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Abstract 1 

The generation of deeply phenotyped patient cohorts offers an enormous potential to identify 2 

disease subtypes with prognostic and therapeutic utility. Here, we quantify diverse 3 

Parkinson’s disease patient phenotypes on continuous scales by identifying the underlying 4 

axes of phenotypic variation using a Bayesian multiple phenotype mixed model that 5 

incorporates genotypic relationships. This approach overcomes many of the limitations 6 

associated with clustering methods and better reflects the more continuous phenotypic 7 

variation observed amongst patients. We identify three principal axes of Parkinson’s disease 8 

patient phenotypic variation which are reproducibly found across three independent, deeply 9 

and diversely phenotyped UK and US Parkinson’s disease cohorts. These three axes explain 10 

over 75% of the observed clinical variation and remain robustly captured with a fraction of 11 

the clinically-recorded features. Using these axes as quantitative traits, we identify significant 12 

overlaps in the genetic risk associated with each axis and other human complex diseases, 13 

namely coronary artery disease and schizophrenia, providing new avenues for disease-14 

modifying therapies. Our study demonstrates how deeply phenotyped cohorts can be used to 15 

identify latent heritable disease-modifying traits. 16 

 17 
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Introduction 1 

A critical challenge in medicine is to understand why the clinical presentations of 2 

each patient affected by the same disorder vary. This is especially true for Parkinson's disease 3 

(PD), for which the age of onset, the rate of progression, type and severity of symptoms differ 4 

across more than a million people worldwide living with this disease 1. To accelerate the 5 

identification of disease subtypes, large deeply phenotyped cohorts of PD patients have been 6 

created, in which valuable clinical, imaging, biosample and genetic data has been collected, 7 

and increasingly with longitudinal monitoring 2-4. 8 

 Recent studies exploiting these deeply phenotyped cohorts have classified patients 9 

into discrete phenotypic subgroups, each displaying a characteristic set of symptoms 5-7 . To 10 

define PD subtypes, most of these studies employ some form of variable selection to create a 11 

distance matrix between individuals, followed by clustering methods such as k-means or 12 

hierarchical clustering. These methods provide discrete phenotypic groups, which are 13 

appealing in their categorical nature but have many shortfalls. Firstly, while selection 14 

methods quantify how much variance each phenotype explains, no robust method was used to 15 

define a threshold for this measure above which a phenotype contributes to the distance 16 

matrix. Consequently, the definition of which phenotypes are essential to group patients and 17 

which are irrelevant can be somewhat arbitrary. For example, two recent studies 5, 8, using the 18 

same Parkinson’s Progression Markers Initiative (PPMI) cohort show divergent results: 19 

apathy and hallucinations were key subtype classifiers in the first study 8, but not in the 20 

second one 5, because these variables were not included. Secondly, K-means clustering 21 

requires the number of phenotypic groups to be prespecified, and this choice has the potential 22 

to be biased towards preconceived expectations with smaller groups ignored or erroneously 23 

joined with larger groups.  Finally, the creation of discrete groups may not reflect the 24 
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possibly continuous nature of phenotypic variability and ignores the greater statistical power 1 

of continuous traits. 2 

To overcome these limitations, we propose here an approach focused on the 3 

continuous variation of phenotypes. Rather than focusing on presence versus absence, or mild 4 

versus severe phenotypes, we incorporate the whole spectrum of severity displayed across the 5 

population. For this, we applied PHENIX (PHENotype Imputation eXpediated), a multiple 6 

phenotype mixed model (MPMM) approach initially developed to impute missing 7 

phenotypes 9, that can also be exploited for genetically-guided dimensionality reduction of 8 

multiple traits. This approach models the phenotypes as a combination of genetic and 9 

environmental factors and the genetic component is computed from the correlation matrix 10 

between the individual’s genetic data.  11 

Applying PHENIX to the deeply phenotyped UK-based Discovery cohort, we identify 12 

a small number of axes underlying individual PD patient phenotypic variation that explain the 13 

variation in the much larger number of clinically-observed phenotypes. We demonstrate the 14 

universality of these axes of phenotypic variation amongst PD patients by independently 15 

deriving similar axes in each of three cohorts: UK Tracking cohort including 1807 16 

individuals, the UK Discovery cohort including 842 PD patients and US PPMI cohort 17 

including 439 PD patients that has a different clinical structure from the UK cohorts. We 18 

