

1 **A single-parasite transcriptional landscape of asexual development in**
2 ***Toxoplasma gondii***

4 Yuan Xue¹, Terence C. Theisen², Suchita Rastogi², Abel Ferrel²,
5 Stephen R. Quake^{1,3,4,*}, John C. Boothroyd^{2,*}

6 ¹Department of Bioengineering, ³Department of Applied Physics, Stanford University, Stanford, CA, USA

7 ²Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA,
8 USA

9 ⁴Chan Zuckerberg Biohub, San Francisco, CA, USA

10 *Correspondence should be addressed to J.C.B. (jboothr@stanford.edu) and S.R.Q. (steve@quake-lab.org)

13 **Abstract (150 words)**

14 *Toxoplasma gondii*, a protozoan parasite, undergoes a complex and poorly
15 understood developmental process that is critical for completing its intricate life cycle,
16 including establishing a chronic infection in its intermediate hosts. Here, we applied
17 single-cell RNA-sequencing (scRNA-seq) to $\geq 5,000$ *Toxoplasma* at single-parasite
18 resolution in tachyzoite and bradyzoite stages using three widely studied strains. We
19 resolve the oscillatory nature of cell cycle progression in an asynchronous population of
20 the type I strain, RH. Using scRNA-seq, we also construct a comprehensive atlas of
21 asexual development and cell-cycle in the Type II strains, Pru and ME49, revealing
22 hidden heterogeneity in the course of development and transcription factors associated
23 with each developmental state. Lastly, we combined projection scoring with noise
24 analysis to show that the expression of a subset of parasite-specific genes, including
25 ones that encode surface antigens, varies independently of measurement noise, cell
26 cycle, and asexual development. Overall, our results reveal an unprecedented and
27 surprising level of heterogeneity in *Toxoplasma gondii* and provide a molecular resource
28 for understanding protozoan parasite development.

29
30 **Keywords: single-cell RNA sequencing, protozoa, cell cycle, *Toxoplasma*,
31 development**

33 **Main text (5000 words)**

34 **Introduction**

35 *Toxoplasma gondii* is an intracellular protozoan parasite that is thought to infect
36 over a quarter of the world's population¹. Like some of its *Apicomplexan* cousins,
37 *Toxoplasma* undergoes a complex developmental transition inside the host. In
38 intermediate hosts, including humans and virtually all other non-feline warm-blooded
39 animals, *Toxoplasma* parasites remain haploid and transition from a replicative, virulent
40 tachyzoite to an encysted, quasi-dormant bradyzoite. This asexual developmental
41 transition is tightly coupled to the clinical progression of *Toxoplasma* infection. Although
42 acute infection with tachyzoites produces few if any symptoms in healthy human
43 children and adults, infected individuals, if left untreated, progress to a chronic stage
44 wherein tachyzoites transition to bradyzoites that can persist for life in neurons and
45 muscle cells. When infected individuals become immunocompromised, such as in
46 chemotherapy, HIV infection, or organ transplantation^{2,3} bradyzoites can reactivate to
47 become tachyzoites, causing severe neurological damage and even death. While no
48 causal link has been established, a population-wide study has uncovered significant
49 association of *Toxoplasma* infection with risk for schizophrenia in chronically infected
50 humans⁴. Chronic infection in mice has been observed to induce behavioral changes
51 such as loss of aversion to cat urine, which is hypothesized to increase the transmission
52 rate of *Toxoplasma* to its definitive feline host where sexual reproduction occurs⁵. As
53 there are no therapeutic interventions to prevent or clear cysts in infected individuals,
54 understanding how *Toxoplasma* transitions through its life stages remains of critical
55 importance.

56 The development of *in vitro* methods to induce *Toxoplasma* differentiation have
57 facilitated investigation of several aspects of chronic infection, including transition of
58 tachyzoites to bradyzoites^{6,7}. Bulk transcriptomic analyses of *Toxoplasma gondii* at
59 distinct asexual stages reveal genetic modules that are expressed in each stage⁸⁻¹⁵,
60 including AP2 transcription factors that are thought to play a role in differentiation^{16,17};
61 however, transitioning parasites convert to the bradyzoite stage asynchronously and
62 display a high degree of heterogeneity along the developmental pathway and in gene
63 expression^{18,19}. Furthermore, parasites within the same tissue cysts have been shown
64 to display heterogeneity in the expression of bradyzoite marker proteins²⁰. The transition
65 of tachyzoites to the bradyzoite stage results in an overwhelming majority of mature
66 bradyzoites in the G₁ phase of the cell cycle that divide slowly, if at all^{21,22}. Furthermore,
67 tachyzoites exhibit slower growth kinetics immediately prior to the bradyzoite
68 transition^{21,23}. This suggests that parasites exit the cell cycle to differentiate into
69 bradyzoites, a pattern consistent with developmental processes in several other
70 eukaryotic organisms^{24,25}. Dissecting these cell cycle aspects of stage conversion
71 requires a more detailed analysis than has been possible with bulk measurement of

72 tachyzoite or bradyzoite populations, or with the use of genetically modified parasites
73 coupled with chemical synchronization of cell cycle progression^{13,26–28}. This is because
74 the latter approaches require large quantities of synchronized parasites and can
75 potentially introduce artificial perturbations. Furthermore, bulk measurement fails to
76 distinguish parasite-to-parasite variation that is independent of cell cycle or known
77 developmental processes, potentially missing the phenotypic diversity intrinsic to a
78 population of cells.

79 Single-cell RNA sequencing (scRNA-seq) offers a powerful and unbiased
80 approach to reveal the underlying heterogeneity in an asynchronous population of cells.
81 Droplet and FACS-based approaches have already been applied towards multicellular
82 parasites such as *Schistosoma* to reveal developmental changes within different
83 hosts²⁹. Recently, scRNA-seq has revealed a surprising degree of heterogeneity in
84 another apicomplexan parasite, *Plasmodium*^{30–32}. Analyses derived from these single-
85 parasite measurements uncovered rare and critical transition events in parasite
86 development that were undetectable in bulk measurements. Combined with novel
87 analytical development and increases in measurement throughput, scRNA-seq is
88 becoming a widely adopted tool for resolving cellular changes in a quantitative and
89 system-wide fashion.

90 Here, we performed scRNA-seq to reconstruct transcriptional dynamics of
91 asynchronous *Toxoplasma* parasites in the course of cell cycle and asexual
92 development *in vitro*. We benchmarked the purity of isolation, as well as sensitivity and
93 accuracy of our measurements, demonstrating that this experimental approach can
94 isolate single parasites to resolve the transcriptional variation of biological processes.
95 We show that cell cycle status can be accurately inferred from the transcriptional
96 signatures of an asynchronous population of Type I (RH) tachyzoites at single-parasite
97 resolution. Using Type II strains (Pru and ME49) switching to bradyzoites under alkaline
98 induction, we resolved a comprehensive single-parasite atlas of asexual development
99 together with cell cycle state annotation, identifying transcription factors that are
100 associated with each developmental state and revealing previously hidden
101 heterogeneity in the parasite. Furthermore, we identify a class of highly variable genes,
102 including ones that encode surface antigens and dense granule effectors, which exhibit
103 parasite-to-parasite variability that cannot be explained by either measurement noise,
104 cell cycle, or asexual development. Our combined results suggest that this prevalent
105 protozoan parasite may exhibit much greater heterogeneity than previously appreciated.

106 **Results**

107 **Technical validation of single-parasite sorting and sequencing**

108 There are more than a dozen approaches available for single-cell isolation and
109 transcriptome amplification. Based on benchmark comparisons, Smart-seq2 generally
110 has higher sensitivity than competing droplet-based approaches^{33,34}. We reasoned that
111 sensitive measurement is crucial in our study given that single *Toxoplasma gondii*
112 parasites are at least 50-fold smaller in volume than a typical mammalian cell, and thus
113 the average parasite gene is likely expressed with much lower copy number per cell
114 than a typical mammalian gene. For our initial studies, we used the common Type I lab
115 strain of *Toxoplasma*, RH, grown *in vitro* in human foreskin fibroblasts (HFFs). Following
116 such growth, individual tachyzoites were released by passage through a narrow gauge
117 needle and then purified by fluorescence activated cell sorting (FACS) into 384-well
118 plates. We then synthesized, amplified, and barcoded cDNA using Smart-seq2 and
119 Illumina Nextera protocols. Reaction in 384-well plates effectively reduced the reagent
120 cost by four-fold compared to the 96-well format. The sequenced reads were
121 bioinformatically deconvolved and grouped into individual parasites for analysis using
122 modified bcl2fastq and custom python scripts (**Materials and methods**). A schematic to
123 illustrate our experimental workflow is shown in **Figure 1**.

124 To ensure that our workflow efficiently captures single *Toxoplasma* parasites, we
125 mixed equal numbers of two transgenic lines of RH, one expressing GFP and the other
126 expressing mCherry, and sorted individual parasites into a 384 well plate based on the
127 presence of either green or red signals without a filter for those that were both red and
128 green. After Smart-seq2 amplification, we quantified the expression of GFP and
129 mCherry mRNAs using quantitative polymerase chain reaction (qPCR). Across all 301
130 wells that we measured, we observed the presence of both GFP and mCherry mRNA in
131 only one well, indicating that the rate of doublet events is below 1% (**Figure 1 -**
132 **Supplementary Figure 1a**). To address the possibility that the reduced reagent volume
133 in the 384-well format could potentially saturate the reaction chemistry and thus limit
134 quantification range, we sorted varying numbers of RH and quantified with qPCR the
135 mRNA of a gene encoding the abundantly expressed surface protein, SAG1 (**Figure 1 -**
136 **Supplementary Figure 1b**). The expression values for single, eight, and fifty RH fall in
137 distinct distributions without signs of saturation, indicating that the assay is capable of
138 quantitative measurement at the single *Toxoplasma* level. We then proceeded to sort
139 parasites based on live/dead staining and sequence 729 RH strain single *Toxoplasma*
140 parasites from asynchronous populations grown under tachyzoite conditions. For Pru
141 and ME49 strains, we also collected parasites at several time points post alkaline
142 treatment to follow their expression profiles during *in vitro* transition to bradyzoites
143 (**Materials and methods**), yielding 2655 Pru and 1828 ME49 single parasites. RH
144 reads were aligned to the GT1 strain genome, which is the most complete reference for

145 Type I parasites, while Pru and ME49 were aligned to the ME49 strain Type II genome
146 reference. Because many genes encoding *Toxoplasma* secretion factors and surface
147 proteins are evolutionary products of gene duplication events³⁵, we expected high
148 sequence similarity amongst a substantial portion of the parasite genes. Thus, we
149 modified our gene counting pipeline to account for duplicated genes (**Materials and**
150 **methods**). A comparison of counting methods does not reveal significant differences in
151 the observed counts (**Figure 1 - Supplementary Figure 1c**). Further analysis reveals
152 that our modified pipeline recovered the detection of a few more parasite genes than
153 default parameters (**Figure 1 - Supplementary Figure 1d**).

154 To ensure that poorly amplified or sequenced parasites did not confound our
155 downstream analysis, we filtered samples based on several quality metrics including
156 percent reads mapping to ERCC spike-in sequences, number of genes detected, and
157 sequencing depth (**Materials and methods**; **Figure 1 - Supplementary Figure 2a**). On
158 average, each sequenced parasite contains 30-50% reads that mapped to *Toxoplasma*
159 genes encoding proteins (top panel in **Figure 1 - Supplementary Figure 2b**). The
160 majority of the unmapped reads are from *Toxoplasma*'s 28s ribosomal RNA. The
161 relatively high rate of rRNA contamination was also observed in single-parasite RNA
162 sequencing of *Plasmodium*³⁰. We suspect this occurred due to non-specific priming in
163 the low mRNA content environment of protozoan cells. We normalized for sequencing
164 depth across cells by dividing each read count by the median of read sum to yield
165 “count per median” (CPM). After filtering ERCC spike-in and rRNA genes, we detected
166 on average 996, 1247, and 1067 genes per parasite with greater than 2 CPM
167 (**Materials and methods**) in the RH, Pru, and ME49 datasets, respectively (bottom
168 panel in **Figure 1 - Supplementary Figure 2b**). Characterization of our measurement
169 sensitivity based on logistic regression modeling of ERCC spike-in standards (**Materials**
170 **and methods**)³⁶ reveals a 50% detection rate of 10.5, 11.5, and 21.1 molecules for RH,
171 Pru, and ME49 datasets, respectively (top panels in **Figure 1 - Supplementary Figure**
172 **2c**). The sensitivity of our 384-well Smart-seq2 measurement is comparable to the
173 previously reported range for the 96-well format³⁴. As expected from our qPCR titration
174 experiment, scRNA-seq measurement of gene expression is quantitative at single
175 parasite resolution based on ERCC standards. We determined that the linear dynamic
176 range of our scRNA-seq measurement spans over three orders of magnitude (bottom
177 panels in **Figure 1 - Supplementary Figure 2c**). Taken together, we demonstrate a
178 scalable and cost-effective approach to measure the transcriptomic changes of
179 individual parasites with high sensitivity and accuracy.

