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Abstract

A mosaic of cross-phyla chemical interactions occurs between all metazoans and their
microbiomes. In humans, the gut harbors the heaviest microbial load, but many organs,
particularly those with a mucosal surface, associate with highly adapted and evolved
microbial consortia’. The microbial residents within these organ systems are increasingly well
characterized, yielding a good understanding of human microbiome composition, but we have
yet to elucidate the full chemical impact the microbiome exerts on an animal and the breadth
of the chemical diversity it contributes?. A number of molecular families are known to be
shaped by the microbiome including short-chain fatty acids, indoles, aromatic amino acid
metabolites, complex polysaccharides, and host lipids; such as sphingolipids and bile acids®-
. These metabolites profoundly affect host physiology and are being explored for their roles
in both health and disease. Considering the diversity of the human microbiome, numbering
over 40,000 operational taxonomic units'?, a plethora of molecular diversity remains to be
discovered. Here, we use unique mass spectrometry informatics approaches and data
mapping onto a murine 3D-model'3-" to provide an untargeted assessment of the chemical
diversity between germ-free (GF) and colonized mice (specific-pathogen free, SPF), and
report the finding of novel bile acids produced by the microbiome in both mice and humans

that have evaded characterization despite 170 years of research on bile acid chemistry’®.

Main

In total, 96 sample sites, covering 29 organs, producing 768 samples (excluding
controls, Fig. S1) were analyzed from four GF and four colonized mice by LC-MS/MS mass
spectrometry and 16S rRNA gene sequencing. The metabolome data was most strongly
influenced by organ source, but as expected, the microbiome was dictated by colonization
status (Fig. 1a,b). GF mice and sterile organs in SPF mice clustered tightly with background
sequence reads from blanks (reflecting their sterility), whereas colonized organs within the
SPF mice clustered apart from these samples (Fig. 1a,b). Mapping the principle coordinate

values of the two data types onto the murine 3-D model showed how the gut samples were
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similar, but important differences were observed, including separation of the stool sample
from the upper Gl tract in the metabolome but not in the microbiome, and similarity between
the esophageal and gut microbiomes. The strongest separation in the metabolome between
colonization states was present in the stool, cecum, other regions of the Gl tract, and
samples from the surface of the animals including ears and feet (Fig. 1c). The liver also had
signatures suggestive of metabolomic differences between the GF and SPF mice, but these
were not significant compared to the within individual variation (Fig. 1, Fig. S2).

Molecular networking is a novel spectral alignment algorithm that enables identification
of unique molecules in mass spectrometry data and the relationships between related
spectra’™. Applying molecular networking to this comprehensive murine dataset identified
7,913 unique spectra (representing putative molecules) of which 14.7% were exclusively
observed in colonized mice and 10.0% were exclusive to GF (Fig. 2). Although the overall
profiles exhibited the strongest difference in the Gl tract, molecular networking showed that
all organs had some unique molecular signatures from the microbiome, ranging from 2% in
the bladder to 44% in stool (Fig. 2). As expected, the metabolome of the cecum, site of
microbial fermentation of food products, was profoundly affected by the microbiota, but other
Gl sites had weaker signatures. Spectral library searching enabled annotation of 8.86% of
nodes in the molecular network (n=700 annotated nodes'3'7); which included members of the
molecular families of plant products, such as soyasaponins and isoflavonoids (sourced from
the soybean (Glycine max, f. Fabaceae) component of mouse chow), host lipids and
microbial metabolic products (Fig. 2a). Many of the unique signatures attributed to the
microbiome were the result of metabolism of plant triterpenoids and flavonoids from food
(Supplemental Data, Fig. S3, S4). These effects were location specific, indicating that the
microbiome inhabits spatially distinct and varied niche space throughout an organism,
exerting location-dependent effects on host physiology through the metabolism of xenobiotics
and modification of host molecules.

The strong impacts from the microbiome in the gastrointestinal (Gl) tract led to deeper
analysis of the molecular changes in this organ system. A random forests classification was
used to identify the most differentially abundant molecules between the GF and SPF Gl
tracts. The metabolome of both the GF and SPF mice changed through the different sections
of the digestive system (Fig. 3a). While changes through the upper Gl tract were subtle in GF
mice, SPF animals had progressive transitions in this region (Fig. 3a). A major transition

occurred between the ileum and cecum in both groups, but the specific molecules that were
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changing were different between them (Fig. 3a). Many unique metabolites in SPF mice were
unknown compounds, but known molecules were also identified including bile acids and
soyasaponins (Fig. 3a, Supplementary Data, Fig. S3,S5). The Shannon diversity index of the
GF and SPF mouse metabolome was mirrored in the upper Gl tract, both being low in the
esophagus and higher in the stomach and duodenum, however, upon transition to the cecum,
the diversity of the two groups of mice began to separate (Fig. 3c,d). The molecular diversity
in the cecum and colon of colonized mice was significantly higher than GF mice (Mann-
Whitney U-test), but not in the stool samples (Fig. 3c).

