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Abstract (150 words)

Toxoplasma gondii, a protozoan parasite, undergoes a complex and poorly
understood developmental process that is critical for completing its intricate life cycle,
including establishing a chronic infection in its intermediate hosts. Here, we applied
single-cell RNA-sequencing (scRNA-seq) to > 5,000 Toxoplasma at single-parasite
resolution in tachyzoite and bradyzoite stages using three widely studied strains. We
resolve the oscillatory nature of cell cycle progression in an asynchronized population of
the type | strain, RH. Using scRNA-seq, we also construct a comprehensive atlas of
asexual development and cell-cycle in the Type Il strains, Pru and ME49, revealing
hidden heterogeneity in the course of development and transcription factors associated
with each developmental state. Lastly, we combined projection scoring with noise
analysis to show that the expression of a subset of parasite-specific genes, including
ones that encode surface antigens, varies independently of measurement noise, cell
cycle, and asexual development. Overall, our results reveal an unprecedented and
surprising level of heterogeneity in Toxoplasma gondii and provide a molecular resource
for understanding protozoan parasite development.
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Main text (5000 words)

Introduction

Toxoplasma gondii is an intracellular protozoan parasite that is thought to infect
over a quarter of the world’s population?. Like some of its Apicomplexan cousins,
Toxoplasma undergoes a complex developmental transition inside the host. In
intermediate hosts, including humans and virtually all other non-feline warm-blooded
animals, Toxoplasma parasites remain haploid and transition from a replicative, virulent
tachyzoite to an encysted, quasi-dormant bradyzoite. This asexual developmental
transition is tightly coupled to the clinical progression of Toxoplasma infection. Although
acute infection with tachyzoites produces few if any symptoms in healthy human
children and adults, infected individuals, if left untreated, progress to a chronic stage
wherein tachyzoites transition to bradyzoites that can persist for life in neurons and
muscle cells. When infected individuals become immunocompromised, such as in
chemotherapy, HIV infection, or organ transplantation®2 bradyzoites can reactivate to
become tachyzoites, causing severe neurological damage and even death. While no
causal link has been established, a population-wide study has uncovered significant
association of Toxoplasma infection with risk for schizophrenia in chronically infected
humans*. Chronic infection in mice has been observed to induce behavioral changes
such as loss of aversion to cat urine, which is hypothesized to increase the transmission
rate of Toxoplasma to its definitive feline host where sexual reproduction occurs®. As
there are no therapeutic interventions to prevent or clear cysts in infected individuals,
understanding how Toxoplasma transitions through its life stages remains of critical
importance.

The development of in vitro methods to induce Toxoplasma differentiation have
facilitated investigation of several aspects of chronic infection, including transition of
tachyzoites to bradyzoites®’. Bulk transcriptomic analyses of Toxoplasma gondii at
distinct asexual stages reveal genetic modules that are expressed in each stage®1°,
including AP2 transcription factors that are thought to play a role in differentiation6:17;
however, transitioning parasites convert to the bradyzoite stage asynchronously and
display a high degree of heterogeneity along the developmental pathway and in gene
expression!®1®. Furthermore, parasites within the same tissue cysts have been shown
to display heterogeneity in the expression of bradyzoite marker proteins?°. The transition
of tachyzoites to the bradyzoite stage results in an overwhelming majority of mature
bradyzoites in the G1 phase of the cell cycle that divide slowly, if at all**?2. Furthermore,
tachyzoites exhibit slower growth kinetics immediately prior to the bradyzoite
transition?1-23, This suggests that parasites exit the cell cycle to differentiate into
bradyzoites, a pattern consistent with developmental processes in several other
eukaryotic organisms?425, Dissecting these cell cycle aspects of stage conversion
requires a more detailed analysis than has been possible with bulk measurement of
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72  tachyzoite or bradyzoite populations, or with the use of genetically modified parasites

73 coupled with chemical synchronization of cell cycle progression?326-28, This is because

74  the latter approaches require large quantities of synchronized parasites and can

75  potentially introduce artificial perturbations. Furthermore, bulk measurement fails to

76  distinguish parasite-to-parasite variation that is independent of cell cycle or known

77  developmental processes, potentially missing the phenotypic diversity intrinsic to a

78  population of cells.

79 Single-cell RNA sequencing (scRNA-seq) offers a powerful and unbiased

80 approach to reveal the underlying heterogeneity in an asynchronous population of cells.

81 Droplet and FACS-based approaches have already been applied towards multicellular

82  parasites such as Schistosoma to reveal developmental changes within different

83 hosts?. Recently, sScRNA-seq has revealed a surprising degree of heterogeneity in

84  another apicomplexan parasite, Plasmodium3°-32, Analyses derived from these single-

85 parasite measurements uncovered rare and critical transition events in parasite

86 development that were undetectable in bulk measurements. Combined with novel

87  analytical development and increases in measurement throughput, sScCRNA-seq is

88 becoming a widely adopted tool for resolving cellular changes in a quantitative and

89  system-wide fashion.

90 Here, we performed scRNA-seq to reconstruct transcriptional dynamics of

91 asynchronous Toxoplasma parasites in the course of cell cycle and asexual

92 development in vitro. We benchmarked the purity of isolation, as well as sensitivity and

93 accuracy of our measurements, demonstrating that this experimental approach can

94 isolate single parasites to resolve the transcriptional variation of biological processes.

95  We show that cell cycle status can be accurately inferred from the transcriptional

96 signatures of an asynchronous population of Type | (RH) tachyzoites at single-parasite

97 resolution. Using Type Il strains (Pru and ME49) switching to bradyzoites under alkaline

98 induction, we resolved a comprehensive single-parasite atlas of asexual development

99 together with cell cycle state annotation, identifying transcription factors that are
100 associated with each developmental state and revealing previously hidden
101 heterogeneity in the parasite. Furthermore, we identify a class of highly variable genes,
102 including ones that encode surface antigens and dense granule effectors, which exhibit
103 parasite-to-parasite variability that cannot be explained by either measurement noise,
104 cell cycle, or asexual development. Our combined results suggest that this prevalent
105 protozoan parasite may exhibit much greater heterogeneity than previously appreciated.
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106 Results

107 Technical validation of single-parasite sorting and sequencing

108 There are more than a dozen approaches available for single-cell isolation and
109 transcriptome amplification. Based on benchmark comparisons, Smart-seq2 generally
110 has higher sensitivity than competing droplet-based approaches3334. We reasoned that
111  sensitive measurement is crucial in our study given that single Toxoplasma gondii

112 parasites are at least 50-fold smaller in volume than a typical mammalian cell, and thus
113 the average parasite gene is likely expressed with much lower copy number per cell
114  than a typical mammalian gene. For our initial studies, we used the common Type | lab
115 strain of Toxoplasma, RH, grown in vitro in human foreskin fibroblasts (HFFs). Following
116  such growth, individual tachyzoites were released by passage through a narrow gauge
117 needle and then purified by fluorescence activated cell sorting (FACS) into 384-well

118 plates. We then synthesized, amplified, and barcoded cDNA using Smart-seq2 and

119 lllumina Nextera protocols. Reaction in 384-well plates effectively reduced the reagent
120  cost by four-fold compared to the 96-well format. The sequenced reads were

121  bioinformatically deconvolved and grouped into individual parasites for analysis using
122  modified bcl2fastq and custom python scripts (Materials and methods). A schematic to
123  illustrate our experimental workflow is shown in Figure 1.

