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Abstract (150 words) 13 

Toxoplasma gondii, a protozoan parasite, undergoes a complex and poorly 14 

understood developmental process that is critical for completing its intricate life cycle, 15 

including establishing a chronic infection in its intermediate hosts. Here, we applied 16 

single-cell RNA-sequencing (scRNA-seq) to > 5,000 Toxoplasma at single-parasite 17 

resolution in tachyzoite and bradyzoite stages using three widely studied strains. We 18 

resolve the oscillatory nature of cell cycle progression in an asynchronized population of 19 

the type I strain, RH. Using scRNA-seq, we also construct a comprehensive atlas of 20 

asexual development and cell-cycle in the Type II strains, Pru and ME49, revealing 21 

hidden heterogeneity in the course of development and transcription factors associated 22 

with each developmental state. Lastly, we combined projection scoring with noise 23 

analysis to show that the expression of a subset of parasite-specific genes, including 24 

ones that encode surface antigens, varies independently of measurement noise, cell 25 

cycle, and asexual development. Overall, our results reveal an unprecedented and 26 

surprising level of heterogeneity in Toxoplasma gondii and provide a molecular resource 27 

for understanding protozoan parasite development. 28 
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Main text (5000 words) 33 

Introduction 34 

Toxoplasma gondii is an intracellular protozoan parasite that is thought to infect 35 

over a quarter of the world’s population1. Like some of its Apicomplexan cousins, 36 

Toxoplasma undergoes a complex developmental transition inside the host. In 37 

intermediate hosts, including humans and virtually all other non-feline warm-blooded 38 

animals, Toxoplasma parasites remain haploid and transition from a replicative, virulent 39 

tachyzoite to an encysted, quasi-dormant bradyzoite. This asexual developmental 40 

transition is tightly coupled to the clinical progression of Toxoplasma infection. Although 41 

acute infection with tachyzoites produces few if any symptoms in healthy human 42 

children and adults, infected individuals, if left untreated, progress to a chronic stage 43 

wherein tachyzoites transition to bradyzoites that can persist for life in neurons and 44 

muscle cells. When infected individuals become immunocompromised, such as in 45 

chemotherapy, HIV infection, or organ transplantation2,3 bradyzoites can reactivate to 46 

become tachyzoites, causing severe neurological damage and even death. While no 47 

causal link has been established, a population-wide study has uncovered significant 48 

association of Toxoplasma infection with risk for schizophrenia in chronically infected 49 

humans4. Chronic infection in mice has been observed to induce behavioral changes 50 

such as loss of aversion to cat urine, which is hypothesized to increase the transmission 51 

rate of Toxoplasma to its definitive feline host where sexual reproduction occurs5. As 52 

there are no therapeutic interventions to prevent or clear cysts in infected individuals, 53 

understanding how Toxoplasma transitions through its life stages remains of critical 54 

importance.  55 

The development of in vitro methods to induce Toxoplasma differentiation have 56 

facilitated investigation of several aspects of chronic infection, including transition of 57 

tachyzoites to bradyzoites6,7. Bulk transcriptomic analyses of Toxoplasma gondii at 58 

distinct asexual stages reveal genetic modules that are expressed in each stage8–15, 59 

including AP2 transcription factors that are thought to play a role in differentiation16,17; 60 

however, transitioning parasites convert to the bradyzoite stage asynchronously and 61 

display a high degree of heterogeneity along the developmental pathway and in gene 62 

expression18,19. Furthermore, parasites within the same tissue cysts have been shown 63 

to display heterogeneity in the expression of bradyzoite marker proteins20. The transition 64 

of tachyzoites to the bradyzoite stage results in an overwhelming majority of mature 65 

bradyzoites in the G1 phase of the cell cycle that divide slowly, if at all21,22. Furthermore, 66 

tachyzoites exhibit slower growth kinetics immediately prior to the bradyzoite 67 

transition21,23. This suggests that parasites exit the cell cycle to differentiate into 68 

bradyzoites, a pattern consistent with developmental processes in several other 69 

eukaryotic organisms24,25. Dissecting these cell cycle aspects of stage conversion 70 

requires a more detailed analysis than has been possible with bulk measurement of 71 
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tachyzoite or bradyzoite populations, or with the use of genetically modified parasites 72 

coupled with chemical synchronization of cell cycle progression13,26–28. This is because 73 

the latter approaches require large quantities of synchronized parasites and can 74 

potentially introduce artificial perturbations. Furthermore, bulk measurement fails to 75 

distinguish parasite-to-parasite variation that is independent of cell cycle or known 76 

developmental processes, potentially missing the phenotypic diversity intrinsic to a 77 

population of cells. 78 

 Single-cell RNA sequencing (scRNA-seq) offers a powerful and unbiased 79 

approach to reveal the underlying heterogeneity in an asynchronous population of cells. 80 

Droplet and FACS-based approaches have already been applied towards multicellular 81 

parasites such as Schistosoma to reveal developmental changes within different 82 

hosts29. Recently, scRNA-seq has revealed a surprising degree of heterogeneity in 83 

another apicomplexan parasite, Plasmodium30–32. Analyses derived from these single-84 

parasite measurements uncovered rare and critical transition events in parasite 85 

development that were undetectable in bulk measurements. Combined with novel 86 

analytical development and increases in measurement throughput, scRNA-seq is 87 

becoming a widely adopted tool for resolving cellular changes in a quantitative and 88 

system-wide fashion.  89 

Here, we performed scRNA-seq to reconstruct transcriptional dynamics of 90 

asynchronous Toxoplasma parasites in the course of cell cycle and asexual 91 

development in vitro. We benchmarked the purity of isolation, as well as sensitivity and 92 

accuracy of our measurements, demonstrating that this experimental approach can 93 

isolate single parasites to resolve the transcriptional variation of biological processes. 94 

We show that cell cycle status can be accurately inferred from the transcriptional 95 

signatures of an asynchronous population of Type I (RH) tachyzoites at single-parasite 96 

resolution. Using Type II strains (Pru and ME49) switching to bradyzoites under alkaline 97 

induction, we resolved a comprehensive single-parasite atlas of asexual development 98 

together with cell cycle state annotation, identifying transcription factors that are 99 

associated with each developmental state and revealing previously hidden 100 

heterogeneity in the parasite. Furthermore, we identify a class of highly variable genes, 101 

including ones that encode surface antigens and dense granule effectors, which exhibit 102 

parasite-to-parasite variability that cannot be explained by either measurement noise, 103 

cell cycle, or asexual development. Our combined results suggest that this prevalent 104 

protozoan parasite may exhibit much greater heterogeneity than previously appreciated.  105 
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Results 106 

Technical validation of single-parasite sorting and sequencing 107 

 There are more than a dozen approaches available for single-cell isolation and 108 

transcriptome amplification. Based on benchmark comparisons, Smart-seq2 generally 109 

has higher sensitivity than competing droplet-based approaches33,34. We reasoned that 110 

sensitive measurement is crucial in our study given that single Toxoplasma gondii 111 

parasites are at least 50-fold smaller in volume than a typical mammalian cell, and thus 112 

the average parasite gene is likely expressed with much lower copy number per cell 113 

than a typical mammalian gene. For our initial studies, we used the common Type I lab 114 

strain of Toxoplasma, RH, grown in vitro in human foreskin fibroblasts (HFFs). Following 115 

such growth, individual tachyzoites were released by passage through a narrow gauge 116 

needle and then purified by fluorescence activated cell sorting (FACS) into 384-well 117 

plates. We then synthesized, amplified, and barcoded cDNA using Smart-seq2 and 118 

