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1 Abstract

2  The generation of deeply phenotyped patient cohorts offers an enormous potential to identify
3 disease subtypes with prognostic and therapeutic utility. Here, we quantify diverse
4  Parkinson’s disease patient phenotypes on continuous scales by identifying the underlying
5 axes of phenotypic variation using a Bayesian multiple phenotype mixed model that
6 incorporates genotypic relationships. This approach overcomes many of the limitations
7 associated with clustering methods and better reflects the more continuous phenotypic
8 variation observed amongst patients. We identify three principal axes of Parkinson’s disease
9 patient phenotypic variation which are reproducibly found across three independent, deeply
10 and diversely phenotyped UK and US Parkinson’s disease cohorts. These three axes explain
11 over 75% of the observed clinical variation and remain robustly captured with a fraction of
12 theclinically-recorded features. Using these axes as quantitative traits, we identify significant
13  overlaps in the genetic risk associated with each axis and other human complex diseases,
14 namely coronary artery disease and schizophrenia, providing new avenues for disease-
15 modifying therapies. Our study demonstrates how deeply phenotyped cohorts can be used to

16 identify latent heritable disease-modifying traits.

17
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1 Introduction

2 A critical chalenge in medicine is to understand why the clinical presentations of

3  each patient affected by the same disorder vary. This is especially true for Parkinson's disease

4  (PD), for which the age of onset, the rate of progression, type and severity of symptoms differ

5  across more than a million people worldwide living with this disease *. To accelerate the

6 identification of disease subtypes, large deeply phenotyped cohorts of PD patients have been

7  created, in which valuable clinical, imaging, biosample and genetic data has been collected,

8  andincreasingly with longitudinal monitoring **.

9 Recent studies exploiting these deeply phenotyped cohorts have classified patients
10 into discrete phenotypic subgroups, each displaying a characteristic set of symptoms >’ . To
11  define PD subtypes, most of these studies employ some form of variable selection to create a
12 distance matrix between individuals, followed by clustering methods such as k-means or
13  hierarchical clustering. These methods provide discrete phenotypic groups, which are
14  appeding in their categorical nature but have many shortfals. Firstly, while selection
15 methods quantify how much variance each phenotype explains, no robust method was used to
16 define a threshold for this measure above which a phenotype contributes to the distance
17  matrix. Consequently, the definition of which phenotypes are essential to group patients and
18  which areirrelevant can be somewhat arbitrary. For example, two recent studies * ®, using the
19 same Parkinson’s Progression Markers Initiative (PPMI) cohort show divergent results:
20 apathy and hallucinations were key subtype classifiers in the first study 8 but not in the
21  second one °, because these variables were not included. Secondly, K-means clustering
22  requires the number of phenotypic groups to be prespecified, and this choice has the potential
23  to be biased towards preconceived expectations with smaller groups ignored or erroneously

24  joined with larger groups. Finally, the creation of discrete groups may not reflect the
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1 possibly continuous nature of phenotypic variability and ignores the greater statistical power

2  of continuous traits.

3 To overcome these limitations, we propose here an approach focused on the
4 continuous variation of phenotypes. Rather than focusing on presence versus absence, or mild
5  versus severe phenotypes, we incorporate the whole spectrum of severity displayed across the
6 population. For this, we applied PHENIX (PHENotype Imputation eXpediated), a multiple
7 phenotype mixed model (MPMM) approach initially developed to impute missing
8  phenotypes °, that can also be exploited for genetically-guided dimensionality reduction of
9 multiple traits. This approach models the phenotypes as a combination of genetic and
10 environmental factors and the genetic component is computed from the correlation matrix

11  between theindividual’s genetic data.

