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ABSTRACT

Cellular immunity is critical for controlling intracellular pathogens, but the dynamics and
cooperativity of the evolving host response to infection are not well defined. Here, we apply single-
cell RNA-sequencing to longitudinally profile pre- and immediately post-HIV infection peripheral
immune responses of multiple cell types in four untreated individuals. Onset of viremia induces a
strong transcriptional interferon response integrated across most cell types, with subsequent pro-
inflammatory T cell differentiation, monocyte MHC-II upregulation, and cytolytic killing. With
longitudinal sampling, we nominate key intra- and extracellular drivers that induce these
programs, and assign their multi-cellular targets, temporal ordering, and duration in acute
infection. Two individuals studied developed spontaneous viral control, associated with initial
elevated frequencies of proliferating cytotoxic cells, inclusive of a previously unappreciated
proliferating natural killer (NK) cell subset. Our study presents a unified framework for
characterizing immune evolution during a persistent human viral infection at single-cell resolution,

and highlights programs that may drive response coordination and influence clinical trajectory.

Introduction

Understanding the dynamics of host-pathogen interactions during acute viral infection in
humans has been hindered by limited sample availability and technical complications associated
with comprehensively profiling heterogeneous cellular ensembles. To date, microarray and bulk
transcriptomic studies of yellow fever vaccination’ and influenza infection? have highlighted
complex cellular responses that vary as a function of time, largely characterizing a common
systemic interferon stimulated gene (ISG) program. In each instance, additional insights might be
gleaned through more sensitive, discretized systems-approaches that can elucidate the
contributions of individual cellular components and nominate features that drive productive

responses essential to improve vaccines.

Recently, high-throughput single-cell RNA-sequencing (scRNA-Seq) has emerged as a
powerful tool to characterize, transcriptome-wide, complex human systems in health and disease

at single-cell resolution®*

. When applied to a collection of samples across a disease setting, this
approach provides a platform for investigating cell types, states, interactions, and drivers
associated with that disease; this information can be used to develop testable hypotheses on
therapeutic modulations that may ameliorate disease state”®. Meanwhile, within an individual,
longitudinal sampling provides an opportunity to decipher, at unprecedented resolution and

absent potentially confounding inter-individual variability’, shifts in these same variables, and to
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1012 Such sampling of a host’s

associate observed changes with internal or external perturbations
exposure to a pathogen could provide foundational insights into essential cellular response
features and their coordination, empowering the rational design of improved prophylactic

interventions.

lllustratively, a better understanding of the interplay between innate and adaptive immune
responses at the very earliest stages of a viral infection, and its impact on long-term disease,
could reveal principles to accelerate prevention efforts. Human Immunodeficiency Virus (HIV) has
been the subject of thorough study, and thus is a well-considered model system for examining
host responses to a pathogen. Moreover, although the development of antiretroviral therapy
(ART)"™, as well as implementation of pre-exposure prophylaxis (PrEP)'* and combination
prevention efforts, has improved the lives of persons living with HIV, increased life expectancies,
and reduced the number of new infections, there were still 2 million new cases of HIV-1 infection
in 2017, This highlights a pressing need for effective HIV vaccines informed by an understanding

of natural host-pathogen dynamics.

Here, we apply scRNA-Seq to perform an integrated longitudinal analysis of implicated
cell programs and drivers during the critical earliest stages of HIV infection. By examining
individuals in the Females Rising through Education, Support and Health (FRESH) study'®'” —a
unique prospective cohort of uninfected young women at high risk of contracting HIV who are
monitored for acute viremia by twice weekly plasma sampling — and focusing on those who were
enrolled at a time when standard of care did not include treatment during acute disease, we
comprehensively examine untreated cellular immune dynamics during the evolution of hyper-
acute infection into chronic viremia. Among over 65,000 cells obtained from repeated sampling of
peripheral blood, we identify cell types, states, gene modules, and molecular drivers associated
with coordinated immune responses to a viral pathogen. Further, these data suggest candidate
cellular features that may influence the magnitude of chronic viremia, known to predict long-term
infection outcome. Overall, our longitudinal, granular approach captures multiple dynamic and
coordinated immune responses — both shared and distinct between cell types and individuals —

and provides a framework for their elucidation in health and disease.

Results

Longitudinal single-cell transcriptomic profiling captures major and granular immune

subsets in hyper-acute infection
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95 In order to globally and longitudinally examine host immune responses during a hyper-
96 acute infection, we performed scRNA-Seq on peripheral blood mononuclear cells (PBMCs) from
97  fourindividuals enrolled in FRESH who became infected with HIV, assessing multiple timepoints
98 from pre-infection through one year following initial detection of viremia (Fig. 1A, table S1). In our
99  study, hyper-acute infection refers to timepoints at and prior to peak-viral load, whereas acute
100 infection refers to timepoints after peak viral load but before 6 months. Samples were processed

101  in duplicate using Seq-Well®

— a portable, low-input massively-parallel scRNA-Seq platform
102  designed for clinical specimens — allowing for robust single-cell transcriptional analysis of PBMC
103  subsets. All individuals studied demonstrated the expected rapid rise in plasma viremia and drop
104 in CD4+ T cell counts that typify hyper-acute and acute HIV infection (Fig. 1B). Among all
105 individuals, we captured 65,842 cells after eliminating low quality cells and multiplets (see
106  Methods), with an average of 2,195 cells per individual per timepoint. Alignment to a combined
107  human and HIV genome at peak infection timepoints yielded few reads mapping to HIV; therefore,

108 alignment for all samples was conducted using a human-only reference.