124 To ensure that our workflow efficiently captures single Toxoplasma parasites, we
125 mixed equal numbers of two transgenic lines of RH, one expressing GFP and the other
126  expressing mCherry, and sorted individual parasites into a 384 well plate based on the
127  presence of either green or red signals without a filter for those that were both red and
128 green. After Smart-seg2 amplification, we quantified the expression of GFP and

129 mCherry mRNASs using quantitative polymerase chain reaction (QPCR). Across all 301
130 wells that we measured, we observed the presence of both GFP and mCherry mRNA in
131  only one well, indicating that the rate of doublet events is below 1% (Figure 1 -

132  Supplementary Figure 1a). To address the possibility that the reduced reagent volume
133 in the 384-well format could potentially saturate the reaction chemistry and thus limit
134  quantification range, we sorted varying numbers of RH and quantified with gPCR the
135 mRNA of a gene encoding the abundantly expressed surface protein, SAG1 (Figure 1 -
136 Supplementary Figure 1b). The expression values for single, eight, and fifty RH fall in
137  distinct distributions without signs of saturation, indicating that the assay is capable of
138 quantitative measurement at the single Toxoplasma level. We then proceeded to sort
139 parasites based on live/dead staining and sequence 729 RH strain single Toxoplasma
140 parasites from asynchronous populations grown under tachyzoite conditions. For Pru
141 and ME49 strains, we also collected parasites at several time points post alkaline

142  treatment to follow their expression profiles during in vitro transition to bradyzoites

143 (Materials and methods), yielding 2655 Pru and 1828 ME49 single parasites. RH

144  reads were aligned to the GTL1 strain genome, which is the most complete reference for
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145  Type | parasites, while Pru and ME49 were aligned to the ME49 strain Type Il genome
146  reference. Because many genes encoding Toxoplasma secretion factors and surface
147  proteins are evolutionary products of gene duplication events3®, we expected high

148 sequence similarity amongst a substantial portion of the parasite genes. Thus, we

149  modified our gene counting pipeline to account for duplicated genes (Materials and
150 methods). A comparison of counting methods does not reveal significant differences in
151 the observed counts (Figure 1 - Supplementary Figure 1c). Further analysis reveals
152  that our modified pipeline recovered the detection of a few more parasite genes than
153  default parameters (Figure 1 - Supplementary Figure 1d).

154 To ensure that poorly amplified or sequenced parasites did not confound our
155 downstream analysis, we filtered samples based on several quality metrics including
156  percent reads mapping to ERCC spike-in sequences, number of genes detected, and
157 sequencing depth (Materials and methods; Figure 1 - Supplementary Figure 2a). On
158 average, each sequenced parasite contains 30-50% reads that mapped to Toxoplasma
159 genes encoding proteins (top panel in Figure 1 - Supplementary Figure 2b). The

160 majority of the unmapped reads are from Toxoplasma'’s 28s ribosomal RNA. The

161  relatively high rate of rRNA contamination was also observed in single-parasite RNA
162  sequencing of Plasmodium3. We suspect this occurred due to non-specific priming in
163  the low mRNA content environment of protozoan cells. We normalized for sequencing
164  depth across cells by dividing each read count by the median of read sum to yield

165 “count per median” (CPM). After filtering ERCC spike-in and rRNA genes, we detected
166 on average 996, 1247, and 1067 genes per parasite with greater than 2 CPM

167 (Materials and methods) in the RH, Pru, and ME49 datasets, respectively (bottom

168 panel in Figure 1 - Supplementary Figure 2b). Characterization of our measurement
169  sensitivity based on logistic regression modeling of ERCC spike-in standards (Materials
170  and methods)3® reveals a 50% detection rate of 10.5, 11.5, and 21.1 molecules for RH,
171  Pru, and ME49 datasets, respectively (top panels in Figure 1 - Supplementary Figure
172 2c). The sensitivity of our 384-well Smart-seq2 measurement is comparable to the

173  previously reported range for the 96-well format3*. As expected from our gPCR titration
174  experiment, SCRNA-seq measurement of gene expression is quantitative at single

175 parasite resolution based on ERCC standards. We determined that the linear dynamic
176  range of our scRNA-seq measurement spans over three orders of magnitude (bottom
177 panelsin Figure 1 - Supplementary Figure 2c). Taken together, we demonstrate a
178 scalable and cost-effective approach to measure the transcriptomic changes of

179 individual parasites with high sensitivity and accuracy.

180 Cell cycle landscape of asynchronous Toxoplasma

181 Previous work posited a potential link between bradyzoite development and cell
182 cycle, which poses a significant challenge to the bioinformatic analysis of either
183  process?!. To characterize cell cycling changes without confounding contributions from
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184 developmental processes, we first analyzed an asynchronous population of Type | RH
185  strain parasites grown under tachyzoite conditions; this extensively passaged lab strain
186 is known to have little propensity to switch to bradyzoites under such conditions®

187 (Materials and methods). After filtering out genes whose expression levels did not vary
188  significantly between individual parasites, we projected the data with principal

189 component analysis (PCA) (Materials and methods). Interestingly, the first two

190 principal components (PCs) reveal a circular trajectory that coincides with relative DNA
191 content, determined using a cell permeable DNA content stain (top panel in Figure 2a).
192  Unsupervised neighborhood clustering identified five distinct clusters of parasites based
193  on their transcriptional profiles (middle panel in Figure 2a) (Materials and methods).
194  To infer transcriptional dynamics, we applied stochastic RNA velocity algorithm that

195 relies on the ratio of incompletely spliced transcripts to their fully spliced form in order to
196  assess the directionality of transcriptional changes3”:28. The vector field of RNA velocity
197 indicates a net “counter-clockwise” flow of transcriptional changes (bottom panel in

198 Figure 2a) (Materials and methods). We assigned cell cycle phase to the clusters

199 based primarily on change in DNA content (Figure 2 - Supplementary Figure 3a) but
200 also considering previous bulk transcriptomic characterization?® (Figure 2 -

201  Supplementary Figure 3b). Unsupervised clustering identified two distinct clusters in
202  G1 state, which we have designated as Gia and Gib. We found a list of differentially
203  expressed genes between the two Gai clusters. The Gia cluster is highly enriched for the
204  expression of metabolic genes such as phenylalanine hydroxylase (TGGT1_411100)
205 and pyrroline-5-carboxylate reductase (TGGT1_236070), as well as invasion-related
206  secreted factors such as MIC2 (TGGT1_201780), MIC3 (TGGT1_319560), and MIC11
207 (TGGT1_204530). On the other hand, Gib cluster is enriched for the expression of 3-
208 ketoacyl reductase (TGGT1_217740) and cytidine and deoxycytidylate deaminase

209 (TGGT1_200430), as well as numerous uncharacterized proteins (Supplementary

210 table 1). The relative abundance of Gia, Gib, S, M, and C states were determined to be
211  18%, 32%, 28%, 15%, and 7%, respectively. Without chemical synchronization, the

212  correlation between the scRNA-seq data of asynchronous parasites and previously

213  published bulk transcriptomic measurement suggests strong agreement in cluster

214  assignment and cell cycle state identification (Figure 2 - Supplementary Figure 3b).
215  This highlights a key advantage of sScRNA-seq, as it enables identification of cell cycle
216  status of a parasite without reliance on chemical induction, which may lead to unnatural
217  cellular behavior.