show that this reproducibility is not achieved by other commonly-used dimensionality-19 

reduction methods. Finally, we demonstrate that the genetic variation influencing the most 20 

explanatory phenotypic axes in PD is shared with other specific complex diseases, opening 21 

new prognostic and therapeutic avenues. 22 

  23 
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Materials and Methods 1 

Discovery cohort 2 

We considered 842 PD cases from the Discovery cohort constituted of 1700 subjects, 3 

including over 1000 people with Parkinson's, plus 320 healthy controls and 340 individuals 4 

thought to be ‘at-risk’ of developing future Parkinson's. Individuals were required to have at 5 

least 90% chance of PD according to UK-Parkinson’s disease brain bank criteria, no 6 

alternative diagnosis and disease duration less than 3.5 years. All patients have a clinical 7 

assessment repeated every eighteen months and have been already described4,6. Phenotype 8 

data were collected for over a hundred clinical attributes, affecting autonomic, neurological 9 

and motor phenotypes (Supplementary Fig. 1) and described in the Supplementary Table 10 

1. Genotype data were generated using the Illumina HumanCoreExome-12 v1.1 and Illumina 11 

InfiniumCoreExome-24 v1.1 SNP arrays.  12 

UK Tracking Parkinson’s study 13 

We considered 1807 PD cases from the Tracking Parkinson’s cohort, which was 14 

already described in detail by Malek et al. 2  and was used to identify the impact of mutations 15 

within glucocerebrosidase gene (GBA) on different PD clinicals manifestations 10. Genotype 16 

data were generated using the Illumina Human Core Exome array.  17 

PPMI cohort 18 

The PPMI cohort (http://www.ppmi-info.org) was already described in detail 19 

(including PPMI protocol of recruitment and informed consent) by Marrek et al. 11. We 20 

downloaded data from the PPMI database on September 2017 in compliance with the PPMI 21 

Data Use Agreement. We considered 472 newly-diagnosed typical PD subjects: subjects with 22 

a diagnosis of PD for two years or less and who are not taking PD medications. We used the 23 

baseline (t=0) of clinical assessments, described in detail in the Supplementary Table 2. We 24 
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excluded any individual with > 5% of missing data (437 individuals included). Participants 1 

have been genotyped using two genotyping arrays, ImmunoChip 12 and NeuroX 13, 14. As 2 

more participants were genotyped on NeuroX array, we used the genotype data of the 3 

NeuroX chip. 4 

Methods 5 

Genotype: quality control & Imputation 6 

Quality control was carried out independently using PLINK v1.9 15 (SI). Imputation of 7 

unobserved and missing variants was carried out separately for each cohort (SI) 8 

Phenotypic axis 9 

Our continuous measures of severity are based on a multiple phenotypes mixed model 10 

approach (MPMM) named PHENIX (PHENotype Imputation eXpediated) which includes 11 

genetic relationships between individuals, and is designed to impute missing phenotypes 9. 12 

To impute missing phenotypes, PHENIX reduces the variation within a cohort to a smaller 13 

number of underlying factors that are then used to predict individual missing values. Here, 14 

we exploit the identification of these underlying factors as providing the latent axes of patient 15 

variation which underlie a larger number of clinically observed phenotypes. The outcome is 16 

that the many clinical phenotypes (sometimes missing for some individuals) of each 17 

individual are represented through a smaller number of underlying latent variables of 18 

phenotypic variation that manifest the observed clinical phenotypes, which we name herein 19 

as phenotypic axes. 20 

PHENIX 9 use a Bayesian multiple-phenotype mixed model (MPMM), where the correlations 21 

between clinical phenotypes (Y) are decomposed into a genetic and a residual component 22 

with the following model: Y=U+e, where U represents the aggregate genetic contribution 23 