109 To assign cellular identity, we performed variable gene selection, dimensionality reduction,
110 clustering, and embedding en masse across data collected from all individuals and timepoints
111  (see Methods). Samples were combined for cell type/phenotype identification to find common
112  transcriptional features of ubiquitous cell subsets, and to improve statistical power on classifying
113  small/rare cell types. Importantly, combined analyses yielded few individual-specific features in
114  the resulting clustering and embedding, suggesting that disease biology, rather than technical
115 batch, is the main driver of variation and subsequent clustering (Fig. 1D, Fig. S1A,B). We
116  annotated identified clusters by comparing differentially expressed (DE) genes that defined each
117  to known lineage markers and previously published scRNA-Seq datasets'®?' (Fig. S1C, see
118 Table S2 for list of DE markers). These clusters recapitulated several well-annotated PBMC
119 subsets (Fig. 1C), in addition to revealing phenotypic groupings of monocytes (anti-viral,
120 inflammatory, non-classical) and cytotoxic T cells (CD8+ CTL, proliferating; see Fig. S1D). Thus,
121  we readily and reproducibly mapped the cellular players and phenotypes present along the course

122  of disease progression.
123
124  Cell frequency over time is readily obtained from transcript-assigned cellular identity

125 We next examined cellular dynamics over the course of infection, beginning with a pre-
126 infection time point. Onset of HIV infection is typically accompanied by an initial depletion of CD4*

127 T cells in the blood and a subsequent small rebound before continued depletion in chronic
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128 infection??. To ensure that our estimated frequencies would recapitulate conventional
129 measurements of our samples, in parallel, we employed flow cytometry to independently establish
130 the frequencies of T cell subsets (Fig. S2A). Linear regression of the measured CD3"CD4" and
131 CD3*CD8" flow populations (% of total CD45" cells) with their respective single-cell transcriptome
132 clusters (% of total single cells) across time yielded strong correlations (linear regression, F-test):
133  average CD4" — R? = 0.491, p = 0.0416; average CD8" — R? = 0.665, p = 0.00158 (Fig. 1E).
134  Subsequently, we calculated frequencies for the other cell types in our scRNA-Seq data as a
135  function of time (Fig. S2B). In each individual, we measured an expansion in monocytes at HIV
136  detection and in NK cells that peaked at 3- or 4-weeks post-detection, in-line with studies of
137  influenza and murine cytomegalovirus (MCMV) demonstrating expansion and recruitment of
138  monocytes and NK cells to sites of infection, though on shorter time-scales?®?°. Altogether, our
139  data elucidate dynamic temporal shifts in the abundance of different cellular subsets during hyper-
140 acute and acute HIV infection aligned with flow cytometry; more importantly, with whole
141 transcriptome information, they enable further global characterization of subcellular activity within

142  and between these subsets.
143
144  Discovering structured variation in cell phenotypes over time in response to infection

145 To understand how the identified cell types — monocytes, dendritic cells (DCs),
146  plasmablasts, B cells, natural killer (NK) cells, CD4" T cells, CD8" T cells, and proliferating T cells
147  (a sub-cluster of CTLs, see Fig S1D) — varied in phenotype over the course of infection, we
148  assessed coordinated changes in gene expression within each cell type that significantly varied
149 intime. Since the immune responses and time courses of infection were heterogeneous among
150 participants due to our sampling scheme and natural human variability, we performed analyses
151  onanindividual-by-individual and cell-type-by-cell-type basis. In this way, our results are sensitive
152  to both intra- and inter-individual changes in gene expression.

153 To identify tightly co-regulated modules (M) of genes for each type for each individual, we

Y%2” on all cells classified as a

154  applied weighted gene correlation network analysis (WGCNA
155  particular cell type across all timepoints (Fig. 2A; see Methods for details). Strongly correlated
156  gene modules (permutation test for within-module similarity, FDR corrected q < 0.05) were then
157  tested for significant variation over time by scoring cells at each timepoint against the genes within
158 a module, followed by tests for shifts in score distribution between pairs of timepoints (Wilcoxon

159 rank sum test, FDR corrected g < 0.05). This generated 0-8 temporal modules per cell type (for a
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160 list of all significant modules see Table S3 for gene membership and Table S4 for median module

161  scores over time).

162 Across cell types within an individual, these gene program trajectories demonstrated
163 common transient patterns along the course of infection, indicating the utility of this approach in
164 identifying groups of genes acting in concert. While a similar approach is possible using bulk RNA-
165 seqdata, here, we are powered to identify temporally similar modules active in distinct subsets of
166 cells both within and across time. Compared to a directed approach, this discovery-based
167 identification of temporally-variant modules enables unbiased selection of coordinated genes and
168 pathways, and immediately reveals differences in response dynamics among cell types, states,
169  and individuals.