218 To verify the cyclical nature of gene expression through the lytic cycle, we

219 reconstructed a biological pseudotime of RH using Monocle 2 (Materials and

220 methods). The results shown a clear oscillatory expression pattern for the variably

221  expressed genes along the pseudotime axis (Figure 2b). To further characterize cell
222  cycle expression patterns, we clustered genes based on pseudotime interpolation and
223  hierarchical clustering (Materials and methods). Some of the key organelles in
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224  tachyzoites are known to be made at different times in the cell cycle?®. To confirm and
225 refine this finding, we calculated the mean expression values for each set of organelle-
226  specific genes based on their annotation in ToxoDB (Supplementary Table 2). This
227  showed the expected, strong oscillation with pseudotime (bottom panel in Figure 2 -
228 Supplementary Figure 3c), which also strongly correlates with the oscillation of DNA
229 and total mMRNA content (top panels in Figure 2 - Supplementary Figure 3c). On the
230 other hand, we also observed instances where a given gene’s expression was

231 discordant to the dominant trend of its nominal organelle set (arrows in Figure 2 -

232  Supplementary Figure 3d). For example, 63.5% of genes annotated as rhoptry (ROP)
233  or rhoptry neck (RON) are assigned pseudotime cluster 3, while the remaining 36.5%
234  rhoptry genes are assigned pseudotime clusters 1 or 2 (Figure 2 - Supplementary
235 Figure 3e). Specifically, genes annotated as ROP33 and ROP34, based on their

236  homology to genes encoding known rhoptry proteins, are assigned to cluster 2 instead
237  of cluster 3 (left panel in Figure 2 - Supplementary Figure 3f). Recent reports have
238 experimentally determined these two to be non rhoptry-localizing proteins, thus

239  explaining their discordance?®. Through analysis of pseudotime clustering, we also

240 identified genes not annotated as ROPs within the ROP-dominated cluster 3, such as
241 TGGT1_218270 and TGGT1_230350, that have recently been shown to encode bona
242  fide rhoptry and rhoptry neck proteins, now designated as ROP48 and ROP11,

243  respectively (left panel in Figure 2 - Supplementary Figure 3f). As another example,
244  IMC2a peaks in expression level in Gi, while the majority of inner-membrane complex
245 (IMC) genes are expressed towards the M/C phase of the cell cycle (right panel in

246  Figure 2 - Supplementary Figure 3f). A recent report has proposed reannotation of
247 IMC2a as a dense granule (GRA) protein (GRA44) based on subcellular localization,
248  which is consistent with our unsupervised group assignment of IMC2a as falling in the
249  same cluster 1 where GRA genes dominate. A list of 8590 RH genes with their

250 corresponding pseudotime clustering assignment is provided (Supplementary Table
251  3). We observe high discordance of pseudotime expression for several genes in each
252 annotated organelle sets, suggesting that the current Toxoplasma annotation may need
253 significant revision. Our scRNA-seq data provide an important resource to help identify
254 mis-annotated genes and infer putative functions of uncharacterized proteins.

255 Hidden heterogeneity in asexually developing Toxoplasma

256 Toxoplasma has one of the most complicated developmental programs of any
257  single-celled organism; however, it is unknown how synchronized the transition is

258 between developmental states. To address this, we assessed the inherent

259  heterogeneity within asexually developing Pru, a type Il strain that is capable of forming
260 tissue cysts in vitro upon growth in alkaline conditions'®4!, We applied scRNA-seq to
261 measure and analyze Pru parasites grown in HFFs as tachyzoites (“‘uninduced”) and
262  after inducing the switch to bradyzoites by growth in alkaline media for 3, 5, and 7 days.
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263  Projection of the first two PCs of uninduced Pru tachyzoites (Day 0) reveals the

264  expected circular projection (Figure 3 - Supplementary Figure 4a) presumably

265 reflecting cell cycle progression as seen for the RH tachyzoites, described above. To
266  validate this, we developed a random forest classifier model based on our cell cycle
267 assignment in RH (Materials and methods). Comparable to what we observed in RH,
268  cell cycle prediction reveals that the uninduced population of Pru is composed of 28%,
269  41%, 21%, 7%, and 3% parasites in Gi1a, Gib, S, M, and C states, respectively.

270  Consistent with previous observation?3, our data show most induced Pru parasites (Day
271 3 -7) are in the G1 state with a predominance of Gib (Figure 3 - Supplementary

272  Figure 4b).

273 To identify transcriptomic changes associated with the tachyzoite-bradyzoite
274  transition, we next projected data from both induced and uninduced Pru parasites onto
275 two dimensions using UMAP, a nonlinear dimensionality reduction method (Materials
276  and methods)*2. Unsupervised clustering revealed six distinct clusters of parasites,
277  which we label P1-6 (Figure 3a). Cluster formations partially correlate with treatment
278  time points and cell cycle states (Figure 3b; Figure 3 - Supplementary Figure 4c),
279  suggesting that the asexual differentiation program may overlap with cell cycle

280 regulation in Toxoplasma, as proposed previously?l. We stratified the datasets by days
281  post alkaline induction (dpi) and observed elevated expression of all bradyzoite marker
282 genes including SRS44 (CST1) and BAG1 with a concomitant reduction in expression
283 of SRS29B (SAG1), a tachyzoite-specific surface marker gene (Figure 3 -

284  Supplementary Figure 5). The abundance of SAG1* parasites (72%) in the induced
285 population suggests that depletion of this mMRNA may be relatively slow and we are
286 measuring SAG1 transcripts made when the parasites were still tachyzoites or that the
287  asexual transition induced by alkaline treatment is highly asynchronous. Interestingly,
288 RNA velocity analysis suggests that P3 may be a fate decision point as the trajectory
289 trifurcates into either P4 (cell cycle), P1, or P6 as evident by the net transcriptional flow
290 (compare Figure 3ato right panel in Figure 3b).

291 To determine the gene modules specific to a given cluster, we conducted

292 differential gene expression for each cluster (Figure 3c and Supplementary Table 4).
293  P1 cluster is correlated with the expression of bradyzoite-specific genes while P2-5 are
294  correlated with the expression of tachyzoite-specific or cell cycle-associated genes

295 (Figure 3d). In our scRNA-seq data, we also observe a small portion of BAG1*

296 bradyzoites (7.1%) annotated as either S, M, or C states, indicating that they are

297 replicating (Figure 3 - Supplementary Figure 4d). Our data supports the notion that
298  bradyzoites can undergo cell cycle progression, as posited by a previous report?°.

299 Interestingly, we observe a group of AP2 transcription factors that are differentially

300 expressed across different clusters, some of which are implicated in Toxoplasma

301 development (Figure 3e). In particular, we identify AP2Ib-1, AP21X-1, AP2IX-6, and
302 AP2VI-2 as over-expressed in P1, suggesting their potential roles in the regulation of
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303 bradyzoite transition, while AP2-domain protein (TGME49_ 215895), AP21X-9, AP2X-8,
304 AP2Vlla-6, AP2XI-1, AP2IX-3, and AP2VIII-7 are highly expressed in P6, hinting at their
305 possible roles in defining this distinct cluster of parasites.

306 The most highly expressed genes in P6 include genes enriched in P2 as well as
307 bradyzoite-specific genes found in P1 (Figure 3c). To identify genes that are specifically
308 expressed in P6, we used Wilcoxon’s test (Figure 3 - Supplementary Figure 6a)

309 (Materials and methods) between P6 and P2 or P1. Comparison of our data to

310 previous bulk transcriptomic measurement in tachyzoites, tissue cyst, or isolates at the
311 beginning or the end of sexual cycle showed no specific enrichment in known

312 developmental stages (Figure 3 - Supplementary Figure 6b)*3. Instead, we show that
313 based on their expression, P6 forms a distinct sub-population of parasites which

314  suggests that alkaline induced Toxoplasma may be more heterogeneous than

315 previously thought. Thus, sScRNA-seq resolves a transcriptomic landscape of asexual
316 development and suggests the existence of otherwise hidden states.