We also compared the changing microbial community through the Gl tract in the
context of the changes observed in the molecular data. Similar to the metabolites,
microbiome transitions were observed traversing the Gl tract (Fig. 3b). The corresponding
microbial diversity of the colonized animals showed a similar profile to the metabolome,
mostly stable through the upper parts of the system and then abruptly increasing at the
cecum, followed by a decrease in the colon and stool (Fig. 3d). However, an interesting
contrast was observed where a high diversity of the metabolome in the duodenum
corresponded to a lower microbial diversity. We hypothesize that this contrasting result was
due to the secretion of bile acids from the gallbladder at this location. Because these
molecules possess antimicrobial properties, their high abundance may explain the lower
microbial diversity in the upper Gl tract'8, while simultaneously, microbial modification of the
molecules increases their molecular diversity. After the duodenum, changes in the diversity of
microbiome and metabolome were closely aligned, but colonized mice had greater molecular
diversity in the cecum and colon. This shows that microbial activity in these organs was
altering the molecules present, particularly bile acids, soyasaponins, flavonoids, and other
unknown compounds, which expanded the metabolomic diversity of the cecum
(supplementary results).

Molecular networking also enabled meta-mass shift chemical profiling’® of the GF and
SPF Gl tract, which is an analysis of chemical transformations based on parent mass shifts
between related nodes without the requirement of knowing the molecular structure. For
example, a unique node found in colonized mice with an 18.015 Da difference represents
H20 and 2.016 Da is Hz. In colonized animals, there was a strong signature for the loss of
water in the duodenum and jejunum and the loss of Hz, acetyl and methyl groups in latter
parts of the Gl tract (Fig. 3e,f). GF mice had notable mass gains corresponding to
monosaccharides in all regions of the Gl tract, which were absent in SPF animals. Instead, a
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133 mass gain of C4Hs was seen in the jejunum and ileum of SPF mice, which was associated
134  with the conjugated bile acid glycocholic acid (Fig. 3e,f). A significant portion of the

135 dehydrogenation and dehydroxylation mass shifts from the microbiome were associated with
136  bile acids, indicating that microbial enzymes acted on C-C double bonds of the cholic acid
137  backbone and removed hydroxyl groups, which is a known microbial transformation?.

138 Deacetylations were also prevalent in SPF animals, though the metabolites upon which these
139 losses were occurring remain mostly unidentified. Overall, both GF and SPF mice had many
140 cases of mass loss between related molecules, but there were comparably fewer molecules
141 in the colonized mice that showed gain of a molecular group (Fig. 3f). This indicates that the
142 microbiome contributes more to the catabolic breakdown of molecules and less to anabolism;
143  however, one interesting anabolic reaction that was detected was the addition of C4Hs on
144  glycocholic acid, which we subsequently investigated further.

145 Glycine and taurine conjugated bile acids were detected in both GF and SPF mice. As
146  they moved through the Gl tract, the conjugated amino acid was removed in SPF mice only,
147  representing a known microbial transformation (Fig. S5,2). In the bile acid molecular network
148  that contained taurocholic acid and glycocholic acid there were modified forms of these

149 compounds that were only present in colonized animals. These nodes were related to the
150 glycocholic acid through spectral similarity and to the sulfated form (Fig. 4a) and one of them
151  corresponded to the addition of C4Hs described above. Analysis of the MS/MS spectra of the
152  three nodes m/z 556.363, m/z 572.358 and m/z 522.379 showed maintenance of the core
153  cholic acid, but with a fragmentation pattern characteristic of the presence of the amino acids
154  phenylalanine, tyrosine and leucine through an amide bond at the conjugation site in place of
155  glycine or taurine (Fig. S6). In the extensive bile acid literature, representing 170 years of bile
156  acid structural analysis and greater than 42,000 publication records in PubMed, the only

157  known conjugations of murine (and human) bile acids were those of glycine and taurine’®.
158 Here, we have found a set of unique amino acid conjugations to cholic acid mediated by the
159  microbiome creating the novel bile acids phenylalanocholic acid, tyrosocholic acid and