180 **Cell cycle landscape of asynchronous *Toxoplasma***

181 Previous work posited a potential link between bradyzoite development and cell
182 cycle, which poses a significant challenge to the bioinformatic analysis of either
183 process²¹. To characterize cell cycling changes without confounding contributions from

184 developmental processes, we first analyzed an asynchronous population of Type I RH
185 strain parasites grown under tachyzoite conditions; this extensively passaged lab strain
186 is known to have little propensity to switch to bradyzoites under such conditions⁶
187 (**Materials and methods**). After filtering out genes whose expression levels did not vary
188 significantly between individual parasites, we projected the data with principal
189 component analysis (PCA) (**Materials and methods**). Interestingly, the first two
190 principal components (PCs) reveal a circular trajectory that coincides with relative DNA
191 content, determined using a cell permeable DNA content stain (top panel in **Figure 2a**).
192 Unsupervised neighborhood clustering identified five distinct clusters of parasites based
193 on their transcriptional profiles (middle panel in **Figure 2a**) (**Materials and methods**).
194 To infer transcriptional dynamics, we applied stochastic RNA velocity algorithm that
195 relies on the ratio of incompletely spliced transcripts to their fully spliced form in order to
196 assess the directionality of transcriptional changes^{37,38}. The vector field of RNA velocity
197 indicates a net “counter-clockwise” flow of transcriptional changes (bottom panel in
198 **Figure 2a**) (**Materials and methods**). We assigned cell cycle phase to the clusters
199 based primarily on change in DNA content (**Figure 2 - Supplementary Figure 3a**) but
200 also considering previous bulk transcriptomic characterization²⁸ (**Figure 2 -**
201 **Supplementary Figure 3b**). Unsupervised clustering identified two distinct clusters in
202 G₁ state, which we have designated as G_{1a} and G_{1b}. We found a list of differentially
203 expressed genes between the two G₁ clusters. The G_{1a} cluster is highly enriched for the
204 expression of metabolic genes such as phenylalanine hydroxylase (*TGGT1_411100*)
205 and pyrroline-5-carboxylate reductase (*TGGT1_236070*), as well as invasion-related
206 secreted factors such as MIC2 (*TGGT1_201780*), MIC3 (*TGGT1_319560*), and MIC11
207 (*TGGT1_204530*). On the other hand, G_{1b} cluster is enriched for the expression of 3-
208 ketoacyl reductase (*TGGT1_217740*) and cytidine and deoxycytidylate deaminase
209 (*TGGT1_200430*), as well as numerous uncharacterized proteins (**Supplementary**
210 **table 1**). The relative abundance of G_{1a}, G_{1b}, S, M, and C states were determined to be
211 18%, 32%, 28%, 15%, and 7%, respectively. Without chemical synchronization, the
212 correlation between the scRNA-seq data of asynchronous parasites and previously
213 published bulk transcriptomic measurement suggests strong agreement in cluster
214 assignment and cell cycle state identification (**Figure 2 - Supplementary Figure 3b**).
215 This highlights a key advantage of scRNA-seq, as it enables identification of cell cycle
216 status of a parasite without reliance on chemical induction, which may lead to unnatural
217 cellular behavior.

218 To verify the cyclical nature of gene expression through the lytic cycle, we
219 reconstructed a biological pseudotime of RH using Monocle 2 (**Materials and**
220 **methods**). The results show a clear oscillatory expression pattern for the variably
221 expressed genes along the pseudotime axis (**Figure 2b**). To further characterize cell
222 cycle expression patterns, we clustered genes based on pseudotime interpolation and
223 hierarchical clustering (**Materials and methods**). Some of the key organelles in

224 tachyzoites are known to be made at different times in the cell cycle²⁸. To confirm and
225 refine this finding, we calculated the mean expression values for each set of organelle-
226 specific genes based on their annotation in ToxoDB (**Supplementary Table 2**). This
227 showed the expected, strong oscillation with pseudotime (bottom panel in **Figure 2 -**
228 **Supplementary Figure 3c**), which also strongly correlates with the oscillation of DNA
229 and total mRNA content (top panels in **Figure 2 - Supplementary Figure 3c**). On the
230 other hand, we also observed instances where a given gene's expression was
231 discordant to the dominant trend of its nominal organelle set (arrows in **Figure 2 -**
232 **Supplementary Figure 3d**). For example, 63.5% of genes annotated as rhoptry (ROP)
233 or rhoptry neck (RON) are assigned pseudotime cluster 3, while the remaining 36.5%
234 rhoptry genes are assigned pseudotime clusters 1 or 2 (**Figure 2 - Supplementary**
235 **Figure 3e**). Specifically, genes annotated as ROP33 and ROP34, based on their
236 homology to genes encoding known rhoptry proteins, are assigned to cluster 2 instead
237 of cluster 3 (left panel in **Figure 2 - Supplementary Figure 3f**). Recent reports have
238 experimentally determined these two to be non rhoptry-localizing proteins, thus
239 explaining their discordance³⁹. Through analysis of pseudotime clustering, we also
240 identified genes not annotated as ROPs within the ROP-dominated cluster 3, such as
241 *TGGT1_218270* and *TGGT1_230350*, that have recently been shown to encode *bona*
242 *fide* rhoptry and rhoptry neck proteins, now designated as ROP48 and ROP11,
243 respectively (left panel in **Figure 2 - Supplementary Figure 3f**). As another example,
244 IMC2a peaks in expression level in G₁, while the majority of inner-membrane complex
245 (IMC) genes are expressed towards the M/C phase of the cell cycle (right panel in
246 **Figure 2 - Supplementary Figure 3f**). A recent report has proposed reannotation of
247 IMC2a as a dense granule (GRA) protein (GRA44) based on subcellular localization⁴⁰,
248 which is consistent with our unsupervised group assignment of IMC2a as falling in the
249 same cluster 1 where GRA genes dominate. A list of 8590 RH genes with their
250 corresponding pseudotime clustering assignment is provided (**Supplementary Table**
251 **3**). We observe high discordance of pseudotime expression for several genes in each
252 annotated organelle sets, suggesting that the current *Toxoplasma* annotation may need
253 significant revision. Our scRNA-seq data provide an important resource to help identify
254 mis-annotated genes and infer putative functions of uncharacterized proteins.

255 **Hidden heterogeneity in asexually developing *Toxoplasma***

256 *Toxoplasma* has one of the most complicated developmental programs of any
257 single-celled organism; however, it is unknown how synchronized the transition is
258 between developmental states. To address this, we assessed the inherent
259 heterogeneity within asexually developing Pru, a type II strain that is capable of forming
260 tissue cysts *in vitro* upon growth in alkaline conditions^{18,41}. We applied scRNA-seq to
261 measure and analyze Pru parasites grown in HFFs as tachyzoites (“uninduced”) and
262 after inducing the switch to bradyzoites by growth in alkaline media for 3, 5, and 7 days.

263 Projection of the first two PCs of uninduced Pru tachyzoites (Day 0) reveals the
264 expected circular projection (**Figure 3 - Supplementary Figure 4a**) presumably
265 reflecting cell cycle progression as seen for the RH tachyzoites, described above. To
266 validate this, we developed a random forest classifier model based on our cell cycle
267 assignment in RH (**Materials and methods**). Comparable to what we observed in RH,
268 cell cycle prediction reveals that the uninduced population of Pru is composed of 28%,
269 41%, 21%, 7%, and 3% parasites in G1a, G1b, S, M, and C states, respectively.
270 Consistent with previous observation²³, our data show most induced Pru parasites (Day
271 3 - 7) are in the G1 state with a predominance of G1b (**Figure 3 - Supplementary**
272 **Figure 4b**).

273 To identify transcriptomic changes associated with the tachyzoite-bradyzoite
274 transition, we next projected data from both induced and uninduced Pru parasites onto
275 two dimensions using UMAP, a nonlinear dimensionality reduction method (**Materials**
276 **and methods**)⁴². Unsupervised clustering revealed six distinct clusters of parasites,
277 which we label P1-6 (**Figure 3a**). Cluster formations partially correlate with treatment
278 time points and cell cycle states (**Figure 3b; Figure 3 - Supplementary Figure 4c**),
279 suggesting that the asexual differentiation program may overlap with cell cycle
280 regulation in *Toxoplasma*, as proposed previously²¹. We stratified the datasets by days
281 post alkaline induction (dpi) and observed elevated expression of all bradyzoite marker
282 genes including SRS44 (CST1) and BAG1 with a concomitant reduction in expression
283 of SRS29B (SAG1), a tachyzoite-specific surface marker gene (**Figure 3 -**
284 **Supplementary Figure 5**). The abundance of SAG1⁺ parasites (72%) in the induced
285 population suggests that depletion of this mRNA may be relatively slow and we are
286 measuring SAG1 transcripts made when the parasites were still tachyzoites or that the
287 asexual transition induced by alkaline treatment is highly asynchronous. Interestingly,
288 RNA velocity analysis suggests that P3 may be a fate decision point as the trajectory
289 trifurcates into either P4 (cell cycle), P1, or P6 as evident by the net transcriptional flow
290 (compare **Figure 3a** to right panel in **Figure 3b**).

291 To determine the gene modules specific to a given cluster, we conducted
292 differential gene expression for each cluster (**Figure 3c** and **Supplementary Table 4**).
293 P1 cluster is correlated with the expression of bradyzoite-specific genes while P2-5 are
294 correlated with the expression of tachyzoite-specific or cell cycle-associated genes
295 (**Figure 3d**). In our scRNA-seq data, we also observe a small portion of BAG1⁺
296 bradyzoites (7.1%) annotated as either S, M, or C states, indicating that they are
297 replicating (**Figure 3 - Supplementary Figure 4d**). Our data supports the notion that
298 bradyzoites can undergo cell cycle progression, as posited by a previous report¹⁹.
299 Interestingly, we observe a group of AP2 transcription factors that are differentially
300 expressed across different clusters, some of which are implicated in *Toxoplasma*
301 development (**Figure 3e**). In particular, we identify AP2Ib-1, AP2IX-1, AP2IX-6, and
302 AP2VI-2 as over-expressed in P1, suggesting their potential roles in the regulation of

303 bradyzoite transition, while AP2-domain protein (TGME49_215895), AP2IX-9, AP2X-8,
304 AP2VIIa-6, AP2XI-1, AP2IX-3, and AP2VIII-7 are highly expressed in P6, hinting at their
305 possible roles in defining this distinct cluster of parasites.

306 The most highly expressed genes in P6 include genes enriched in P2 as well as
307 bradyzoite-specific genes found in P1 (**Figure 3c**). To identify genes that are specifically
308 expressed in P6, we used Wilcoxon's test (**Figure 3 - Supplementary Figure 6a**)
309 (**Materials and methods**) between P6 and P2 or P1. Comparison of our data to
310 previous bulk transcriptomic measurement in tachyzoites, tissue cyst, or isolates at the
311 beginning or the end of sexual cycle showed no specific enrichment in known
312 developmental stages (**Figure 3 - Supplementary Figure 6b**)⁴³. Instead, we show that
313 based on their expression, P6 forms a distinct sub-population of parasites which
314 suggests that alkaline induced *Toxoplasma* may be more heterogeneous than
315 previously thought. Thus, scRNA-seq resolves a transcriptomic landscape of asexual
316 development and suggests the existence of otherwise hidden states.

317 To determine the reproducibility of the phenomena we observed in the
318 differentiating Pru strain parasites, we repeated the analysis with another widely used
319 Type II strain, ME49, examining 1828 single ME49 parasites exposed to alkaline
320 conditions to induce switching to bradyzoites. Data from the two experiments were
321 computationally aligned using Scanorama to remove technical batch effects while
322 retaining sample-specific differences⁴⁴. Unsupervised clustering revealed 5 distinct
323 clusters in ME49 which share significant overlap in expression patterns with Pru (**Figure**
324 **3 - Supplementary Figure 7a**). Matrix correlation of batch-corrected expression across
325 the two strains demonstrate analogous mapping for most, but not all cluster identities
326 (**Figure 3 - Supplementary Figure 7b**). To simplify the visualization and comparison
327 across the two datasets, we next applied Partition-Based Graph Abstraction (PAGA) to
328 present clusters of cells as nodes with connectivity based on similarity of the
329 transcriptional profiles between clusters⁴⁵. In particular, a side-by-side comparison of
330 expression of tachyzoite, bradyzoite, and sexual stage specific genes reveals some key
331 similarities and dissimilarities (**Figure 3 - Supplementary Figure 7c**). Clusters P1 and
332 M1 are both enriched for the expression of bradyzoite marker genes. Clusters M4-5 and
333 P4-5 are both predicted to be S/M/C phases of the cell cycle. While most ME49 clusters
334 express tachyzoite marker genes, enolase-2 and LDH-1, which have previously been
335 described as relatively tachyzoite-specific⁴⁶, are expressed at much lower level than in
336 Pru. Curiously, P6-specific genes (green panels in **Figure 3 - Supplementary Figure**
337 **7c**) are not enriched in any cluster in ME49, suggesting a lack of corresponding P6
338 cluster in ME49. Such differences may not be surprising, however, as Pru and ME49
339 have entirely distinct passage histories, although both were grown in our laboratory
340 exclusively *in vitro* as tachyzoites on HFFs over at least 2 years prior to the experiments
341 described here. Because measurement sensitivity in ME49 (21 molecules) was lower
342 than that of Pru (11 molecules) which reduces the ability to differentiate technical

343 dropouts from differentially expressed genes, we focused further analysis on the Pru
344 dataset.

345 **Transcriptional variation between parasites independent of measurement noise,**
346 **cell cycle, or asexual development**

347 A unique advantage of scRNA-seq over bulk RNA-seq is its ability to measure
348 cell-to-cell variation that is stochastic in nature or independent of known biological
349 processes. We have developed a computational approach to identify genes with such
350 variation. While our scRNA-seq is sensitive, one needs to measure the level of noise in
351 order to determine true, intrinsic variability of parasite expression program. Noise levels
352 can be estimated using the ERCC synthetic RNA spike-ins that were added in differing
353 amounts to each sample and then fitting a logistic regression to model the expected
354 detection rate, as shown in **Figure 1 - Supplementary Figure 2c**. This allowed us to
355 determine whether the expression level of a given variable gene in *Toxoplasma* is
356 above the detection limit and thus whether its variation is readily explained by
357 measurement noise. Next, for the variable genes that are above detection limit, we
358 asked if their variability can be explained by either cell cycle or developmental state, the
359 two biological variables that, as expected, show a major influence on gene expression
360 in our system. To do this, we perform “projection scoring”, in which we use a
361 bootstrapped K-nearest neighbor (KNN) approach that quantifies the dependence of a
362 gene’s expression variability on the PCA and UMAP projections. Genes that vary as a
363 result of cell cycle or development are expected to show similar expression levels in
364 neighboring cells in the projection and different expression levels in cells that are widely
365 separated (**Figure 4a**).