Illumina Nextera protocols. Reaction in 384-well plates effectively reduced the reagent 119 

cost by four-fold compared to the 96-well format. The sequenced reads were 120 

bioinformatically deconvolved and grouped into individual parasites for analysis using 121 

modified bcl2fastq and custom python scripts (Materials and methods). A schematic to 122 

illustrate our experimental workflow is shown in Figure 1. 123 

 To ensure that our workflow efficiently captures single Toxoplasma parasites, we 124 

mixed equal numbers of two transgenic lines of RH, one expressing GFP and the other 125 

expressing mCherry, and sorted individual parasites into a 384 well plate based on the 126 

presence of either green or red signals without a filter for those that were both red and 127 

green. After Smart-seq2 amplification, we quantified the expression of GFP and 128 

mCherry mRNAs using quantitative polymerase chain reaction (qPCR). Across all 301 129 

wells that we measured, we observed the presence of both GFP and mCherry mRNA in 130 

only one well, indicating that the rate of doublet events is below 1% (Figure 1 - 131 

Supplementary Figure 1a). To address the possibility that the reduced reagent volume 132 

in the 384-well format could potentially saturate the reaction chemistry and thus limit 133 

quantification range, we sorted varying numbers of RH and quantified with qPCR the 134 

mRNA of a gene encoding the abundantly expressed surface protein, SAG1 (Figure 1 - 135 

Supplementary Figure 1b). The expression values for single, eight, and fifty RH fall in 136 

distinct distributions without signs of saturation, indicating that the assay is capable of 137 

quantitative measurement at the single Toxoplasma level. We then proceeded to sort 138 

parasites based on live/dead staining and sequence 729 RH strain single Toxoplasma 139 

parasites from asynchronous populations grown under tachyzoite conditions. For Pru 140 

and ME49 strains, we also collected parasites at several time points post alkaline 141 

treatment to follow their expression profiles during in vitro transition to bradyzoites 142 

(Materials and methods), yielding 2655 Pru and 1828 ME49 single parasites. RH 143 

reads were aligned to the GT1 strain genome, which is the most complete reference for 144 
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Type I parasites, while Pru and ME49 were aligned to the ME49 strain Type II genome 145 

reference. Because many genes encoding Toxoplasma secretion factors and surface 146 

proteins are evolutionary products of gene duplication events35, we expected high 147 

sequence similarity amongst a substantial portion of the parasite genes. Thus, we 148 

modified our gene counting pipeline to account for duplicated genes (Materials and 149 

methods). A comparison of counting methods does not reveal significant differences in 150 

the observed counts (Figure 1 - Supplementary Figure 1c). Further analysis reveals 151 

that our modified pipeline recovered the detection of a few more parasite genes than 152 

default parameters (Figure 1 - Supplementary Figure 1d). 153 

To ensure that poorly amplified or sequenced parasites did not confound our 154 

downstream analysis, we filtered samples based on several quality metrics including 155 

percent reads mapping to ERCC spike-in sequences, number of genes detected, and 156 

sequencing depth (Materials and methods; Figure 1 - Supplementary Figure 2a). On 157 

average, each sequenced parasite contains 30-50% reads that mapped to Toxoplasma 158 

genes encoding proteins (top panel in Figure 1 - Supplementary Figure 2b). The 159 

majority of the unmapped reads are from Toxoplasma’s 28s ribosomal RNA. The 160 

relatively high rate of rRNA contamination was also observed in single-parasite RNA 161 

sequencing of Plasmodium30. We suspect this occurred due to non-specific priming in 162 

the low mRNA content environment of protozoan cells. We normalized for sequencing 163 

depth across cells by dividing each read count by the median of read sum to yield 164 

“count per median” (CPM). After filtering ERCC spike-in and rRNA genes, we detected 165 

on average 996, 1247, and 1067 genes per parasite with greater than 2 CPM 166 

(Materials and methods) in the RH, Pru, and ME49 datasets, respectively (bottom 167 

panel in Figure 1 - Supplementary Figure 2b). Characterization of our measurement 168 

sensitivity based on logistic regression modeling of ERCC spike-in standards (Materials 169 

and methods)36 reveals a 50% detection rate of 10.5, 11.5, and 21.1 molecules for RH, 170 

Pru, and ME49 datasets, respectively (top panels in Figure 1 - Supplementary Figure 171 

2c). The sensitivity of our 384-well Smart-seq2 measurement is comparable to the 172 

previously reported range for the 96-well format34. As expected from our qPCR titration 173 

experiment, scRNA-seq measurement of gene expression is quantitative at single 174 

parasite resolution based on ERCC standards. We determined that the linear dynamic 175 

range of our scRNA-seq measurement spans over three orders of magnitude (bottom 176 

panels in Figure 1 - Supplementary Figure 2c). Taken together, we demonstrate a 177 

scalable and cost-effective approach to measure the transcriptomic changes of 178 

individual parasites with high sensitivity and accuracy. 179 

Cell cycle landscape of asynchronous Toxoplasma 180 

Previous work posited a potential link between bradyzoite development and cell 181 

cycle, which poses a significant challenge to the bioinformatic analysis of either 182 

process21. To characterize cell cycling changes without confounding contributions from 183 
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developmental processes, we first analyzed an asynchronous population of Type I RH 184 

strain parasites grown under tachyzoite conditions; this extensively passaged lab strain 185 

is known to have little propensity to switch to bradyzoites under such conditions6 186 

(Materials and methods). After filtering out genes whose expression levels did not vary 187 

significantly between individual parasites, we projected the data with principal 188 

component analysis (PCA) (Materials and methods). Interestingly, the first two 189 

principal components (PCs) reveal a circular trajectory that coincides with relative DNA 190 

content, determined using a cell permeable DNA content stain (top panel in Figure 2a). 191 

Unsupervised neighborhood clustering identified five distinct clusters of parasites based 192 

on their transcriptional profiles (middle panel in Figure 2a) (Materials and methods). 193 

To infer transcriptional dynamics, we applied stochastic RNA velocity algorithm that 194 

relies on the ratio of incompletely spliced transcripts to their fully spliced form in order to 195 

assess the directionality of transcriptional changes37,38. The vector field of RNA velocity 196 

indicates a net “counter-clockwise” flow of transcriptional changes (bottom panel in 197 

Figure 2a) (Materials and methods). We assigned cell cycle phase to the clusters 198 

based primarily on change in DNA content (Figure 2 - Supplementary Figure 3a) but 199 

also considering previous bulk transcriptomic characterization28 (Figure 2 - 200 

Supplementary Figure 3b). Unsupervised clustering identified two distinct clusters in 201 

G1 state, which we have designated as G1a and G1b. We found a list of differentially 202 

expressed genes between the two G1 clusters. The G1a cluster is highly enriched for the 203 

expression of metabolic genes such as phenylalanine hydroxylase (TGGT1_411100) 204 

and pyrroline-5-carboxylate reductase (TGGT1_236070), as well as invasion-related 205 

secreted factors such as MIC2 (TGGT1_201780), MIC3 (TGGT1_319560), and MIC11 206 

(TGGT1_204530). On the other hand, G1b cluster is enriched for the expression of 3-207 

ketoacyl reductase (TGGT1_217740) and cytidine and deoxycytidylate deaminase 208 

(TGGT1_200430), as well as numerous uncharacterized proteins (Supplementary 209 

table 1). The relative abundance of G1a, G1b, S, M, and C states were determined to be 210 

18%, 32%, 28%, 15%, and 7%, respectively. Without chemical synchronization, the 211 

correlation between the scRNA-seq data of asynchronous parasites and previously 212 

published bulk transcriptomic measurement suggests strong agreement in cluster 213 

assignment and cell cycle state identification (Figure 2 - Supplementary Figure 3b). 214 