(whole genotype) to phenotypic variance and e is idiosyncratic noise. As the estimation of 24 
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maximum likelihood covariance estimates can become computationally expensive with 1 

increasing number of phenotypes, PHENIX uses a Bayesian low-rank matrix factorization 2 

model for the genetic term U such as: U = Sβ, in which β is can be used to estimate the 3 

genetic covariance matrix between phenotypes and S represents a matrix of latent 4 

components that each follow ~N (0,G) where G is the Estimate of Relatedness Matrix from 5 

genotypes. The resulting latent traits (S) are used as phenotypic axes, each representing the 6 

severity of a number of non-independent clinical phenotypes. The details to run PHENIX and 7 

extract the phenotypic axes are given in the Supplemental Information. 8 

 9 

Pleiotropic enrichment evaluation with others human complex traits 10 

To investigate the similarities between genetic variation that contributes to these  PD 11 

phenotypic axes and genetic variation that contributes to other human complex diseases or 12 

traits, we used Stratified Q-Q plots to examine differential enrichment between pre-specified 13 

strata of SNPs. This approach (stratified Q-Q plot) was already used in multiple studies to 14 

detect polygenic overlap between different human traits 16-19.  This method consists of 15 

making a Q-Q plot with GWAS of phenotypic axes conditional on the different strength of 16 

association with other human complex diseases or traits. This representation enables us to 17 

detect if conditioning on a specific human trait of interest leads to stronger enrichment in one 18 

of the phenotypic axes. Enrichment is depicted by a leftward deflection in the Q-Q plot and 19 

reflects a shared polygenic architecture between a specific phenotypic axis and another 20 

human complex trait.  21 

  22 
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Results  1 

Three continuous measures capture 75% of the clinical variation. 2 

Initially, we generated phenotypic axes from a cohort of 842 PD patients (Discovery cohort) 3 

which had been genotyped and phenotypically characterised with 40 clinical assessments 4 

(Supplementary Table 1). Each latent axis reflected a number of co-varying observed 5 

clinical assessments. Among the phenotypic axes that explained more than 5%, Axes 1, 2 and 6 

3 explained 39.6%, 28.7% and 6.8% of the clinical variation respectively. Together, these 3 7 

top axes account for over 75% of the clinically-observed variation (Supplementary Fig. 2). 8 

To examine whether similar phenotypic axes are obtained in different deeply phenotyped PD 9 

cohorts, we derived phenotypic axes within an independent cohort of 1807 PD individuals 10 

from the UK Tracking cohort 2 that had made similar clinical observations to the Discovery 11 

cohort. We found significant Pearson's correlation coefficients between each cohort’s first 12 

three phenotypic axes: Axis 1 r=0.92 (p=3 x 10-13), Axis 2 r=0.89 (p=4 x 10-11), Axis 3 13 

r=0.72 (p=5 x 10-6) (Fig. 1). Nevertheless, a major concern was that the identification of the 14 

same phenotypic axes might, at least in part, be due to the very similar structure of the 15 

clinical phenotyping between the two UK cohorts. To address this, we examined the 16 

independent US-based PPMI cohort consisting of 439 sporadic PD individuals that had been 17 

clinically phenotyped following a substantially different protocol to the UK cohorts. After 18 

deriving phenotypic axes in the PPMI cohort, we found significant similarities between the 19 

first three phenotypic axes derived for both the Discovery-UK and PPMI-US cohorts: the 20 

coefficients of determination (R^2) between three first axes across different categories of 21 

clinical phenotypes from each cohort were: Axis1: 0.665 (p=0.048), Axis 2: 0.914 (p=0.003) 22 

and Axis 3: 0.754 (p=0.025) (Fig. 2 & Supplementary Figure 3). These consistent 23 

similarities in the axes of phenotypic variation independently derived for each of three 24 

different PD cohorts demonstrates the reproducibility of these axes of phenotypic variation 25 
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amongst Parkinson’s patients. Finally, by comparing PHENIX with other methods of 1 

dimensionality reduction, specifically Principle Component Analyses (PCA), 2 

Multidimensional Scaling (MDS) and Independent component analysis (ICA), only the 3 

dimensions discovered by the MPMM model, PHENIX, were significantly correlated 4 

between both cohorts and thus no other method was able to identify similar axes of 5 

phenotypic variation across UK and US PD cohorts (Fig. 2).  6 

Each phenotypic axis represents a distinct set of clinical features 7 

To interpret the clinical relevance of each phenotypic axis, we examined the 8 

correlation between individual clinical features and the phenotypic axes (Table 1 & Fig. 1 & 9 

Supplementary Figure 4). We observed that each phenotypic axis corresponded to a subset 10 

of clinical features, differing in both extents and directions of severity. Axis 1 represented 11 

worsening non-tremor motor phenotypes, anxiety and depression accompanied by a decline 12 

of the cognitive function (Table 1 & Fig. 3). Worsening anxiety and depression were also 13 

features of Axis 2, in addition to increasing severity of autonomic symptoms and increasing 14 

motor dysfunction. Axis 3 was associated with general motor symptom severity including 15 

rigidity, bradykinesia and tremor of the whole body independently of non-motor features. 16 