366 Applying this approach to our Pru data set, we first see that, as expected for an
367 asynchronous population at different cell cycle and developmental states, mRNA for
368 many genes has a low detection rate even though those genes have a mean
369 abundance across all cells that is above our threshold for detection (**Figure 4b**)
370 (**Materials and methods**). Comparison between RH and Pru demonstrates congruence
371 of many “variant” genes: 213 shared genes are more variable than the ERCC spike-ins
372 in both datasets (**Figure 4 - Supplementary Figure 8a**). Some degree of disagreement
373 between the two datasets is expected as the Pru data include differentiating parasites
374 while the RH data do not. Starting from the list of “variant” genes that we identified in
375 Pru, projection-scoring quantified the dependence of each gene on the PCA
376 embedding, reflecting cell cycle progression, and UMAP embedding, reflecting asexual
377 development and cell cycle progression. Comparison of projection scores between RH
378 and Pru shows consistency in cell cycle dependence, revealing that while the variance
379 of some genes (e.g., ROP genes) is readily explained by cell cycle, a large fraction of
380 variable genes shows no correlation with cell cycle (upper right and lower left areas of
381 top panel in **Figure 4c**, respectively). As expected from our Pru data, gene dependence

382 on PCA and UMAP projections are highly correlated (bottom panel in **Figure 4c**);
383 however, projection scoring identifies a subset of genes whose variation depends
384 exclusively on asexual development, but not on cell cycle, including ones that we
385 identified previously as enriched in bradyzoites (**Supplementary Table 4**). This shows
386 that projection scoring can be used to discover genes that may differ in regulation
387 across different dimensions of intrinsic biological variability.

388 To determine the variation dependence on cell cycle and asexual development in
389 Pru, we quantified projection scores for organelle gene sets of “variant” genes and
390 ERCC spike-ins (top panel in **Figure 4d**). The results show a wide distribution of
391 dependence across different organelle sets in the biological data. As expected, ERCC
392 spike-ins, which are randomly distributed between samples, exhibited low projection
393 scores on both cell cycle and asexual development projections. We took the upper end
394 of ERCC score (~0.35) as a threshold to further classify each variant gene. For variant
395 genes with scores above the threshold in either asexual development or cell cycle
396 dependence, they are classified as “Dependent”, otherwise they are considered
397 “Independent” of either process. Expression variability of most rhoptry (ROP),
398 microneme (MIC), and inner-membrane complex (IMC) proteins show high dependence
399 on cell cycle and/or asexual development (bottom panel in **Figure 4d**). On the other
400 hand, >40% of SRS surface antigens, GRAs, and other non-parasite-specific or
401 unannotated genes have low dependence score on both of these two biological
402 processes. We show several SRS surface antigens as examples of genes whose
403 expression shows low cell cycle and asexual development dependence in Pru data
404 (**Figure 4 - Supplementary 8b**), highlighting the variation of their expression between
405 neighboring cells on the projection. Thus, our analysis reveals that a substantial fraction
406 of variable genes contributes to previously undetermined parasite-to-parasite variation
407 that would not be detectable in bulk transcriptomic analyses.

408
409

410 **Discussion**

411 We describe here single-cell RNA sequencing (scRNA-seq) for measurement of
412 mRNA transcripts from individual *Toxoplasma gondii*, an obligate intracellular protozoan
413 parasite. The results show that scRNA-seq can reveal intrinsic biological variation within
414 an asynchronous population of parasites. Two types of biological variation could be
415 seen in our asynchronous populations: cell cycle progression and asexual
416 differentiation. We found the existence of two distinct 1N transcriptional states in cycling
417 parasites which we call G_{1a} and G_{1b}, concurring with what was previously reported in
418 *Toxoplasma*²⁸. Interestingly, bradyzoites are found predominantly in G_{1b} but not in G_{1a}
419 state, suggesting the possibility of a putative checkpoint between these two phases that
420 may also play a role in regulating the developmental transition. Our data further shows a
421 small fraction of bradyzoites to be cycling which supports the hypothesis that
422 bradyzoites can in fact divide²². Our results showed a very strong correlation between
423 cell cycle and expression of genes encoding proteins in various subcellular organelles,
424 as noted previously using synchronized bulk populations²⁸. The results here, however,
425 show an even more dramatic and extreme dependence on cell cycle, allowing
426 refinement of approaches that use such timing to predict a given protein's ultimate
427 organellar destination in the cell⁴⁷. They also extend such analyses to the Type II
428 strains, Pru and ME49, which have not previously been examined in this way.

429 In addition to the above, we observed some striking and unexpected
430 heterogeneity within asexually developing parasites. We discovered a cluster of cells,
431 labeled P6, in the differentiating Pru parasites that is distinct from the rest of the
432 alkaline-induced population of cells. Constituting 21% of the alkaline-induced
433 population, the P6 cluster is marked by a set of genes that were previously detected by
434 bulk transcriptomics in bradyzoites of tissue cysts⁴³. Remarkably, while most of these
435 genes have unknown functions, we identified an enriched gene with predicted AP2
436 domain, which may contribute to the unique expression pattern observed in this group
437 of parasites. We found that P6 expression profile is intermediate to P2 tachyzoites and
438 P1 bradyzoite clusters. Interestingly, the genes enriched in P6 overlap with a subset of
439 canonical bradyzoite marker genes including *LDH2* and *SRS35A*, albeit expressed at a
440 lower level than in P1 (**Figure 3c**). In addition, we observed a gradual increase in the
441 proportion of P6 cells as induction proceeded from day 3 to day 7. Taken together, one
442 possible explanation for the emergence of P6 cluster is a reverted conversion from
443 bradyzoites to tachyzoites in which alkaline stress fails to maintain the bradyzoite state.
444 Our data and previous reports are consistent with this interpretation⁴⁸. On the other
445 hand, we cannot rule out the possibility that this cluster is developmentally “confused”
446 by the presence of a general stressor such as alkaline. RNA velocity analysis in the Pru
447 data does not reveal a strong transcriptional flow between P1 and P6. Rather, P6
448 appears to transcriptionally transition from P2 and P3 tachyzoites. Thus, the P1
449 bradyzoites and P6 parasites are either distinct and separate developmental

450 trajectories, or the transition from P1 to P6 is a rapid and rare event. Regardless, our
451 results reflect a surprising diversity in an asexually transitioning population of
452 *Toxoplasma*. Future measurement of single parasites isolated from *in vivo* sources
453 coupled with genetic manipulation of the parasite genome, will further clarify the
454 causality and relevance of developmental states that we identified here.

455 To address how much cell-to-cell variability there is between parasites of similar
456 developmental states, we developed a novel approach based on random permutation
457 and K-nearest neighbor (KNN) averaging to quantify the association of expression
458 variation to known biological processes, like cell cycle and development, that underlie
459 PCA and UMAP projections of scRNA-seq. Combined with the analysis of ERCC
460 synthetic spike-ins, this allowed us to tease out expression variation in single parasites
461 that results from one of the biological processes as well as measurement noise.
462 Previous reports have noted potential issues with ERCC spike-ins in estimating
463 technical variations of endogenous mRNAs, potentially due to differences in poly-A tail
464 lengths and the lack of 5' cap^{34,49,50}. Our results show that many low abundant
465 endogenous parasite genes have significantly higher detection rate than would be
466 predicted by ERCC with similar abundance, suggesting that ERCC spike-ins provide, as
467 previously reported, a conservative underestimate of the detection sensitivity of
468 endogenous genes⁵⁰. Intriguingly, the resulting analysis showed that this single-celled
469 organism exhibits unexplained variation in the expression of several genes. Whether
470 such a pattern of variation may define novel cellular subtypes will require further
471 experimentation to probe the stability and stochasticity of the expression of these
472 genes. Interestingly, amongst these projection-independent genes, we found the
473 expression of several SRS surface antigen genes, which are known to play a role in
474 host attachment, and dense granule genes, which are known to play a role in
475 intracellular interaction with host, to be highly variable between cells of similar
476 developmental states. We also find other non-parasite-specific genes, including genes
477 encoding metabolic enzymes, to be highly projection-independent. While we cannot
478 exclude the possibility that variation in these cells is due to stochastic bursts of
479 transcription from these genes, especially given the small size of *Toxoplasma*, it is
480 possible that such variability has biological meaning. For example, it could expand the
481 mode of interactions with the host and be the result of strong selective pressure to
482 maximize invasion efficiency and transmission in a variety of different host species of
483 cell types. Maintaining a diverse phenotypic diversity can be beneficial in ensuring at
484 least some members will be able to propagate in whatever the host environment
485 encountered. The biological implication of single-celled parasite variation and its
486 relevance to *in vivo* infection will be an important area of investigation for future studies.
487 We see the application of single-cell co-transcriptomic sequencing of both the host cell
488 and the parasite as a potentially powerful approach to further deconstruct the
489 complexity of parasite-host interactions.

490 **Materials and Methods**

491 *Cell and Parasite Culture*

492 All *Toxoplasma gondii* strains were maintained by serial passage in human
493 foreskin fibroblasts (HFFs) cultured at 37 C in 5% CO₂ in complete Dulbecco's Modified
494 Eagle Medium (cDMEM) supplemented with 10% heat-inactivated fetal bovine serum
495 (FBS), 2 mM L-glutamine, 100 U/ml penicillin, and 100 ug/ml streptomycin. *T. gondii*
496 strains used in this study were RH, Pru GFP¹², and ME49-GFP-luc⁵¹.

497

498 *In vitro Bradyzoite Switch Protocol*

499 Differentiation to bradyzoite was induced by growth under low-serum, alkaline
500 conditions in ambient (low) CO₂ as previously described⁵³. Briefly, confluent monolayers
501 of HFFs were infected with tachyzoites at a multiplicity of infection (MOI) of 0.025 in
502 RPMI 1640 medium (Invitrogen) lacking sodium bicarbonate and with 1% FBS, 10
503 mg/ml HEPES, 100 U/ml penicillin, and 100 g/ml streptomycin at pH 8.2. The infected
504 HFFs were cultured at 37°C without supplemented CO₂.

505

506 *Preparation of Parasites for Fluorescence Activated Cell Sorting (FACS)*

507 HFF monolayers infected with parasites overnight were scraped, and the
508 detached host cells were lysed by passing them through a 25-gauge needle three times
509 or a 27-gauge needle six times. The released parasites were spun down at 800 rpm for
510 5 minutes to pellet out host cell debris, and the supernatant was spun down at 1500 rpm
511 for 5 minutes to pellet the parasites. The parasites were then resuspended in 500 µL of
512 FACS buffer (1x PBS supplemented with 2% FBS, 50 ug/ml DNase I, and 5 mM
513 MgCl₂*6H₂O), passed through both a 5 µm filter and a filter cap into FACS tubes, and
514 stored on wet ice until it was time to sort. In samples stained for DNA content, the
515 parasites were resuspended in 500 µL of FACS buffer plus 1.5 µL of Vybrant DyeCycle
516 Violet (from ThermoFisher, catalog number V35003) and incubated at 37 C and 5%
517 CO₂ for 30 minutes.

518 The parasites were also stained with either propidium iodide (PI), Sytox Green,
519 or the live/dead fixable blue dead cell stain kit (catalog number L34962) prior to sorting
520 in order to distinguish live cells from dead cells. To stain with PI, 10 µL of 0.5 mg/ml PI
521 was added to every 500 µL of parasite suspension in FACS buffer, and the parasites
522 were incubated covered on ice for at least 15 minutes. To stain with Sytox Green, 1
523 drop of Sytox Green per ml was added to the parasite suspension in FACS buffer, and
524 the parasites were incubated at room temperature for at least 15 minutes. To stain with
525 the live/dead fixable blue dead cell stain kit, 1.5 µL of the kit's viability dye was added to
526 every 500 µL of parasites along with the secondary antibody, and parasites were
527 washed and resuspended in FACS buffer as usual.

528

529

530 *FACS of parasites*

531 Eight mL of lysis buffer was prepared by mixing together: 5.888 mL of water, 160
532 μ L recombinant RNase inhibitor (Takara Clonetech), 1.6 mL of 10 mM dNTP
533 (ThermoFisher), 160 μ L of 100 uM oligo-dT (iDT; see attached
534 “supplementary_file1_oligos.csv” for oligos), 1:600,000 diluted ERCC spike-in
535 (ThermoFisher), and 32 μ L of 10% Triton X-100. All reagents are declared RNase free.
536 Lysis plates were prepared by dispensing 0.4 μ L of lysis buffer into each well of a 384
537 well hard-shell low profile PCR plate (Bio-rad) using liquid handler Mantis (Formulatrix).
538 Single parasites were sorted using the Stanford FACS Facility’s SONY SH800s sorter
539 or BD Influx Special Order sorter into the 384-well plates loaded with lysis buffer. Single
540 color and colorless controls were used for compensation and adjustment of channel
541 voltages. The data were collected with FACSDiva software and analyzed with FlowJo
542 software. RH parasites were index sorted with fluorescence signal of cell permeable
543 DNA stain, DyeCycle Violet.

544

545 *Single-Toxoplasma cDNA synthesis, library preparation, and sequencing*

546 Smart-seq2 protocol was carried out as previously described⁵⁴ using liquid
547 handlers Mantis and Mosquito (TTP Labtech) using a 2 μ L total volume. We conducted
548 19 rounds of cDNA pre-amplification after reverse transcription. Each well is then diluted
549 with 1 to 4 v:v in RNase free elution buffer (QIAGen) to a total volume of 8 μ L. Then, we
550 conducted library preparation with in-house Tn5 tagmentation using custom cell
551 barcode and submitted for 2 x 150 bp paired-end sequencing on NovaSeq 6000 at the
552 Chan Zuckerberg Biohub Genomics core.

