genes in *S. sapeloensis*. Top: Heatmap of
1559 $\text{TPM}_{\text{TMMnormalized}}$ values. The heatmap is sorted according to the expression in litter from
1560 highest (orange) to lowest (dark blue) in each CAZyme category. Medium indicates the
1561 expression in CMMm, water in MGLw and litter in MGLi. Each vertical line corresponds
1562 to one gene. Bottom: Heatmap of the $\log_2(\text{FC})$ in w/m (MGLw/CMMm), l/w
1563 (MGLi/MGLw) and l/m (MGLi/CMMm). The order of genes corresponds to the order of
1564 genes in the heatmap for $\text{TPM}_{\text{TMMnormalized}}$ values on top. Four genes, which were further
1565 tested using qRT-PCR and mentioned in the main text, are highlighted. (b) Average
1566 relative expression ($\log_2[\text{FC}]$) of four genes up-regulated in MGLi and/or MGLw vs.

1567 CMMm in the transcriptome (left) and tested using qRT-PCR (right). The reference gene
1568 for the qRT-PCR was *SsH2A*. The error bars indicate the standard error of the mean
1569 (SEM). Gene IDs of the tested genes are given below the bar graphs. Significant
1570 differences are given above the bars as asterisk: * FDR/p-value ≤ 0.05 , ** FDR/p-value
1571 ≤ 0.01 , *** FDR/p-value ≤ 0.001 . (c) Overall up- and down-regulation of CAZyme-
1572 encoding genes in litter colonization (MGLi vs. MGLw).

1573

1574 **Figure 5. Comparative transcriptomics of *Salisapilia sapeloensis* with two**
1575 **oomycete plant pathogens.**

1576 (a) The Venn diagrams show the shared orthologs between *P. infestans*, *P. ultimum* and
1577 *S. sapeloensis*. (b) The bar graphs give the percentage concordantly (purple) and
1578 discordantly (orange) regulatory trends of orthologs between *S. sapeloensis* and *P.*
1579 *infestans* (top), *S. sapeloensis* and *P. ultimum* (middle) and *P. infestans* and *P. ultimum*
1580 (bottom). We compared regulatory trends of orthologs in *S. sapeloensis* MGLi vs.
1581 CMMm with early infection vs. CMMm (Comparison 1) or with late infection vs. CMMm
1582 (Comparison 2). In the comparisons between the two pathogens Comparison 1
1583 corresponds to early infection vs CMMm of *P. infestans* with early infection vs. CMMm
1584 of *P. ultimum*. Comparison 2 corresponds to the comparisons between the late infection
1585 phases. Up indicates that a gene is induced ($\log_2[FC] \geq 1$), down indicates that a gene is
1586 reduced ($\log_2[FC] \leq -1$) and no indicates that a gene shows no changes ($-1 > \log_2[FC] < 1$).
1587 Right: Overview of all orthologs. Left: Overview of orthologs that are induced or
1588 reduced. (c) Domain structure of the *in silico* translated pathogenicity-associated genes
1589 encoding Elicitin-like, EpiC2B and CBEL proteins of *S. sapeloensis* and their orthologs
1590 in *P. infestans*. The asterisk indicates a partial N-terminus. (d) $\log_2(FC)$ of Elicitin-like-,
1591 EpiC2B- and CBEL-encoding genes based on transcriptomic data. The cutoffs for
1592 induction and reduction as defined above are indicated with the grey lines at $\log_2(FC) =$
1593 -1 and $\log_2(FC) = 1$. For *S. sapeloensis* the significant differences are indicated as not
1594 significant (ns) when $FDR > 0.05$, and as significant *** $FDR \leq 0.001$. The statistical
1595 evaluation corresponds well with the previously defined cutoff. (e) Domain structure of *in*
1596 *silico* translated pathogenicity-associated genes that show similar regulatory trends in
1597 the two pathogens but are differently expressed in *S. sapeloensis*. The structure is

1598 given for the orthologs in *S. sapeloensis*, *P. infestans* and *P. ultimum*. (f) $\log_2(\text{FC})$ of
1599 Aquaporin- and Cystein protease-encoding orthologs of *S. sapeloensis*, *P. infestans*
1600 and *P. ultimum*. The cutoffs for induction and reduction of gene expression ($\log_2[\text{FC}] = -$
1601 1 and $\log_2[\text{FC}] = 1$) are indicated as grey lines in the bar diagram. Ns indicates not
1602 significant based on the statistical evaluation in *S. sapeloensis*' transcriptome.