The contribution of different phenotypes to these axes was therefore highly variable. Specific 17 

aspects of motor dysfunction were important factors in defining the majority of axes. Anxiety 18 

and depression were also relatively important features, but only for axes explaining the 19 

largest amounts of variation. Conversely, cognitive impairment was associated only with 20 

Axis one. However, this observation must be weighted by the fact that cognitive 21 

impairment/dementia are reported at a later disease stage and thus likely under-represented in 22 

recently diagnosed cases. 23 

Although each phenotypic axis is associated with a distinct set of clinical features, 24 

they are not independent but instead strongly correlated (Supplementary Figure 5). We find 25 
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no significant relation between the phenotypic axes and principal components of genetic 1 

ancestry (Methods) suggesting that the phenotypic axes are not biased by the population 2 

structure (Supplementary Figure 5, Supplementary Table 3). However, as previously 3 

reported, gender influences clinical symptoms 4 and we also observe a significant association 4 

between gender and Axis 2 (Supplementary Table 3, p=4.5x10-5).  5 

To assess to what extent the phenotypic axes might be affected by the number of clinical 6 

observations, within the Discovery cohort we compared the phenotypic axes built on all 7 

clinical features with phenotypic axes generated with incomplete sets of randomly-selected 8 

clinical features. We observed a strong correlation (r > 0.8) between each of the two first 9 

phenotypic axes built with as few as 50% of the clinical variables and their respective 10 

original phenotypic axes, suggesting that these two axes are extremely robust in terms of the 11 

numbers of clinical variables considered (Supplementary Figure 6).  12 

The integration of genetic relationships between patients improves capture of the 13 

Parkinson’s disease clinical variation and reproducibility.  14 

The PHENIX MPMM approach employed here to derive phenotypic axes exploits the 15 

genetic relatedness between individuals derived from genotypic similarity to further 16 

decompose random effects into kinship effects between individuals. In its original application 17 

to imputing missing phenotypes, PHENIX outperforms other imputation approaches when 18 

the heritability (h2) of a phenotype increased 9. Similarly, when randomly removing and re-19 

imputing 10% of observed data, the quality of the imputation of PD clinical assessments was 20 

in general better when considering the genetic relatedness between individuals as compared 21 

to excluding this information (Supplementary Figure 7), suggesting that the resulting 22 

phenotypic axes better capture PD heterogeneity when including genetic information. 23 

Moreover, we found a higher agreement between the phenotypic axes derived by integrating 24 
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the genetic relationship between patients of different cohorts than when the phenotypic axes 1 

were derived ignoring the genetic relationships (Supplementary Figure 8). Specifically, the 2 

coefficient of determination reflecting the agreement between the axes derived from the 3 

Discovery and those derived from the PPMI cohorts were from Axis 1 to 3: 0.665 (p=0.048), 4 

0.914 (p=0.003) and 0.754 (p=0.025) when including the genetic similarity between patients 5 

as compared to 0.604 (p=0.069), 0.908 (p=0.003) and 0.001 (p=0.991) without. Together, 6 

these findings demonstrate that the integration of genetic relationship between patients 7 

enhances the resulting phenotypic axes’ ability to reproducibly capture PD clinical variation. 8 

 Metanalysis of Genome Wide Association Studies with phenotypic axes as unique and 9 

universal quantitative traits  10 

Each phenotypic axis provides a quantitative trait enabling the genetics underlying 11 

patient variation to be studied by performing a Genome Wide Association Study (GWAS) via 12 

a regression model with the covariates age, gender, and two genetic principal components (to 13 

account for any underlying population substructure) in each individual cohort. As three 14 

phenotypic axes were similar across each individual cohort (Discovery, Tracking and PPMI) 15 

and to increase statistical power to detect an significant association, we conducted a meta-16 

analysis of each phenotypic axis genome-wide association studies using a common set of 17 