553

554 *Quantitative polymerase chain reaction (qPCR) for parasite benchmark*

555 To quantify the purity of single parasite sort and to ensure the cDNA synthesis
556 reaction was not saturated, GFP, mCherry, or SAG1 mRNA expression were measured
557 using commercial qPCR mastermix, SsoAdvanced™ Universal SYBR Green mastermix
558 (Bio-rad). Briefly, 0.1 μ L of diluted cDNA was added in a total of 2.1 μ L reaction volume
559 per well on 384 well plate with qPCR mastermix and 200 nM PCR primers. The reaction
560 was incubated on a Bio-rad qPCR thermal cycler with the following programs: 5 minutes
561 of 95°C, 45 cycles of 95°C for 5 seconds, 56°C for 1 minute, and imaging. The primer
562 sequences are provided in “supplementary_file1_oligos.csv”.

563

564 *Sequencing alignment*

565 BCL output files from sequencing were converted into gzip compressed FastQs
566 via a modified bcl2fastq demultiplexer which is designed to handle the higher
567 throughput per sequencing run. To generate genome references with spike-in
568 sequences, we concatenated ME49 or RH genome references (version 36 on ToxoDB)
569 with ERCC sequences. The raw fastq files are aligned to the concatenated genomes

570 with STAR aligner (version 2.6.0c) using the following settings: “--readFilesCommand
571 zcat --outFilterType BySJout --outFilterMutlimapNmax 20 --alignSjoverhangMin 8 --
572 alignSjDboverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax
573 0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --
574 outSAMstrandField intronMotif --outSAMtype BAM Unsorted --outSAMattributes NH HI
575 AS NM MD --outFilterMatchNminOverLread 0.4 --outFilterScoreMinOverLread 0.4 --
576 clip3pAdapterSeq CTGTCTCTTATACACATCT --outReadsUnmapped Fastx”.
577 Transcripts were counted with a custom htseq-count script (version 0.10.0,
578 <https://github.com/simon-anders/htseq>) using ME49 or RH GFF3 annotations (version
579 36 on ToxoDB) concatenated with ERCC annotation. Instead of discarding reads that
580 mapped to multiple locations, we modified htseq-count to add transcript counts divided
581 by the number of genomic locations with equal alignment score, thus rescuing
582 measurement of duplicated genes in the *Toxoplasma* genome. Parallel jobs of STAR
583 alignment and htseq-count were requested automatically by Bag of Stars
584 (https://github.com/iosonofabio/bag_of_stars) and computed on Stanford high-
585 performance computing cluster Sherlock 2.0. Estimation of reads containing exonic and
586 intronic regions is computed with Velocyto estimation on the BAM output files and
587 requested automatically by Bag of Velocyto
588 (https://github.com/xuesoso/bag_of_velocyto) on Sherlock 2.0. Gene count matrix is
589 obtained by summing up transcripts into genes using a custom python script. Scampy
590 velocyto package is then used to estimate transcriptional velocity on a given reduced
591 dimension. Parameters used for generating the results are supplied as supplementary
592 python scripts. Sample code to generate the analysis figures are provided in
593 supplementary jupyter notebooks.

594

595 *Data preprocessing*

596 To filter out cells with poor amplification or sequencing reaction and doublet cells,
597 we discarded cells based on gene counts (>0 reads), total reads sum, percent reads
598 mapped to *Toxoplasma* genome, percent ERCC reads, and percent ribosomal RNA
599 reads. Next, we filtered “ribosomal RNA” genes from the gene count matrix. Gene count
600 matrices are normalized as counts per median (CPM):
601

$$602 X_{norm} = \frac{X}{\sum(X)} \cdot median(\sum(X)) \quad (1)$$

603

604 where X is the gene count matrix, $sum(X)$ is the read sum for each cell, and
605 $median(sum(X))$ is the median of read sums. Normalized data are added with a
606 pseudocount of 1 and log transformed (e.g. $\log_2(X_{norm}+1)$). To determine the detection
607 limit (e.g. 50% detection rate), we modeled the detection probability of ERCC standards
608 with a logistic regression as a function of spike-in amount³³.
609

610 We calculated an estimate of absolute molecular abundance for all genes by fitting a
611 linear regression to ERCC spike-ins:

612

613 $\log_2(Y) = m \cdot \log_2(X_{norm} + 1) + b$ (2)

614

615 where $X_{norm, ERCC>0.5}$ is the observed CPM value for ERCC spike-ins above the detection
616 limit, Y is the amount of ERCC spike-in, m is the regression coefficient, and b is the
617 intercept. To reduce the influence of measurement noise, we fit the model only to ERCC
618 spike-ins with mean expression above the detection limit.

619

620 *Cell cycle analysis and annotation*

621 To determine the transcriptional variation associated with cell cycle, we applied Self-
622 Assembling Manifolds (SAM)⁵⁵ to filter for highly dispersed gene sets (>0.35 SAM
623 weights) in asynchronous RH population. Principal components analysis (PCA) is then
624 applied to the filtered and normalized RH data, and the nearest neighbor graph (K=50)
625 is computed using “correlation” as a similarity metric. We identified the putative “G1”
626 clusters with 1N based on DNA content stain. Parasites in “G1” cluster are further sub-
627 clustered with Louvain Clustering, in which we identified “G1a” and “G1b” clusters with
628 distinct transcriptional profiles. Pearson correlation between single-cell and bulk
629 transcriptomic data is computed between bulk assignment²⁸ and the scRNA-seq cluster
630 assignment through which each cluster is uniquely assigned with a cell cycle state. To
631 quantify genes that are differentially expressed across cell cycle clusters, we applied
632 Kruskal-Wallis test. Genes are considered differentially expressed if their p-values are
633 less than 0.05 and they are at least 2-fold over-expressed in a cluster compared to the
634 average expression level of other clusters. We computed differential expression across
635 all cell cycle clusters as well as between the “G1a” and “G1b” clusters; the results are
636 uploaded as supplementary tables 1 and 2, respectively. To enable cell cycle
637 assignment transfer from RH to Pru and ME49 data, we implemented a random forest
638 classification model trained on RH data. Briefly, this is done by training a model with
639 1000 estimators on L2-normalized RH expression data containing only cell cycle
640 associated genes in a 60-40 split scheme. Then the model is applied to predict cell
641 cycle labels of L2-normalized Pru or ME49 data containing the homologous cell cycle
642 associated genes. The testing accuracy was over 95%.

643

644 *Pseudotime construction and clustering*

645 Pseudotime analysis is conducted with Monocle 2 package in R on preprocessed
646 dataset with highly dispersive genes as described previously. A cell in “G1a” is
647 designated as the root cell, and all other cells are placed after this cell in order of their
648 inferred pseudotime. To cluster genes based on their pseudotime expression pattern,
649 high frequency patterns are removed through a double spline smoothing operation. The

650 interpolated expression matrix is then normalized by maximum expression along
651 pseudotime such that the maximum value of gene expression along pseudotime is
652 bound by 1. We then applied agglomerative clustering on this interpolated and
653 normalized expression matrix using “correlation affinity” as similarity metric and
654 “average linkage” method to predict three distinct clusters of genes.
655

656 *Measurement noise analysis and projection scoring*

657 To identify genes with greater variability than can be explained by measurement noise,
658 we first modeled probability of detection as a logistic function of ERCC spike-in mean
659 abundance:

$$660 P_{\text{detection}} = \frac{1}{1+e^{-\beta \cdot \log_2(\underline{X}_{\text{norm}}) + c}} \quad (3)$$

661 where β and c are parameters of the model, and \underline{X} is the mean abundance for a given
662 ERCC sequence. We then computed Z_i , the z-score of detection deviation from the
663 logistic fit, for each gene:

$$664 Z_i = \frac{D_i - E(D)}{\sqrt{\text{var}(D)}} \quad (4)$$

665 where D_i is the difference between detection rate of a gene and its predicted detection
666 rate given its mean abundance, $E(D)$ and $\text{var}(D)$ are the expectation values and
667 variance of detection difference for all genes, respectively. Z is converted to p-values
668 assuming an one-sided Gaussian distribution of null values. Genes with p-values lower
669 than 0.05 and lower detection probability than the estimated fit are considered variant.
670 To quantify the dependence of expression variation on a two-dimensional projection, we
671 developed a novel approach based on k-nearest neighbor (KNN) averaging. First, a
672 KNN graph is computed by locating nearest neighborhood in an arbitrary two-
673 dimensional projection using euclidean distance. We then generated a null expression
674 matrix by shuffling the gene expression matrix along each cell column, such that its
675 correlation with respect to the coordinate on projection is completely lost. Next, we
676 compute an updated gene expression value by taking the average of expression values
677 across the KNN. This is equivalent to:
678

$$679 X_{\text{KNN}} = \frac{M}{k} \cdot X_{\text{norm}} \quad (5)$$

680 where X_{KNN} is the updated KNN averaged expression, M is the nearest-neighbor graph
681 with k being the number of nearest neighbor, and X is the log-transformed CPM of
682 observed or null expression matrices. We chose a k of 5 for all our analysis as varying k
683 did not have a large effect on the results (data not shown). In our experiments, we have
684 shown that the first two principal components (PCs) of PCA on RH and Pru correspond
685 to the projection projection of cell cycle progression, and a two-dimensional UMAP
686 projection of Pru corresponds to asexual development and cell cycle progression. We
687 thus computed X_{KNN} for both the original, observed expression matrix and the shuffled,
688 null matrix on either projection to reflect dependence on cell cycle progression and/or

689 asexual development. X_{KNN} is further normalized to have identical sum as the original
690 expression values. A Kolmogorov-Smirnoff two sample test is computed between the
691 normalized X_{KNN} of the observed matrix and that of the shuffled matrix based on 100
692 random permutations. The projection-dependence score for each gene is then
693 computed as:

694

695
$$S_g = \sqrt{-\log(\bar{p}_g)} \quad (6)$$

696 where S_g is the projection-dependence score for gene g and \bar{p}_g is the average p-values of
697 100 tests. We present S_g normalized by the maximum score within each respective data
698 set.

699

700 **Acknowledgements**

701 We thank Fabio Zanini, Felix Horns, and Geoff Stanley for illuminating discussion and
702 advice to YX on experiments and analysis. We thank Saroja Korullu, Robert Jones, and
703 Vickie Lin for assistance with library preparation and sample submission. This study is
704 supported by National Institute of Health (NIH) RO1 AI21423, AI29529, and Chan
705 Zuckerberg Biohub. YX and TCT are supported by Stanford Interdisciplinary Graduate
706 Bio-X Fellowships. SR is supported by NIH F30 AI124589-03. AF is supported by NIH
707 5T32AI007328-30 and a Gilliam Fellowship for Advanced Study from Howard Hughes
708 Medical Institute.