170

171  Temporal module analysis reveals shared and unique responses to interferon across cell

172  subsets near peak viremia

173 With distinct, temporally-variant modules across all cell types and individuals in hand, we
174  next sought to understand these response modules and their association with plasma viral load,
175 the main clinical parameter linked with disease progression rate and clinical outcome®®%.
176  Beginning with one individual (P1), we identified a set of 6 significant gene modules spanning
177  multiple cell types that all shared their highest relative module score at the peak viremia timepoint
178  (Fig. 2B). Upon inspection of the genes within each, we uncovered a core set of genes shared
179  among the modules from all cell types: IFI27, IFI44L, IFI6, IFIT3, ISG15, and XAF1. These genes,
180 in addition to many others belonging to one or multiple of these peak viral load modules, are all
181  induced by type I interferon (IFN-I) stimulation in cell lines and ex-vivo primary cells**~2 (Fig. 2C,
182  Fig. S3A). Since these modules were generated de-novo, our results also report cell type specific
183  genes and functions that correlate with the core measured IFN response signature: anti-viral
184  activity (CXCL10, DEFB1, IFI27L1) in monocytes®**, DC activation (PARP9, STAT1) likely
185  through sensing of HIV by pattern recognition receptors and interferon by interferon receptors 3*-
186 ¥, differentiation of naive CD4+ T cells (CD52, TIGIT, TRAC) potentially into HIV-specific T helper

187  cells®*', and NK cell trafficking (CX3CR1, ICAM2) shown to occur in other viral infections*?™.

188 As transcriptional work in humans has been limited to late-acute stage and treated
189 infection*®, we sought to contextualize our data against the massive IFN response measured in
190 acute SIV infection*®°, specifically in rhesus macaques (RM, see Fig. S3B)*. In SIV models,

191 natural hosts of the infecting virus (e.g., sooty mangabeys) resolve IFN immune activation more
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192  quickly than susceptible hosts, positing that time to resolution may reflect future control in chronic
193 infection (>180 days). By comparison, we find that many IFN stimulated genes induced in RM for
194 2+ weeks arise and resolve within one week (i.e., upregulate at one timepoint). Here, we are
195  powered to assign the cells expressing these various response genes. For example, upregulation
196  of RIG-I (DDX58) is limited to myeloid cells — though RIG-I signaling has been shown to be
197  subverted by HIV®® — whereas only CD4" T cells exhibit higher levels of STAT2, suggesting a

198  polarization towards a Tu1 phenotype®'.

199 Subsequently, we examined the expression of IRF7, one of the interferon regulatory
200 factors that is responsible for anti-viral mediated IFN-I production in SIV/HIV®?%® and other viral
201 infections, to determine which cells might be generating this pervasive wave of IFN. In individual
202  P1, almost all cell types demonstrated higher expression of /IRF7 compared to pre-infection and
203  1-yeartimepoints (Fig. S3C), highlighting the pervasiveness of IFN-I in response to high levels of
204  viremia and potentially indicative of the positive feedback loop it induces®®. Since plasmacytoid
205 DCs (pDCs) are known to produce IFN-a and IFN-p in response to HIV®, we also assayed single
206 pDCs at peak viremia and 1-year post-infection using a plate-based scRNA-Seq method
207  compatible with enrichment by FACS (Smart-Seq2°®) (Fig. S4A). At both times, type | IFNs were
208 undetectable (see Supplementary Text). Comparing pDCs between them, we observe modestly
209 increased expression of IRF7 at peak viremia (Wilcoxon rank sum test, FDR corrected q < 1,
210 log(Fold Change) = 0.42). However, these cells also upregulated several ISGs that were present

211  in the modules of other cell types (Fig. S4B).

212 We next sought to identify whether similar gene expression programs typified responses
213  in the other three individuals assayed. We readily discovered a similar set of modules around the
214  time of peak viremia in each individual (Fig. 2D and Fig. S3D), as well as shared responses among
215 pDCs (Fig. S4C). Comparing modules across our cohort, we noted common response genes
216  (present in 3 or more cell-types) either shared (ISG15, IFIT3, XAF1) or specific (APOBEC3A,
217  IFI27, STATT1)to subsets of individuals, suggesting potential core programming and the possibility
218  for the same immune drivers to induce distinct gene responses (Fig. S4D). Finally, to confirm the
219  presence of downstream cytokines from IFN stimulation, we measured MIG (CXCL9) and IP10
220  (CXCL10) levels in plasma at pre-infection, peak viremia, and 9-months post infection (Fig. 2E;
221  Methods). All four individuals demonstrated higher levels of IP10 at peak viremia, and three
222  demonstrated elevated levels of MIG. Together, these data highlight the ability of our approach
223 to ascertain a short, pervasive wave of IFN responses in most peripheral immune cells that

224  coincides with, or precedes, peak viremia in hyper-acute HIV infection. Moreover, we uncover
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225 nuanced differences among individuals and cellular subsets in this response, as might be
226  expected for an infection associated with diverse clinical courses (e.g., differences in plasma
227  viremia; Fig. 1B).

228

229 Individuals demonstrate diverse, yet coordinated, immune responses during the first

230 month of infection

231 To investigate other groups of temporally similar modules, we next applied fuzzy c-means
232 clustering®® to the median module scores at each timepoint across all cell types on an individual-
233  by-individual basis to generate clusters of modules, hereafter referred to as meta-modules (MMs).
234  We subsequently grouped these MMs by temporal shape (Fig. S5 and see Methods for choice of
235  c). MMs represent gene programming in distinct cell types that demonstrate coordinated temporal
236  patterns — here, various cell-types responding simultaneously to infection — enabling us to link
237  discrete transcriptional responses to their propagators. In addition to the aforementioned MM that
238 contained the majority of the IFN response modules (labeled MM3), the only other MM that
239  spanned the majority of cell types was one enriched for ribosomal protein coding genes (labeled
240 MMS5, see table S3) — known to indicate cellular quiescence®'. MM5 demonstrated temporal
241  profiles defined by minimum module scores (i.e., significantly downregulated) around peak

242  viremia, anti-concordant with the immune activation (i.e., significant upregulation) seen in MM3.