4211937 variants across 3088 individuals. A significant departure from the expected 18 

quantiles was observed for Axis 1 (meta-analysis combining the summary statistic of three 19 

individual GWAS [Discovery-Tracking-PPMI]) (Supplementary Figure 9), but no variant 20 

surpassed genome-wide significance (Supplementary Figure 10).  Although we did not 21 

observe a significant genome-wide association, the use of universal phenotypic axes 22 

significantly unable us to conduct meta-analysis and thus to increase the statistical power to 23 

identify genetic variants through their ability to align differently deeply phenotyped cohorts 24 

and reduce the number of traits tested. 25 
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Next, we re-examined genetic associations for each of the three phenotypic axes for 1 

three major PD risk genes, namely SNCA, GBA and LRRK2. We found a indicative local 2 

association signal but however un-significant at GWA level with Phenotypic Axis 1 for a 3 

variant in SNCA: 4: 90758437  (p-value=1.7x10-4, Supplementary Figure 11A) which is in 4 

high LD with rs1348224 (r2 > 0.8), a SNP previously associated with PD with dementia and 5 

dementia with Lewy bodies 20. SNP rs1348224:G allele (minor allele) had a negative effect 6 

on Phenotypic Axis 1, thus a protective effect for cognitive impairment, which is consistent 7 

with a protective effect for PD with dementia  and dementia with Lewy bodies previously 8 

reported for this locus  20 . We also found a indicative local association signal (p-9 

value=1.1x10-4) with Phenotypic Axis 3 for an intronic variant in LRRK2 (Supplementary 10 

Figure 11B). Both SNCA and LRRK2 variants were each nominally associated with only one 11 

phenotypic axis (Supplementary Table 4), suggesting distinct pathogenic mechanisms. 12 

Overlaps in genetic risk associated with different diseases and specific 13 

phenotypic axes. 14 

We then examined the overlap between genetic variation that contributes to these PD 15 

phenotypic axes and the genetic variation that contributes to other human complex diseases 16 

or traits. If the associations of genetic variants for one trait follow a uniform null distribution 17 

when mapped onto a second trait, then there is no detected association. However, pleiotropic 18 

‘enrichment’ with another human complex trait exists if there is a significant degree of 19 

deflection from the expected null, visualised by a leftward shift in the Q-Q plots conditioned 20 

on the ‘pleiotropic’ effect, termed Q-Q plot inflation 17, 21 (Supplementary Figure 12). For 21 

the PD phenotypic axes, we found a significant overlap between the genetic predisposition to 22 

coronary artery disease with Phenotypic Axis 1 (the major severity axis) (q-value= 1.8x10-3) 23 

and between schizophrenia and Phenotypic Axis 2 (Worsening anxiety, depression and 24 

autonomic symptoms but minimal motor dysfunction) (q-value= 1.8x10-3) (Fig. 4). No 25 
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overlap between the genetic predisposition to PD (risk of onset) and any phenotypic axis was 1 

found (Fig. 4). Nonetheless, by examining the pleiotropic ‘enrichment' for genetic variants 2 

associated with PD risk and other human traits, we did find a significant overlap with the 3 

genetic predisposition associated with schizophrenia and coronary artery disease, suggesting 4 

different components of the genetic risk for schizophrenia and coronary artery disease affect 5 

PD risk and PD phenotypic variation (Supplementary Figure 13). Taken together, the 6 

phenotypic axes propose two distinct aetiologies in terms of the genetic contribution to PD 7 

patient variation, which provide valuable traits to be considered in the design of clinical 8 

trials, for assessment of care pathways and provide distinct new avenues for therapeutic 9 

research.  10 

 11 

  12 
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Discussion  1 

We propose here a novel approach to quantifying diverse patient phenotypes on a 2 

continuous scale via the use of phenotype axes. This approach overcomes many of the 3 

limitations associated with the clustering methods previously used to classify PD 4 

heterogeneity. By applying our approach to three independent and deeply phenotyped 5 

cohorts, we demonstrate the universality of these axes of phenotypic variation amongst PD 6 

patients. We also showed that our axes are robustly derived when reducing the number of 7 

clinical features considered and, unlike other dimensionality reduction methods, the PHENIX 8 

MPMM approach is the only method tested here that is able to identify the same phenotypic 9 

axes underlying PD patient variation between individuals from different cohorts. The 10 

phenotypic axes have multiple applications in PD precision medicine. Here, we explored the 11 

overlap between the PD axes of clinical variation and other human traits and observed 12 

different genetic predispositions associated with different phenotypic axes, suggesting several 13 

distinct underlying genetic aetiologies. 14 

The association of Axis 1 with genetic risk for coronary artery disease suggests an 15 

influence of vasculature on the PD phenotype. While we observe no overlap in the genetics 16 

influencing Body Mass Index (BMI) and Axis 1 and that it was previously reported that a 17 

high BMI have protective to develop PD 22, we do observe a small but significant positive 18 

correlation between patient BMI and only their Axis 1 severity score (cor =0.22; p = 3.8e-06; 19 