1603

1604 **Figure 6. Effector candidate repertoire and expression profile in *Salisapilia***
1605 ***sapeloensis***

1606 (a) Number of identified effector candidates in the oomycete-affiliated (left of '/') and
1607 orphan gene (right of '/') datasets. On the left the type of effector candidate is given:
1608 RxLR, CRN with the canonical CRN motif (c), CRN with an alternative CRN motif (v),
1609 and SPP candidates. The table shows the number of effector candidates identified in
1610 the 'initial prediction' (i.e. compiled results of the HMM and heuristic searches), after
1611 filtering for the signal peptides (SP) as well as requiring the absence of transmembrane
1612 domains (TM), and after applying an expression cutoff of $\text{TPM}_{\text{TMnormalize}} \geq 1$ in at least
1613 one treatment. (b) Relative expression [$\log_2(\text{FC})$] of effector candidates detected in
1614 *S. sapeloensis*. Significant up-/down-regulation is indicated by * $\text{FDR} \leq 0.05$, ** $\text{FDR} \leq$
1615 0.01 and *** $\text{FDR} \leq 0.001$.

1616

1617 **Figure 7. Transcript budget analyses of transcription factor- and CAZyme-**
1618 **encoding genes across plant colonizing oomycetes.**

1619 (a) Transcript budget (given in %TPM of the total TPM) invested into TF-encoding
1620 genes from dark blue (0% transcript investment) to orange ($\geq 0.04\%$ transcript
1621 investment). Every line indicates a TF-encoding gene in *S. sapeloensis* and its
1622 orthologs in eight plant pathogenic oomycetes. White spaces indicate that no ortholog
1623 was identified. The heatmap is sorted according to the transcript budget in *S.*
1624 *sapeloensis* from high to low and per TF category. Asterisks show those TF-encoding
1625 gene with an increased transcript budget ($\log_2[\text{FC}] \geq 1$) in *S. sapeloensis* vs. all
1626 oomycetes with an ortholog. The tissue that was colonized/infected by the oomycete is
1627 indicated with the symbol to the right of their names. (b) Domain structure of the *in silico*
1628 translated seven TF-encoding genes with increased transcript budget or no orthologs in

1629 the plant pathogens. (c) $\log_2(\text{FC})$ of the seven TF-encoding genes in MGLi (blue) or
1630 MGLw (red) vs. CMMm in the transcriptome data. Significant differences are indicated
1631 as * FDR ≤ 0.05 , ** FDR ≤ 0.01 , *** FDR ≤ 0.001 . (d) qRT-PCR of a Myb-related- and
1632 the NF-YB-encoding gene from the seven candidate TF-encoding genes. The average
1633 $\log_2(\text{FC})$ for MGLi (blue) or MGLw (red) vs. CMMm is shown as a bar diagram. Error
1634 bars indicate the SEM. The reference gene was *SsH2A*. Significant differences are
1635 given as *** p-value ≤ 0.001 . (e) The clusters C0 and C1 include three of the five TF-
1636 encoding genes with an up-regulation in MGLi or MGLw vs. CMMm. Myb-related-
1637 encoding genes are indicated with a dark red line and the NF-YB-encoding gene is
1638 indicated with a dark blue line. (f) Comparison of the transcript budget invested in
1639 CAZyme-encoding genes. The heatmap shows the genes from *S. sapeloensis* and their
1640 respective orthologs in eight plant pathogens that infect five different hosts and four
1641 different tissues (symbolized by the icons to the left of the species name). Heatmaps
1642 are sorted within each CAZyme category and from high transcript investment (orange)
1643 to low (dark blue) in *S. sapeloensis*. Each line represents one gene in the saprotroph
1644 and its orthologs in the pathogens. White indicates that no ortholog was identified in a
1645 given pathogen. Highlighted CAZyme-encoding genes have a $\log_2(\text{FC}) \geq 1$ difference in
1646 %TPM between either *S. sapeloensis* compared to all pathogens or vice versa. (g)
1647 $\log_2(\text{FC})$ of gene expression of all CAZyme-encoding genes with increased transcript
1648 budget or no orthologs in other oomycetes. Only genes with a sufficient expression in all
1649 conditions ($\text{TPM}_{\text{TMM-normalized}} \geq 1$) are shown. Significant differences are indicated as *
1650 FDR ≤ 0.05 , ** FDR ≤ 0.01 , *** FDR ≤ 0.001 .

1651

1652 **Supplemental Data**

1653 **Dataset S1.** Summary statistics for and information on the *de novo* assembly.

1654

1655 **Dataset S2.** KEGG pathway and BRITE hierarchy annotation and responsiveness
1656 towards the three different growth conditions of *Salisapilia sapeloensis*.

1657

1658 **Dataset S3.** Pairwise reciprocal BLASTp analyses of *Salisapilia sapeloensis* versus
1659 other oomycetes.

1660

1661 **Dataset S4.** CAZyme annotation of the *de novo* assembled transcriptome of *Salisapilia*
1662 *sapeloensis* and the genomes of 22 other oomycetes; expression analysis of CAZyme-
1663 encoding genes in *Salisapilia sapeloensis*.

1664

1665 **Dataset S5.** Comparative transcriptomic analyses across diverse oomycete species.