709 **Figures**

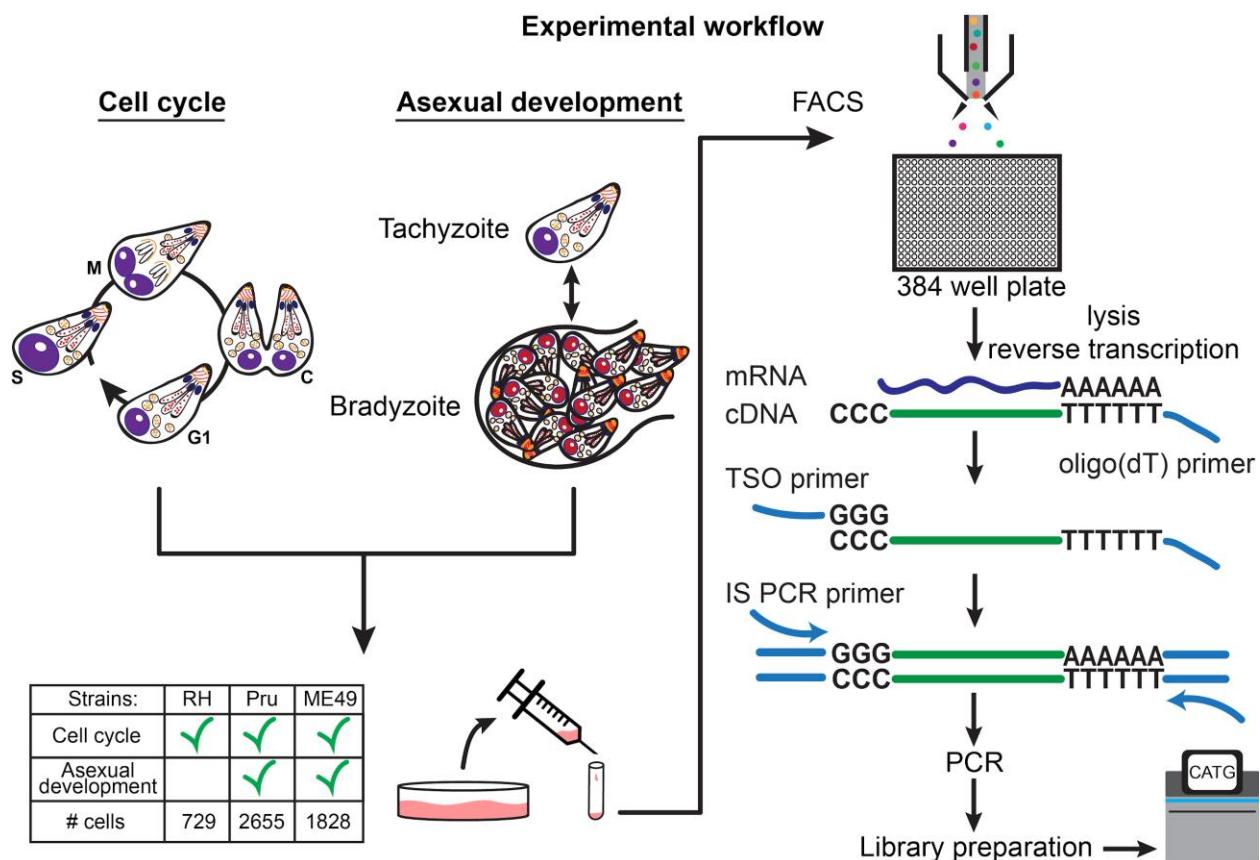
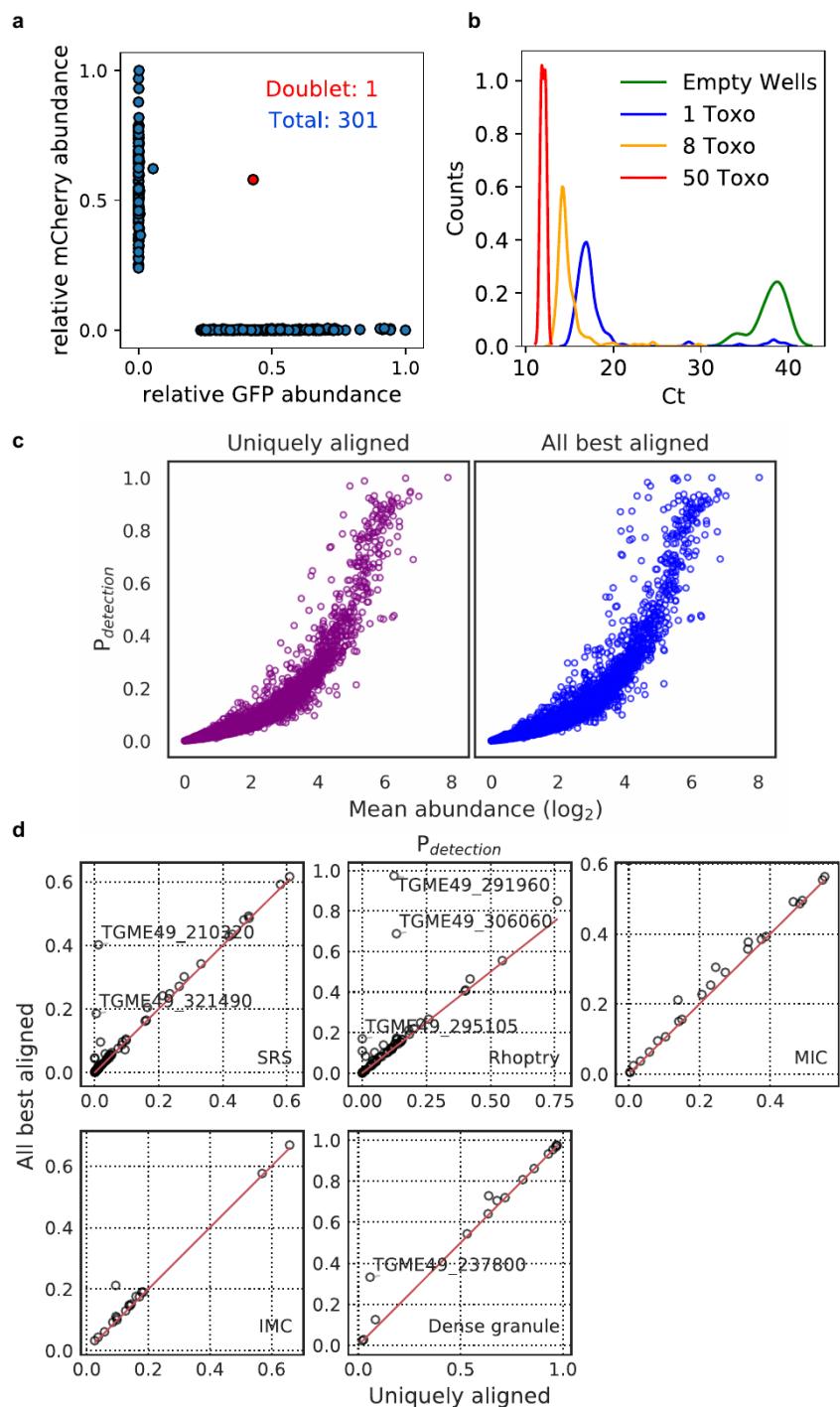
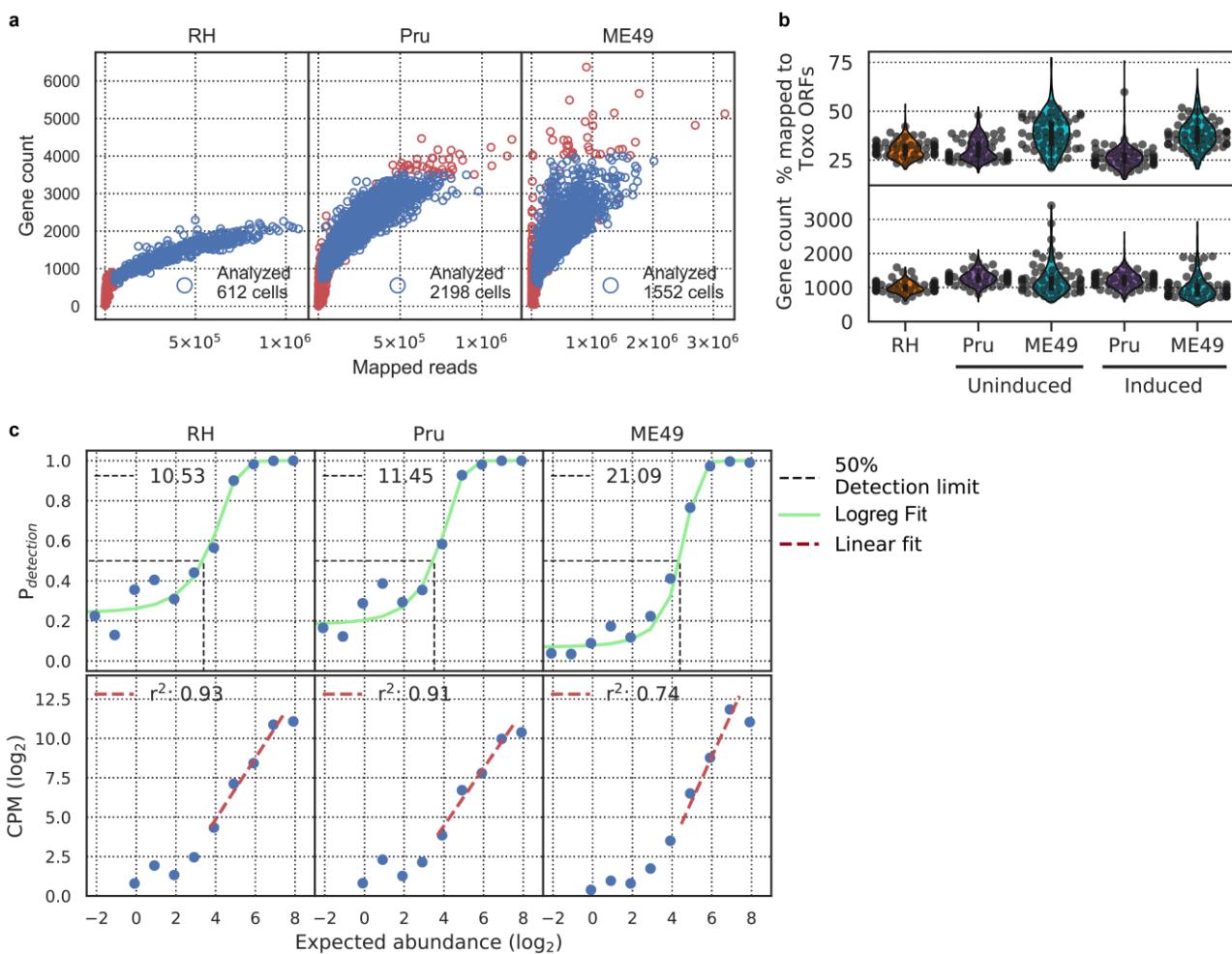


Figure 1. Schematic of single-cell RNA-seq (scRNA-seq) based on a modified Smart-seq2 protocol for 384-well plate. A table of strain types with the number of sequenced samples is provided.

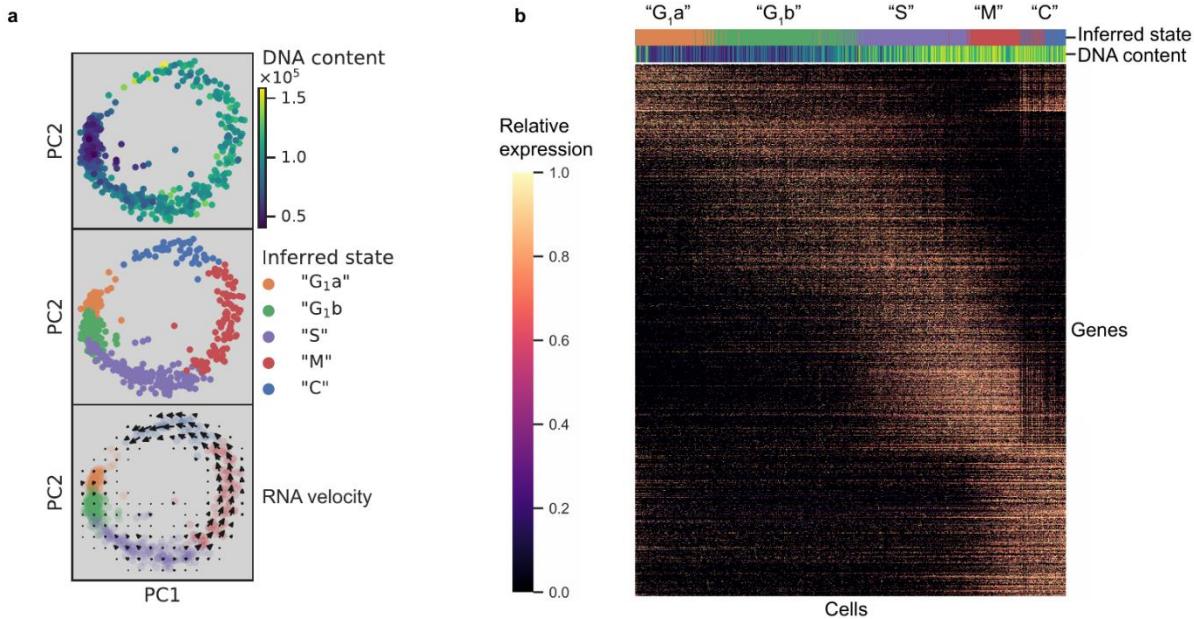


713

714 **Figure 1 - Supplementary Figure 1. (a)** qPCR measurement of mRNA expression in 302 transgenic
715 *Toxoplasma* cells expressing GFP or mCherry mixed at 1:1 ratio. **(b)** qPCR Ct values of abundant surface
716 protein, SAG1, measured for 374 wells with zero, one, eight, or fifty sorted parasites at 16, 176, 176, and
717 6 replicates, respectively. **(c)** Comparison between “uniquely aligned” (default htseq-count settings) and
718 “all best aligned” (count each feature with equal read alignment score) in the detection rate in Type I
719 strain, RH. **(d)** A more detailed comparison of detection rate of several parasite-specific gene sets. Genes
720 that are detected more frequently in “All best aligned” setting are annotated in the plot.