Supplementary Figure 14). Furthermore, we observe that patients with a history of high 20 

cholesterol or a history of heart failure, stroke and/or heart attack score significantly higher 21 

only on Axis 1 than those without these histories (Supplementary Figure 15).  22 

Although a recent study highlighted no polygenetic relation between the PD risk and 23 

BMI 23, it was previously reported some overlap between major risk loci for PD and 24 
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schizophernia24. It is an attractive idea that the dopamine (DA) neurotransmitter could 1 

explain the relationship between both diseases: an excess of DA in the case of schizophrenia 2 

and a reduction in PD. However, as before, we found that the schizophrenia risk alleles were 3 

associated with an increasing of the PD risk, contradicting the hypothesis that PD and 4 

schizophrenia are two opposed, additive phenotypes and suggesting an alternative to the 5 

hypothesis of the dopaminergic system as common denominator 25. The genetic overlap for 6 

our PD severity Axis 2 with schizophrenia but no genetic overlap between PD onset risk and 7 

this axis suggests that there are distinct overlapping aetiologies contributing to risk and, 8 

separately, to disease manifestation.  9 

Our approach was able to identify representative quantitative variables that are 10 

clinically relevant to previously-defined categorical PD subtypes. A number of known 11 

comorbidities were represented among the phenotype axes. Anxiety and depression are 12 

highly correlated in PD patients, both of which are correlated with Axes 1 and 2 26. Rigidity 13 

and bradykinesia are also linked, possibly due to shared physiology 27, and varied in the same 14 

direction along Axis 3. Lawton et al. reported five PD subgroups, by using the same 15 

Discovery cohort but following a k-means clustering approach 6. We examined the 16 

distribution of phenotypic axis score across these five PD subgroups (Supplementary Figure 17 

16) and noted that the 5th subgroup of patients, characterised by severe motor, non-motor and 18 

cognitive disease, with poor psychological well-being clinical symptoms, were systematically 19 

associated with high severity score for all three of our phenotypic axes. Inversely, the first PD 20 

subgroup characterised by mild motor and non-motor disease (group affected by fewer 21 

clinical symptoms) displayed a low severity score for our three phenotypic axes. 22 

Furthermore, we observed that the individuals of subgroups 4 and 5, characterised by poor 23 

psychological well-being, had high severity scores for phenotypic axis 2, the axis most 24 

associated with depression and anxiety symptoms. These observations demonstrate some 25 
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consistency between subgroups defined with k-means and our phenotypic axis severity score. 1 

The agreement of these phenotype axes with previously observed correlations provides 2 

further support for underlying biological themes, but their reinterpretation as robust 3 

continuous traits likely provides a better approximation of how the underlying biology 4 

contributes, as opposed to a cut-off off for a phenotype. Specifically, the unimodal character 5 

of the phenotypic axis distributions (Supplementary Figure 17) suggests here that the 6 

development of continuous measures is more appropriate than clustering according to an 7 

arbitrary threshold. 8 

The phenotypic axes identified were robust in terms of the number of clinical features 9 

considered and enable the alignment of patients from different cohorts with different clinical 10 

phenotyping structures. The corollary is that Phenix did not require the variable selection 11 

common in PD clustering approaches, and it can also guide clinicians in determining which 12 

clinical assessments are essential to capture PD heterogeneity. Deep phenotyping is 13 

burdensome to both patient and clinician and many of the measures exploited here are 14 

compound scores summarising aspects of functioning. Further work identifying the 15 

minimally burdensome observations that enable robust scoring of patients along these 16 

phenotypic axes would facilitate their utility and adoption across the PD clinical community, 17 

bringing increased power to the discovery of influencing factors. Finally, the MPMM 18 

approach can be readily extended to include longitudinal data to determine the phenotypic 19 

axes associated with disease progression while simultaneously dealing with missing data, 20 

which is a common problem in longitudinal studies.  21 

In conclusion, these universal axes have the potential to accelerate our understanding 22 

of how PD presents in individual patients, providing more robust and objective quantitative 23 

traits through which patients may be appropriately compared, through which the underlying 24 
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disease-modifying mechanism can be understood and appropriately stratified/personalised 1 

therapeutic strategies and treatments can be developed.   2 
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Figure Legends 1 