12 Applying PHENIX to the deeply phenotyped UK-based Discovery cohort, we identify
13 asmall number of axes underlying individual PD patient phenotypic variation that explain the
14  variation in the much larger number of clinically-observed phenotypes. We demonstrate the
15 universality of these axes of phenotypic variation amongst PD patients by independently
16 deriving similar axes in each of three cohorts: UK Tracking cohort including 1807
17 individuals, the UK Discovery cohort including 842 PD patients and US PPMI cohort
18 including 439 PD patients that has a different clinical structure from the UK cohorts. We
19 show that this reproducibility is not achieved by other commonly-used dimensionality-
20 reduction methods. Finally, we demonstrate that the genetic variation influencing the most
21  explanatory phenotypic axesin PD is shared with other specific complex diseases, opening
22  new prognostic and therapeutic avenues.

23
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1 Materialsand Methods

2 Discovery cohort

3 We considered 842 PD cases from the Discovery cohort constituted of 1700 subjects,
4 including over 1000 people with Parkinson's, plus 320 healthy controls and 340 individuals
5 thought to be ‘at-risk’ of developing future Parkinson's. Individuals were required to have at
6 least 90% chance of PD according to UK-Parkinson's disease brain bank criteria, no
7 dternative diagnosis and disease duration less than 3.5 years. All patients have a clinical
8  assessment repeated every eighteen months and have been already described”.®. Phenotype
9 data were collected for over a hundred clinical attributes, affecting autonomic, neurological
10 and motor phenotypes (Supplementary Fig. 1) and described in the Supplementary Table
11 1. Genotype data were generated using the Illumina HumanCoreExome-12 v1.1 and Illumina

12 InfiniumCoreExome-24 v1.1 SNP arrays.
13 UK Tracking Parkinson’s study

14 We considered 1807 PD cases from the Tracking Parkinson's cohort, which was
15  aready described in detail by Malek et al. 2 and was used to identify the impact of mutations
16  within glucocerebrosidase gene (GBA) on different PD clinicals manifestations *°. Genotype

17  datawere generated using the Illumina Human Core Exome array.
18 PPMI cohort

19 The PPMI cohort (http://www.ppmi-info.org) was already described in detall
20 (including PPMI protocol of recruitment and informed consent) by Marrek et al. . We
21  downloaded data from the PPMI database on September 2017 in compliance with the PPMI
22  Data Use Agreement. We considered 472 newly-diagnosed typical PD subjects: subjects with
23 adiagnosis of PD for two years or less and who are not taking PD medications. We used the

24 baseline (t=0) of clinical assessments, described in detall in the Supplementary Table 2. We
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1 excluded any individual with > 5% of missing data (437 individuals included). Participants

13’ U g

2 have been genotyped using two genotyping arrays, ImmunoChip ** and NeuroX
3 more participants were genotyped on NeuroX array, we used the genotype data of the

4  NeuroX chip.
5 Methods

6 Genotype: quality control & Imputation

7  Quality control was carried out independently using PLINK v1.9 ** (SI). Imputation of

8  unobserved and missing variants was carried out separately for each cohort (SI)
9 Phenotypic axis

10 Our continuous measures of severity are based on a multiple phenotypes mixed model
11 approach (MPMM) named PHENIX (PHENotype Imputation eXpediated) which includes
12 genetic relationships between individuals, and is designed to impute missing phenotypes °.
13 To impute missing phenotypes, PHENIX reduces the variation within a cohort to a smaller
14  number of underlying factors that are then used to predict individual missing values. Here,
15 weexploit the identification of these underlying factors as providing the latent axes of patient
16 variation which underlie a larger number of clinically observed phenotypes. The outcome is
17 that the many clinical phenotypes (sometimes missing for some individuals) of each
18 individua are represented through a smaller number of underlying latent variables of
19 phenotypic variation that manifest the observed clinical phenotypes, which we name herein

20  as phenotypic axes.

21  PHENIX ° use a Bayesian multiple-phenotype mixed model (MPMM), where the correlations
22 between clinical phenotypes (Y) are decomposed into a genetic and a residual component
23  with the following model: Y=U+e, where U represents the aggregate genetic contribution

24  (whole genotype) to phenotypic variance and e is idiosyncratic noise. As the estimation of
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1 maximum likelihood covariance estimates can become computationally expensive with
2 increasing number of phenotypes, PHENIX uses a Bayesian low-rank matrix factorization
3 modéd for the genetic term U such as: U = SB, in which B is can be used to estimate the
4  genetic covariance matrix between phenotypes and S represents a matrix of latent
5 components that each follow ~N (0,G) where G is the Estimate of Relatedness Matrix from
6 genotypes. The resulting latent traits (S) are used as phenotypic axes, each representing the
7  severity of anumber of non-independent clinical phenotypes. The details to run PHENIX and

8 extract the phenotypic axes are given in the Supplemental I nformation.