This highlights a key advantage of scRNA-seq, as it enables identification of cell cycle 215 

status of a parasite without reliance on chemical induction, which may lead to unnatural 216 

cellular behavior. 217 

To verify the cyclical nature of gene expression through the lytic cycle, we 218 

reconstructed a biological pseudotime of RH using Monocle 2 (Materials and 219 

methods). The results shown a clear oscillatory expression pattern for the variably 220 

expressed genes along the pseudotime axis (Figure 2b). To further characterize cell 221 

cycle expression patterns, we clustered genes based on pseudotime interpolation and 222 

hierarchical clustering (Materials and methods). Some of the key organelles in 223 
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tachyzoites are known to be made at different times in the cell cycle28. To confirm and 224 

refine this finding, we calculated the mean expression values for each set of organelle-225 

specific genes based on their annotation in ToxoDB (Supplementary Table 2). This 226 

showed the expected, strong oscillation with pseudotime (bottom panel in Figure 2 - 227 

Supplementary Figure 3c), which also strongly correlates with the oscillation of DNA 228 

and total mRNA content (top panels in Figure 2 - Supplementary Figure 3c). On the 229 

other hand, we also observed instances where a given gene’s expression was 230 

discordant to the dominant trend of its nominal organelle set (arrows in Figure 2 - 231 

Supplementary Figure 3d). For example, 63.5% of genes annotated as rhoptry (ROP) 232 

or rhoptry neck (RON) are assigned pseudotime cluster 3, while the remaining 36.5% 233 

rhoptry genes are assigned pseudotime clusters 1 or 2 (Figure 2 - Supplementary 234 

Figure 3e). Specifically, genes annotated as ROP33 and ROP34, based on their 235 

homology to genes encoding known rhoptry proteins, are assigned to cluster 2 instead 236 

of cluster 3 (left panel in Figure 2 - Supplementary Figure 3f). Recent reports have 237 

experimentally determined these two to be non rhoptry-localizing proteins, thus 238 

explaining their discordance39. Through analysis of pseudotime clustering, we also 239 

identified genes not annotated as ROPs within the ROP-dominated cluster 3, such as 240 

TGGT1_218270 and TGGT1_230350, that have recently been shown to encode bona 241 

fide rhoptry and rhoptry neck proteins, now designated as ROP48 and ROP11, 242 

respectively (left panel in Figure 2 - Supplementary Figure 3f). As another example, 243 

IMC2a peaks in expression level in G1, while the majority of inner-membrane complex 244 

(IMC) genes are expressed towards the M/C phase of the cell cycle (right panel in 245 

Figure 2 - Supplementary Figure 3f). A recent report has proposed reannotation of 246 

IMC2a as a dense granule (GRA) protein (GRA44) based on subcellular localization40, 247 

which is consistent with our unsupervised group assignment of IMC2a as falling in the 248 

same cluster 1 where GRA genes dominate. A list of 8590 RH genes with their 249 

corresponding pseudotime clustering assignment is provided (Supplementary Table 250 

3). We observe high discordance of pseudotime expression for several genes in each 251 

annotated organelle sets, suggesting that the current Toxoplasma annotation may need 252 

significant revision. Our scRNA-seq data provide an important resource to help identify 253 

mis-annotated genes and infer putative functions of uncharacterized proteins. 254 

Hidden heterogeneity in asexually developing Toxoplasma 255 

 Toxoplasma has one of the most complicated developmental programs of any 256 

single-celled organism; however, it is unknown how synchronized the transition is 257 

between developmental states. To address this, we assessed the inherent 258 

heterogeneity within asexually developing Pru, a type II strain that is capable of forming 259 

tissue cysts in vitro upon growth in alkaline conditions18,41. We applied scRNA-seq to 260 

measure and analyze Pru parasites grown in HFFs as tachyzoites (“uninduced”) and 261 

after inducing the switch to bradyzoites by growth in alkaline media for 3, 5, and 7 days. 262 
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Projection of the first two PCs of uninduced Pru tachyzoites (Day 0) reveals the 263 

expected circular projection (Figure 3 - Supplementary Figure 4a) presumably 264 

reflecting cell cycle progression as seen for the RH tachyzoites, described above. To 265 

validate this, we developed a random forest classifier model based on our cell cycle 266 

assignment in RH (Materials and methods). Comparable to what we observed in RH, 267 

cell cycle prediction reveals that the uninduced population of Pru is composed of 28%, 268 

41%, 21%, 7%, and 3% parasites in G1a, G1b, S, M, and C states, respectively. 269 

Consistent with previous observation23, our data show most induced Pru parasites (Day 270 

3 - 7) are in the G1 state with a predominance of G1b (Figure 3 - Supplementary 271 

Figure 4b). 272 

 To identify transcriptomic changes associated with the tachyzoite-bradyzoite 273 

transition, we next projected data from both induced and uninduced Pru parasites onto 274 

two dimensions using UMAP, a nonlinear dimensionality reduction method (Materials 275 

and methods)42. Unsupervised clustering revealed six distinct clusters of parasites, 276 

which we label P1-6 (Figure 3a). Cluster formations partially correlate with treatment 277 

time points and cell cycle states (Figure 3b; Figure 3 - Supplementary Figure 4c), 278 

suggesting that the asexual differentiation program may overlap with cell cycle 279 

regulation in Toxoplasma, as proposed previously21. We stratified the datasets by days 280 

post alkaline induction (dpi) and observed elevated expression of all bradyzoite marker 281 

genes including SRS44 (CST1) and BAG1 with a concomitant reduction in expression 282 

of SRS29B (SAG1), a tachyzoite-specific surface marker gene (Figure 3 - 283 

Supplementary Figure 5). The abundance of SAG1+ parasites (72%) in the induced 284 

population suggests that depletion of this mRNA may be relatively slow and we are 285 

measuring SAG1 transcripts made when the parasites were still tachyzoites or that the 286 

asexual transition induced by alkaline treatment is highly asynchronous. Interestingly, 287 

RNA velocity analysis suggests that P3 may be a fate decision point as the trajectory 288 

trifurcates into either P4 (cell cycle), P1, or P6 as evident by the net transcriptional flow 289 

(compare Figure 3a to right panel in Figure 3b). 290 

To determine the gene modules specific to a given cluster, we conducted 291 

differential gene expression for each cluster (Figure 3c and Supplementary Table 4). 292 

P1 cluster is correlated with the expression of bradyzoite-specific genes while P2-5 are 293 

correlated with the expression of tachyzoite-specific or cell cycle-associated genes 294 

(Figure 3d). In our scRNA-seq data, we also observe a small portion of BAG1+ 295 

bradyzoites (7.1%) annotated as either S, M, or C states, indicating that they are 296 

replicating (Figure 3 - Supplementary Figure 4d). Our data supports the notion that 297 

bradyzoites can undergo cell cycle progression, as posited by a previous report19. 298 

Interestingly, we observe a group of AP2 transcription factors that are differentially 299 

expressed across different clusters, some of which are implicated in Toxoplasma 300 

development (Figure 3e). In particular, we identify AP2Ib-1, AP2IX-1, AP2IX-6, and 301 

AP2VI-2 as over-expressed in P1, suggesting their potential roles in the regulation of 302 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/656165doi: bioRxiv preprint 

https://doi.org/10.1101/656165
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

bradyzoite transition, while AP2-domain protein (TGME49_215895), AP2IX-9, AP2X-8, 303 

AP2VIIa-6, AP2XI-1, AP2IX-3, and AP2VIII-7 are highly expressed in P6, hinting at their 304 

possible roles in defining this distinct cluster of parasites.  305 

The most highly expressed genes in P6 include genes enriched in P2 as well as 306 

bradyzoite-specific genes found in P1 (Figure 3c). To identify genes that are specifically 307 

expressed in P6, we used Wilcoxon’s test (Figure 3 - Supplementary Figure 6a) 308 