243 Another MM that shared similar temporal immune responses across individuals was MM1,
244  comprised of responses sustained throughout one-month post-detection. In at least 2 of the 4
245 individuals studied, we identified sustained response modules with shared genes in CD4" T cells,
246  monocytes, NK cells, CTLs, and proliferating T cells (Fig. 3A-E, see table S5 for overlapping
247  genes). While DCs and B cells also expressed multiple modules within this MM, some modules
248 had low MM membership scores and were excluded (membership < 0.25, labeled with T in Fig.

249  S5) or did not share any genes across individuals (Fig. S6A and Supplementary Text).

250 As each module within MM1 is distinct, we performed gene set enrichment analyses (see
251 Methods) to discern if, in addition to sharing genes, modules from the same cell type shared
252  functional annotations across individuals (Fig. 3A-E). In every cell type, modules across
253 individuals were significantly enriched for many of the same underlying pathways (see table S6
254  for full list), despite slightly variable temporal dynamics and unique gene membership. CD4* T
255  cells expressed genes associated with non-classical viral entry by endocytosis®® as well as

256  adhesion, potentially suggesting migration and viral dissemination throughout the body.
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257  Monocytes expressed genes associated with antigen presentation and IL-4 signaling (mainly
258 HLA-DR subunits), which may reflect generalized interferon responses, or the potential to
259 promote active T helper and CTL responses. NK cells, CTLs, and proliferating T cells all
260 upregulated genes associated with killing of target cells by perforin and granzyme release,
261 highlighting the joint role of innate and adaptive cells in combating viremia (see Table S5 and Fig.
262  S6B for all shared responses across cell types)®*®. Thus, our results indicate common functional
263  enrichments supported by gene sets that vary across cell types and individuals in response to
264  infection.

265
266 Distinct cell types respond to common and unique upstream drivers induced in infection.

267 To identify common and cell-type specific inducers of these measured transient responses
268 extending past peak viremia, we generated a list of predicted upstream drivers of each module
269 (see Table S6). Selecting highly significant hits in at least two modules, we drew a network of
270  putative upstream drivers (nodes) colored by significance in each cell type with edges connecting
271 nodes with shared enriched genes (Fig. 3F, Fig. S6C, and see Methods). Strikingly, IFN-a. and
272  IFN-y are predicted drivers of these sustained responses for all five cell types even though these
273  modules do not contain the typical ISGs; in chronic HIV infection, prolonged IFN-I stimulation has
274  been shown to maintain viral suppression but also blunt other immune functions in a humanized
275  mouse model®*®. Matching Luminex data confirmed elevated levels of IP-10 and MIG at one-
276  month post HIV detection (Fig. S6D). IL-15 and IL-2, known to induce T and NK cell proliferation

277  but to lead to defects in chronic infection®”°

, were enriched as drivers for all lymphocytes
278  explored. However, they also shared enriched genes with several other interleukins, including IL-
279  4,1L-12 (also elevated in plasma, see Fig. S6D), and IL-21. Interestingly, only CD4" T cell modules
280  were enriched for TNF, IL-1B, and OSM, suggesting the directed induction of pro-inflammatory T
281  helper cells”. Meanwhile, monocytes and NK cells were enriched for CIITA and EBI3 (a subunit

282  of IL-27), which regulate MHC-Il and MHC-I genes, respectively”""2,

283 We also contextualized observed responses to these upstream drivers temporally by re-
284  scoring against enriched genes for each driver. This analysis revealed variable kinetics in the
285  onset, intensity, and length of immune responses across different cell types (Fig. 3G, Fig. S7).
286  We note the following gene-programming upregulation trends in most individuals: CD4+ T cells
287 are active from before peak viremia throughout 3-4 weeks post infection, and CTL and
288  proliferating T cell programs are induced for 2-3 weeks around peak viremia, whereas NK cell

289  and monocyte activity extends throughout the first month of infection.
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290 Based on shared cell-type enrichments, genes, and functions, we summarize the
291  multitude of common immune responses displaying sustained gene expression over the course
292  of first month of HIV infection, and their potential drivers, across individuals (Fig. 3H). While the
293 IFN stimulated gene programs do not extend past hyper-acute infection, our data suggest that
294  persistent IFN activation could manifest in different ways in each cell type, leading long-term to
295  previously shown dysfunction partially mediated by IFN in chronic infection”. This analysis also
296  support more complex cytokine interactions — some previously described as synergistic (e.g. IL-
297 2 &IL-18™) or antagonistic (e.g. IL-6 & IL-277°) — occurring in acute infection, and delineates how
298 they may affect various cell types. Though dozens of cytokines are known to elevate in plasma
299  during acute HIV infection’, here we present a putative schematic of which cell types they
300 modulate alongside other extracellular proteins and transcription factors active during this time
301 frame. Furthermore, our analysis establishes a blueprint of multi-cellular responses to several
302  stimuli along the course of hyper-acute and acute infection to be edified by application to other

303 pathogens.
304
305 Two instances of temporally similar modules within a cell type discerned by scRNA-Seq

306 After discovering temporally variant modules in our dataset, we observed a few sets that
307  demonstrated similar temporal response patterns in a given cell type, but were not combined into
308 a single module by our framework. We thus sought to understand how these modules might be
309 linked by looking across single cells for module co-expression. Here, single-cell expression data

310 are essential to distinguish response circuitry among cells.