10 Pleiotropic enrichment evaluation with others human complex traits

11 To investigate the similarities between genetic variation that contributes to these PD
12 phenotypic axes and genetic variation that contributes to other human complex diseases or
13 traits, we used Stratified Q-Q plots to examine differential enrichment between pre-specified
14  drata of SNPs. This approach (stratified Q-Q plot) was aready used in multiple studies to
15 detect polygenic overlap between different human traits **°. This method consists of
16 making a Q-Q plot with GWAS of phenotypic axes conditional on the different strength of
17  association with other human complex diseases or traits. This representation enables us to
18 detect if conditioning on a specific human trait of interest leads to stronger enrichment in one
19  of the phenotypic axes. Enrichment is depicted by a leftward deflection in the Q-Q plot and
20 reflects a shared polygenic architecture between a specific phenotypic axis and another
21  human complex trait.

22
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1 Results

2  Threecontinuous measures capture 75% of the clinical variation.

3 Initialy, we generated phenotypic axes from a cohort of 842 PD patients (Discovery cohort)
4  which had been genotyped and phenotypically characterised with 40 clinical assessments
5 (Supplementary Table 1). Each latent axis reflected a number of co-varying observed
6 clinical assessments. Among the phenotypic axes that explained more than 5%, Axes 1, 2 and
7 3 explained 39.6%, 28.7% and 6.8% of the clinical variation respectively. Together, these 3
8  top axes account for over 75% of the clinically-observed variation (Supplementary Fig. 2).
9 To examine whether similar phenotypic axes are obtained in different deeply phenotyped PD
10  cohorts, we derived phenotypic axes within an independent cohort of 1807 PD individuals
11  from the UK Tracking cohort ? that had made similar clinical observations to the Discovery
12 cohort. We found significant Pearson's correlation coefficients between each cohort’s first
13 three phenotypic axes: Axis 1 r=0.92 (p=3 x 10™), Axis 2 r=0.89 (p=4 x 10™), Axis 3
14 r=0.72 (p=5 x 10®) (Fig. 1). Nevertheless, a mgjor concern was that the identification of the
15 same phenotypic axes might, at least in part, be due to the very similar structure of the
16 clinical phenotyping between the two UK cohorts. To address this, we examined the
17  independent US-based PPMI cohort consisting of 439 sporadic PD individuals that had been
18 clinically phenotyped following a substantially different protocol to the UK cohorts. After
19  deriving phenotypic axes in the PPMI cohort, we found significant similarities between the
20 first three phenotypic axes derived for both the Discovery-UK and PPMI-US cohorts: the
21  coefficients of determination (R"2) between three first axes across different categories of
22  clinical phenotypes from each cohort were: Axisl: 0.665 (p=0.048), Axis 2: 0.914 (p=0.003)
23 and Axis 3: 0.754 (p=0.025) (Fig. 2 & Supplementary Figure 3). These consistent
24  smilarities in the axes of phenotypic variation independently derived for each of three

25 different PD cohorts demonstrates the reproducibility of these axes of phenotypic variation
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1 amongst Parkinson's patients. Finally, by comparing PHENIX with other methods of
2 dimensionality reduction, specifically Principle Component Analyses (PCA),
3 Multidimensional Scaling (MDS) and Independent component analysis (ICA), only the
4  dimensions discovered by the MPMM model, PHENIX, were significantly correlated
5 between both cohorts and thus no other method was able to identify similar axes of

6  phenotypic variation across UK and US PD cohorts (Fig. 2).
7 Each phenotypic axisrepresents a distinct set of clinical features