1666

1667 **Dataset S6.** *In silico* translation of the *de novo* assembled transcriptome of *Salisapilia*
1668 *sapeloensis* and expression analysis of putative RxLRs, CRNs, and SSPs of *Salisapilia*
1669 *sapeloensis*.

1670

1671 **Table S1.** Transcriptomic and genomic data used in this study for comparative
1672 analyses.

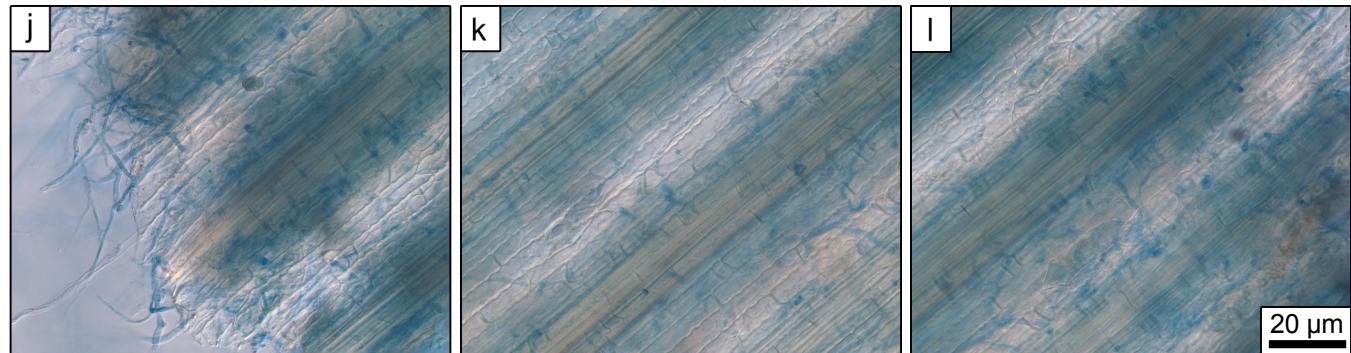
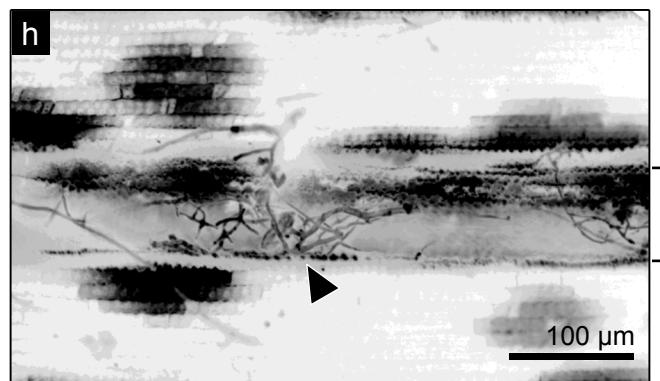
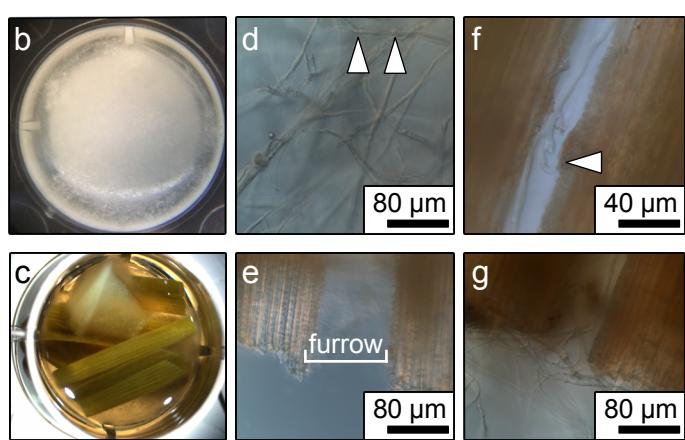
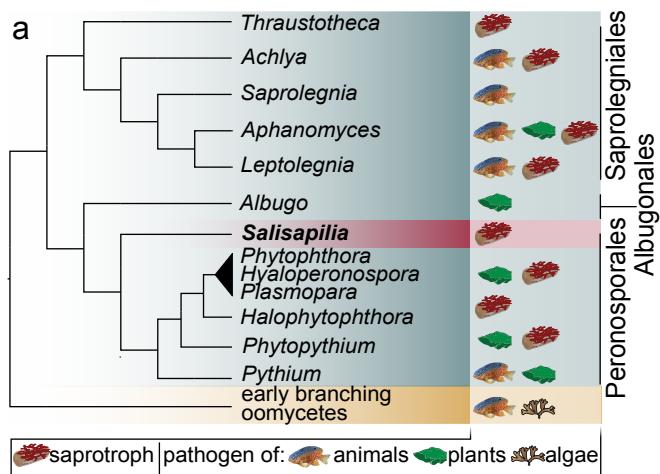
1673