311 The clearest example of multiple modules being co-expressed with the same temporal
312  pattern in the same cell type from our analysis was the NK activated M3 module (CCL3, CCL4,
313 CD38) and the cytotoxic M4 module (PRF1, GZMB, HLA-A) in P3 (Fig. 3D), both part of MM1.
314  Enrichment analysis demonstrated little overlap between the significant pathways associated with
315 these modules, implying orthogonal biological function. We therefore investigated whether the
316  gene programs for these modules were highly co-expressed in the same single cells and thus co-
317 varied among single cells across time (Fig. S8A). While we did not observe differential
318  simultaneous upregulation of these modules between time points, we found variation in the
319  correlation of cell-scores for the pair as a function of time across single cells, with the strongest
320 correlation one to two weeks after HIV detection (Fig. S8B). Variation in the correlation of M3 and
321 M4 may reflect a synergizing of these gene programs’” within NK cells to combat HIV as viremia

322  declines post peak.

10
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323 In examining MM3 (Fig. S5) — containing the majority of the IFN response modules — we
324  observed that P3 also exhibited a set of temporally similar modules in monocytes (M1 & M3);
325  however, these modules did not variably correlate in expression score as a function of time.
326 Instead, these gene programs were highly co-expressed but only at HIV-detection (Fig. S8C-D).
327  Gene set analysis readily demonstrated that monocyte M1 consisted of IFN response genes,
328  while M3 was enriched for genes associated with inflammation (Fig. S8E). IFN has been shown
329 to stunt the production of pro-inflammatory cytokines in monocytes similar to the phenotype
330 observed in these cells in viremic persons’®’® but the co-expression of anti-viral and pro-
331 inflammatory signals in the same single cells has not yet been described to our knowledge. As
332 these module scores are generated independently for each single cell, individual monocytes in
333 this person at the time of HIV detection are simultaneously expressing both anti-viral and
334 inflammatory gene programs. Critically, our longitudinal granular, single-cell approach facilitates
335 the study of variation in gene module correlation and co-upregulation, suggesting key cellular

336 circuitry, and its coordination, during response to infection.
337

338 One individual who naturally controls infection displays a polyfunctional subset of

339 monocytes at HIV detection

340 Intrigued by the appearance of these polyfunctional monocytes in one individual, we next
341 explored whether the other individuals assayed developed similar cells after infection. Scoring
342  monocytes from each individual on inflammatory and anti-viral gene lists derived from discovered
343  modules (Fig. S9A), we were unable to identify these polyfunctional monocytes in the other three
344 individuals (Fig. 4A-B, Fig. S9B-C). In fact, looking at structured gene variation in monocytes over
345 time in principal component analysis (PCA) space revealed that the major axis of variation (PC1)
346 in P1 and P2 not only reflected sample timepoint, but also separated monocytes based on their
347  expression of anti-viral and inflammatory genes. In P3 and P4, however, these gene programs
348 contributed to different principal components, suggesting their independence in defining

349  monocyte phenotype.

350 In all four individuals, we saw dramatic structuring of the monocytes in PC space by time.
351  Specifically, monocytes sampled at HIV detection (0 weeks) or 1-week post-detection were
352  strongly separated along either PC1 or PC2, indicating a pervasive hyper-acute response to
353 infection. Interestingly, non-classical monocytes (see Fig. S1D and Table S2), which may be more
354  susceptible to infection®, displayed disparate temporal dynamics across individuals, even though

355 they drove significant variation in PCA space (Fig. S9D). Comparing DE genes at these peak
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356 response timepoints (vs. pre-infection) highlighted not only the specificity of the co-
357 inflammatory/anti-viral monocytes to P3, but also other person specific differences in monocyte
358 phenotype (Fig. 4C). Gene set analysis on upregulated genes in each individual confirmed that
359  monocytes in all individuals produced strong anti-viral factors (e.g., RIG-I, APOBEC3B, MX1) with
360 significant enrichment (MHC hypergeometric test, q<0.001) for response to IFN-a and IFN-y (Fig.
361 4D). Moreover, corroborating the scoring on inflammatory genes, only P2 and P3 were
362  significantly enriched for inflammatory responses, and only P3 for TNF signaling via NF-kB (MHC
363 hypergeometric test, q<0.001). In fact, P1 and P2 demonstrated downregulation of genes

364  associated with inflammation compared to pre-infection.