8 To interpret the clinical relevance of each phenotypic axis, we examined the

9 correlation between individual clinical features and the phenotypic axes (Table1 & Fig. 1 &
10 Supplementary Figure 4). We observed that each phenotypic axis corresponded to a subset
11 of clinical features, differing in both extents and directions of severity. Axis 1 represented
12 waorsening non-tremor motor phenotypes, anxiety and depression accompanied by a decline
13  of the cognitive function (Table 1 & Fig. 3). Worsening anxiety and depression were also
14  features of Axis 2, in addition to increasing severity of autonomic symptoms and increasing
15 motor dysfunction. Axis 3 was associated with general motor symptom severity including
16 rigidity, bradykinesia and tremor of the whole body independently of non-motor features.
17  The contribution of different phenotypes to these axes was therefore highly variable. Specific
18  aspects of motor dysfunction were important factors in defining the mgjority of axes. Anxiety
19 and depression were also relatively important features, but only for axes explaining the
20 largest amounts of variation. Conversely, cognitive impairment was associated only with
21 Axis one. However, this observation must be weighted by the fact that cognitive
22  impairment/dementia are reported at alater disease stage and thus likely under-represented in

23  recently diagnosed cases.

24 Although each phenotypic axis is associated with a distinct set of clinical features,

25 they are not independent but instead strongly correlated (Supplementary Figure 5). We find

10
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1 no significant relation between the phenotypic axes and principal components of genetic
2 ancestry (Methods) suggesting that the phenotypic axes are not biased by the population
3  structure (Supplementary Figure 5, Supplementary Table 3). However, as previously
4 reported, gender influences clinical symptoms # and we also observe a significant association

5  between gender and Axis 2 (Supplementary Table 3, p=4.5x10").

6 To assess to what extent the phenotypic axes might be affected by the number of clinical
7 observations, within the Discovery cohort we compared the phenotypic axes built on all
8 clinical features with phenotypic axes generated with incomplete sets of randomly-selected
9 clinical features. We observed a strong correlation (r > 0.8) between each of the two first
10 phenotypic axes built with as few as 50% of the clinical variables and their respective
11 origina phenotypic axes, suggesting that these two axes are extremely robust in terms of the

12 numbers of clinical variables considered (Supplementary Figure6).

13 Theintegration of genetic relationships between patients improves capture of the

14 Parkinson’sdisease clinical variation and reproducibility.

15 The PHENIX MPMM approach employed here to derive phenotypic axes exploits the
16 genetic relatedness between individuals derived from genotypic similarity to further
17  decompose random effects into kinship effects between individuals. In its original application
18 to imputing missing phenotypes, PHENIX outperforms other imputation approaches when
19  the heritability (h%) of a phenotype increased °. Similarly, when randomly removing and re-
20 imputing 10% of observed data, the quality of the imputation of PD clinical assessments was
21 in genera better when considering the genetic relatedness between individuals as compared
22 to excluding this information (Supplementary Figure 7), suggesting that the resulting
23  phenotypic axes better capture PD heterogeneity when including genetic information.

24 Moreover, we found a higher agreement between the phenotypic axes derived by integrating

11
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1 the genetic relationship between patients of different cohorts than when the phenotypic axes
2  were derived ignoring the genetic relationships (Supplementary Figure 8). Specifically, the
3 coefficient of determination reflecting the agreement between the axes derived from the
4  Discovery and those derived from the PPMI cohorts were from Axis 1 to 3: 0.665 (p=0.048),
5 0.914 (p=0.003) and 0.754 (p=0.025) when including the genetic similarity between patients
6 as compared to 0.604 (p=0.069), 0.908 (p=0.003) and 0.001 (p=0.991) without. Together,
7 these findings demonstrate that the integration of genetic relationship between patients

8  enhances the resulting phenotypic axes' ability to reproducibly capture PD clinical variation.