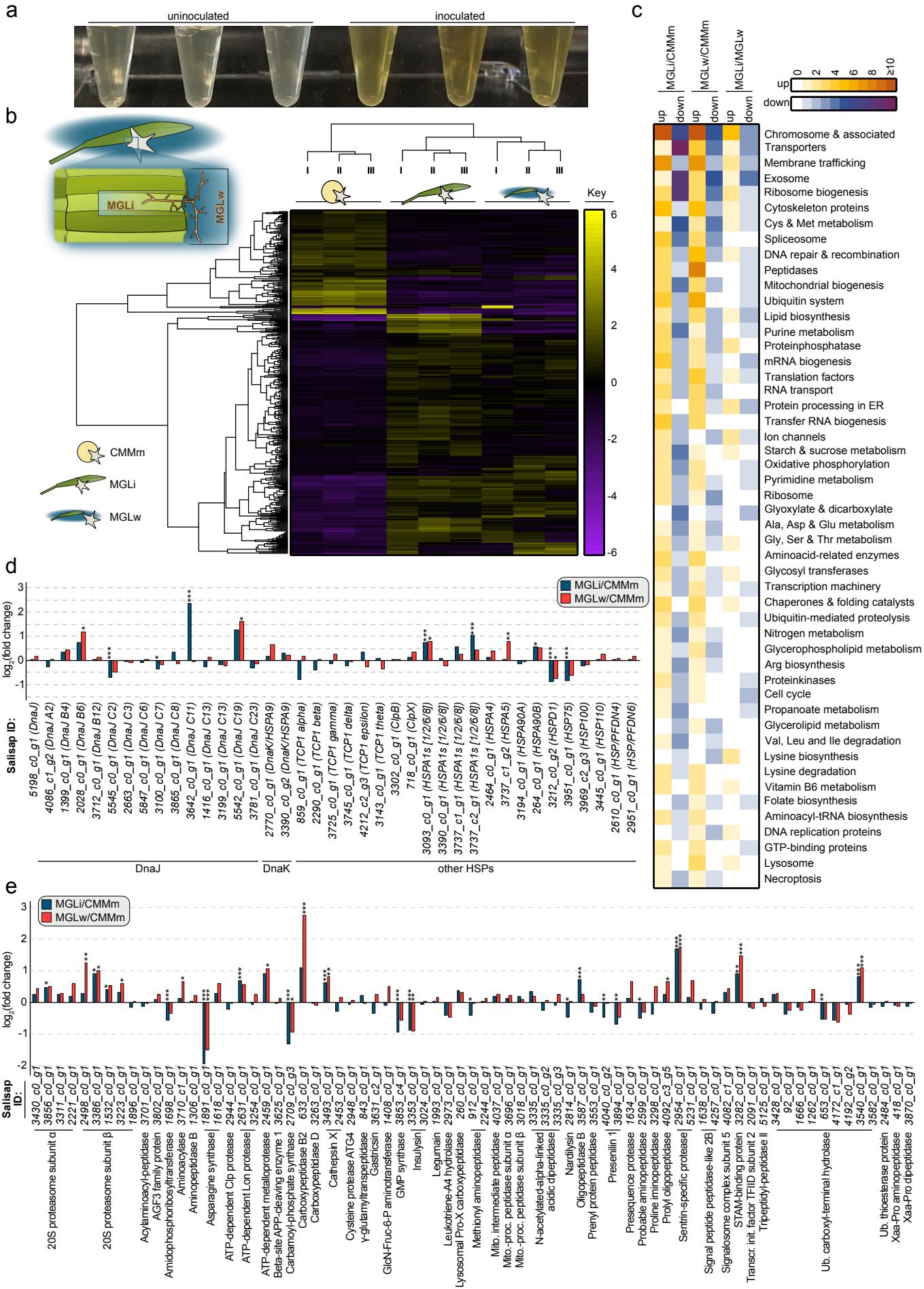
1674 **Tables S2.** Primers used in the qRT-PCRs.