317 To determine the reproducibility of the phenomena we observed in the

318 differentiating Pru strain parasites, we repeated the analysis with another widely used
319 Type Il strain, ME49, examining 1828 single ME49 parasites exposed to alkaline

320 conditions to induce switching to bradyzoites. Data from the two experiments were

321 computationally aligned using Scanorama to remove technical batch effects while

322  retaining sample-specific differences**. Unsupervised clustering revealed 5 distinct

323 clusters in ME49 which share significant overlap in expression patterns with Pru (Figure
324 3 - Supplementary Figure 7a). Matrix correlation of batch-corrected expression across
325 the two strains demonstrate analogous mapping for most, but not all cluster identities
326 (Figure 3 - Supplementary Figure 7b). To simplify the visualization and comparison
327 across the two datasets, we next applied Partition-Based Graph Abstraction (PAGA) to
328 present clusters of cells as nodes with connectivity based on similarity of the

329 transcriptional profiles between clusters®. In particular, a side-by-side comparison of
330 expression of tachyzoite, bradyzoite, and sexual stage specific genes reveals some key
331 similarities and dissimilarities (Figure 3 - Supplementary Figure 7c). Clusters P1 and
332 M1 are both enriched for the expression of bradyzoite marker genes. Clusters M4-5 and
333 P4-5 are both predicted to be S/M/C phases of the cell cycle. While most ME49 clusters
334  express tachyzoite marker genes, enolase-2 and LDH-1, which have previously been
335 described as relatively tachyzoite-specific*®, are expressed at much lower level than in
336  Pru. Curiously, P6-specific genes (green panels in Figure 3 - Supplementary Figure
337 7c) are not enriched in any cluster in ME49, suggesting a lack of corresponding P6

338 cluster in ME49. Such differences may not be surprising, however, as Pru and ME49
339 have entirely distinct passage histories, although both were grown in our laboratory

340 exclusively in vitro as tachyzoites on HFFs over at least 2 years prior to the experiments
341 described here. Because measurement sensitivity in ME49 (21 molecules) was lower
342  than that of Pru (11 molecules) which reduces the ability to differentiate technical
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dropouts from differentially expressed genes, we focused further analysis on the Pru
dataset.

Transcriptional variation between parasites independent of measurement noise,
cell cycle, or asexual development

A unique advantage of scRNA-seq over bulk RNA-seq is its ability to measure
cell-to-cell variation that is stochastic in nature or independent of known biological
processes. We have developed a computational approach to identify genes with such
variation. While our scRNA-seq is sensitive, one needs to measure the level of noise in
order to determine true, intrinsic variability of parasite expression program. Noise levels
can be estimated using the ERCC synthetic RNA spike-ins that were added in differing
amounts to each sample and then fitting a logistic regression to model the expected
detection rate, as shown in Figure 1 - Supplementary Figure 2c. This allowed us to
determine whether the expression level of a given variable gene in Toxoplasma is
above the detection limit and thus whether its variation is readily explained by
measurement noise. Next, for the variable genes that are above detection limit, we
asked if their variability can be explained by either cell cycle or developmental state, the
two biological variables that, as expected, show a major influence on gene expression
in our system. To do this, we perform “projection scoring”, in which we use a
bootstrapped K-nearest neighbor (KNN) approach that quantifies the dependence of a
gene’s expression variability on the PCA and UMAP projections. Genes that vary as a
result of cell cycle or development are expected to show similar expression levels in
neighboring cells in the projection and different expression levels in cells that are widely
separated (Figure 4a).

Applying this approach to our Pru data set, we first see that, as expected for an
asynchronous population at different cell cycle and developmental states, mRNA for
many genes has a low detection rate even though those genes have a mean
abundance across all cells that is above our threshold for detection (Figure 4b)
(Materials and methods). Comparison between RH and Pru demonstrates congruence
of many “variant” genes: 213 shared genes are more variable than the ERCC spike-ins
in both datasets (Figure 4 - Supplementary Figure 8a). Some degree of disagreement
between the two datasets is expected as the Pru data include differentiating parasites
while the RH data do not. Starting from the list of “variant” genes that we identified in
Pru, projection-scoring quantified the dependence of each gene on the PCA
embedding, reflecting cell cycle progression, and UMAP embedding, reflecting asexual
development and cell cycle progression. Comparison of projection scores between RH
and Pru shows consistency in cell cycle dependence, revealing that while the variance
of some genes (e.g., ROP genes) is readily explained by cell cycle, a large fraction of
variable genes shows no correlation with cell cycle (upper right and lower left areas of
top panel in Figure 4c, respectively). As expected from our Pru data, gene dependence
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382 on PCA and UMAP projections are highly correlated (bottom panel in Figure 4c);

383  however, projection scoring identifies a subset of genes whose variation depends

384  exclusively on asexual development, but not on cell cycle, including ones that we

385 identified previously as enriched in bradyzoites (Supplementary Table 4). This shows
386 that projection scoring can be used to discover genes that may differ in regulation

387 across different dimensions of intrinsic biological variability.

388 To determine the variation dependence on cell cycle and asexual development in
389 Pru, we quantified projection scores for organelle gene sets of “variant” genes and

390 ERCC spike-ins (top panel in Figure 4d). The results show a wide distribution of

391 dependence across different organelle sets in the biological data. As expected, ERCC
392  spike-ins, which are randomly distributed between samples, exhibited low projection
393 scores on both cell cycle and asexual development projections. We took the upper end
394 of ERCC score (~0.35) as a threshold to further classify each variant gene. For variant
395 genes with scores above the threshold in either asexual development or cell cycle

396 dependence, they are classified as “Dependent”, otherwise they are considered

397 “Independent” of either process. Expression variability of most rhoptry (ROP),

398 microneme (MIC), and inner-membrane complex (IMC) proteins show high dependence
399 on cell cycle and/or asexual development (bottom panel in Figure 4d). On the other
400 hand, >40% of SRS surface antigens, GRAs, and other non-parasite-specific or

401 unannotated genes have low dependence score on both of these two biological

402 processes. We show several SRS surface antigens as examples of genes whose

403  expression shows low cell cycle and asexual development dependence in Pru data

404  (Figure 4 - Supplementary 8b), highlighting the variation of their expression between
405 neighboring cells on the projection. Thus, our analysis reveals that a substantial fraction
406  of variable genes contributes to previously undetermined parasite-to-parasite variation
407  that would not be detectable in bulk transcriptomic analyses.

408

409
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410 Discussion

411 We describe here single-cell RNA sequencing (scRNA-seq) for measurement of
412  mRNA transcripts from individual Toxoplasma gondii, an obligate intracellular protozoan
413  parasite. The results show that scRNA-seq can reveal intrinsic biological variation within
414 an asynchronous population of parasites. Two types of biological variation could be

415 seen in our asynchronous populations: cell cycle progression and asexual

416 differentiation. We found the existence of two distinct 1N transcriptional states in cycling
417  parasites which we call Gia and Gib, concurring with what was previously reported in
418 Toxoplasma?®. Interestingly, bradyzoites are found predominantly in Gib but not in G:1a
419 state, suggesting the possibility of a putative checkpoint between these two phases that
420 may also play a role in regulating the developmental transition. Our data further shows a
421  small fraction of bradyzoites to be cycling which supports the hypothesis that

422  bradyzoites can in fact divide?2. Our results showed a very strong correlation between
423  cell cycle and expression of genes encoding proteins in various subcellular organelles,
424 as noted previously using synchronized bulk populations?®. The results here, however,
425 show an even more dramatic and extreme dependence on cell cycle, allowing

426  refinement of approaches that use such timing to predict a given protein’s ultimate

427  organellar destination in the cell*’. They also extend such analyses to the Type Il

428  strains, Pru and ME49, which have not previously been examined in this way.