9 Metanalysis of Genome Wide Association Studies with phenotypic axes as unique and

10 universal quantitativetraits

11 Each phenotypic axis provides a quantitative trait enabling the genetics underlying
12 patient variation to be studied by performing a Genome Wide Association Study (GWAYS) via
13 aregression model with the covariates age, gender, and two genetic principal components (to
14  account for any underlying population substructure) in each individua cohort. As three
15 phenotypic axes were similar across each individual cohort (Discovery, Tracking and PPMI)
16 and to increase statistical power to detect an significant association, we conducted a meta-
17 analysis of each phenotypic axis genome-wide association studies using a common set of
18 4211937 variants across 3088 individuals. A significant departure from the expected
19 quantiles was observed for Axis 1 (meta-analysis combining the summary statistic of three
20 individua GWAS [Discovery-Tracking-PPMI]) (Supplementary Figure 9), but no variant
21  surpassed genome-wide significance (Supplementary Figure 10). Although we did not
22 observe a significant genome-wide association, the use of universal phenotypic axes
23  sgnificantly unable us to conduct meta-analysis and thus to increase the statistical power to
24 identify genetic variants through their ability to align differently deeply phenotyped cohorts

25 and reduce the number of traits tested.

12
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1 Next, we re-examined genetic associations for each of the three phenotypic axes for
2 three mgor PD risk genes, namely SNCA, GBA and LRRK2. We found a indicative local
3 association signa but however un-significant at GWA level with Phenotypic Axis 1 for a
4  variant in SNCA: 4: 90758437 (p-value=1.7x10* Supplementary Figure 11A) which isin
5  high LD with rs1348224 (r* > 0.8), a SNP previously associated with PD with dementia and
6 dementiawith Lewy bodies °. SNP rs1348224:G allele (minor allele) had a negative effect
7  on Phenotypic Axis 1, thus a protective effect for cognitive impairment, which is consistent
8 with a protective effect for PD with dementia and dementia with Lewy bodies previously

2 We aso found a indicative local association signal (p-

9 reported for this locus
10  value=1.1x10") with Phenotypic Axis 3 for an intronic variant in LRRK2 (Supplementary
11 Figure 11B). Both SNCA and LRRK?2 variants were each nominally associated with only one

12 phenotypic axis (Supplementary Table 4), suggesting distinct pathogenic mechanisms.

13 Overlaps in genetic risk associated with different diseases and specific

14  phenotypic axes.

15 We then examined the overlap between genetic variation that contributes to these PD
16  phenotypic axes and the genetic variation that contributes to other human complex diseases
17  or traits. If the associations of genetic variants for one trait follow a uniform null distribution
18  when mapped onto a second trait, then there is no detected association. However, pleiotropic
19 ‘enrichment’ with another human complex trait exists if there is a significant degree of
20  deflection from the expected null, visualised by a leftward shift in the Q-Q plots conditioned

21  on the ‘pleiotropic’ effect, termed Q-Q plot inflation *" %

(Supplementary Figure 12). For
22  the PD phenotypic axes, we found a significant overlap between the genetic predisposition to
23 coronary artery disease with Phenotypic Axis 1 (the major severity axis) (g-value= 1.8x107)

24  and between schizophrenia and Phenotypic Axis 2 (Worsening anxiety, depression and

25  autonomic symptoms but minimal motor dysfunction) (g-value= 1.8x10°) (Fig. 4). No

13
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1 overlap between the genetic predisposition to PD (risk of onset) and any phenotypic axis was
2 found (Fig. 4). Nonetheless, by examining the pleiotropic ‘enrichment’ for genetic variants
3 associated with PD risk and other human traits, we did find a significant overlap with the
4  genetic predisposition associated with schizophrenia and coronary artery disease, suggesting
5 different components of the genetic risk for schizophrenia and coronary artery disease affect
6 PD risk and PD phenotypic variation (Supplementary Figure 13). Taken together, the
7  phenotypic axes propose two distinct aetiologies in terms of the genetic contribution to PD
8 patient variation, which provide valuable traits to be considered in the design of clinica
9 trials, for assessment of care pathways and provide distinct new avenues for therapeutic

10 research.