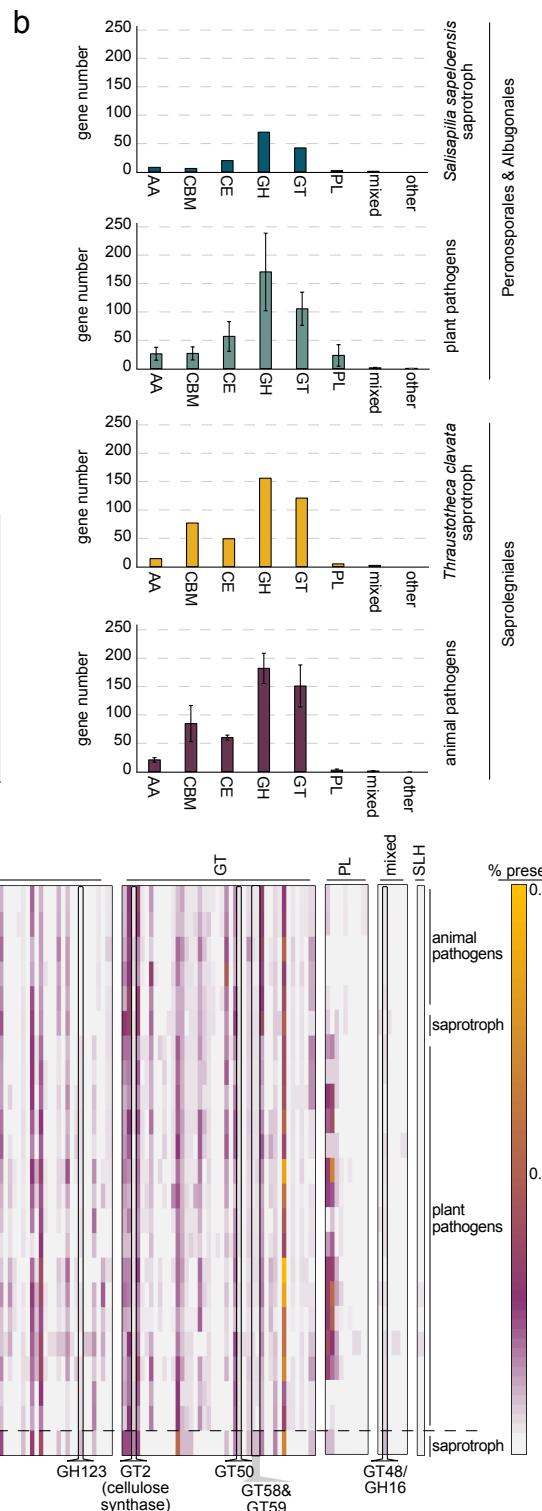
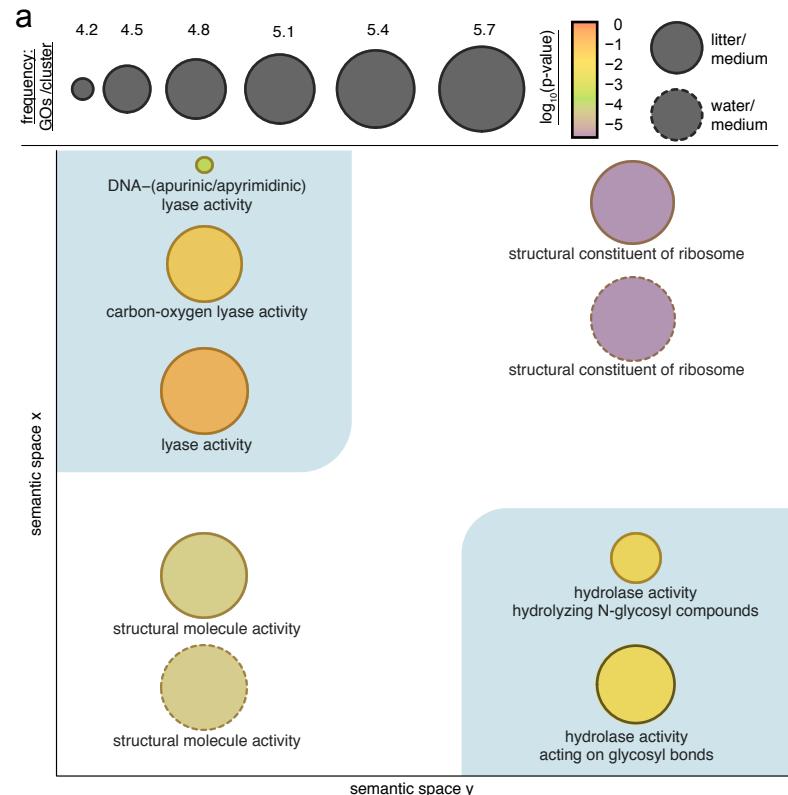
1675