(Materials and methods) between P6 and P2 or P1. Comparison of our data to 309 

previous bulk transcriptomic measurement in tachyzoites, tissue cyst, or isolates at the 310 

beginning or the end of sexual cycle showed no specific enrichment in known 311 

developmental stages (Figure 3 - Supplementary Figure 6b)43. Instead, we show that 312 

based on their expression, P6 forms a distinct sub-population of parasites which 313 

suggests that alkaline induced Toxoplasma may be more heterogeneous than 314 

previously thought. Thus, scRNA-seq resolves a transcriptomic landscape of asexual 315 

development and suggests the existence of otherwise hidden states. 316 

 To determine the reproducibility of the phenomena we observed in the 317 

differentiating Pru strain parasites, we repeated the analysis with another widely used 318 

Type II strain, ME49, examining 1828 single ME49 parasites exposed to alkaline 319 

conditions to induce switching to bradyzoites. Data from the two experiments were 320 

computationally aligned using Scanorama to remove technical batch effects while 321 

retaining sample-specific differences44. Unsupervised clustering revealed 5 distinct 322 

clusters in ME49 which share significant overlap in expression patterns with Pru (Figure 323 

3 - Supplementary Figure 7a). Matrix correlation of batch-corrected expression across 324 

the two strains demonstrate analogous mapping for most, but not all cluster identities 325 

(Figure 3 - Supplementary Figure 7b). To simplify the visualization and comparison 326 

across the two datasets, we next applied Partition-Based Graph Abstraction (PAGA) to 327 

present clusters of cells as nodes with connectivity based on similarity of the 328 

transcriptional profiles between clusters45. In particular, a side-by-side comparison of 329 

expression of tachyzoite, bradyzoite, and sexual stage specific genes reveals some key 330 

similarities and dissimilarities (Figure 3 - Supplementary Figure 7c). Clusters P1 and 331 

M1 are both enriched for the expression of bradyzoite marker genes. Clusters M4-5 and 332 

P4-5 are both predicted to be S/M/C phases of the cell cycle. While most ME49 clusters 333 

express tachyzoite marker genes, enolase-2 and LDH-1, which have previously been 334 

described as relatively tachyzoite-specific46, are expressed at much lower level than in 335 

Pru. Curiously, P6-specific genes (green panels in Figure 3 - Supplementary Figure 336 

7c) are not enriched in any cluster in ME49, suggesting a lack of corresponding P6 337 

cluster in ME49. Such differences may not be surprising, however, as Pru and ME49 338 

have entirely distinct passage histories, although both were grown in our laboratory 339 

exclusively in vitro as tachyzoites on HFFs over at least 2 years prior to the experiments 340 

described here. Because measurement sensitivity in ME49 (21 molecules) was lower 341 

than that of Pru (11 molecules) which reduces the ability to differentiate technical 342 
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dropouts from differentially expressed genes, we focused further analysis on the Pru 343 

dataset. 344 

Transcriptional variation between parasites independent of measurement noise, 345 

cell cycle, or asexual development 346 

A unique advantage of scRNA-seq over bulk RNA-seq is its ability to measure 347 

cell-to-cell variation that is stochastic in nature or independent of known biological 348 

processes. We have developed a computational approach to identify genes with such 349 

variation. While our scRNA-seq is sensitive, one needs to measure the level of noise in 350 

order to determine true, intrinsic variability of parasite expression program. Noise levels 351 

can be estimated using the ERCC synthetic RNA spike-ins that were added in differing 352 

amounts to each sample and then fitting a logistic regression to model the expected 353 

detection rate, as shown in Figure 1 - Supplementary Figure 2c. This allowed us to 354 

determine whether the expression level of a given variable gene in Toxoplasma is 355 

above the detection limit and thus whether its variation is readily explained by 356 

measurement noise. Next, for the variable genes that are above detection limit, we 357 

asked if their variability can be explained by either cell cycle or developmental state, the 358 

two biological variables that, as expected, show a major influence on gene expression 359 

in our system. To do this, we perform “projection scoring”, in which we use a 360 

bootstrapped K-nearest neighbor (KNN) approach that quantifies the dependence of a 361 

gene’s expression variability on the PCA and UMAP projections. Genes that vary as a 362 

result of cell cycle or development are expected to show similar expression levels in 363 

neighboring cells in the projection and different expression levels in cells that are widely 364 

separated (Figure 4a). 365 

Applying this approach to our Pru data set, we first see that, as expected for an 366 

asynchronous population at different cell cycle and developmental states, mRNA for 367 

many genes has a low detection rate even though those genes have a mean 368 

abundance across all cells that is above our threshold for detection (Figure 4b) 369 

(Materials and methods). Comparison between RH and Pru demonstrates congruence 370 

of many “variant” genes: 213 shared genes are more variable than the ERCC spike-ins 371 

in both datasets (Figure 4 - Supplementary Figure 8a). Some degree of disagreement 372 

between the two datasets is expected as the Pru data include differentiating parasites 373 

while the RH data do not. Starting from the list of “variant” genes that we identified in 374 

Pru, projection-scoring quantified the dependence of each gene on the PCA 375 

embedding, reflecting cell cycle progression, and UMAP embedding, reflecting asexual 376 

development and cell cycle progression. Comparison of projection scores between RH 377 

and Pru shows consistency in cell cycle dependence, revealing that while the variance 378 

of some genes (e.g., ROP genes) is readily explained by cell cycle, a large fraction of 379 

variable genes shows no correlation with cell cycle (upper right and lower left areas of 380 

top panel in Figure 4c, respectively). As expected from our Pru data, gene dependence 381 
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on PCA and UMAP projections are highly correlated (bottom panel in Figure 4c); 382 

however, projection scoring identifies a subset of genes whose variation depends 383 

exclusively on asexual development, but not on cell cycle, including ones that we 384 

identified previously as enriched in bradyzoites (Supplementary Table 4). This shows 385 

that projection scoring can be used to discover genes that may differ in regulation 386 

across different dimensions of intrinsic biological variability. 387 

To determine the variation dependence on cell cycle and asexual development in 388 

Pru, we quantified projection scores for organelle gene sets of “variant” genes and 389 

ERCC spike-ins (top panel in Figure 4d). The results show a wide distribution of 390 

dependence across different organelle sets in the biological data. As expected, ERCC 391 

spike-ins, which are randomly distributed between samples, exhibited low projection 392 

scores on both cell cycle and asexual development projections. We took the upper end 393 

of ERCC score (~0.35) as a threshold to further classify each variant gene. For variant 394 

genes with scores above the threshold in either asexual development or cell cycle 395 

dependence, they are classified as “Dependent”, otherwise they are considered 396 

“Independent” of either process. Expression variability of most rhoptry (ROP), 397 

microneme (MIC), and inner-membrane complex (IMC) proteins show high dependence 398 

on cell cycle and/or asexual development (bottom panel in Figure 4d). On the other 399 

hand, >40% of SRS surface antigens, GRAs, and other non-parasite-specific or 400 

unannotated genes have low dependence score on both of these two biological 401 

processes. We show several SRS surface antigens as examples of genes whose 402 

expression shows low cell cycle and asexual development dependence in Pru data 403 

(Figure 4 - Supplementary 8b), highlighting the variation of their expression between 404 

neighboring cells on the projection. Thus, our analysis reveals that a substantial fraction 405 

of variable genes contributes to previously undetermined parasite-to-parasite variation 406 

that would not be detectable in bulk transcriptomic analyses. 407 

  408 

   409 
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Discussion 410 

 We describe here single-cell RNA sequencing (scRNA-seq) for measurement of 411 

mRNA transcripts from individual Toxoplasma gondii, an obligate intracellular protozoan 412 

parasite. The results show that scRNA-seq can reveal intrinsic biological variation within 413 

an asynchronous population of parasites. Two types of biological variation could be 414 

seen in our asynchronous populations: cell cycle progression and asexual 415 

differentiation. We found the existence of two distinct 1N transcriptional states in cycling 416 

parasites which we call G1a and G1b, concurring with what was previously reported in 417 