160 leucocholic acid. These structures were validated with synthesized standards using NMR and
161 mass spectrometry methods (Supplemental methods and Fig. S7, S8, S9, S10, S11). These
162  uniquely conjugated bile acids were detected in the duodenum, jejunum and ileum of SPF
163  mice, with phenylalanocholic acid being the most abundant (Fig. 4). In comparison,

164  glycocholic acid was present in the latter parts of the Gl tract (cecum and colon), whereas
165 taurocholic acid was most abundant in the upper parts of the Gl tract (reduced through the
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lower Gl tract in SPF mice). The concentration of phenylalanocholic acid in mouse ileal
content from the four mice was 0.59 uM (s.d. 0.21) in the duodenum, 3.0 uM (s.d. 4.43) in the
jejunum and 5.25 pM (s.d. 2.42) in the ileum, with its highest concentration reaching 13.24
MM in a single jejunum sample (Fig. S12). These findings demonstrate that these novel amino
acid conjugates are abundant in the upper Gl tract of mice on a normal soy-based diet and
require the microbiota for their production, but were subsequently absorbed, further modified,
or deconjugated again upon travel to the cecum.

Because GNPS is a public repository of mass spectrometry data from a wide variety of
biological systems, we used an analysis feature called “single spectrum search” to search all
739 publically available data sets for the presence of MS/MS spectra matching these
conjugated bile acids (April 27, 2018,'3). Spectral matches corresponding to
phenylalanocholic acid, tyrosocholic acid and leucocholic acid were found in 19 other studies
comprising samples from the Gl tract of both mice (with at least one conjugate found in 3.2 to
59.4% of all samples, Fig. S13) and humans (in 1.6 to 25.3% of all samples, Fig. S13). In a
crowd-sourced fecal microbiome and metabolome study at least one of these unique bile
acids was found in 1.6% of human fecal samples with tyrosocholic acid being the most
prevalent (n=490, the American Gut Project 2, Fig. 4b). They were found in higher frequency
in fecal samples collected without swabs, including studies of patients with inflammatory
bowel syndrome, cystic fibrosis (CF) and infants (Fig. 4b). Re-analysis of data from a
previously published study of the murine microbiome and liver cancer enabled a comparison
of the abundance of these molecules in mice fed a high-fat-diet (HFD) and treated with
antibiotics??, Fig. 4b). Supporting the role of the microbiome in their production, the
Phe/Tyr/Leu amino acid conjugates were decreased with antibiotic exposure, whereas
glycocholic acid, which is synthesized by host liver enzymes, was not. In contrast, these
microbial bile acids were more abundant in mice fed HFD, with no change observed in the
host conjugated glycocholic acid??. In a separate data set where atherosclerosis-prone mice
were similarly fed a HFD the novel conjugates were also increased over time, but not on
normal chow and the host-conjugated taurocholic acid did not change significantly (Fig. S14).
Finally, exploration into the metadata associated with a public study of a pediatric CF patient
cohort showed that there was a higher prevalence of these compounds in CF patients
compared to healthy controls, particularly those with pancreatic insufficiency (Fig. 4b).
Insufficient production of pancreatic lipase in the CF gut results in the buildup of fat and a

microbial dysbiosis?3, which parallels the gut microbial ecosystem in mice fed HFD.
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The first chemical characterization of a bile acid was in 184824, the first correct
structure of a bile acid related molecule was elucidated in 19322° and bile acid metabolism by
the microbiome has been known since the 1960s2¢. Since then, microbial alteration of bile
acids has been known to occur through four principal mechanisms: dehydroxylation,
dehydration and epimerization of the cholesterol backbone, and deconjugation of the amino
acids taurine or glycine®2"28_ Here, using a simple experiment with colonized and sterile
mice, we have identified a fifth mechanism of bile acid transformation by the microbiome
mediated by a completely novel mechanism: conjugation of the cholesterol backbone with the
amino acids phenylalanine, leucine and tyrosine. Further research is required to determine
the microbial producers of these compounds and their role in gut microbial ecology,
especially considering the important findings that microbiome based bile acid metabolism can
affect C. difficile infections?® or regulate liver cancer®°. The findings reported here show that
all bile acid research to date have overlooked a significant component of the human bile acid
pool produced by the microbiome.