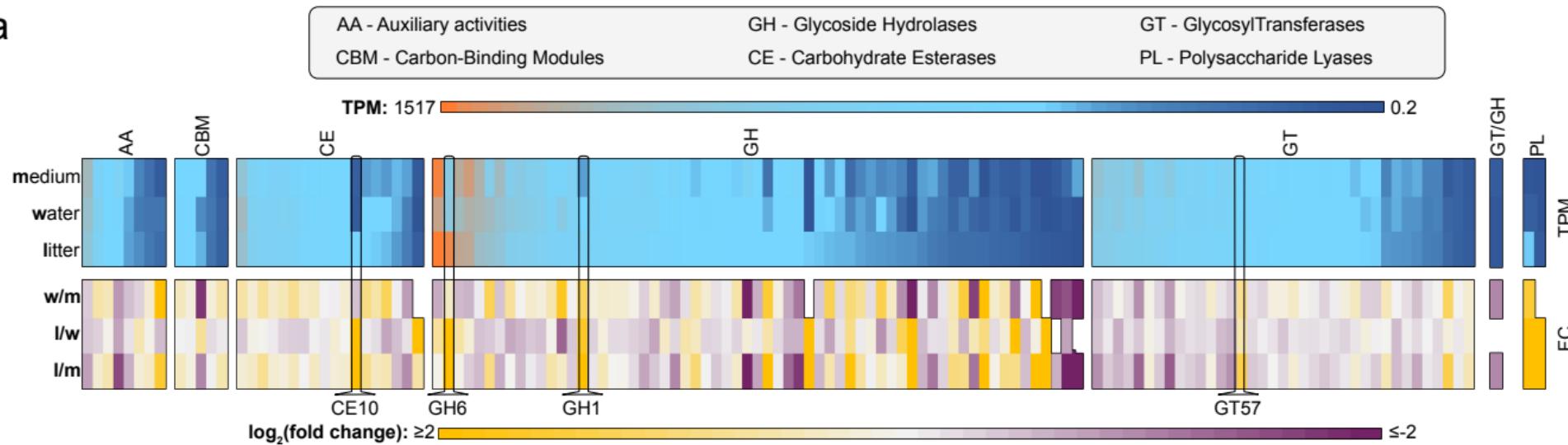
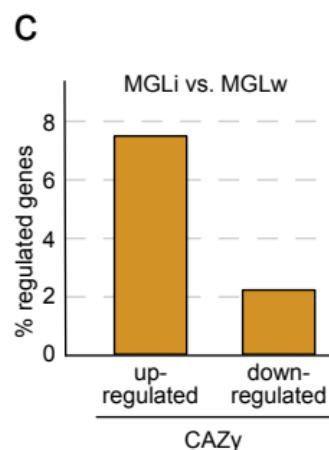
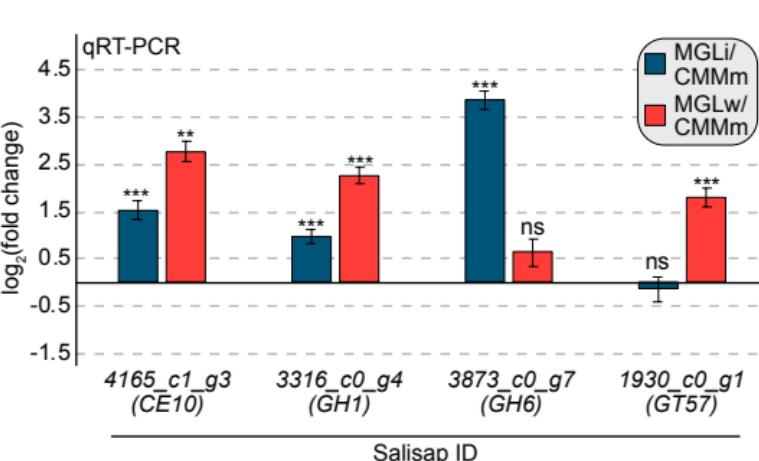
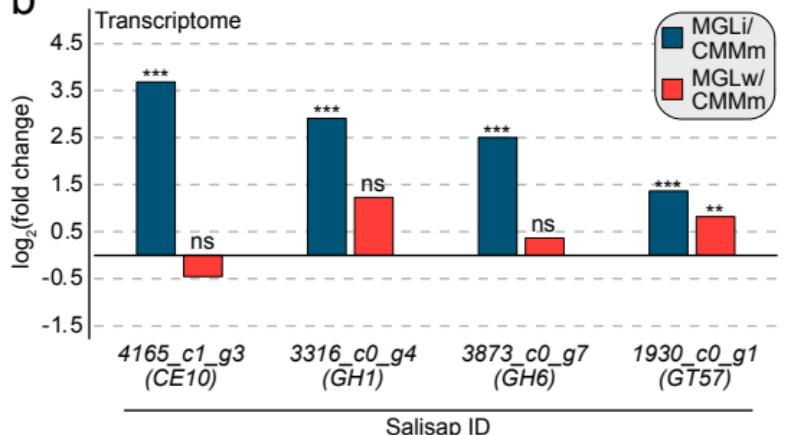
1676 **Figure S1.** Confocal micrographs of *Salisapilia sapeloensis* growing on and in marsh
1677 grass litter.