429 In addition to the above, we observed some striking and unexpected

430 heterogeneity within asexually developing parasites. We discovered a cluster of cells,
431 labeled P6, in the differentiating Pru parasites that is distinct from the rest of the

432  alkaline-induced population of cells. Constituting 21% of the alkaline-induced

433 population, the P6 cluster is marked by a set of genes that were previously detected by
434  bulk transcriptomics in bradyzoites of tissue cysts*3. Remarkably, while most of these
435 genes have unknown functions, we identified an enriched gene with predicted AP2

436  domain, which may contribute to the unique expression pattern observed in this group
437  of parasites. We found that P6 expression profile is intermediate to P2 tachyzoites and
438 P1 bradyzoite clusters. Interestingly, the genes enriched in P6 overlap with a subset of
439  canonical bradyzoite marker genes including LDH2 and SRS35A, albeit expressed at a
440 lower level than in P1 (Figure 3c). In addition, we observed a gradual increase in the
441  proportion of P6 cells as induction proceeded from day 3 to day 7. Taken together, one
442  possible explanation for the emergence of P6 cluster is a reverted conversion from

443  bradyzoites to tachyzoites in which alkaline stress fails to maintain the bradyzoite state.
444  Our data and previous reports are consistent with this interpretation“®. On the other

445  hand, we cannot rule out the possibility that this cluster is developmentally “confused”
446 by the presence of a general stressor such as alkaline. RNA velocity analysis in the Pru
447  data does not reveal a strong transcriptional flow between P1 and P6. Rather, P6

448  appears to transcriptionally transition from P2 and P3 tachyzoites. Thus, the P1

449  bradyzoites and P6 parasites are either distinct and separate developmental
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450 trajectories, or the transition from P1 to P6 is a rapid and rare event. Regardless, our
451  results reflect a surprising diversity in an asexually transitioning population of

452  Toxoplasma. Future measurement of single parasites isolated from in vivo sources
453  coupled with genetic manipulation of the parasite genome, will further clarify the

454  causality and relevance of developmental states that we identified here.

455 To address how much cell-to-cell variability there is between parasites of similar
456 developmental states, we developed a novel approach based on random permutation
457  and K-nearest neighbor (KNN) averaging to quantify the association of expression

458  variation to known biological processes, like cell cycle and development, that underlie
459  PCA and UMAP projections of scRNA-seq. Combined with the analysis of ERCC

460  synthetic spike-ins, this allowed us to tease out expression variation in single parasites
461 that results from one of the biological processes as well as measurement noise.

462  Previous reports have noted potential issues with ERCC spike-ins in estimating

463 technical variations of endogenous mRNAs, potentially due to differences in poly-A tail
464  lengths and the lack of 5’ cap3*+49°0, Qur results show that many low abundant

465 endogenous parasite genes have significantly higher detection rate than would be

466  predicted by ERCC with similar abundance, suggesting that ERCC spike-ins provide, as
467  previously reported, a conservative underestimate of the detection sensitivity of

468 endogenous genes® . Intriguingly, the resulting analysis showed that this single-celled
469  organism exhibits unexplained variation in the expression of several genes. Whether
470 such a pattern of variation may define novel cellular subtypes will require further

471  experimentation to probe the stability and stochasticity of the expression of these

472  genes. Interestingly, amongst these projection-independent genes, we found the

473  expression of several SRS surface antigen genes, which are known to play a role in
474  host attachment, and dense granule genes, which are known to play a role in

475  intracellular interaction with host, to be highly variable between cells of similar

476  developmental states. We also find other non-parasite-specific genes, including genes
477  encoding metabolic enzymes, to be highly projection-independent. While we cannot
478  exclude the possibility that variation in these cells is due to stochastic bursts of

479  transcription from these genes, especially given the small size of Toxoplasma, it is

480 possible that such variability has biological meaning. For example, it could expand the
481 mode of interactions with the host and be the result of strong selective pressure to

482  maximize invasion efficiency and transmission in a variety of different host species of
483  cell types. Maintaining a diverse phenotypic diversity can be beneficial in ensuring at
484  least some members will be able to propagate in whatever the host environment

485 encountered. The biological implication of single-celled parasite variation and its

486 relevance to in vivo infection will be an important area of investigation for future studies.
487  We see the application of single-cell co-transcriptomic sequencing of both the host cell
488 and the parasite as a potentially powerful approach to further deconstruct the

489 complexity of parasite-host interactions.
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490 Materials and Methods

491 Cell and Parasite Culture

492 All Toxoplasma gondii strains were maintained by serial passage in human

493  foreskin fibroblasts (HFFs) cultured at 37 C in 5% CO:2 in complete Dulbeco’s Modified
494  Eagle Medium (cDMEM) supplemented with 10% heat-inactivated fetal bovine serum
495 (FBS), 2 mM L-glutamine, 100 U/ml penicillin, and 100 ug/ml streptomycin. T. gondii
496  strains used in this study were RH, Pru GFP*?, and ME49-GFP-luc®.

497

498 In vitro Bradyzoite Switch Protocol

499 Differentiation to bradyzoite was induced by growth under low-serum, alkaline
500 conditions in ambient (low) CO: as previously described®. Briefly, confluent monolayers
501 of HFFs were infected with tachyzoites at a multiplicity of infection (MOI) of 0.025 in
502 RPMI 1640 medium (Invitrogen) lacking sodium bicarbonate and with 1% FBS, 10

503 mg/ml HEPES, 100 U/ml penicillin, and 100 g/ml streptomycin at pH 8.2. The infected
504 HFFs were cultured at 37°C without supplemented COx.

505
506 Preparation of Parasites for Fluorescence Activated Cell Sorting (FACS)
507 HFF monolayers infected with parasites overnight were scraped, and the

508 detached host cells were lysed by passing them through a 25-gauge needle three times
509 or a 27-gauge needle six times. The released parasites were spun down at 800 rpm for
510 5 minutes to pellet out host cell debris, and the supernatant was spun down at 1500 rpm
511 for 5 minutes to pellet the parasites. The parasites were then resuspended in 500 pL of
512 FACS buffer (1x PBS supplemented with 2% FBS, 50 ug/ml DNAse |, and 5 mM

513  MgCl2*6H20), passed through both a 5 um filter and a filter cap into FACS tubes, and
514  stored on wet ice until it was time to sort. In samples stained for DNA content, the

515 parasites were resuspended in 500 pL of FACS buffer plus 1.5 pL of Vybrant DyeCycle
516  Violet (from ThermoFisher, catalog number V35003) and incubated at 37 C and 5%

517  COz2 for 30 minutes.

518 The parasites were also stained with either propidium iodide (Pl), Sytox Green,
519 or the live/dead fixable blue dead cell stain kit (catalog number L34962) prior to sorting
520 in order to distinguish live cells from dead cells. To stain with PI, 10 pL of 0.5 mg/ml PI
521 was added to every 500 pL of parasite suspension in FACS buffer, and the parasites
522  were incubated covered on ice for at least 15 minutes. To stain with Sytox Green, 1

523 drop of Sytox Green per ml was added to the parasite suspension in FACS buffer, and
524  the parasites were incubated at room temperature for at least 15 minutes. To stain with
525 the live/dead fixable blue dead cell stain kit, 1.5 pL of the kit’s viability dye was added to
526  every 500 pL of parasites along with the secondary antibody, and parasites were

527 washed and resuspended in FACS buffer as usual.