Fig. 1. The clinical phenotypes of two independent deeply phenotyped Parkinson’s 2 

disease cohorts identify the same phenotypic axes. Results were consistent in two 3 

independents cohorts (842 Discovery and 1807 Tracking patients). Examination of 4 

these two separate Parkinson’s disease cohorts, using independent derivation of the 5 

phenotypic axes in each, showed significant correlations between each cohort’s first 6 

three axes. Correlations between the axes from each cohort are Axis 1 r=0.92 (p=3 x 7 

10-13), Axis 2 r=0.89 (p=4 x 10-11), Axis 3 r=0.72 (p=5 x 10-6). The correlation 8 

coefficient (x-axis) between each axis derived in each cohort (blue: Discovery vs red: 9 

Tracking) and each clinical observation (y-axis) is shown. 10 

 11 

Fig. 2.  The reduced dimensions in other dimensionality reduction methods fail to align 12 

between differently but deeply phenotyped UK and US Parkinson’s disease 13 

cohorts. We compared the ability of different dimensionality reduction methods  14 

(independent component analysis (ICA),  Multidimensional scaling (MDS),  Principal 15 

component analysis (PCA) and phenotypic axis based on the PHENIX multiple 16 

phenotype mixed model) to phenotypically align two deeply phenotyped Parkinson’s 17 

disease cohorts, specifically the Discovery (842 individuals) and PPMI (439 sporadic 18 

Parkinson’s disease) cohorts. The x-axis and y-axis represent the correlation 19 

coefficient between each continuous variable with clinical observation associated with 20 

a specific symptom category in Discovery and PPMI cohort respectively. Each 21 

column panel and colour of points (“Axis”) represents the dimension level of each 22 

underlying dimension.  All points on the diagonal would represent a perfect 23 

phenotypic alignment of both cohorts. We examined the relationship between 24 
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correlation derived from both cohorts by performing a linear regression: R^2 and p 1 

correspond to the coefficient of determination and the p-value respectively. Only the 2 

dimensions discovered by the MPMM model, PHENIX, show a significant 3 

relationship between both cohorts: MPMM phenotypic axes (R2=0.86, p=2x10-8), 4 

MDS (R2=0.11, p=0.18), ICA (R2=0.17, p=0.16) and PCA (R2=0.31, p=0.06). 5 

 6 

 7 

Fig. 3.  The correlation of individual clinically-measured Parkinson’s disease 8 

phenotypes with an underlying Phenotypic Axis 1. Modelling patient clinical 9 

phenotypes as a combination of genetic and environmental factors revealed three 10 

phenotypic severity axes (Fig.1), each representing a continuous pattern of variation 11 

between multiple co-varying clinical phenotypes. In Axis 1 (shown), (A) clinical 12 

measures relating to anxiety and depression and apathy are significantly and 13 

positively correlated with an individual’s score along this axis; patients with a higher 14 

axis score have more severe mood and neuropsychiatric problems. (B) The severity of 15 

motor phenotypes is positively correlated with this phenotypic axis; patients with a 16 

higher axis score is associated with more severe motor phenotypes (C) Cognitive tests 17 

were negatively correlated with this component (the patients that score high in these 18 

cognitive tests have less cognitive impairments); individuals with a high score for this 19 

component suffer from more severe anxiety, depression and displayed more cognitive 20 

impairment and motor symptoms. 21 

  22 
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 1 

Fig. 4. Each phenotypic axis displays a polygenic overlap with another distinct human 2 

complex trait. To identify pleiotropic enrichments for a phenotypic axis with another 3 

human complex trait, we used a Q-Q plot stratified by pleiotropic effects (see 4 

Methods). The significance of enrichment using Q-Q plots was calculated with a t-5 

test by comparing the subset represented in the Q-Q plots, specifically all SNPs with 6 

low p-values in another human complex trait (-log10 p-value >3), against the depleted 7 

category (-log10 p-value�<�1). Each bar plot panel (left to right) represents the 8 

pleiotropic enrichment for each Phenotypic Axis (1 to 3) with other human complex 9 

traits. The size of the bars corresponds to- log10 FDR adjusted p-value associated 10 

with pleiotropic enrichment test for that human trait. For clarity, the different human 11 

traits have been classified by categories (colour bar and legend). The sources of 12 

genome-wide association studies meta-analysis summary statistics of different human 13 

complex traits are listed in the Supplementary Table 5.  14 

  15 
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Table1: Correlation between each axis and each clinical phenotypic measure 1 