11
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1 Discussion

2 We propose here a novel approach to quantifying diverse patient phenotypes on a
3 continuous scale via the use of phenotype axes. This approach overcomes many of the
4 limitations associated with the clustering methods previously used to classify PD
5 heterogeneity. By applying our approach to three independent and deeply phenotyped
6 cohorts, we demonstrate the universality of these axes of phenotypic variation amongst PD
7 patients. We aso showed that our axes are robustly derived when reducing the number of
8 clinical features considered and, unlike other dimensionality reduction methods, the PHENIX
9 MPMM approach is the only method tested here that is able to identify the same phenotypic
10 axes underlying PD patient variation between individuals from different cohorts. The
11 phenotypic axes have multiple applications in PD precision medicine. Here, we explored the
12 overlap between the PD axes of clinical variation and other human traits and observed
13  different genetic predispositions associated with different phenotypic axes, suggesting several

14  distinct underlying genetic aetiologies.

15 The association of Axis 1 with genetic risk for coronary artery disease suggests an
16 influence of vasculature on the PD phenotype. While we observe no overlap in the genetics
17 influencing Body Mass Index (BMI) and Axis 1 and that it was previoudly reported that a
18  high BMI have protective to develop PD %, we do observe a small but significant positive
19 correlation between patient BMI and only their Axis 1 severity score (cor =0.22; p = 3.8e-06;
20 Supplementary Figure 14). Furthermore, we observe that patients with a history of high
21 cholesterol or a history of heart failure, stroke and/or heart attack score significantly higher

22  only on Axis 1 than those without these histories (Supplementary Figure 15).

23 Although a recent study highlighted no polygenetic relation between the PD risk and

24  BMI 2, it was previously reported some overlap between major risk loci for PD and

15
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1  schizophernia®. It is an attractive idea that the dopamine (DA) neurotransmitter could
2  explain the relationship between both diseases: an excess of DA in the case of schizophrenia
3 and areduction in PD. However, as before, we found that the schizophrenia risk alleles were
4  associated with an increasing of the PD risk, contradicting the hypothesis that PD and
5 schizophrenia are two opposed, additive phenotypes and suggesting an alternative to the
6 hypothesis of the dopaminergic system as common denominator *°. The genetic overlap for
7  our PD severity Axis 2 with schizophrenia but no genetic overlap between PD onset risk and
8 this axis suggests that there are distinct overlapping aetiologies contributing to risk and,

9  separately, to disease manifestation.

10 Our approach was able to identify representative quantitative variables that are
11 clinically relevant to previously-defined categorica PD subtypes. A number of known
12 comorbidities were represented among the phenotype axes. Anxiety and depression are
13 highly correlated in PD patients, both of which are correlated with Axes 1 and 2 %. Rigidity
14  and bradykinesia are also linked, possibly due to shared physiology ', and varied in the same
15 direction adong Axis 3. Lawton et al. reported five PD subgroups, by using the same
16 Discovery cohort but following a k-means clustering approach °. We examined the
17  distribution of phenotypic axis score across these five PD subgroups (Supplementary Figure
18  16) and noted that the 5™ subgroup of patients, characterised by severe motor, non-motor and
19  cognitive disease, with poor psychological well-being clinical symptoms, were systematically
20  associated with high severity score for al three of our phenotypic axes. Inversely, the first PD
21  subgroup characterised by mild motor and non-motor disease (group affected by fewer
22 clinica symptoms) displayed a low severity score for our three phenotypic axes.
23  Furthermore, we observed that the individuals of subgroups 4 and 5, characterised by poor
24  psychological well-being, had high severity scores for phenotypic axis 2, the axis most

25 associated with depression and anxiety symptoms. These observations demonstrate some

16
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1 consistency between subgroups defined with k-means and our phenotypic axis severity score.
2 The agreement of these phenotype axes with previously observed correlations provides
3  further support for underlying biological themes, but their reinterpretation as robust
4  continuous traits likely provides a better approximation of how the underlying biology
5 contributes, as opposed to a cut-off off for a phenotype. Specifically, the unimodal character
6 of the phenotypic axis distributions (Supplementary Figure 17) suggests here that the
7  development of continuous measures is more appropriate than clustering according to an

8 arbitrary threshold.