528

529
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530 FACS of parasites

531 Eight mL of lysis buffer was prepared by mixing together: 5.888 mL of water, 160
532  pL recombinant RNase inhibitor (Takara Clonetech), 1.6 mL of 10 mM dNTP

533 (ThermoFisher), 160 pL of 100 uM oligo-dT (iDT; see attached

534  “supplementary filel oligos.csv” for oligos), 1:600,000 diluted ERCC spike-in

535 (ThermoFisher), and 32 pL of 10% Triton X-100. All reagents are declared RNase free.
536  Lysis plates were prepared by dispensing 0.4 uL of lysis buffer into each well of a 384
537  well hard-shell low profile PCR plate (Bio-rad) using liquid handler Mantis (Formulatrix).
538 Single parasites were sorted using the Stanford FACS Facility’'s SONY SH800s sorter
539 or BD Influx Special Order sorter into the 384-well plates loaded with lysis buffer. Single
540 color and colorless controls were used for compensation and adjustment of channel
541 voltages. The data were collected with FACSDiva software and analyzed with FlowJo
542  software. RH parasites were index sorted with fluorescence signal of cell permeable
543 DNA stain, DyeCycle Violet.

544
545  Single-Toxoplasma cDNA synthesis, library preparation, and sequencing
546 Smart-seq2 protocol was carried out as previously described>* using liquid

547  handlers Mantis and Mosquito (TTP Labtech) using a 2 pL total volume. We conducted
548 19 rounds of cDNA pre-amplification after reverse transcription. Each well is then diluted
549  with 1to 4 vivin RNAse free elution buffer (QlAgen) to a total volume of 8 pL. Then, we
550 conducted library preparation with in-house Tn5 tagmentation using custom cell

551 barcode and submitted for 2 x 150 bp paired-end sequencing on NovaSeq 6000 at the
552  Chan Zuckerberg Biohub Genomics core.

553
554  Quantitative polymerase chain reaction (qPCR) for parasite benchmark
555 To quantify the purity of single parasite sort and to ensure the cDNA synthesis

556  reaction was not saturated, GFP, mCherry, or SAG1 mRNA expression were measured
557  using commercial gPCR mastermix, SsoAdvanced™ Universal SYBR Green mastermix
558 (Bio-rad). Briefly, 0.1 uL of diluted cDNA was added in a total of 2.1 pL reaction volume
559 per well on 384 well plate with gPCR mastermix and 200 nM PCR primers. The reaction
560 was incubated on a Bio-rad qPCR thermal cycler with the following programs: 5 minutes
561 of 95°C, 45 cycles of 95°C for 5 seconds, 56°C for 1 minute, and imaging. The primer
562 sequences are provided in “supplementary_filel oligos.csv”.

563
564  Sequencing alignment
565 BCL output files from sequencing were converted into gzip compressed FastQs

566 via a modified bcl2fastqg demultiplexer which is designed to handle the higher

567 throughput per sequencing run. To generate genome references with spike-in

568 sequences, we concatenated ME49 or RH genome references (version 36 on ToxoDB)
569 with ERCC sequences. The raw fastq files are aligned to the concatenated genomes
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with STAR aligner (version 2.6.0c) using the following settings: “--readFilesCommand
zcat --outFilterType BySJout --outFilterMutlimapNmax 20 --alignSJoverhangMin 8 --
alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax
0.04 --alignintronMin 20 --alignintronMax 1000000 --alignMatesGapMax 1000000 --
outSAMstrandField intronMotif --outSAMtype BAM Unsorted --outSAMattributes NH Hl
AS NM MD --outFilterMatchNminOverLread 0.4 --outFilterScoreMinOverLread 0.4 --
clip3pAdapterSeq CTGTCTCTTATACACATCT --outReadsUnmapped Fastx”.
Transcripts were counted with a custom htseq-count script (version 0.10.0,
https://github.com/simon-anders/htseq) using ME49 or RH GFF3 annotations (version
36 on ToxoDB) concatenated with ERCC annotation. Instead of discarding reads that
mapped to multiple locations, we modified htseq-count to add transcript counts divided
by the number of genomic locations with equal alignment score, thus rescuing
measurement of duplicated genes in the Toxoplasma genome. Parallel jobs of STAR
alignment and htseq-count were requested automatically by Bag of Stars
(https://github.com/iosonofabio/bag_of stars) and computed on Stanford high-
performance computing cluster Sherlock 2.0. Estimation of reads containing exonic and
intronic regions is computed with Velocyto estimation on the BAM output files and
requested automatically by Bag of Velocyto

(https://aithub.com/xuesoso/bag_of velocyto) on Sherlock 2.0. Gene count matrix is
obtained by summing up transcripts into genes using a custom python script. Scanpy
velocyto package is then used to estimate transcriptional velocity on a given reduced
dimension. Parameters used for generating the results are supplied as supplementary
python scripts. Sample code to generate the analysis figures are provided in
supplementary jupyter notebooks.

Data preprocessing

To filter out cells with poor amplification or sequencing reaction and doublet cells,
we discarded cells based on gene counts (>0 reads), total reads sum, percent reads
mapped to Toxoplasma genome, percent ERCC reads, and percent ribosomal RNA
reads. Next, we filtered “ribosomal RNA” genes from the gene count matrix. Gene count
matrices are normalized as counts per median (CPM):

Xnorm = 507 - median(Z.(X)) (1)
where X is the gene count matrix, sum(X) is the read sum for each cell, and
median(sum(X)) is the median of read sums. Normalized data are added with a
pseudocount of 1 and log transformed (e.g. log2(Xnorm+1)). To determine the detection
limit (e.g. 50% detection rate), we modeled the detection probability of ERCC standards
with a logistic regression as a function of spike-in amounts3,
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610 We calculated an estimate of absolute molecular abundance for all genes by fitting a
611 linear regression to ERCC spike-ins:

612

613 log,(Y) =m-log,(Xpnorm +1) +b (2)

614

615 where Xnorm, ErRcc>05 IS the observed CPM value for ERCC spike-ins above the detection
616 limit, Y is the amount of ERCC spike-in, m is the regression coefficient, and b is the
617 intercept. To reduce the influence of measurement noise, we fit the model only to ERCC
618 spike-ins with mean expression above the detection limit.

619

620 Cell cycle analysis and annotation

621 To determine the transcriptional variation associated with cell cycle, we applied Self-
622  Assembling Manifolds (SAM)®° to filter for highly dispersed gene sets (>0.35 SAM

623  weights) in asynchronous RH population. Principal components analysis (PCA) is then
624 applied to the filtered and normalized RH data, and the nearest neighbor graph (K=50)
625 is computed using “correlation” as a similarity metric. We identified the putative “G1”
626  clusters with 1N based on DNA content stain. Parasites in “G1” cluster are further sub-
627 clustered with Louvain Clustering, in which we identified “Gia” and “Gib” clusters with
628  distinct transcriptional profiles. Pearson correlation between single-cell and bulk

629 transcriptomic data is computed between bulk assignment?® and the scRNA-seq cluster
630 assignment through which each cluster is uniquely assigned with a cell cycle state. To
631 quantify genes that are differentially expressed across cell cycle clusters, we applied
632 Kruskal-Wallis test. Genes are considered differentially expressed if their p-values are
633 less than 0.05 and they are at least 2-fold over-expressed in a cluster compared to the
634 average expression level of other clusters. We computed differential expression across
635 all cell cycle clusters as well as between the “Gia” and “Gib” clusters; the results are
636 uploaded as supplementary tables 1 and 2, respectively. To enable cell cycle

637 assignment transfer from RH to Pru and ME49 data, we implemented a random forest
638 classification model trained on RH data. Briefly, this is done by training a model with
639 1000 estimators on L2-normalized RH expression data containing only cell cycle

640 associated genes in a 60-40 split scheme. Then the model is applied to predict cell

641 cycle labels of L2-normalized Pru or ME49 data containing the homologous cell cycle
642 associated genes. The testing accuracy was over 95%.