Toxoplasma28. Interestingly, bradyzoites are found predominantly in G1b but not in G1a 418 

state, suggesting the possibility of a putative checkpoint between these two phases that 419 

may also play a role in regulating the developmental transition. Our data further shows a 420 

small fraction of bradyzoites to be cycling which supports the hypothesis that 421 

bradyzoites can in fact divide22. Our results showed a very strong correlation between 422 

cell cycle and expression of genes encoding proteins in various subcellular organelles, 423 

as noted previously using synchronized bulk populations28. The results here, however, 424 

show an even more dramatic and extreme dependence on cell cycle, allowing 425 

refinement of approaches that use such timing to predict a given protein’s ultimate 426 

organellar destination in the cell47. They also extend such analyses to the Type II 427 

strains, Pru and ME49, which have not previously been examined in this way. 428 

In addition to the above, we observed some striking and unexpected 429 

heterogeneity within asexually developing parasites. We discovered a cluster of cells, 430 

labeled P6, in the differentiating Pru parasites that is distinct from the rest of the 431 

alkaline-induced population of cells. Constituting 21% of the alkaline-induced 432 

population, the P6 cluster is marked by a set of genes that were previously detected by 433 

bulk transcriptomics in bradyzoites of tissue cysts43. Remarkably, while most of these 434 

genes have unknown functions, we identified an enriched gene with predicted AP2 435 

domain, which may contribute to the unique expression pattern observed in this group 436 

of parasites. We found that P6 expression profile is intermediate to P2 tachyzoites and 437 

P1 bradyzoite clusters. Interestingly, the genes enriched in P6 overlap with a subset of 438 

canonical bradyzoite marker genes including LDH2 and SRS35A, albeit expressed at a 439 

lower level than in P1 (Figure 3c). In addition, we observed a gradual increase in the 440 

proportion of P6 cells as induction proceeded from day 3 to day 7. Taken together, one 441 

possible explanation for the emergence of P6 cluster is a reverted conversion from 442 

bradyzoites to tachyzoites in which alkaline stress fails to maintain the bradyzoite state. 443 

Our data and previous reports are consistent with this interpretation48. On the other 444 

hand, we cannot rule out the possibility that this cluster is developmentally “confused” 445 

by the presence of a general stressor such as alkaline. RNA velocity analysis in the Pru 446 

data does not reveal a strong transcriptional flow between P1 and P6. Rather, P6 447 

appears to transcriptionally transition from P2 and P3 tachyzoites. Thus, the P1 448 

bradyzoites and P6 parasites are either distinct and separate developmental 449 
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trajectories, or the transition from P1 to P6 is a rapid and rare event. Regardless, our 450 

results reflect a surprising diversity in an asexually transitioning population of 451 

Toxoplasma. Future measurement of single parasites isolated from in vivo sources 452 

coupled with genetic manipulation of the parasite genome, will further clarify the 453 

causality and relevance of developmental states that we identified here. 454 

  To address how much cell-to-cell variability there is between parasites of similar 455 

developmental states, we developed a novel approach based on random permutation 456 

and K-nearest neighbor (KNN) averaging to quantify the association of expression 457 

variation to known biological processes, like cell cycle and development, that underlie 458 

PCA and UMAP projections of scRNA-seq. Combined with the analysis of ERCC 459 

synthetic spike-ins, this allowed us to tease out expression variation in single parasites 460 

that results from one of the biological processes as well as measurement noise. 461 

Previous reports have noted potential issues with ERCC spike-ins in estimating 462 

technical variations of endogenous mRNAs, potentially due to differences in poly-A tail 463 

lengths and the lack of 5’ cap34,49,50. Our results show that many low abundant 464 

endogenous parasite genes have significantly higher detection rate than would be 465 

predicted by ERCC with similar abundance, suggesting that ERCC spike-ins provide, as 466 

previously reported, a conservative underestimate of the detection sensitivity of 467 

endogenous genes50. Intriguingly, the resulting analysis showed that this single-celled 468 

organism exhibits unexplained variation in the expression of several genes. Whether 469 

such a pattern of variation may define novel cellular subtypes will require further 470 

experimentation to probe the stability and stochasticity of the expression of these 471 

genes. Interestingly, amongst these projection-independent genes, we found the 472 

expression of several SRS surface antigen genes, which are known to play a role in 473 

host attachment, and dense granule genes, which are known to play a role in 474 

intracellular interaction with host, to be highly variable between cells of similar 475 

developmental states. We also find other non-parasite-specific genes, including genes 476 

encoding metabolic enzymes, to be highly projection-independent. While we cannot 477 

exclude the possibility that variation in these cells is due to stochastic bursts of 478 

transcription from these genes, especially given the small size of Toxoplasma, it is 479 

possible that such variability has biological meaning. For example, it could expand the 480 

mode of interactions with the host and be the result of strong selective pressure to 481 

maximize invasion efficiency and transmission in a variety of different host species of 482 

cell types. Maintaining a diverse phenotypic diversity can be beneficial in ensuring at 483 

least some members will be able to propagate in whatever the host environment 484 

encountered. The biological implication of single-celled parasite variation and its 485 

relevance to in vivo infection will be an important area of investigation for future studies. 486 

We see the application of single-cell co-transcriptomic sequencing of both the host cell 487 

and the parasite as a potentially powerful approach to further deconstruct the 488 

complexity of parasite-host interactions.  489 
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Materials and Methods 490 

Cell and Parasite Culture 491 

All Toxoplasma gondii strains were maintained by serial passage in human 492 

foreskin fibroblasts (HFFs) cultured at 37 C in 5% CO2 in complete Dulbeco’s Modified 493 

Eagle Medium (cDMEM) supplemented with 10% heat-inactivated fetal bovine serum 494 

(FBS), 2 mM L-glutamine, 100 U/ml penicillin, and 100 ug/ml streptomycin. T. gondii 495 

strains used in this study were RH, Pru GFP12, and ME49-GFP-luc51.   496 

 497 

In vitro Bradyzoite Switch Protocol 498 

Differentiation to bradyzoite was induced by growth under low-serum, alkaline 499 

conditions in ambient (low) CO2 as previously described53. Briefly, confluent monolayers 500 

of HFFs were infected with tachyzoites at a multiplicity of infection (MOI) of 0.025 in 501 

RPMI 1640 medium (Invitrogen) lacking sodium bicarbonate and with 1% FBS, 10 502 

mg/ml HEPES, 100 U/ml penicillin, and 100 g/ml streptomycin at pH 8.2. The infected 503 

HFFs were cultured at 37°C without supplemented CO2. 504 

 505 

Preparation of Parasites for Fluorescence Activated Cell Sorting (FACS) 506 

HFF monolayers infected with parasites overnight were scraped, and the 507 

detached host cells were lysed by passing them through a 25-gauge needle three times 508 

or a 27-gauge needle six times. The released parasites were spun down at 800 rpm for 509 

5 minutes to pellet out host cell debris, and the supernatant was spun down at 1500 rpm 510 

for 5 minutes to pellet the parasites. The parasites were then resuspended in 500 µL of 511 

FACS buffer (1x PBS supplemented with 2% FBS, 50 ug/ml DNAse I, and 5 mM 512 

MgCl2*6H2O), passed through both a 5 µm filter and a filter cap into FACS tubes, and 513 

stored on wet ice until it was time to sort. In samples stained for DNA content, the 514 

parasites were resuspended in 500 µL of FACS buffer plus 1.5 µL of Vybrant DyeCycle 515 