365 Subsequently, we investigated known clinical parameters in our cohort for features of
366 infection that might be related to the appearance of these polyfunctional cells. As the level of viral
367 load in chronic infection correlates with disease outcome?®, we compared the viral load setpoints
368  of these individuals at 1.8, 2.3, and 2.75 years after HIV detection. Two of the four individuals (P3
369 & P4) maintained low levels of viremia (< 1,000 viral copies (vc)/mL) out to 2.75 years in the
370 absence of ART (Fig. 4E). HIV infected persons who naturally maintain low levels of viremia in
371  chronic infection (controllers) have been shown to have enhanced immune responses in chronic
372  infection”®®2 However, whether early events in acute HIV infection reflect or contribute to long-
373  term control is unknown. In the hyper-acute monocyte responses (Fig. 4C), we found a small set
374  of upregulated genes shared only by P3 and P4, including SLAMF7, whose activation was
375  recently described to downregulate CCR5 on monocytes and reduced their infection capacity by
376  HIV®, suggesting a potential difference in monocyte susceptibility and phenotype in these
377 individuals during hyper-acute infection. Moreover, referring back to the initial cell type clustering
378  of our data (Fig. S1), we noted that the peak response monocytes in P3 (0 weeks) clustered
379  separately from other monocytes, and that P4 made up >75% of the anti-viral monocytes detected
380 at 1-week post-infection. Identifying a potential correlate of future viral control otherwise obscured
381 by bulk transcriptomics and sparse longitudinal sampling, we next searched for other unique

382 immune responses enriched in either or both of the two controllers.
383

384  Future controllers exhibit higher frequencies of proliferating CTLs and a precocious
385 subset of NK cells before traditional HIV-specific CD8+ T cells

386 As CD8+ T cells are known to play a part in controlling chronic HIV infection®2848°,

we
387  turned to the CTLs in our study to look for differences between the individuals who controlled

388 infection long-term and those who did not. Through our module discovery approach, we found
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389 that CTLs produced increasing levels of PRF1 and GZMB along the course of hyper-acute
390 infection (Fig. 3C). Further unsupervised and directed approaches did not elucidate meaningful
391 or significant differences in CTL responses across individuals by outcome of viral control (Fig.
392 S10A-B and Table S7).

393 Recently, we demonstrated that, in most individuals in the FRESH study, a majority of
394 proliferating CTLs in hyper-acute infection are HIV-specific by tetramer staining®®. Therefore, we
395 turned to the proliferating T cells in our study to look for differences in response based on long-
396 term viral control. En masse, the proliferating T cells expressed similar levels of cytotoxic genes
397  as non-proliferating CTLs (Fig. S10C). DE analysis highlighted genes associated with cell-cycle
398 (e.g. STMN1, HIST1H1B, MKI67) and memory (e.g. IL7R, KLRB1) (see Fig. S10D and table S7)
399 for proliferating and non-proliferating CTLs, respectively. While sparsely detected due to the
400 method of library construction in Seg-Well, we did measure a limited number of TCR variable
401 genes in the proliferating CTLs (Fig S10E). In fact, we note enrichment of TRBV and TRAV genes
402  known to construct prevalent CDR3 sequences that bind common HIV epitopes®”®: TRBV28
403  (QWO/FL8/KF11/KK10/NV9, %2 test p=2.4*10"%6), TRAV4 (KK 10, y? test p=3.5*10°), and TRBV20-
404 1 (KK10/KF11/GY9/NV9, %? test p=0.059). Our single-cell data here expand our recently
405  published bulk RNA-Seq data on HIV-specific CTLs in this cohort®, but also enable us to elucidate

406 heterogeneity in this proliferating cytotoxic response as a function of time.

407 Grouping proliferating T cells with the other CTLs, we sought to understand if these two
408 controllers demonstrated differences in the frequency of proliferating T cells among the total CTL
409 pool over time. Strikingly, both controllers (P3 & P4) displayed much higher frequencies of
410 proliferating T cells within the first month of infection (Fig. 5A). While all four individuals developed
411  proliferating T cells at 1-week post HIV detection, P3 and P4 exhibited a higher fraction of these
412  cells 1 week after HIV detection (30-40%).

413 We next utilized unsupervised analyses to explore differences in proliferating T cell
414  responses over time among individuals (Fig. 5B, Fig. S10F). Proliferating T cells captured at 1-
415  week post-infection strongly separated in PCA across both PC1 and PC2 (p < 0.001). Clustering
416  over all proliferating T cells (see Methods), we identified four clusters of cells with distinct gene
417  programs (see Fig. 5C and table S7): traditional CD8+ T cells (1-red), hyper-proliferative CD8+ T
418  cells (2-green), naive CD4+ T cells (3-cyan), and a subset of cells that is CD8- but TRDC+ and
419 FCGR3A+ (CD16) (4-lilac). A recent scRNA-Seq study on cytotoxic innate-ness looked at
420  cytotoxic y8T and NK cells in healthy humans, noting basal levels of TRDC in both cell-types?'.

421  To determine whether these TRDC*CD16" cells were y8T or NK cells, we scored them, as well as
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422  non-proliferating CTLs and NK cells, against gene signatures described in that study (Fig. S10G).
423  Based on score similarity to NK cells, and the relative down-regulation of CD3 compared to the
424  other  proliferating T cell subsets (Wilcoxon rank  sum test; CD3D:
425 log(FC) = -0.895, q = 2.7x10**;, CD3G: log(FC) = -0.923, q = 8.9x10°%"), we determine cluster 4
426  (lilac) to be proliferating NK cells. Looking at the distribution of timepoints within each of these
427  clusters, this NK cluster (4-lilac) contained the highest proportion of cells assayed at HIV detection
428 and 1 week thereafter (Fig. 5D,E). Within these earliest proliferating NK cells, the majority were
429  detected from P3 and P4. Together, these data suggest that individuals who go on control HIV
430 infection without ART exhibit a subset of proliferative, cytotoxic NK cells before the majority of
431  HIV-specific CD8+ T cells arise. Thus, investigating the classically induced cytotoxic cells in viral
432 infection on a single-cell level revealed unappreciated heterogeneity in the anti-viral response,