  

Clinical Observation 
    r   

    Axis1 Axis2 Axis3 

B
eh

av
io

r 

BDI total Measure of the depression + 0.60 0.60 0.01 

Leeds Anxiety Total Measure of the anxiety + 0.51 0.55 0.05 

Leeds Depression Measure of the depression + 0.51 0.62 0.00 

QUIP all Impulsive-Compulsive Disorders + 0.12 0.24 0.03 

UPDRS apathy Apathy + 0.40 0.39 0.18 

UPDRS fatigue Fatigue + 0.49 0.49 0.08 

UPDRS hallucinations Hallucinations + 0.17 0.17 -0.02 

A
ut

on
om

ic
 

Constipation Quantitative measure of constipation + -0.15 -0.07 0.01 

Orthostatic Blood pression from sitting/lying to stand up + 0.17 -0.09 -0.06 

UPDRS constipation Constipation + 0.38 0.33 -0.08 

UPDRS pain Pain + 0.47 0.47 -0.01 

C
og

ni
tiv

e 

Education years Number of years of education - -0.21 -0.23 0.16 

MMSE total Measure of cognitive ability - -0.27 -0.07 0.17 

MOCA total Measure of cognitive ability - -0.31 -0.06 0.23 

Phonemic fluency Number of words beginning with a particular letter - -0.26 0.03 0.14 

Sementic fluency Number of animals and the number of boy names - -0.28 0.09 0.15 

BMI Body Mass index + 0.16 0.09 -0.08 

CGIC Clinical global impression of change + 0.05 -0.07 0.08 

Disease Duration Disease Duration + 0.24 0.19 -0.07 

M
ot

or
s 

Flamingo time Time that a person can stand on one leg - -0.46 -0.03 0.16 

Getgo average 

Time taken for an individual to get up from a chair, walk 
three meters,  
turn around, walk back to the chair and sit down. + 0.52 0.04 -0.16 

Purdue assembly Test to measure manual dexterity - -0.37 0.16 0.10 

Purdue total Test to measure manual dexterity - -0.41 0.18 0.09 

UPDRS arms Arms + 0.63 -0.50 0.78 

UPDRS bradykinesia Bradykinesia + 0.63 -0.40 0.57 

UPDRS faceneck Face/neck problems + 0.26 -0.22 0.12 

UPDRS I Non Motor Aspects of Experiences of Daily Living + 0.68 0.67 0.02 

UPDRS II Motor Aspects of Experiences of Daily Living + 0.76 0.30 0.05 

UPDRS III Motors Examination + 0.71 -0.46 0.61 

UPDRS IV Motors complications + 0.16 0.16 0.05 

UPDRS laterality Unilateral   + -0.03 -0.01 0.15 

UPDRS legs Legs + 0.59 -0.31 0.44 

UPDRS postural Postural + 0.64 -0.02 -0.09 

UPDRS rigidity Rigidity + 0.51 -0.27 0.35 
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  1 
  2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 

 12 
 13 

(1)  A high score for a clinical measure indicates more (+) or less  (-) issue for the patient. 14 
(2) The correlation coefficient under and above |0.25| are indicated in gray or blue/red respectively 15 
(3) Red and blue cells indicates when a high phenotypic axis score are associated with more and less 16 

clinical issues for the patient respectively. 17 
 18 
  19 

UPDRS speech Speech + 0.22 -0.07 -0.04 

UPDRS tremor Tremor + 0.20 -0.40 0.58 
Sl

ee
p 

ESS total Measure of daytime sleepiness + 0.31 0.22 -0.07 

RBD total Measure of REM Sleep behavior disorder + 0.29 0.29 -0.03 

O
lf

ac
tiv

e 

Sniff total Smell identifications - 0.01 0.06 0.12 

D
ru

g 

LEDD total 
Quantitative measure of the amount of Parkinson’s disease 
medication + 0.31 0.27 -0.22 
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Fig.1 1 
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 3 
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Fig. 2  1 
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Fig.3 1 
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