643

644  Pseudotime construction and clustering

645 Pseudotime analysis is conducted with Monocle 2 package in R on preprocessed

646  dataset with highly dispersive genes as described previously. A cell in “Gi1a” is

647 designated as the root cell, and all other cells are placed after this cell in order of their
648 inferred pseudotime. To cluster genes based on their pseudotime expression pattern,
649  high frequency patterns are removed through a double spline smoothing operation. The
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650 interpolated expression matrix is then normalized by maximum expression along

651  pseudotime such that the maximum value of gene expression along pseudotime is

652 bound by 1. We then applied agglomerative clustering on this interpolated and

653 normalized expression matrix using “correlation affinity” as similarity metric and

654 “average linkage” method to predict three distinct clusters of genes.

655

656 Measurement noise analysis and projection scoring

657  To identify genes with greater variability than can be explained by measurement noise,
658  we first modeled probability of detection as a logistic function of ERCC spike-in mean
659 abundance:

660 = L (3)

P . =
detection 1+e—ﬁ-logz(Knorm)+c

661 where g and c are parameters of the model, and X is the mean abundance for a given
662 ERCC sequence. We then computed Z;, the z-score of detection deviation from the
663 logistic fit, for each gene:

_ Di—E(D)
664 Z; = —\/W(D) (4)

665 where D;j is the difference between detection rate of a gene and its predicted detection
666 rate given its mean abundance, E(D) and var(D) are the expectation values and

667  variance of detection difference for all genes, respectively. Z is converted to p-values
668 assuming an one-sided Gaussian distribution of null values. Genes with p-values lower
669 than 0.05 and lower detection probability than the estimated fit are considered variant.
670 To quantify the dependence of expression variation on a two-dimensional projection, we
671 developed a novel approach based on k-nearest neighbor (KNN) averaging. First, a
672 KNN graph is computed by locating nearest neighborhood in an arbitrary two-

673 dimensional projection using euclidean distance. We then generated a null expression
674  matrix by shuffling the gene expression matrix along each cell column, such that its

675  correlation with respect to the coordinate on projection is completely lost. Next, we

676 compute an updated gene expression value by taking the average of expression values
677 across the KNN. This is equivalent to:

678

679 Xknn = 7 Xnorm (5)

680 where Xknn is the updated KNN averaged expression, M is the nearest-neighbor graph
681  with k being the number of nearest neighbor, and X is the log-transformed CPM of

682 observed or null expression matrices. We chose a k of 5 for all our analysis as varying k
683 did not have a large effect on the results (data not shown). In our experiments, we have
684  shown that the first two principal components (PCs) of PCA on RH and Pru correspond
685 to the projection projection of cell cycle progression, and a two-dimensional UMAP

686  projection of Pru corresponds to asexual development and cell cycle progression. We
687 thus computed Xknn for both the original, observed expression matrix and the shuffled,
688  null matrix on either projection to reflect dependence on cell cycle progression and/or

M
k
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689 asexual development. Xknn is further normalized to have identical sum as the original
690 expression values. A Kolmogorov-Smirnoff two sample test is computed between the
691 normalized Xknn Of the observed matrix and that of the shuffled matrix based on 100
692 random permutations. The projection-dependence score for each gene is then

693 computed as:

694

695 Sy = /—log(Ptq) (6)

696 where Sq is the projection-dependence score for gene g andF,is the average p-values of

697 100 tests. We present Sg normalized by the maximum score within each respective data
698 set.
699

19


https://doi.org/10.1101/656165
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/656165; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

700 Acknowledgements

701  We thank Fabio Zanini, Felix Horns, and Geoff Stanley for illuminating discussion and
702 advice to YX on experiments and analysis. We thank Saroja Korullu, Robert Jones, and
703  Vickie Lin for assistance with library preparation and sample submission. This study is
704  supported by National Institute of Health (NIH) RO1 Al21423, Al29529, and Chan

705  Zuckerberg Biohub. YX and TCT are supported by Stanford Interdisciplinary Graduate
706  Bio-X Fellowships. SR is supported by NIH F30 Al124589-03. AF is supported by NIH
707  5T32Al007328-30 and a Gilliam Fellowship for Advanced Study from Howard Hughes
708 Medical Institute.

20


https://doi.org/10.1101/656165
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/656165; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

709 Figures
Experimental workflow I:l
Cell cycle Asexual development FACS k,:\

Tachyzoite

84 well plat
l lysis
reverse transcription

MRNA "\ ~——pAAAAA

cDNA CcCC TTTTTT\

Bradyzoite
TSO primer l oligo(dT) primer
| S—— GGG
CCC TTTTTT\
IS PCR primer l
Y GGG A A
CCC TTTTT Jemmm——

Strains: RH | Pru | ME49

Cell cycle \( { \/
Asexual \( \/

development
# cells 729 | 2655 | 1828

710
711 Figure 1. Schematic of single-cell RNA-sequencing (scRNA-seq) based on a modified Smart-seq2
712 protocol for 384-well plate. A table of strain types with the number of sequenced samples is provided.
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714  Figure 1 - Supplementary Figure 1. (a) gPCR measurement of mMRNA expression in 302 transgenic
715  Toxoplasma cells expressing GFP or mCherry mixed at 1:1 ratio. (b) gPCR Ct values of abundant surface
716 protein, SAG1, measured for 374 wells with zero, one, eight, or fifty sorted parasites at 16, 176, 176, and
717 6 replicates, respectively. (c) Comparison between “uniquely aligned” (default htseg-count settings) and
718 “all best aligned” (count each feature with equal read alignment score) in the detection rate in Type |

719  strain, RH. (d) A more detailed comparison of detection rate of several parasite-specific gene sets. Genes
720  that are detected more frequently in “All best aligned” setting are annotated in the plot.
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Figure 1 - Supplementary Figure 2. (a) Comparison of gene counts (>2 CPM) and total mapped read
counts for RH, Pru, and ME49 from left to right, respectively. Text in lower right corner indicates the
number of parasites that passed cell filtering and were analyzed (blue open circles). (b) Top panel:
distributions of percentage of reads in analyzed cells that mapped to Toxoplasma Open Reading Frames
(ORFs). Bottom panel: distributions of gene counts (>2 CPM) in analyzed cells. Uninduced Pru and ME49
were grown in the absence of alkaline (Day 0), whereas induced Pru and ME49 were grown in the
presence of alkaline (Day 3 - 7). (¢) Top panel: Logistic regression modeling (green line) of detection limit
(50% detection rate, black dotted line) of ERCC spike-ins. Text on top left of each sub-panel indicates the
detection limit in absolute molecular counts. Bottom panel: Linear regression modeling (crimson line) of
measurement accuracy fitted on ERCC spike-ins with abundance above the detection limit. Text on top
left of each sub-panel indicates the coefficient of determination for the regression fit.