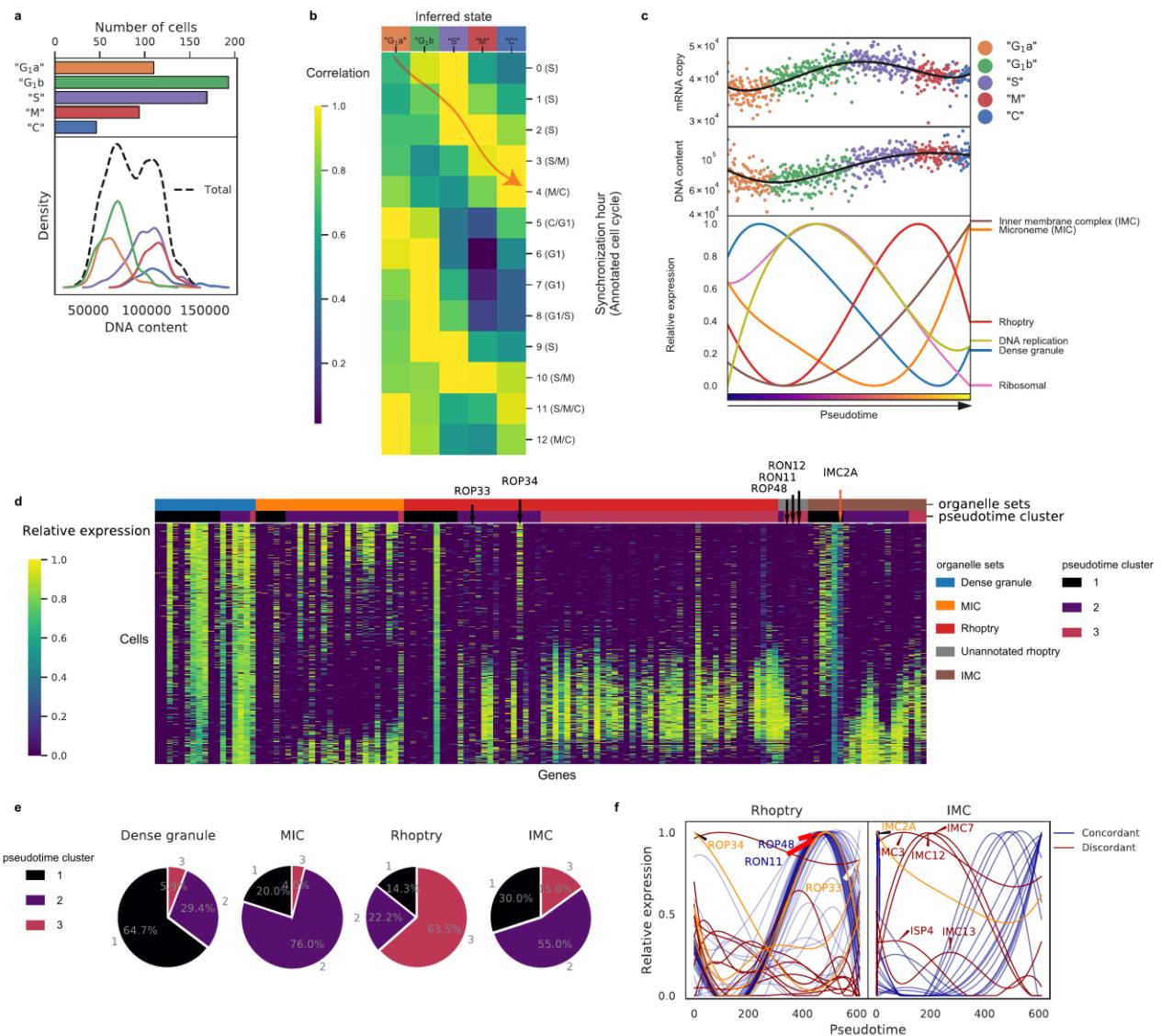


721
722 **Figure 1 - Supplementary Figure 2. (a)** Comparison of gene counts (>2 CPM) and total mapped read
723 counts for RH, Pru, and ME49 from left to right, respectively. Text in lower right corner indicates the
724 number of parasites that passed cell filtering and were analyzed (blue open circles). **(b)** Top panel:
725 distributions of percentage of reads in analyzed cells that mapped to *Toxoplasma* Open Reading Frames
726 (ORFs). Bottom panel: distributions of gene counts (>2 CPM) in analyzed cells. Uninduced Pru and ME49
727 were grown in the absence of alkaline (Day 0), whereas induced Pru and ME49 were grown in the
728 presence of alkaline (Day 3 - 7). **(c)** Top panel: Logistic regression modeling (green line) of detection limit
729 (50% detection rate, black dotted line) of ERCC spike-ins. Text on top left of each sub-panel indicates the
730 detection limit in absolute molecular counts. Bottom panel: Linear regression modeling (crimson line) of
731 measurement accuracy fitted on ERCC spike-ins with abundance above the detection limit. Text on top
732 left of each sub-panel indicates the coefficient of determination for the regression fit.



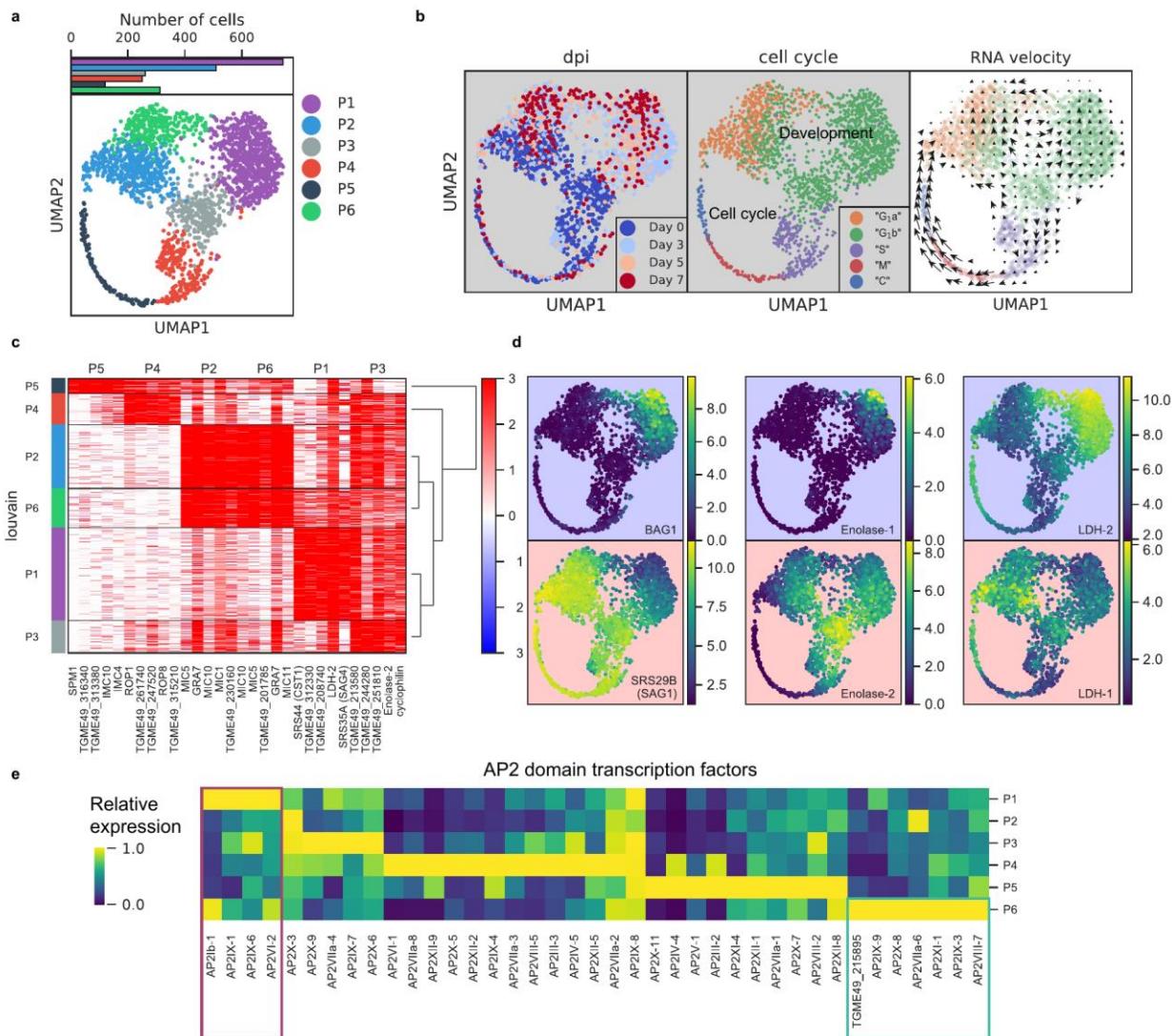
733

734 **Figure 2. (a)** Projection of the first two principal components in RH data set. Top panel: 612 RH cells are
735 colored by fluorescence measurement of a cell permeable DNA content stain. Center panel: cells are
736 colored by cluster assignment and labeled by the inferred “cell cycle” state. Bottom panel: RNA velocity
737 vector field is overlaid on top of the inferred state colors, with arrows pointing in the direction of net
738 transcriptional change. **(b)** Heatmap of the 1465 most variable gene expression ordered by pseudotime
739 assignment from left to right. Top colorbar reflects the assignment of inferred state and bottom colorbar
740 reflects the relative fluorescence of DNA content using the same color scheme as in (a).



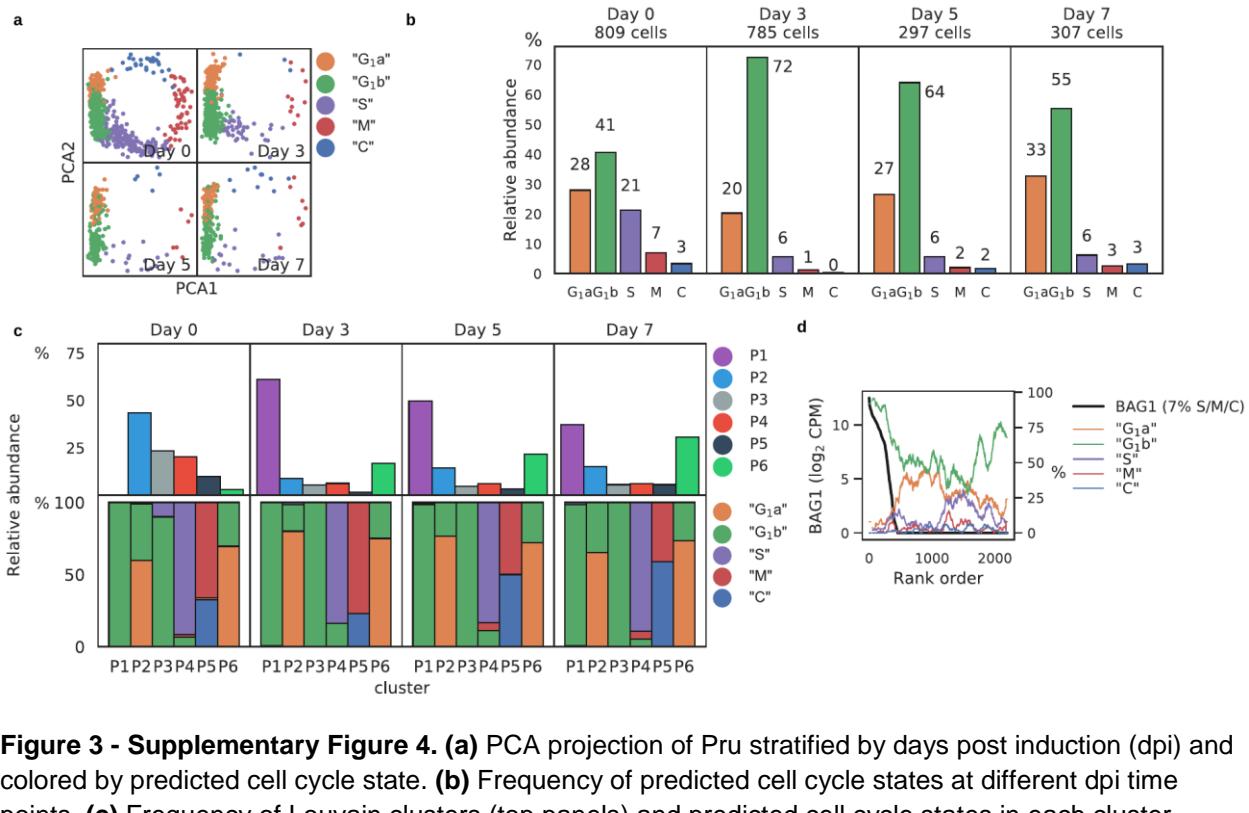
741

742 **Figure 2 - Supplementary Figure 3. (a)** Top panel: Numbers of RH parasites in each inferred “cell cycle”
743 state. Bottom panel: Density plots of DNA content distributions stratified by the inferred state. **(b)**
744 Heatmap of average expression correlation between each inferred “cell cycle” state of RH and each time-
745 point of bulk transcriptomic measurement based on chemically synchronized parasites²⁸. **(c)** Absolute
746 mRNA abundance (top panel) and DNA content (center panel) ordered by “cell cycle” pseudotime with
747 individual cells colored by their inferred states. A spline smoothing is applied to approximate a rolling
748 average along the pseudotime (black solid line). Average expression of gene sets based on ToxoDB
749 (v.36) annotation of organellar destination of the protein product after double spline smoothing (bottom
750 panel). **(d)** Heatmap of gene expression ordered by organelle sets (top colorbar) and pseudotime cluster
751 (bottom colorbar). “Unannotated rhopty” refers to genes not annotated in ToxoDB (v.36) as encoding a
752 rhopty protein but whose expression pattern is highly concordant with the dominant rhopty pattern. **(e)**
753 Pie charts of pseudotime cluster frequency for parasite organelle sets. **(f)** Expression of annotated rhopty
754 (left panel) and inner-membrane complex (IMC; right panel) genes along pseudotime with different colors
755 indicating genes concordant (blue) and discordant (crimson and orange) to the major trend of their
756 organelle sets.