In conclusion, the chemistry of all major organs and organ systems are affected by the
presence of a microbiome. The strongest signatures come from the gut through the
modification of host bile acids and xenobiotics, particularly the breakdown of plant natural
products from food. Addition of chemical groups to host molecules were more rare, but those
that were detected were sourced from a unique alteration of host bile acids by the
microbiome that changes our understanding of human bile after 170 years of research’®. As
the connections between us and our microbial symbionts becomes more and more obvious, a
combination of globally untargeted approaches and the development of tools that interlink
these data sets will enable us to identify novel molecules, leading to a better understanding of

the deep connection between our microbiota and our health.
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Data Availability: All metabolomics data is available at GNPS (gnps.ucsd.edu) under the
MassIVE id numbers: MSV000079949 (GF and SPF mouse data). Additional sample data:
MSV000082480, MSV000082467, MSV000079134, MSV000082406. The sequencing data

for the GF and SPF mouse study is available on the Qiita microbiome data analysis platform

at Qiita.ucsd.edu under study ID 10801 and through the European Bioinformatics Institute
accession number ERP109688.
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Bray-Curtis dissimilarities of the metabolome data collected from murine organs. The
dissimilarities are calculated within individual mice of the same group (GF or SPF, “Within”) or
across the GF and SPF groups (GF-SPF). Organs with multiple samples are pooled, but only
samples collected from exact same location are compared. d) 3-D model of murine organs
mapped with the mean 15t principle coordinate value from the four GF and four SPF mice.
High values across the 15t PC are shown in red and lower values are shown in blue. The PC1
values are from the data in panels a) and b). (Er=ear, Br=brain, Ad=adrenal gland,
Es=esophagus, Tr=trachea, Stm=stomach, Kd=kidney, Mo=mouth, D=duodenum, Ov=ovary,
Co=colon, Stl=stool, Hd=hand, Lg=Ilung, Lv=liver, J=jejunum, Ce=cecum, Bl-bladder,

Ut=uterus, Cx=cervix, Vg=vagina, Ft=feet)
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Figure 2. a) Molecular network of LC-MS/MS data with nodes colored by source as GF, SPF,
shared, or detected in blanks. Molecular families with metabolites annotated by spectral
matching in GNPS are listed by a number corresponding to the molecular family. These are
level 2 or 3 annotations according to the metabolomics standards consortium 3'. b)
percentage of total nodes from each organ sourced from GF only, SPF only or shared and

the total number of unique nodes from each murine class per organ.
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Figure 3. a) Mean normalized abundance of the top 30 most differentially abundant

metabolites between GF and SPF mice. The metabolites are colored according to molecular

family, where bile acids are green and blue, respectively, soyasaponins are pink and

unknown molecules are brown/yellow. Colors corresponding to taurocholic acid (green) and

deoxymuricholic acid (teal) are highlighted for reference. b) Microbiome of the murine Gl tract

in SPF mice. Taxa of relevance are color coded according to the legend. c) Mean and 95%

confidence interval of the Shannon-Weiner diversity of the metabolomic data in each Gl tract

sample for GF and SPF mice. Statistical significance between metabolome diversity in the

same sample location between GF and SPF mice was tested with the Mann-Whitney U-test

(*=p<0.05). d) Mean Faith’s phylogenetic diversity (with 95% confidence interval) of the

microbiome through the SPF Gl tract. e) Results of meta-mass shift chemical profiling

showing the relative abundance of the parent mass differences between unique nodes in

either GF or SPF mice to the total. Each mass difference corresponds to the node-to-node

gain or loss of a particular chemical group. f) Counts of the number of mass shifts of the

parent mass differences between nodes showing where the most abundant molecular
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transitions are detected in the murine gut.
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Figure 4. a) Structures, molecular network, 3D-molecular cartography and abundance
through Gl tract of novel microbiome associated bile acids in this murine study. Structures of
the previously known conjugates glycocholic acid, taroursocholic acid and taurocholic acid
are shown for comparison to structures of the newly discovered amino acid conjugates. The
molecular network of these bile acids is shown with mapping to the GF and SPF mice
according to the color legend. An inset highlighting the parent masses and mass differences
between the newly discovered molecules is shown for clarity. 3D-molecular cartography
maps the mean abundance and standard deviations of the mean of the newly discovered
conjugates onto a 3D-rendered model of the murine Gl tract and the relative abundances of
the molecules through the Gl tract samples compared to the host produced glycocholic acid
and taurocholic acid are also shown. b) Bar plots of the percent of samples positive for the
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361 novel bile acids from publically available datasets on GNPS. Percent of patients where novel
362  bile acids were detected from two human studies of cystic fibrosis patients compared to non-
363 CF controls. Comparison of the abundance of novel conjugates in a controlled murine study
364  previously published where animals fed high fat diet (HFD) or normal chow (NC) were

365 compared and those treated with antibiotics 2. AGP = American Gut Project ', IBD =

366 Inflammatory Bowel Disease, CF = cystic fibrosis, Pl = pancreatic insufficient, PS =

367  pancreatic sufficient.
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