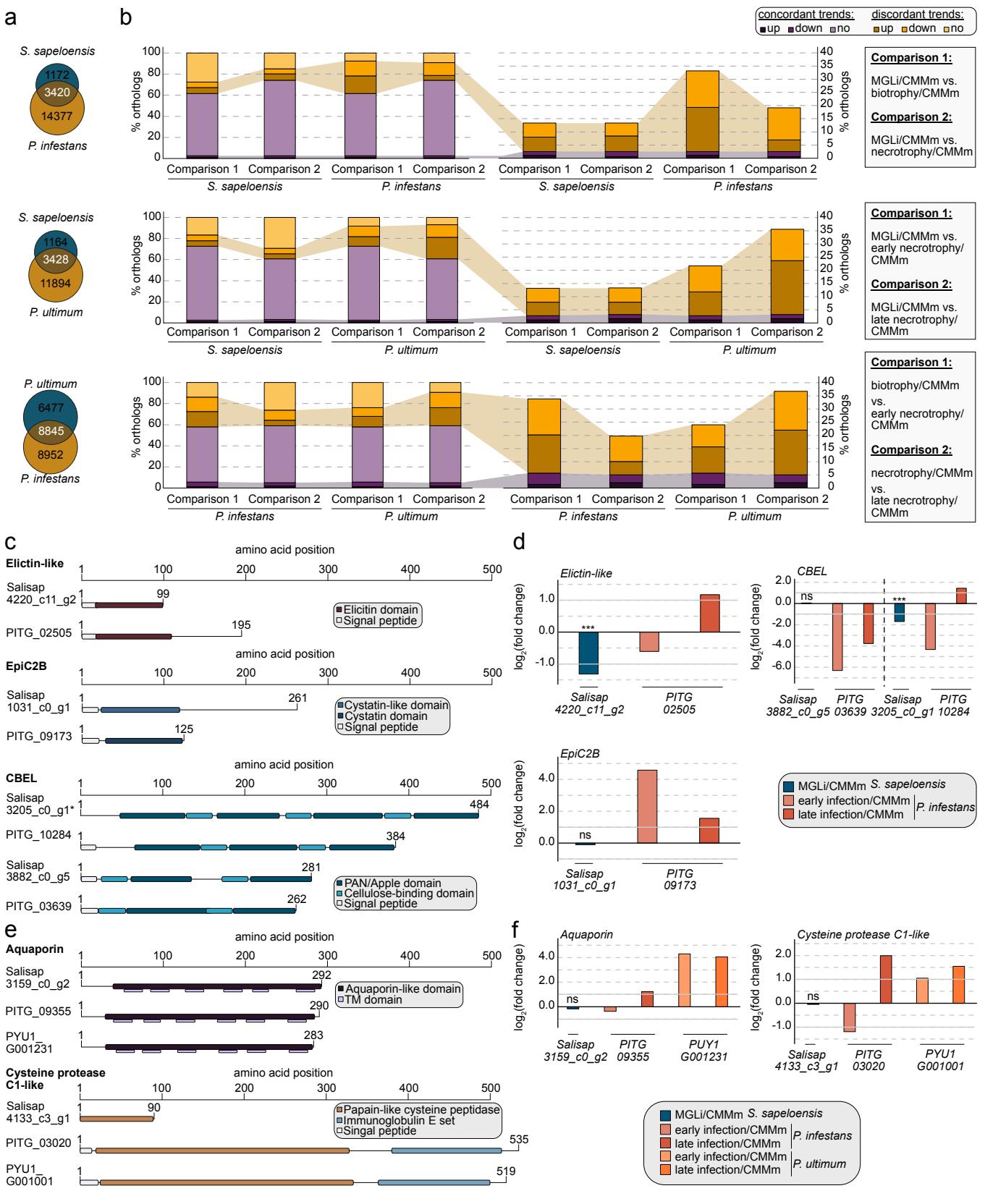
1678

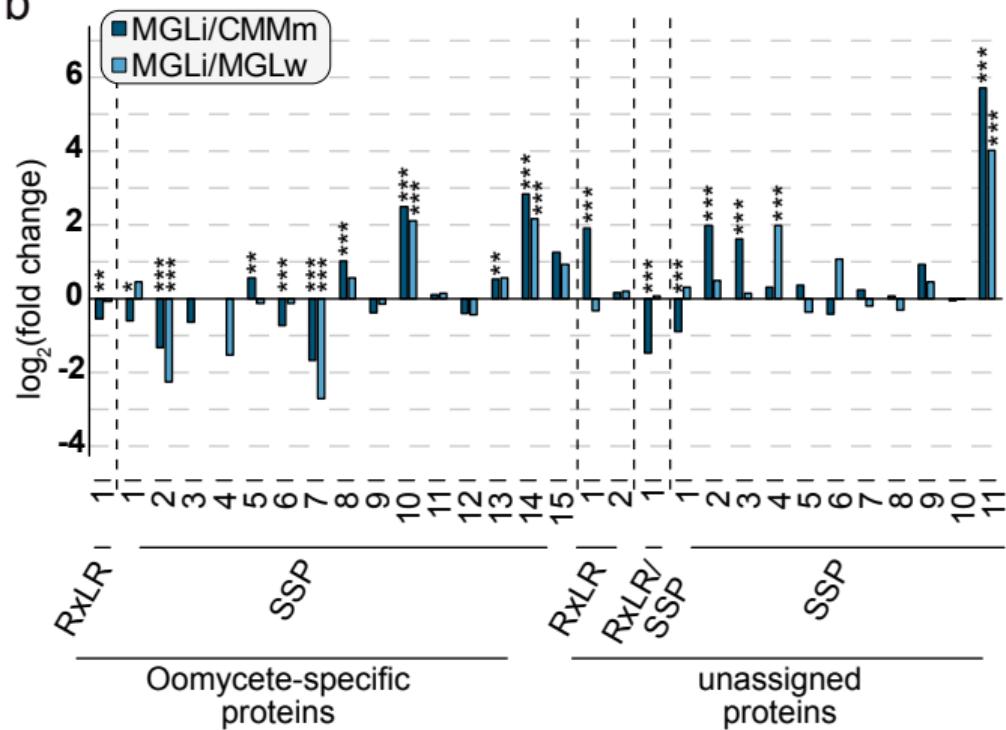




1679 **Figure S2.** Workflow for transcriptome *de novo* assembly and gene identification.