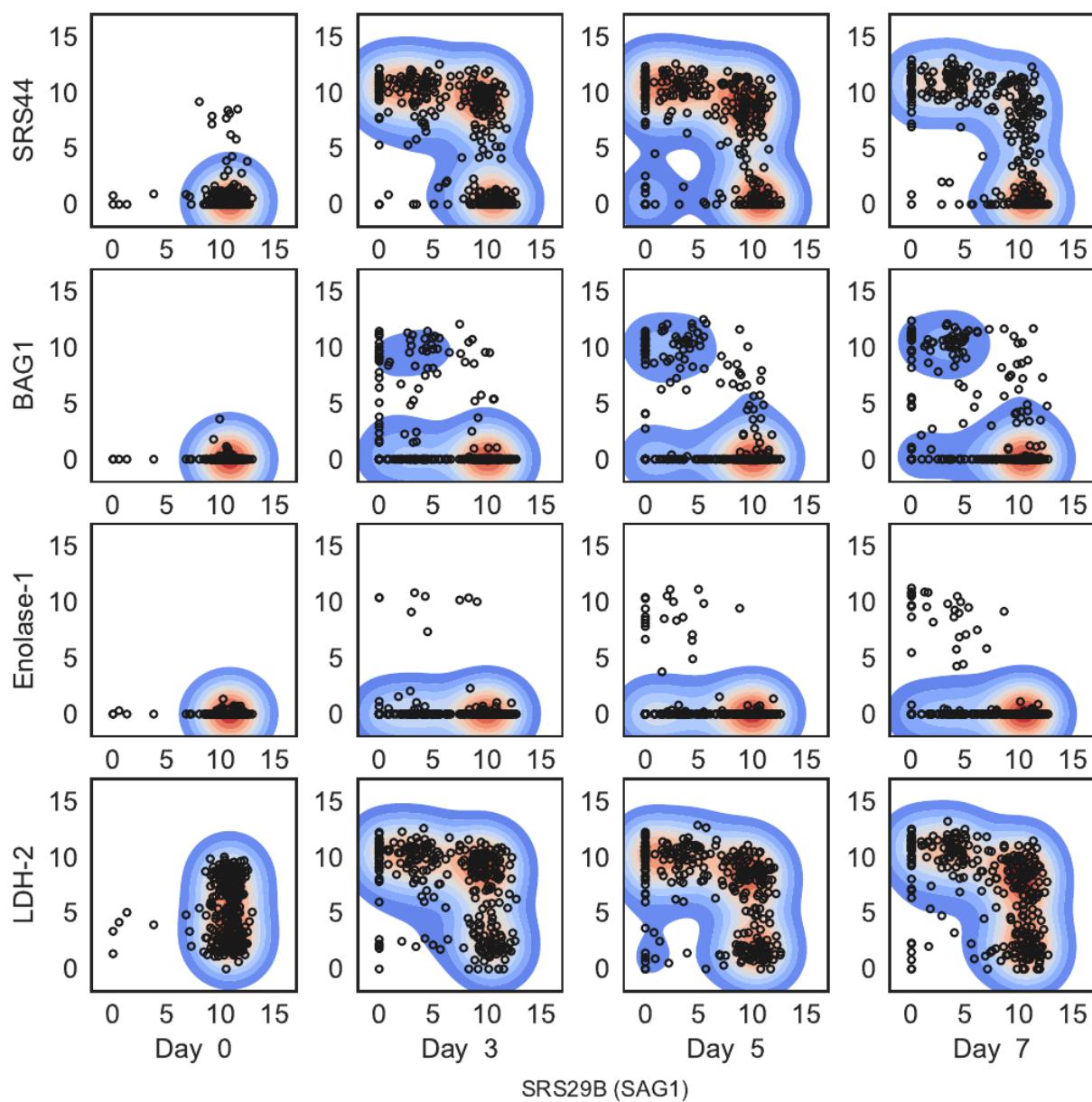
757

Figure 3. (a) UMAP projection of 809 uninduced and 1389 induced Pru parasites with colors indicating Louvain cluster assignment. Top panel shows the number of parasites in each cluster. **(b)** UMAP projections of Pru parasites colored or labeled by days post induction (dpi), inferred cell cycle states, and RNA velocity from left to right. **(c)** Heatmap of differentially expressed genes (along columns) across Louvain clusters of cells ordered by hierarchical clustering (along rows). The top 5 most enriched genes from each cluster are presented. **(d)** UMAP projections of Pru colored by the neighbor-averaged expression (\log_2 CPM) of bradyzoite (top panels, purple background) and tachyzoite (bottom panels, red background) marker genes. **(e)** Heatmap of differentially expressed AP2 transcription factor in Louvain clusters. Purple and green rectangles highlight AP2s enriched in clusters P1 and P6, respectively.



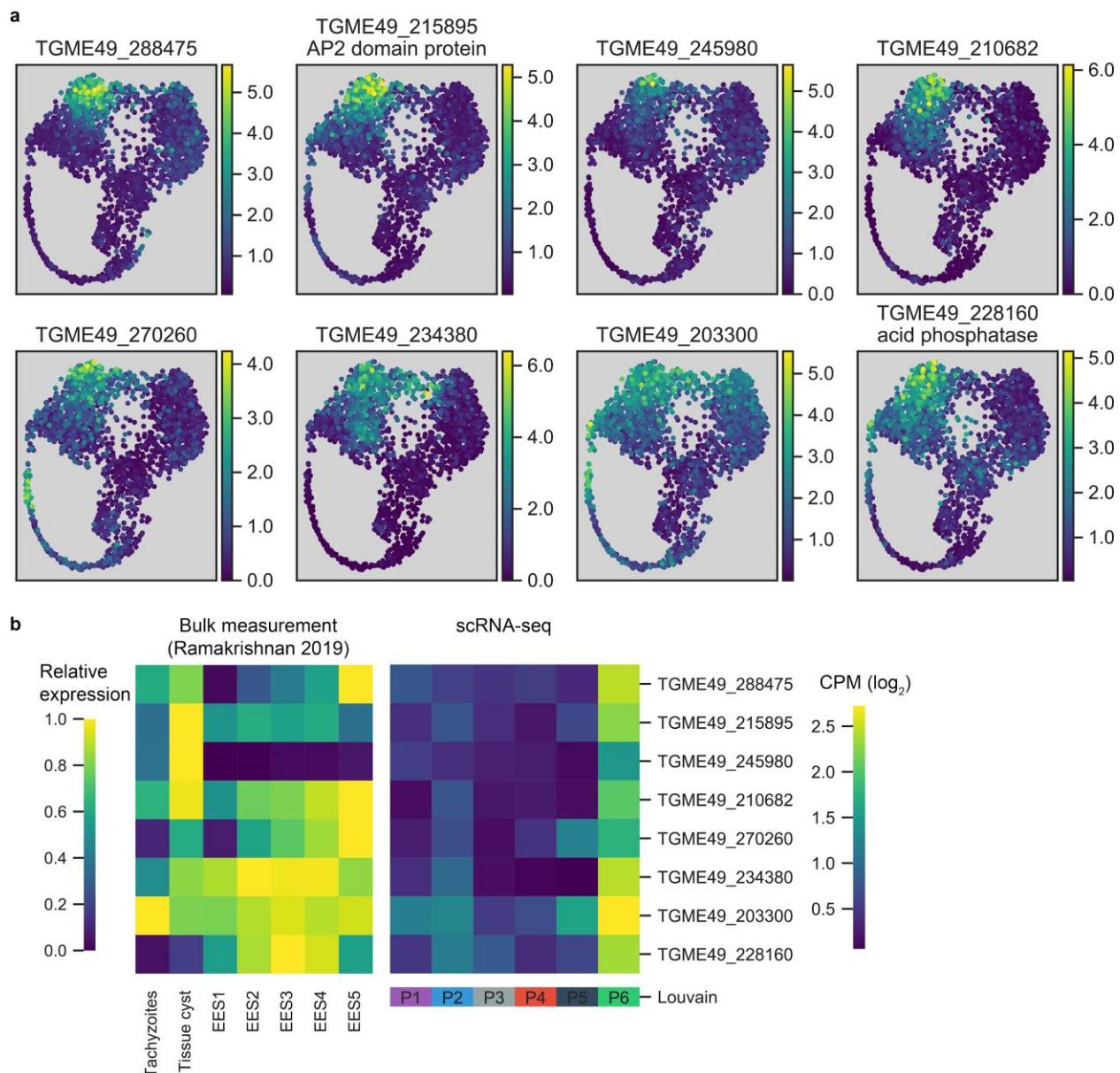
767

768 **Figure 3 - Supplementary Figure 4. (a)** PCA projection of Pru stratified by days post induction (dpi) and
769 colored by predicted cell cycle state. **(b)** Frequency of predicted cell cycle states at different dpi time
770 points. **(c)** Frequency of Louvain clusters (top panels) and predicted cell cycle states in each cluster
771 (bottom panels). **(d)** Rolling average frequency of predicted cell cycle states (colored lines) ordered by
772 expression level of the canonical bradyzoite marker, *BAG1* (black line).



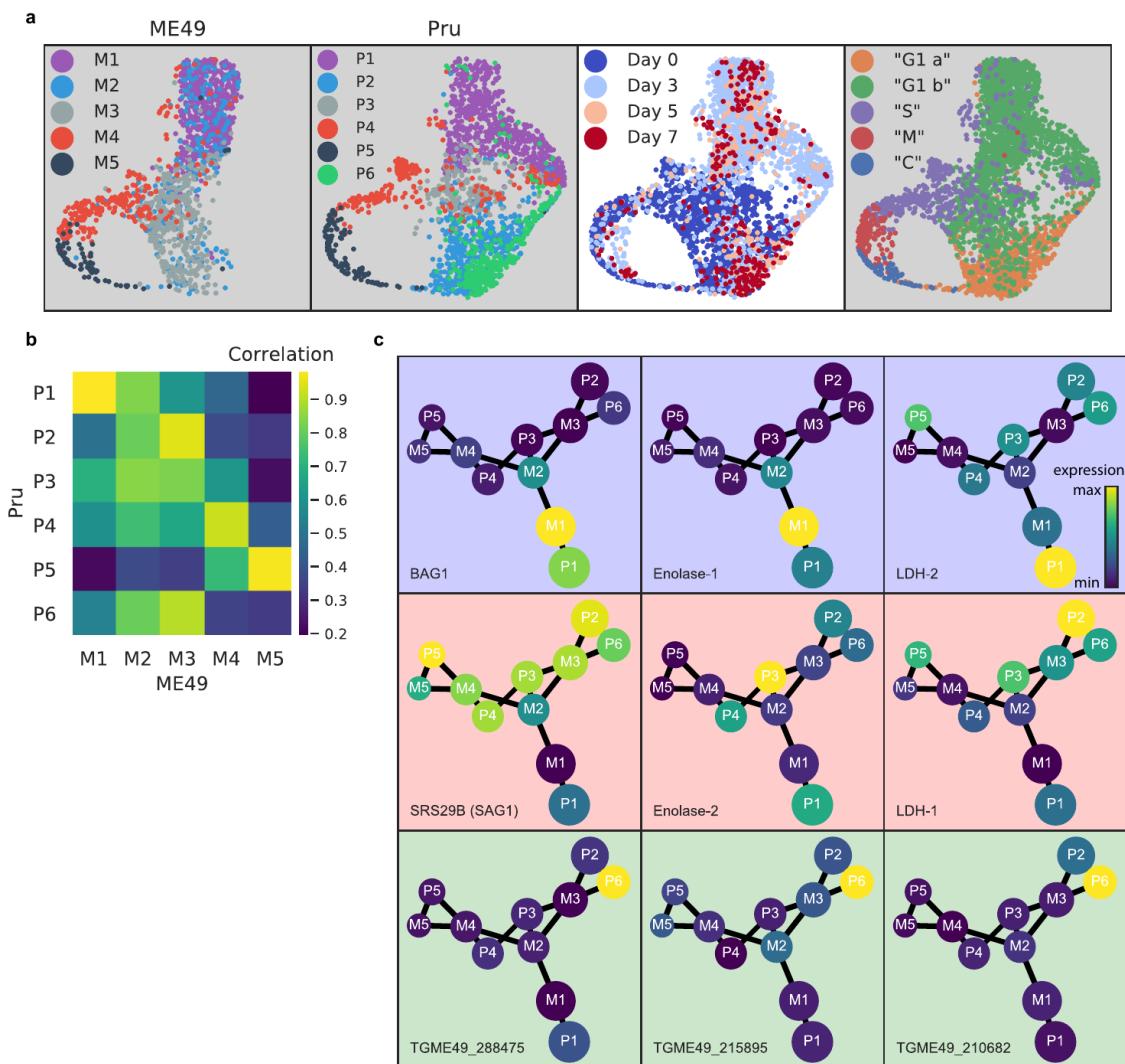
773

774 **Figure 3 - Supplementary Figure 5.** Expression level (\log_2 CPM) of four “bradyzoite-specific” marker
775 genes compared to that of “tachyzoite-specific” marker gene, SAG1, stratified by days post induction (dpi;
776 columns).



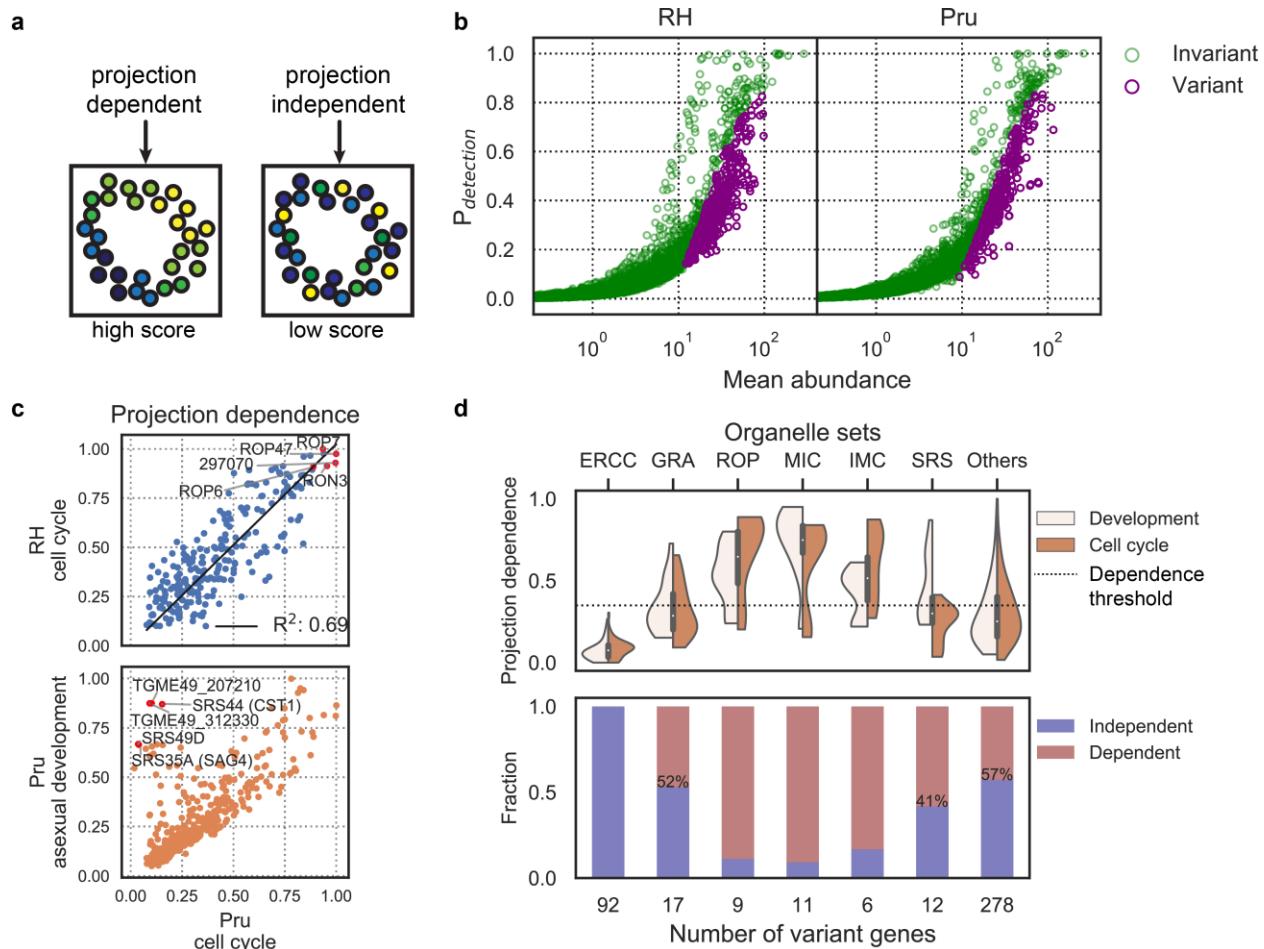
777

778 **Figure 3 - Supplementary Figure 6. (a)** UMAP projections of Pru colored by the neighbor-averaged
779 expression (\log_2 CPM) of top 8 most differentially expressed and enriched genes in P6 cluster relative to
780 P1 and P2, two most closely related clusters. **(b)** Comparison of P6-specific genes in bulk measurement
781 of tachyzoites, tissue cysts, or enteroepithelial stages (EES1-EES5)⁴³ (left) and scRNA-seq of Pru
782 Louvain clusters (right).