9 The phenotypic axes identified were robust in terms of the number of clinical features
10 considered and enable the alignment of patients from different cohorts with different clinical
11 phenotyping structures. The corollary is that Phenix did not require the variable selection
12 common in PD clustering approaches, and it can also guide clinicians in determining which
13 clinical assessments are essential to capture PD heterogeneity. Deep phenotyping is
14  burdensome to both patient and clinician and many of the measures exploited here are
15 compound scores summarising aspects of functioning. Further work identifying the
16 minimaly burdensome observations that enable robust scoring of patients along these
17  phenotypic axes would facilitate their utility and adoption across the PD clinical community,
18 bringing increased power to the discovery of influencing factors. Finaly, the MPMM
19 approach can be readily extended to include longitudinal data to determine the phenotypic
20 axes associated with disease progression while simultaneously dealing with missing data,

21  whichisacommon problem in longitudinal studies.

22 In conclusion, these universal axes have the potential to accelerate our understanding
23  of how PD presents in individual patients, providing more robust and objective quantitative

24 traits through which patients may be appropriately compared, through which the underlying

17
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1 disease-modifying mechanism can be understood and appropriately stratified/personalised

2  therapeutic strategies and treatments can be developed.
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Figure Legends

2 Fig. 1. The clinical phenotypes of two independent deeply phenotyped Parkinson’s

3 disease cohorts identify the same phenotypic axes. Results were consistent in two
4 independents cohorts (842 Discovery and 1807 Tracking patients). Examination of
5 these two separate Parkinson’s disease cohorts, using independent derivation of the
6 phenotypic axes in each, showed significant correlations between each cohort’s first
7 three axes. Correlations between the axes from each cohort are Axis 1 r=0.92 (p=3 x
8 10-13), Axis 2 r=0.89 (p=4 x 10-11), Axis 3 r=0.72 (p=5 x 10-6). The correlation
9 coefficient (x-axis) between each axis derived in each cohort (blue: Discovery vs red:

10 Tracking) and each clinical observation (y-axis) is shown.

11

12 Fig. 2. Thereduced dimensionsin other dimensionality reduction methods fail to align

13 between differently but deeply phenotyped UK and US Parkinson’s disease
14 cohorts. We compared the ability of different dimensionality reduction methods
15 (independent component analysis (ICA), Multidimensional scaling (MDS), Principal
16 component analysis (PCA) and phenotypic axis based on the PHENIX multiple
17 phenotype mixed model) to phenotypically align two deeply phenotyped Parkinson's
18 disease cohorts, specifically the Discovery (842 individuals) and PPMI (439 sporadic
19 Parkinson’s disease) cohorts. The x-axis and y-axis represent the correlation
20 coefficient between each continuous variable with clinical observation associated with
21 a gpecific symptom category in Discovery and PPMI cohort respectively. Each
22 column panel and colour of points (“Axis’) represents the dimension level of each
23 underlying dimension. All points on the diagonal would represent a perfect
24 phenotypic alignment of both cohorts. We examined the relationship between

22
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1 correlation derived from both cohorts by performing a linear regression: R*2 and p
2 correspond to the coefficient of determination and the p-value respectively. Only the
3 dimensions discovered by the MPMM model, PHENIX, show a significant
4 relationship between both cohorts: MPMM phenotypic axes (R°=0.86, p=2x10-8),
5 MDS (R?*=0.11, p=0.18), ICA (R?*=0.17, p=0.16) and PCA (R?=0.31, p=0.06).
8 Fig. 3. The correlation of individual clinically-measured Parkinson's disease
9 phenotypes with an underlying Phenotypic Axis 1. Modelling patient clinical
10 phenotypes as a combination of genetic and environmental factors revealed three
11 phenotypic severity axes (Fig.1), each representing a continuous pattern of variation
12 between multiple co-varying clinical phenotypes. In Axis 1 (shown), (A) clinical
13 measures relating to anxiety and depression and apathy are significantly and
14 positively correlated with an individual’s score along this axis; patients with a higher
15 axis score have more severe mood and neuropsychiatric problems. (B) The severity of
16 motor phenotypes is positively correlated with this phenotypic axis; patients with a
17 higher axis score is associated with more severe motor phenotypes (C) Cognitive tests
18 were negatively correlated with this component (the patients that score high in these
19 cognitive tests have less cognitive impairments); individuals with a high score for this
20 component suffer from more severe anxiety, depression and displayed more cognitive
21 impairment and motor symptoms.
22