433  implicating innate immune responses in controlling infection.
434
435  Discussion

436 Here we have applied both unsupervised and directed approaches to a unique longitudinal
437  human infection data set to characterize conserved immune response dynamics, as well as early
438 cellular events associated with the individuals studied here who go on to control infection without

439  treatment. Sampling prior to and immediately upon HIV infection, we assayed longitudinal PBMC
440 samples in four individuals from a prospective cohort, the FRESH Study'®" using Seg-Well™®.
441  This systems-level approach revealed parameters shared across all cell types examined (e.g.,
447  response to IFN), as well as subtle variations among cellular types and individuals missed in
443  previous bulk studies of infection. Further, it defined cell-type specific responses (e.g.,
444  inflammatory induction of CD4+ T cells), and their interaction dynamics following infection.
445  Moreover, leveraging the resolution and high-throughput capability of scRNA-Seq methods, we
446  were able to uncover previously unappreciated cellular features in the PBMCs of two individuals
447  who went on to control infection naturally, including subsets of poly-functional monocytes and
448  proliferating NK cells limited to hyper-acute infection, that may correspond to better infection

449 outcome.

450 To systematically identify immune cells responding with similar temporal dynamics, we
451 adapted WGCNA?®?" (Fig. 2A and see Methods) to discover modules of genes that significantly
452  changed in expression within a given cell type over time. Cellular responses to infection can
453  happen on the order of hours to days; therefore, even with the biweekly HIV testing in the FRESH

454  Study, we anticipated these individuals would not align immune responses in absolute time. After
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455  applying our module analysis, the strongest and most pervasive module across cell types and all
456 individuals assayed was the interferon induced anti-viral response (Fig. 2D). While known to be

457  a key factor in controlling HIV replication3*¢®

and the major response in NHP SIV infection
458  models®*®, the timing of response and extent to which it pervades all peripheral cell subsets in
459  humans has not yet been described. Of note, both controllers (P3 & P4) exhibited interferon
460 response modules the week before peak viremia, consistent with the faster resolution of interferon
461 response in natural SIV hosts compared to non-natural hosts*®=°. Moreover, multiple modules
462  from P3 & P4 uniquely contained APOBEC3A, shown to restrict HIV infection in myeloid cells®’,

463 and IFITM1 and IFITM3 which can inhibit HIV translation in transfected cells in-vitro®?.

464 Due to our ability to determine enriched modules within individual cells, we were able to
465  unveil a second layer of regulation, which might otherwise be drowned out by the overwhelming
466  IFN signature (Fig. 3F-H). This highlighted putative upstream drivers that are unique to CD4+ T
467  cells, monocytes, NK cells, or shared amongst many cell types. Downstream genes (many
468 shared) were significantly enriched for many known drivers of lymphocyte proliferation,
469 emphasizing the presence of mounting large cytotoxic responses in more than just HIV-specific
470  CD8" T cells during acute infection. Some of these molecules were also upstream of CD4" T cells,
471  potentially increasing their susceptibility to infection (IL-15)° )*” and
472  differentiation (IL-4)*. Cell-type specific drivers, like IL-1B & TNF upstream of CD4+ T cells, also

473  suggest T helper subset differentiation during this time frame’. However, the functional capacity

and inducing maturation (IL-2

474  of CD4" T cells to coordinate productive CD8" T cells during hyper-acute HIV infection has yet to
475  Dbe tested. Though we did not ascribe the relationships between all cell types and their immune
476  modulators, this integrated multi-cellular analysis lays the foundation for future characterization
477  of the complex, dynamic immune responses to an infection. A potential method to pinpoint the
478  effects of the various cytokines produced in acute infection might utilize in-vitro assays that couple
479  PBMCs from healthy individuals with and without autologously HIV infected CD4+ T cells.

480 Empowered by our single-cell resolution and cognizant of the role HIV-specific T cells play

481  in long-term control®%84%

, we were intrigued to find not only higher frequencies of proliferating
482  CTLs in P3/P4, but also the presence of a subset of a previously unappreciated proliferating NK
483  cells preceding the well-described HIV-specific responses (Fig. 5C-E), given the multi-faceted

484  role of NK cells in viral control®*

. Assaying cells from controllers in-vitro showed that NK cells were
485  equivalent to CD8" T cells in inhibiting viral replication®; however recent work has demonstrated
486 CD11b*CD57:CD161'Siglec-7" NK cells to be more abundant in elite controllers compared to

487  those who progress®. The proliferating NK cells measured here also express high levels of
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488 CD161 (KLRB1), associated with the production of IFN-y in response to IL-12 and IL-18%". Antigen
489  specific expansion of cytotoxic NK cells has been shown to occur in hCMV®° hantavirus'®, and
490  SIV'®" as a “memory-like” response; however, we do not measure changes in NKG2C (KLRC1)
491  here. Lacking the opportunity to assay previous viral exposure in these individuals, we cannot
492  comment on whether these cells might be proliferating in response to a previously encountered
493  antigen from HIV or a similar retrovirus. We hypothesize that a similar phenotype of proliferating
494  NK cells may arise in response to re-encountering antigen after early ART. To test this, one could
495  examine the killing capacity of NK and CD8" T cells in-vitro from individuals treated at various

496  stages of acute and chronic infection, given sample availability.