Violet (from ThermoFisher, catalog number V35003) and incubated at 37 C and 5% 516 

CO2 for 30 minutes. 517 

The parasites were also stained with either propidium iodide (PI), Sytox Green, 518 

or the live/dead fixable blue dead cell stain kit (catalog number L34962) prior to sorting 519 

in order to distinguish live cells from dead cells. To stain with PI, 10 µL of 0.5 mg/ml PI 520 

was added to every 500 µL of parasite suspension in FACS buffer, and the parasites 521 

were incubated covered on ice for at least 15 minutes. To stain with Sytox Green, 1 522 

drop of Sytox Green per ml was added to the parasite suspension in FACS buffer, and 523 

the parasites were incubated at room temperature for at least 15 minutes. To stain with 524 

the live/dead fixable blue dead cell stain kit, 1.5 µL of the kit’s viability dye was added to 525 

every 500 µL of parasites along with the secondary antibody, and parasites were 526 

washed and resuspended in FACS buffer as usual. 527 

 528 

 529 
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FACS of parasites 530 

Eight mL of lysis buffer was prepared by mixing together: 5.888 mL of water, 160 531 

µL recombinant RNase inhibitor (Takara Clonetech), 1.6 mL of 10 mM dNTP 532 

(ThermoFisher), 160 µL of 100 uM oligo-dT (iDT; see attached 533 

“supplementary_file1_oligos.csv” for oligos), 1:600,000 diluted ERCC spike-in 534 

(ThermoFisher), and 32 µL of 10% Triton X-100. All reagents are declared RNase free. 535 

Lysis plates were prepared by dispensing 0.4 µL of lysis buffer into each well of a 384 536 

well hard-shell low profile PCR plate (Bio-rad) using liquid handler Mantis (Formulatrix). 537 

Single parasites were sorted using the Stanford FACS Facility’s SONY SH800s sorter 538 

or BD Influx Special Order sorter into the 384-well plates loaded with lysis buffer. Single 539 

color and colorless controls were used for compensation and adjustment of channel 540 

voltages. The data were collected with FACSDiva software and analyzed with FlowJo 541 

software. RH parasites were index sorted with fluorescence signal of cell permeable 542 

DNA stain, DyeCycle Violet. 543 

 544 

Single-Toxoplasma cDNA synthesis, library preparation, and sequencing 545 

Smart-seq2 protocol was carried out as previously described54 using liquid 546 

handlers Mantis and Mosquito (TTP Labtech) using a 2 µL total volume. We conducted 547 

19 rounds of cDNA pre-amplification after reverse transcription. Each well is then diluted 548 

with 1 to 4 v:v in RNAse free elution buffer (QIAgen) to a total volume of 8 µL. Then, we 549 

conducted library preparation with in-house Tn5 tagmentation using custom cell 550 

barcode and submitted for 2 x 150 bp paired-end sequencing on NovaSeq 6000 at the 551 

Chan Zuckerberg Biohub Genomics core. 552 

 553 

Quantitative polymerase chain reaction (qPCR) for parasite benchmark 554 

To quantify the purity of single parasite sort and to ensure the cDNA synthesis 555 

reaction was not saturated, GFP, mCherry, or SAG1 mRNA expression were measured 556 

using commercial qPCR mastermix, SsoAdvancedTM Universal SYBR Green mastermix 557 

(Bio-rad). Briefly, 0.1 µL of diluted cDNA was added in a total of 2.1 µL reaction volume 558 

per well on 384 well plate with qPCR mastermix and 200 nM PCR primers. The reaction 559 

was incubated on a Bio-rad qPCR thermal cycler with the following programs: 5 minutes 560 

of 95oC, 45 cycles of 95oC for 5 seconds, 56oC for 1 minute, and imaging. The primer 561 

sequences are provided in “supplementary_file1_oligos.csv”. 562 

 563 

Sequencing alignment 564 

BCL output files from sequencing were converted into gzip compressed FastQs 565 

via a modified bcl2fastq demultiplexer which is designed to handle the higher 566 

throughput per sequencing run. To generate genome references with spike-in 567 

sequences, we concatenated ME49 or RH genome references (version 36 on ToxoDB) 568 

with ERCC sequences. The raw fastq files are aligned to the concatenated genomes 569 
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with STAR aligner (version 2.6.0c) using the following settings: “--readFilesCommand 570 

zcat --outFilterType BySJout --outFilterMutlimapNmax 20 --alignSJoverhangMin 8 --571 

alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 572 

0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --573 

outSAMstrandField intronMotif --outSAMtype BAM Unsorted --outSAMattributes NH HI 574 

AS NM MD --outFilterMatchNminOverLread 0.4 --outFilterScoreMinOverLread 0.4 --575 

clip3pAdapterSeq CTGTCTCTTATACACATCT --outReadsUnmapped Fastx”. 576 

Transcripts were counted with a custom htseq-count script (version 0.10.0, 577 

https://github.com/simon-anders/htseq) using ME49 or RH GFF3 annotations (version 578 

36 on ToxoDB) concatenated with ERCC annotation. Instead of discarding reads that 579 

mapped to multiple locations, we modified htseq-count to add transcript counts divided 580 

by the number of genomic locations with equal alignment score, thus rescuing 581 

measurement of duplicated genes in the Toxoplasma genome. Parallel jobs of STAR 582 

alignment and htseq-count were requested automatically by Bag of Stars 583 

(https://github.com/iosonofabio/bag_of_stars) and computed on Stanford high-584 

performance computing cluster Sherlock 2.0. Estimation of reads containing exonic and 585 

intronic regions is computed with Velocyto estimation on the BAM output files and 586 

requested automatically by Bag of Velocyto 587 

(https://github.com/xuesoso/bag_of_velocyto) on Sherlock 2.0. Gene count matrix is 588 

obtained by summing up transcripts into genes using a custom python script. Scanpy 589 

velocyto package is then used to estimate transcriptional velocity on a given reduced 590 

dimension. Parameters used for generating the results are supplied as supplementary 591 

python scripts. Sample code to generate the analysis figures are provided in 592 

supplementary jupyter notebooks. 593 

 594 

Data preprocessing 595 

To filter out cells with poor amplification or sequencing reaction and doublet cells, 596 

we discarded cells based on gene counts (>0 reads), total reads sum, percent reads 597 

mapped to Toxoplasma genome, percent ERCC reads, and percent ribosomal RNA 598 

reads. Next, we filtered “ribosomal RNA” genes from the gene count matrix. Gene count 599 

matrices are normalized as counts per median (CPM): 600 

 601 

𝑋𝑛𝑜𝑟𝑚 =
𝑋

∑(𝑋)
⋅ 𝑚𝑒𝑑𝑖𝑎𝑛(∑(𝑋))    (1) 602 

 603 

where X is the gene count matrix, sum(X) is the read sum for each cell, and 604 

median(sum(X)) is the median of read sums. Normalized data are added with a 605 

pseudocount of 1 and log transformed (e.g. log2(Xnorm+1)). To determine the detection 606 

limit (e.g. 50% detection rate), we modeled the detection probability of ERCC standards 607 

with a logistic regression as a function of spike-in amount33. 608 

 609 
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We calculated an estimate of absolute molecular abundance for all genes by fitting a 610 

linear regression to ERCC spike-ins: 611 

 612 

𝑙𝑜𝑔2(𝑌) = 𝑚 ⋅ 𝑙𝑜𝑔2(𝑋𝑛𝑜𝑟𝑚 + 1) + 𝑏   (2) 613 

 614 

where Xnorm, ERCC>0.5 is the observed CPM value for ERCC spike-ins above the detection 615 

limit, Y is the amount of ERCC spike-in, m is the regression coefficient, and b is the 616 

intercept. To reduce the influence of measurement noise, we fit the model only to ERCC 617 

spike-ins with mean expression above the detection limit. 618 

 619 

Cell cycle analysis and annotation 620 

To determine the transcriptional variation associated with cell cycle, we applied Self-621 