23


https://doi.org/10.1101/656165
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/656165; this version posted June 3, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Inferred state

DNA content .—~DNA content
v ¥, |x10°
1.5
o~ Relative
g 1.0 expression
-10
0.5
Inferred state —-038
"Gya"
8 @ "Glb
& e 'S" 06 Genes
° "M
e 'C'
““: "' ) 04
e .
e LS
SIE: ke :
v ‘ SRS 44 RNA velocity 05
- e A
. . L
PC1 0.0

Cells

733

734  Figure 2. (a) Projection of the first two principal components in RH data set. Top panel: 612 RH cells are
735 colored by fluorescence measurement of a cell permeable DNA content stain. Center panel: cells are
736 colored by cluster assignment and labeled by the inferred “cell cycle” state. Bottom panel: RNA velocity
737  vector field is overlaid on top of the inferred state colors, with arrows pointing in the direction of net

738 transcriptional change. (b) Heatmap of the 1465 most variable gene expression ordered by pseudotime
739 assignment from left to right. Top colorbar reflects the assignment of inferred state and bottom colorbar
740 reflects the relative fluorescence of DNA content using the same color scheme as in (a).
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742 Figure 2 - Supplementary Figure 3. (a) Top panel: Numbers of RH parasites in each inferred “cell cycle”
743  state. Bottom panel: Density plots of DNA content distributions stratified by the inferred state. (b)

744 Heatmap of average expression correlation between each inferred “cell cycle” state of RH and each time-
745 point of bulk transcriptomic measurement based on chemically synchronized parasites?®. (c) Absolute
746 mRNA abundance (top panel) and DNA content (center panel) ordered by “cell cycle” pseudotime with
747 individual cells colored by their inferred states. A spline smoothing is applied to approximate a rolling

748 average along the pseudotime (black solid line). Average expression of gene sets based on ToxoDB

749 (v.36) annotation of organellar destination of the protein product after double spline smoothing (bottom
750 panel). (d) Heatmap of gene expression ordered by organelle sets (top colorbar) and pseudotime cluster
751 (bottom colorbar). “Unannotated rhoptry” refers to genes not annotated in ToxoDB (v.36) as encoding a
752 rhoptry protein but whose expression pattern is highly concordant with the dominant rhoptry pattern. (e)
753 Pie charts of pseudotime cluster frequency for parasite organelle sets. (f) Expression of annotated rhoptry
754 (left panel) and inner-membrane complex (IMC; right panel) genes along pseudotime with different colors
755 indicating genes concordant (blue) and discordant (crimson and orange) to the major trend of their

756  organelle sets.
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758 Figure 3. (a) UMAP projection of 809 uninduced and 1389 induced Pru parasites with colors indicating
759 Louvain cluster assignment. Top panel shows the number of parasites in each cluster. (b) UMAP

760 projections of Pru parasites colored or labeled by days post induction (dpi), inferred cell cycle states, and
761 RNA velocity from left to right. (c) Heatmap of differentially expressed genes (along columns) across
762 Louvain clusters of cells ordered by hierarchical clustering (along rows). The top 5 most enriched genes
763  from each cluster are presented. (d) UMAP projections of Pru colored by the neighbor-averaged

764  expression (log2 CPM) of bradyzoite (top panels, purple background) and tachyzoite (bottom panels, red
765 background) marker genes. (e) Heatmap of differentially expressed AP2 transcription factor in Louvain
766 clusters. Purple and green rectangles highlight AP2s enriched in clusters P1 and P6, respectively.
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768 Figure 3 - Supplementary Figure 4. (a) PCA projection of Pru stratified by days post induction (dpi) and
769 colored by predicted cell cycle state. (b) Frequency of predicted cell cycle states at different dpi time
770 points. (c) Frequency of Louvain clusters (top panels) and predicted cell cycle states in each cluster

771 (bottom panels). (d) Rolling average frequency of predicted cell cycle states (colored lines) ordered by
772 expression level of the canonical bradyzoite marker, BAGL1 (black line).
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774  Figure 3 - Supplementary Figure 5. Expression level (log2 CPM) of four “bradyzoite-specific” marker
775  genes compared to that of “tachyzoite-specific’ marker gene, SAG1, stratified by days post induction (dpi;
776  columns).
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778 Figure 3 - Supplementary Figure 6. (a) UMAP projections of Pru colored by the neighbor-averaged
779 expression (logz CPM) of top 8 most differentially expressed and enriched genes in P6 cluster relative to
780 P1 and P2, two most closely related clusters. (b) Comparison of P6-specific genes in bulk measurement
781  of tachyzoites, tissue cysts, or enteroepithelial stages (EES1-EES5)*3 (left) and scRNA-seq of Pru

782  Louvain clusters (right).
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784  Figure 3 - Supplementary Figure 7. (a) UMAP projections of Pru and ME49 aligned by Scanorama.
785 Cluster assignment was performed independently in each dataset. (b) Matrix correlation of cluster

786 averaged expression between Pru and ME49. (c) Partition-based graph abstraction (PAGA) of aligned
787 clusters with each being represented as a node connected by linkage with a connectivity threshold of 0.8.
788 Node size reflects relative abundance of the cluster. Node colors reflect relative expression level (logz
789 CPM) of gene denoted in the bottom left of each panel, normalized to the maximum cluster expression of
790  corresponding data set.
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792 Figure 4. (a) lllustration of projection-dependent (left) and -independent (right) gene expression patterns.
793 The spatial asymmetry is abolished after K-nearest neighbor (KNN) averaging of a projection-

794 independent pattern, but not a dependent one. Projection-dependence score reflects normalized

795  statistical significance of differences of observed KNN-averaged expression from a randomly permuted
796 null distribution. Higher score indicates greater spatial asymmetry of the observed expression values. (b)
797  Variant (purple) and invariant (green) genes are determined by identifying genes with detection rates
798 lower than logistic regression model prediction evaluated by standard score test assuming one-sided
799 Gaussian distribution (p < 0.05). (c) Top panel: comparison of RH and Pru (Day 0) cell cycle projection
800 scores for intersecting variant genes in both RH and Pru. Linear regression fit (black solid line) is

801 computed and the coefficient of determination (R2) is reported on the top left corner. Examples of known
802 ROP genes are shown. Bottom panel: Asexual development (UMAP) and cell cycle (PCA) projection
803  scores for all variant genes in Pru (Day 0 - 7). Examples of genes with high dependence on development
804  but not cell cycle are indicated. (d) Violin plots showing distribution of projection scores (top panel) and
805  bar chart showing the fraction of dependent and independent genes (bottom panel) for all variant

806  organelle sets in Pru. We identified 52%, 41%, and 57% independent genes amongst GRA, SRS, and
807 Others (non-parasite-specific) gene sets, respectively.
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Figure 4 - Supplementary Figure 8. (a) Venn diagram showing the intersect and disjoint of variant
genes identified in Pru (Day 0) and RH. (b) Expression level (log. CPM) of SRS genes with low
dependence for both cell cycle and asexual development, with projection scores reported above the

panels. The cells are placed in ascending order of gene expression from top of the plot (upper panels) to
highlight the cells with highest expression or from the bottom of the plot (lower panels) to show cells with
the lowest expression. The two views reveal that cells with high and low expression can be neighbors and
have weak correlation with the projection space; hence, these genes show very little dependence of gene
expression on either cell cycle or asexual development which together drive the projection.
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