497 Collectively, our single-cell transcriptional study of hyper-acute and acute HIV infection in
498 FRESH provides several key insights into the dynamics of host-immune responses to infection
499  on a systems-level. It also affords a key reference data set for studying the earliest moments of
500 viral infection after detection. While limited sample availability and the inability to recreate a
501 prospective study like this (since immediate ART is now standard of care) preclude strong
502  associations with clinical parameters across individuals, we are able to nominate potential early
503 responses that may inform long-term viral control and thus guide HIV vaccine efforts. Although
504 preliminary, many of these observations can be validated in NHP models via proper selection of
505 natural and unnatural hosts/virus strains. Future work in FRESH will seek test the effects of early
506 administered ART on these longitudinal HIV response dynamics, while work in other viral and
507 bacterial infections in additional human cohorts will enable assessment of the broad utility of the

508 methods and features described here.
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Fig. 1: Longitudinal profiling of peripheral immune cells in hyper-acute and acute HIV-
infection by single-cell RNA-sequencing. (A) Representation of the typical trajectory of HIV
viral load in the plasma during hyper-acute and acute HIV infection, and the timepoints sampled
in this study. Since participants are tested twice weekly, there is an uncertainty of up to 3 days in
where on the viral load curve the first detectable viremia occurs. The exact days sampled are
available in table S1. (B) Viral load and CD4 T cell count for the four individuals assayed in this

study. Dotted lines indicate a missing data point for the metric. (C) tSNE analysis of PBMCs from
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all individuals and timepoints sampled (n=65,842). Cells are annotated based on differential
expression analysis on orthogonally discovered clusters. (D) tSNE in C annotated by timepoint
(left) and individual (right). (E) Scatter plot depicting the correlation between cell frequencies of
CD4+ and CD8+ T cells measured by Seq-Well and FACS. R-squared values reflect variance
described by a linear model. * p < 0.05; ** p <0.01; *** p < 0.001.
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833 Fig. 2: Gene module discovery reveals ubiquitous response to interferon with cell type
834  specific features. (A) Schema depicting temporal gene module discovery (see Methods). This
835  procedure is repeated for each major cell type (monocytes, CD4+ T cells, CTLs, proliferating T
836  cells, NK cells, B cells, plasmablasts, and mDCs) on an individual-by-individual basis. (B) In P1,
837  six gene modules across multiple cell types exhibit similar temporal profiles with peak module
838  scores at the same timepoint as peak viremia is measured. (C) Number of occurrences of genes
839  across the modules in B. (D) Module scores for interferon response modules in each individual.
840 The timepoint where peak viral load occurs is indicated by a dotted line. (E) Luminex
841 measurements of IP10 (left) and MIG (right) in matching plasma samples. Points are averages of
842  duplicate measurements.
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Fig. 3: Modules with sustained expression conserved among individuals suggest shared
and cell type specific drivers of immune response. Module Scores (left), gene overlaps
between modules (middle), and enriched pathways for each module (right) in (A) CD4+ T cells,
(B) monocytes, (C) CTLs, (D) NK cells, and (E) proliferating T cells. (F) Network of predicted
upstream drivers of modules in A-E. Nodes are colored by significance in each cell-type. Edge
width and color reflect the number of shared genes (width) in the gene sets of the upstream drivers
for a given cell-type (color; see Methods). (G) Median gene set scores for significantly temporally

5. (H)

variant (p < 0.05) upstream drivers in P1. Scores are grouped by k-means clustering; k=
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853 Summary table of immune responses to related and distinct stimuli with similar temporal

854  dynamics.
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856  Fig. 4: One individual who goes on to control infection presents a poly-functional subset
857  of monocytes at HIV detection. (A) Inflammatory and anti-viral scores of monocytes in P3 (left)
858 and P1 (right) derived from gene lists created from merging modules among individuals. Ellipses
859  drawn at 95% confidence interval for cells from each timepoint. (B) Principal component analysis
860 (PCA) of all monocytes from P3 (left) and P1 (right). Density of cells in PC1 vs PC2 space
861 annotated by timepoint are depicted, and the top loading genes for PC1 and PC2 are also
862 annotated. (C) Heatmap of differentially expressed genes between monocytes at the peak
863  response timepoint (0 weeks/1 week) vs pre-infection. Arrows indicate genes specific to P3 (dark-
864  brown) and P1 (violet). (D) Enriched pathways for the differentially expressed genes in C, using
865  the MSigDB Hallmark Gene Sets. (E) Viral load by RT-PCR of the plasma of the four individuals
866  assayed out to 2.75 years. Controllers of HIV maintain levels of plasma viremia less than 1,000
867  viral copies (vc)/mL. P1 initiated ART before the 2.3 year timepoint.
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Fig. 5: Future controllers exhibit higher frequencies of proliferating CTLs and a precocious
subset of NK cells 1 week after detection of HIV viremia. (A) Proportion of proliferating T cells
of total CTLs as a function of time and individual measured by Seqg-Well. (B) PCA of proliferating
T cells from all four individuals. Cells assayed from the 1-week timepoint strongly separate along
PC1 and PC2; Mann Whitney-U Test, *** p <0.001. (C) SNN clustering over the top 6 PCs reveals
four sub-clusters (left) with distinct gene programs (right). (D) Percentage of cells in each sub-
cluster by timepoint. (E) Number of cells from each individual within the cells sampled at 0 weeks

and 1 week in the NK cell cluster (4-lilac; black box in D).
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