23


https://doi.org/10.1101/655217
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/655217; this version posted June 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2 Fig. 4. Each phenotypic axis displays a polygenic overlap with another distinct human

3 complex trait. To identify pleiotropic enrichments for a phenotypic axis with another
4 human complex trait, we used a Q-Q plot stratified by pleiotropic effects (see
5 Methods). The significance of enrichment using Q-Q plots was calculated with a t-
6 test by comparing the subset represented in the Q-Q plots, specifically all SNPs with
7 low p-values in another human complex trait (-logl10 p-value >3), against the depleted
8 category (-logl0 p-valuel <[11). Each bar plot panel (left to right) represents the
9 pleiotropic enrichment for each Phenotypic Axis (1 to 3) with other human complex
10 traits. The size of the bars corresponds to- 10g10 FDR adjusted p-value associated
11 with pleiotropic enrichment test for that human trait. For clarity, the different human
12 traits have been classified by categories (colour bar and legend). The sources of
13 genome-wide association studies meta-analysis summary statistics of different human
14 complex traits are listed in the Supplementary Table 5.
15

24


https://doi.org/10.1101/655217
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/655217; this version posted June 7, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
PD phenotypic Axes aCC-BY-NC-ND 4.0 International license. Sandor et al.

1 Tablel: Correlation between each axis and each clinical phenotypic measure

r

Clinical Observation Axisl Axis2  Axis3

BDI total Measure of the depression +
Leeds Anxiety Total Measure of the anxiety +
§ Leeds Depression Measure of the depression +
'8 QUIP I Impulsive-Compulsive Disorders +
0 UPDRS apathy Apathy +
UPDRS fatigue Fatigue +
UPDRS hallucinations Hall uci nations +
.© consti pation Quantitative measure of constipation +
E Orthostatic Blood pression from sitting/lying to stand up +
% UPDRS congtipation  Constipation +
UPDRS pain Pain +
Education years Number of years of education -
MMSE total Measure of cognitive ability -
G>) MOCA tota Measure of cognitive ability -

:"é’ Phonemic fluency Number of words beginning with a particular |etter -

§ Sementic fluency Number of animals and the number of boy names -

BMI Body Mass index +
CGIC Clinical global impression of change +
Disease Duration Disease Duration +
Flamingo time Timethat a person can stand on one leg -
Timetaken for an individual to get up from achair, walk
three meters,
Getgo average turn around, walk back to the chair and sit down. +
Purdue assembly Test to measure manual dexterity -
Purdue total Test to measure manual dexterity -
UPDRS arms Arms +
UPDRS bradykinesia Bradykinesia +
.,8 UPDRS faceneck Face/neck problems +
% UPDRSI Non Motor Aspects of Experiences of Daily Living +
UPDRSII Motor Aspects of Experiences of Daily Living +
UPDRSIII Motors Examination +
UPDRS IV Motors complications 1
UPDRS lateraity Unilateral +
UPDRS legs Legs +
UPDRS postura Postural +
UPDRS rigidity Rigidity +
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UPDRS speech Speech +
UPDRS tremor Tremor +
g’ ESStotal Measure of daytime sleepiness +
() RBD total Measure of REM Sleep behavior disorder +
(0}
Sniff total Smell identifications -
o
) Quantitative measure of the amount of Parkinson’s disease
0O LEDD total medication +
12
13
14 (1) A high scorefor aclinical measure indicates more (+) or less (-) issue for the patient.
15 (2) The correlation coefficient under and above [0.25] are indicated in gray or blue/red respectively
16 (3) Red and blue cells indicates when a high phenotypic axis score are associated with more and less
17 clinical issues for the patient respectively.
18
19
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