Assembling Manifolds (SAM)55 to filter for highly dispersed gene sets (>0.35 SAM 622 

weights) in asynchronous RH population. Principal components analysis (PCA) is then 623 

applied to the filtered and normalized RH data, and the nearest neighbor graph (K=50) 624 

is computed using “correlation” as a similarity metric. We identified the putative “G1” 625 

clusters with 1N based on DNA content stain. Parasites in “G1” cluster are further sub-626 

clustered with Louvain Clustering, in which we identified “G1a” and “G1b” clusters with 627 

distinct transcriptional profiles. Pearson correlation between single-cell and bulk 628 

transcriptomic data is computed between bulk assignment28 and the scRNA-seq cluster 629 

assignment through which each cluster is uniquely assigned with a cell cycle state. To 630 

quantify genes that are differentially expressed across cell cycle clusters, we applied 631 

Kruskal-Wallis test. Genes are considered differentially expressed if their p-values are 632 

less than 0.05 and they are at least 2-fold over-expressed in a cluster compared to the 633 

average expression level of other clusters. We computed differential expression across 634 

all cell cycle clusters as well as between the “G1a” and “G1b” clusters; the results are 635 

uploaded as supplementary tables 1 and 2, respectively. To enable cell cycle 636 

assignment transfer from RH to Pru and ME49 data, we implemented a random forest 637 

classification model trained on RH data. Briefly, this is done by training a model with 638 

1000 estimators on L2-normalized RH expression data containing only cell cycle 639 

associated genes in a 60-40 split scheme. Then the model is applied to predict cell 640 

cycle labels of L2-normalized Pru or ME49 data containing the homologous cell cycle 641 

associated genes. The testing accuracy was over 95%. 642 

 643 

Pseudotime construction and clustering 644 

Pseudotime analysis is conducted with Monocle 2 package in R on preprocessed 645 

dataset with highly dispersive genes as described previously. A cell in “G1a” is 646 

designated as the root cell, and all other cells are placed after this cell in order of their 647 

inferred pseudotime. To cluster genes based on their pseudotime expression pattern, 648 

high frequency patterns are removed through a double spline smoothing operation. The 649 
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interpolated expression matrix is then normalized by maximum expression along 650 

pseudotime such that the maximum value of gene expression along pseudotime is 651 

bound by 1. We then applied agglomerative clustering on this interpolated and 652 

normalized expression matrix using “correlation affinity” as similarity metric and 653 

“average linkage” method to predict three distinct clusters of genes.   654 

 655 

Measurement noise analysis and projection scoring 656 

To identify genes with greater variability than can be explained by measurement noise, 657 

we first modeled probability of detection as a logistic function of ERCC spike-in mean 658 

abundance: 659 

𝑃𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =
1

1+𝑒−𝛽⋅𝑙𝑜𝑔2(𝑋𝑛𝑜𝑟𝑚)+𝑐
    (3) 660 

where 𝛽 and c are parameters of the model, and 𝑋 is the mean abundance for a given 661 

ERCC sequence. We then computed Zi, the z-score of detection deviation from the 662 

logistic fit, for each gene: 663 

     𝑍𝑖 =
𝐷𝑖−𝐸(𝐷)

√𝑣𝑎𝑟(𝐷)
     (4) 664 

where Di is the difference between detection rate of a gene and its predicted detection 665 

rate given its mean abundance, E(D) and var(D) are the expectation values and 666 

variance of detection difference for all genes, respectively. Z is converted to p-values 667 

assuming an one-sided Gaussian distribution of null values. Genes with p-values lower 668 

than 0.05 and lower detection probability than the estimated fit are considered variant. 669 

To quantify the dependence of expression variation on a two-dimensional projection, we 670 

developed a novel approach based on k-nearest neighbor (KNN) averaging. First, a 671 

KNN graph is computed by locating nearest neighborhood in an arbitrary two-672 

dimensional projection using euclidean distance. We then generated a null expression 673 

matrix by shuffling the gene expression matrix along each cell column, such that its 674 

correlation with respect to the coordinate on projection is completely lost. Next, we 675 

compute an updated gene expression value by taking the average of expression values 676 

across the KNN. This is equivalent to: 677 

 678 

     𝑋𝐾𝑁𝑁 =
𝑀

𝑘
⋅ 𝑋𝑛𝑜𝑟𝑚    (5) 679 

where XKNN is the updated KNN averaged expression, M is the nearest-neighbor graph 680 

with k being the number of nearest neighbor, and X is the log-transformed CPM of 681 

observed or null expression matrices. We chose a k of 5 for all our analysis as varying k 682 

did not have a large effect on the results (data not shown). In our experiments, we have 683 

shown that the first two principal components (PCs) of PCA on RH and Pru correspond 684 

to the projection projection of cell cycle progression, and a two-dimensional UMAP 685 

projection of Pru corresponds to asexual development and cell cycle progression. We 686 

thus computed XKNN for both the original, observed expression matrix and the shuffled, 687 

null matrix on either projection to reflect dependence on cell cycle progression and/or 688 
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asexual development. XKNN is further normalized to have identical sum as the original 689 

expression values. A Kolmogorov-Smirnoff two sample test is computed between the 690 

normalized XKNN of the observed matrix and that of the shuffled matrix based on 100 691 

random permutations. The projection-dependence score for each gene is then 692 

computed as: 693 

 694 

     𝑆𝑔 = √−𝑙𝑜𝑔(𝑃𝑔̄)    (6) 695 

where Sg is the projection-dependence score for gene g and𝑃𝑔̄is the average p-values of 696 

100 tests. We present Sg normalized by the maximum score within each respective data 697 

set.  698 

  699 
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Figures 709 

 710 
Figure 1. Schematic of single-cell RNA-sequencing (scRNA-seq) based on a modified Smart-seq2 711 

protocol for 384-well plate. A table of strain types with the number of sequenced samples is provided.  712 
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 713 

Figure 1 - Supplementary Figure 1. (a) qPCR measurement of mRNA expression in 302 transgenic 714 

Toxoplasma cells expressing GFP or mCherry mixed at 1:1 ratio. (b) qPCR Ct values of abundant surface 715 

protein, SAG1, measured for 374 wells with zero, one, eight, or fifty sorted parasites at 16, 176, 176, and 716 

6 replicates, respectively. (c) Comparison between “uniquely aligned” (default htseq-count settings) and 717 

“all best aligned” (count each feature with equal read alignment score) in the detection rate in Type I 718 

strain, RH. (d) A more detailed comparison of detection rate of several parasite-specific gene sets. Genes 719 

that are detected more frequently in “All best aligned” setting are annotated in the plot.  720 
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721 
Figure 1 - Supplementary Figure 2. (a) Comparison of gene counts (>2 CPM) and total mapped read 722 

counts for RH, Pru, and ME49 from left to right, respectively. Text in lower right corner indicates the 723 

number of parasites that passed cell filtering and were analyzed (blue open circles). (b) Top panel: 724 

distributions of percentage of reads in analyzed cells that mapped to Toxoplasma Open Reading Frames 725 

(ORFs). Bottom panel: distributions of gene counts (>2 CPM) in analyzed cells. Uninduced Pru and ME49 726 

were grown in the absence of alkaline (Day 0), whereas induced Pru and ME49 were grown in the 727 

presence of alkaline (Day 3 - 7). (c) Top panel: Logistic regression modeling (green line) of detection limit 728 