783

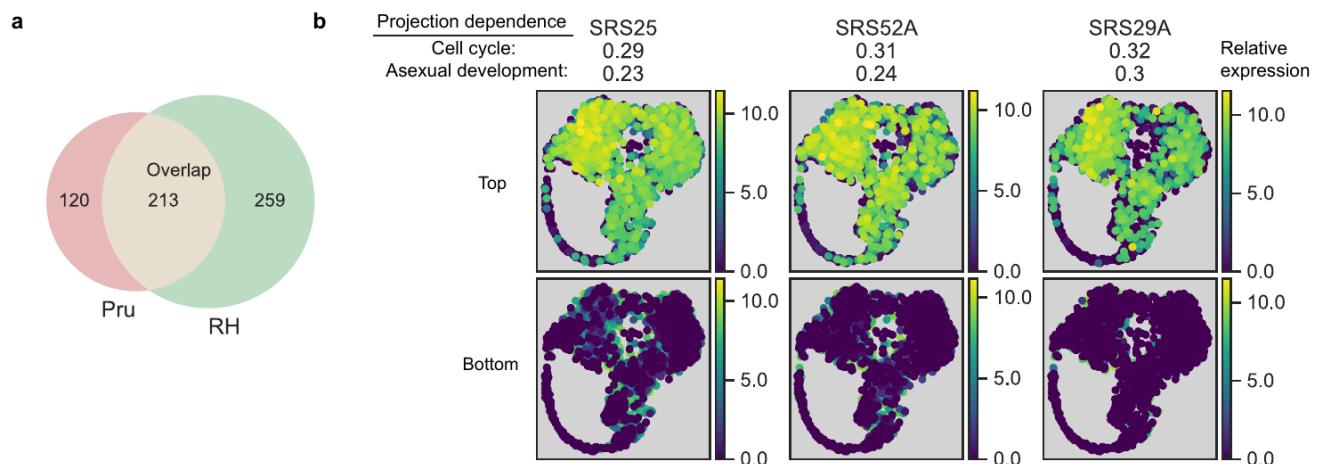
784 **Figure 3 - Supplementary Figure 7. (a)** UMAP projections of Pru and ME49 aligned by Scanorama.
785 Cluster assignment was performed independently in each dataset. **(b)** Matrix correlation of cluster
786 averaged expression between Pru and ME49. **(c)** Partition-based graph abstraction (PAGA) of aligned
787 clusters with each being represented as a node connected by linkage with a connectivity threshold of 0.8.
788 Node size reflects relative abundance of the cluster. Node colors reflect relative expression level (\log_2
789 CPM) of gene denoted in the bottom left of each panel, normalized to the maximum cluster expression of
790 corresponding data set.



791

792 **Figure 4. (a)** Illustration of projection-dependent (left) and -independent (right) gene expression patterns.
793 The spatial asymmetry is abolished after K-nearest neighbor (KNN) averaging of a projection-
794 independent pattern, but not a dependent one. Projection-dependence score reflects normalized
795 statistical significance of differences of observed KNN-averaged expression from a randomly permuted
796 null distribution. Higher score indicates greater spatial asymmetry of the observed expression values. **(b)**
797 Variant (purple) and invariant (green) genes are determined by identifying genes with detection rates
798 lower than logistic regression model prediction evaluated by standard score test assuming one-sided
799 Gaussian distribution ($p < 0.05$). **(c)** Top panel: comparison of RH and Pru (Day 0) cell cycle projection
800 scores for intersecting variant genes in both RH and Pru. Linear regression fit (black solid line) is
801 computed and the coefficient of determination (R^2) is reported on the top left corner. Examples of known
802 ROP genes are shown. Bottom panel: Asexual development (UMAP) and cell cycle (PCA) projection
803 scores for all variant genes in Pru (Day 0 - 7). Examples of genes with high dependence on development
804 but not cell cycle are indicated. **(d)** Violin plots showing distribution of projection scores (top panel) and
805 bar chart showing the fraction of dependent and independent genes (bottom panel) for all variant
806 organelle sets in Pru. We identified 52%, 41%, and 57% independent genes amongst GRA, SRS, and
807 Others (non-parasite-specific) gene sets, respectively.

808



809

810 **Figure 4 - Supplementary Figure 8.** **(a)** Venn diagram showing the intersect and disjoint of variant
811 genes identified in Pru (Day 0) and RH. **(b)** Expression level (\log_2 CPM) of SRS genes with low
812 dependence for both cell cycle and asexual development, with projection scores reported above the
813 panels. The cells are placed in ascending order of gene expression from top of the plot (upper panels) to
814 highlight the cells with highest expression or from the bottom of the plot (lower panels) to show cells with
815 the lowest expression. The two views reveal that cells with high and low expression can be neighbors and
816 have weak correlation with the projection space; hence, these genes show very little dependence of gene
817 expression on either cell cycle or asexual development which together drive the projection.

818

819 **References**

- 820 1. Pappas, G., Roussos, N. & Falagas, M. E. Toxoplasmosis snapshots: Global status of
821 Toxoplasma gondii seroprevalence and implications for pregnancy and congenital
822 toxoplasmosis. *Int. J. Parasitol.* (2009). doi:10.1016/j.ijpara.2009.04.003
- 823 2. Rabaud, C. et al. Extracerebral toxoplasmosis in patients infected with hiv a french
824 national survey. *Med. (United States)* (1994). doi:10.1097/00005792-199411000-00004
- 825 3. Robert-Gangneux, F. et al. Molecular diagnosis of toxoplasmosis in immunocompromised
826 patients: A 3-year multicenter retrospective study. *J. Clin. Microbiol.* (2015).
827 doi:10.1128/JCM.03282-14
- 828 4. Sutterland, A. L. et al. Beyond the association. Toxoplasma gondii in schizophrenia,
829 bipolar disorder, and addiction: Systematic review and meta-analysis. *Acta Psychiatr.
830 Scand.* (2015). doi:10.1111/acps.12423
- 831 5. Vyas, A., Kim, S.-K., Giacomini, N., Boothroyd, J. C. & Sapolsky, R. M. Behavioral
832 changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat
833 odors. *Proc. Natl. Acad. Sci.* (2007). doi:10.1073/pnas.0608310104
- 834 6. Soête, M., Camus, D. & Dubremetz, J. F. Experimental induction of bradyzoite-specific
835 antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro.
836 *Exp. Parasitol.* (1994). doi:10.1006/expr.1994.1039
- 837 7. Jeffers, V., Tampaki, Z., Kim, K. & Sullivan, W. J. A latent ability to persist: differentiation
838 in Toxoplasma gondii. *Cellular and Molecular Life Sciences* (2018). doi:10.1007/s00018-
839 018-2808-x
- 840 8. Buchholz, K. R. et al. Identification of Tissue Cyst Wall Components by Transcriptome
841 Analysis of In Vivo and In Vitro Toxoplasma gondii Bradyzoites . *Eukaryot. Cell* (2011).
842 doi:10.1128/ec.05182-11
- 843 9. Manger, I. D. et al. Expressed Sequence Tag Analysis of the Bradyzoite Stage of
844 Toxoplasma gondii: Identification of Developmentally Regulated Genes. *Infect. Immun.*
845 (1998).
- 846 10. Pittman, K. J., Aliota, M. T. & Knoll, L. J. Dual transcriptional profiling of mice and
847 Toxoplasma gondii during acute and chronic infection. *BMC Genomics* (2014).
848 doi:10.1186/1471-2164-15-806
- 849 11. Yip, K. Our implementation of the SCA method. 1–4 (2007).
- 850 12. Cleary, M. D., Singh, U., Blader, I. J., Brewer, J. L. & Boothroyd, J. C. Toxoplasma gondii
851 Asexual Development: Identification of Developmentally Regulated Genes and Distinct
852 Patterns of Gene Expression . *Eukaryot. Cell* (2002). doi:10.1128/ec.1.3.329-340.2002
- 853 13. Radke, J. R. et al. The transcriptome of Toxoplasma gondii. *BMC Biology* (2005).
854 doi:10.1186/1741-7007-3-26
- 855 14. Chen, L. F. et al. Comparative studies of Toxoplasma gondii transcriptomes: Insights into
856 stage conversion based on gene expression profiling and alternative splicing. *Parasites
857 and Vectors* (2018). doi:10.1186/s13071-018-2983-5
- 858 15. Fouts, A. E. & Boothroyd, J. C. Infection with Toxoplasma gondii bradyzoites has a
859 diminished impact on host transcript levels relative to tachyzoite infection. *Infect. Immun.*
860 (2007). doi:10.1128/IAI.01228-06
- 861 16. Hong, D.-P., Radke, J. B. & White, M. W. Opposing Transcriptional Mechanisms
862 Regulate Toxoplasma Development . *mSphere* (2017). doi:10.1128/msphere.00347-16
- 863 17. White, M. W., Radke, J. R. & Radke, J. B. Toxoplasma development - turn the switch on
864 or off? *Cell. Microbiol.* **16**, 466–472 (2014).
- 865 18. Soete, M., Fortier, B., Camus, D. & Dubremetz, J. F. Toxoplasma gondii: Kinetics of
866 bradyzoite-tachyzoite interconversion in vitro. *Exp. Parasitol.* (1993).
867 doi:10.1006/expr.1993.1031
- 868 19. Watts, E. et al. Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within

920 39. Beraki, T. *et al.* Divergent kinase regulates membrane ultrastructure of the *Toxoplasma*
921 parasitophorous vacuole. *Proc. Natl. Acad. Sci.* (2019). doi:10.1073/pnas.1816161116
922 40. Coffey, M. J. *et al.* Aspartyl Protease 5 Matures Dense Granule Proteins That Reside at
923 the Host-Parasite Interface in *Toxoplasma gondii*. *MBio* (2018). doi:10.1128/mbio.01796-
924 18
925 41. Jones, N. G., Wang, Q. & Sibley, L. D. Secreted protein kinases regulate cyst burden
926 during chronic toxoplasmosis. *Cell. Microbiol.* (2017). doi:10.1111/cmi.12651
927 42. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation
928 and Projection. *J. Open Source Softw.* (2018). doi:10.21105/joss.00861
929 43. Ramakrishnan, C. *et al.* An experimental genetically attenuated live vaccine to prevent
930 transmission of *Toxoplasma gondii* by cats. *Sci. Rep.* (2019). doi:10.1038/s41598-018-
931 37671-8
932 44. Hie, B. L., Bryson, B. & Berger, B. Panoramic stitching of heterogeneous single-cell
933 transcriptomic data. *bioRxiv* (2018). doi:10.1101/371179
934 45. Wolf, F. A. *et al.* PAGA: graph abstraction reconciles clustering with trajectory inference
935 through a topology preserving map of single cells. *Genome Biol.* (2019).
936 doi:10.1186/s13059-019-1663-x
937 46. Lyons, R. E., McLeod, R. & Roberts, C. W. *Toxoplasma gondii* tachyzoite-bradyzoite
938 interconversion. *Trends in Parasitology* (2002). doi:10.1016/S1471-4922(02)02248-1
939 47. Camejo, A. *et al.* Identification of three novel *Toxoplasma gondii* rhoptry proteins. *Int. J.*
940 *Parasitol.* (2014). doi:10.1016/j.ijpara.2013.08.002
941 48. Weiss, L. M., Ma, Y. F., Takvorian, P. M., Tanowitz, H. B. & Wittner, M. Bradyzoite
942 development in *Toxoplasma gondii* and the hsp70 stress response. *Infect. Immun.*
943 (1998).
944 49. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in
945 single-cell transcriptomics. *Nature Reviews Genetics* (2015). doi:10.1038/nrg3833
946 50. Grün, D. & Van Oudenaarden, A. Design and Analysis of Single-Cell Sequencing
947 Experiments. *Cell* (2015). doi:10.1016/j.cell.2015.10.039
948 51. Saeij, J. P. J. *et al.* *Toxoplasma* co-opts host gene expression by injection of a
949 polymorphic kinase homologue. *Nature* **445**, 324–327 (2007).
950 52. Kim, S.-K. & Boothroyd, J. C. Stage-Specific Expression of Surface Antigens by
951 *Toxoplasma gondii* as a Mechanism to Facilitate Parasite Persistence. *J. Immunol.*
952 (2005). doi:10.4049/jimmunol.174.12.8038
953 53. WEISS, L. M. *et al.* A Cell Culture System for Study of the Development of *Toxoplasma*
954 *gondii* Bradyzoites. *J. Eukaryot. Microbiol.* (1995). doi:10.1111/j.1550-
955 7408.1995.tb01556.x
956 54. Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nat. Protoc.*
957 (2014). doi:10.1038/nprot.2014.006
958 55. Tarashansky, A. J., Xue, Y., Quake, S. R. & Wang, B. Self-assembling Manifolds in
959 Single-cell RNA Sequencing Data. *bioRxiv* (2018). doi:10.1101
960