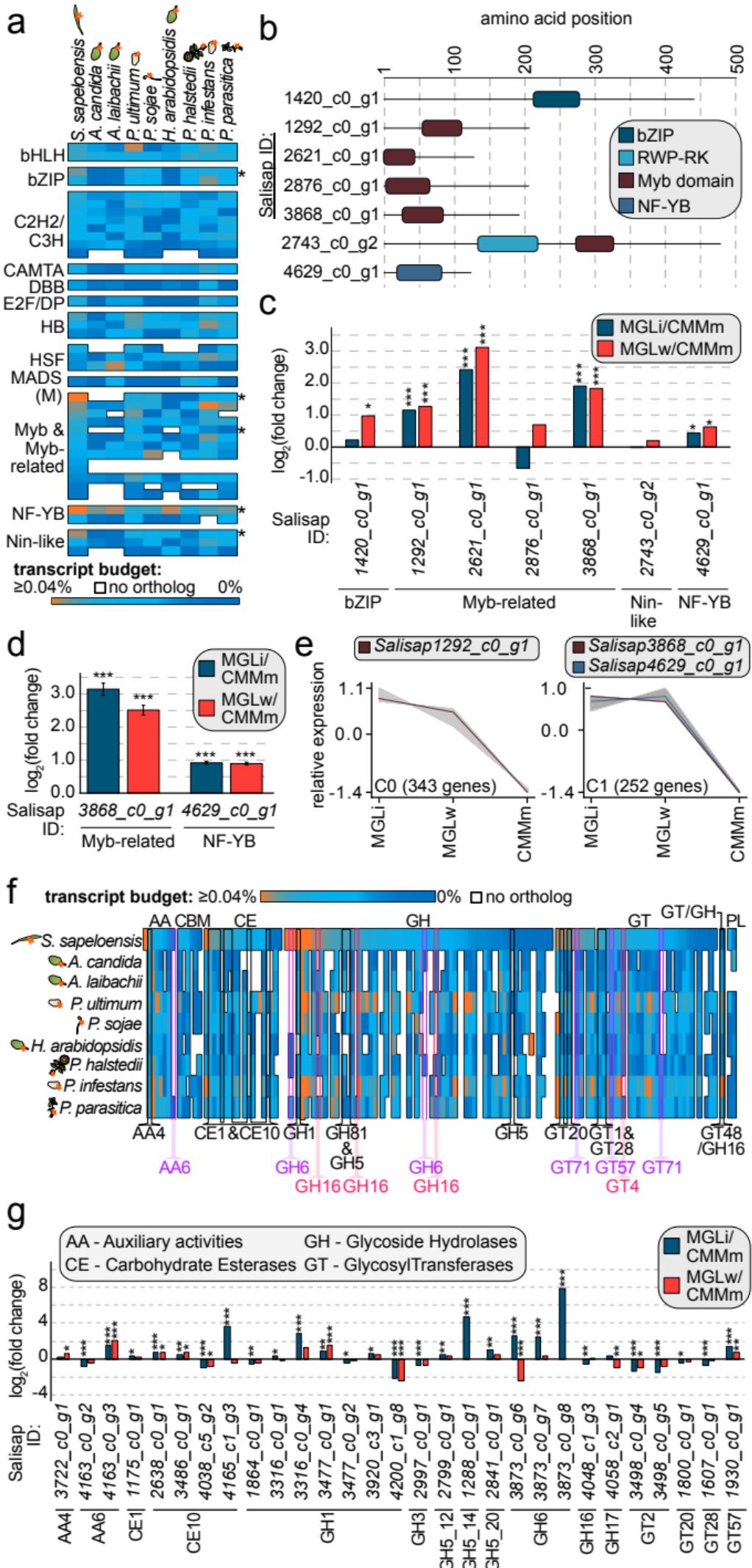

1680



1681 **Figure S3.** Clust analysis of the *Salisapilia sapeloensis* transcriptomic dataset across all
1682 conditions.





1683


1684 **Figure S4.** Annotation of litter-associated genes in clusters C0 and C1.




a**b**

a

Effector	Initial prediction	SP & no TM	TPM ≥ 1
RxLR	20/108	1/10	1/3
CRN (c)	1/0	0/0	0/0
CRN (v)	0/1	0/0	0/0
SSP	258/659	19/36	15/12

b