(50% detection rate, black dotted line) of ERCC spike-ins. Text on top left of each sub-panel indicates the 729 

detection limit in absolute molecular counts. Bottom panel: Linear regression modeling (crimson line) of 730 

measurement accuracy fitted on ERCC spike-ins with abundance above the detection limit. Text on top 731 

left of each sub-panel indicates the coefficient of determination for the regression fit.  732 
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 733 

Figure 2. (a) Projection of the first two principal components in RH data set. Top panel: 612 RH cells are 734 

colored by fluorescence measurement of a cell permeable DNA content stain. Center panel: cells are 735 

colored by cluster assignment and labeled by the inferred “cell cycle” state. Bottom panel: RNA velocity 736 

vector field is overlaid on top of the inferred state colors, with arrows pointing in the direction of net 737 

transcriptional change. (b) Heatmap of the 1465 most variable gene expression ordered by pseudotime 738 

assignment from left to right. Top colorbar reflects the assignment of inferred state and bottom colorbar 739 

reflects the relative fluorescence of DNA content using the same color scheme as in (a).   740 
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 741 

Figure 2 - Supplementary Figure 3. (a) Top panel: Numbers of RH parasites in each inferred “cell cycle” 742 

state. Bottom panel: Density plots of DNA content distributions stratified by the inferred state. (b) 743 

Heatmap of average expression correlation between each inferred “cell cycle” state of RH and each time-744 

point of bulk transcriptomic measurement based on chemically synchronized parasites28. (c) Absolute 745 

mRNA abundance (top panel) and DNA content (center panel) ordered by “cell cycle” pseudotime with 746 

individual cells colored by their inferred states. A spline smoothing is applied to approximate a rolling 747 

average along the pseudotime (black solid line). Average expression of gene sets based on ToxoDB 748 

(v.36) annotation of organellar destination of the protein product after double spline smoothing (bottom 749 

panel). (d) Heatmap of gene expression ordered by organelle sets (top colorbar) and pseudotime cluster 750 

(bottom colorbar). “Unannotated rhoptry” refers to genes not annotated in ToxoDB (v.36) as encoding a 751 

rhoptry protein but whose expression pattern is highly concordant with the dominant rhoptry pattern. (e) 752 

Pie charts of pseudotime cluster frequency for parasite organelle sets. (f) Expression of annotated rhoptry 753 

(left panel) and inner-membrane complex (IMC; right panel) genes along pseudotime with different colors 754 

indicating genes concordant (blue) and discordant (crimson and orange) to the major trend of their 755 

organelle sets.  756 
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 757 

Figure 3. (a) UMAP projection of 809 uninduced and 1389 induced Pru parasites with colors indicating 758 

Louvain cluster assignment. Top panel shows the number of parasites in each cluster. (b) UMAP 759 

projections of Pru parasites colored or labeled by days post induction (dpi), inferred cell cycle states, and 760 

RNA velocity from left to right. (c) Heatmap of differentially expressed genes (along columns) across 761 

Louvain clusters of cells ordered by hierarchical clustering (along rows). The top 5 most enriched genes 762 

from each cluster are presented. (d) UMAP projections of Pru colored by the neighbor-averaged 763 

expression (log2 CPM) of bradyzoite (top panels, purple background) and tachyzoite (bottom panels, red 764 

background) marker genes. (e) Heatmap of differentially expressed AP2 transcription factor in Louvain 765 

clusters. Purple and green rectangles highlight AP2s enriched in clusters P1 and P6, respectively.  766 
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 767 

Figure 3 - Supplementary Figure 4. (a) PCA projection of Pru stratified by days post induction (dpi) and 768 

colored by predicted cell cycle state. (b) Frequency of predicted cell cycle states at different dpi time 769 

points. (c) Frequency of Louvain clusters (top panels) and predicted cell cycle states in each cluster 770 

(bottom panels). (d) Rolling average frequency of predicted cell cycle states (colored lines) ordered by 771 

expression level of the canonical bradyzoite marker, BAG1 (black line).   772 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 3, 2019. ; https://doi.org/10.1101/656165doi: bioRxiv preprint 

https://doi.org/10.1101/656165
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

 773 

Figure 3 - Supplementary Figure 5. Expression level (log2 CPM) of four “bradyzoite-specific” marker 774 

genes compared to that of “tachyzoite-specific” marker gene, SAG1, stratified by days post induction (dpi; 775 

columns).   776 
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 777 

Figure 3 - Supplementary Figure 6. (a) UMAP projections of Pru colored by the neighbor-averaged 778 

expression (log2 CPM) of top 8 most differentially expressed and enriched genes in P6 cluster relative to 779 

P1 and P2, two most closely related clusters. (b) Comparison of P6-specific genes in bulk measurement 780 

of tachyzoites, tissue cysts, or enteroepithelial stages (EES1-EES5)43 (left) and scRNA-seq of Pru 781 

Louvain clusters (right).  782 
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 783 

Figure 3 - Supplementary Figure 7. (a) UMAP projections of Pru and ME49 aligned by Scanorama. 784 

Cluster assignment was performed independently in each dataset. (b) Matrix correlation of cluster 785 

averaged expression between Pru and ME49. (c) Partition-based graph abstraction (PAGA) of aligned 786 

clusters with each being represented as a node connected by linkage with a connectivity threshold of 0.8. 787 

Node size reflects relative abundance of the cluster. Node colors reflect relative expression level (log2 788 

CPM) of gene denoted in the bottom left of each panel, normalized to the maximum cluster expression of 789 

corresponding data set.   790 
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 791 

Figure 4. (a) Illustration of projection-dependent (left) and -independent (right) gene expression patterns. 792 

The spatial asymmetry is abolished after K-nearest neighbor (KNN) averaging of a projection-793 

independent pattern, but not a dependent one. Projection-dependence score reflects normalized 794 

statistical significance of differences of observed KNN-averaged expression from a randomly permuted 795 

null distribution. Higher score indicates greater spatial asymmetry of the observed expression values. (b) 796 

Variant (purple) and invariant (green) genes are determined by identifying genes with detection rates 797 

lower than logistic regression model prediction evaluated by standard score test assuming one-sided 798 

Gaussian distribution (p < 0.05). (c) Top panel: comparison of RH and Pru (Day 0) cell cycle projection 799 

scores for intersecting variant genes in both RH and Pru. Linear regression fit (black solid line) is 800 

computed and the coefficient of determination (R2) is reported on the top left corner. Examples of known 801 

ROP genes are shown. Bottom panel: Asexual development (UMAP) and cell cycle (PCA) projection 802 

scores for all variant genes in Pru (Day 0 - 7). Examples of genes with high dependence on development 803 

but not cell cycle are indicated. (d) Violin plots showing distribution of projection scores (top panel) and 804 

bar chart showing the fraction of dependent and independent genes (bottom panel) for all variant 805 

organelle sets in Pru. We identified 52%, 41%, and 57% independent genes amongst GRA, SRS, and 806 

Others (non-parasite-specific) gene sets, respectively.  807 
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 808 

 809 

Figure 4 - Supplementary Figure 8. (a) Venn diagram showing the intersect and disjoint of variant 810 

genes identified in Pru (Day 0) and RH. (b) Expression level (log2 CPM) of SRS genes with low 811 

dependence for both cell cycle and asexual development, with projection scores reported above the 812 

panels. The cells are placed in ascending order of gene expression from top of the plot (upper panels) to 813 

highlight the cells with highest expression or from the bottom of the plot (lower panels) to show cells with 814 

the lowest expression. The two views reveal that cells with high and low expression can be neighbors and 815 

have weak correlation with the projection space; hence, these genes show very little dependence of gene 816 

expression on either cell cycle or asexual development which together drive the projection. 817 

  818 
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