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ABSTRACT

DNA recovery from ancient human remains has revolutionized our ability to
reconstruct the genetic landscape of the past. Ancient DNA research has benefited from the
identification of skeletal elements, such as the cochlear part of the osseous inner ear, that
provide optimal contexts for DNA preservation; however, the rich genetic information obtained
from the cochlea must be counterbalanced against the loss of valuable morphological
information caused by its sampling. Motivated by similarities in developmental processes and
histological properties between the cochlea and auditory ossicles, we evaluated the efficacy
of ossicles as an alternative source of ancient DNA. We demonstrate that ossicles perform
comparably to the cochlea in terms of DNA recovery, finding no substantial reduction in data
quality, quantity, or authenticity across a range of preservation conditions. Ossicles can be
sampled from intact skulls or disarticulated petrous bones without damage to surrounding
bone, and we argue that, when available, they should be selected over the cochlea to reduce
damage to skeletal integrity. These results identify a second optimal skeletal element for
ancient DNA analysis and add to a growing toolkit of sampling methods that help to better
preserve skeletal remains for future research while maximizing the likelihood that ancient DNA

analysis will produce useable results.

INTRODUCTION

Ancient DNA has become an important tool for addressing key questions about human
evolutionary and demographic history. Its rapid growth over the last decade has been driven
largely by advances in isolating (Dabney et al. 2013; Rohland et al. 2018), preparing
(Gansauge et al. 2017; Rohland et al. 2015), enriching (Fu et al. 2013, 2015; Haak et al. 2015;
Mathieson et al. 2015), sequencing (Margulies et al. 2005), and analyzing (Briggs et al. 2007;
Briggs et al. 2010; Ginolhac et al. 2011; Skoglund et al. 2014) small quantities of degraded
DNA. While these methodological advances have contributed to an improvement in the quality

and quantity of paleogenomic data obtained from ancient human remains, all ancient DNA
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research fundamentally depends upon access to biological material that has sufficient
biomolecular preservation.

Skeletal tissue (i.e., bone or teeth) is the preferred biological material for human
ancient DNA analysis due to its ability to resist post-mortem degradation better than other
types of tissues, including skin and hair (Lindahl 1993; Smith et al. 2001, 2003; Collins et al.
2002). Recent research has shown that not all bone elements are equally effective in
preserving DNA, however, and has identified the bone encapsulating the cochlea within the
petrous pyramid of the temporal bone (referred to henceforth as the ‘cochlea’) (Gamba et al.
2014; Pinhasi et al. 2015), as well as the cementum layer in teeth roots (Damgaard et al. 2015;
Hansen et al. 2017) as especially DNA-rich parts of the skeleton. The use of these skeletal
elements that act as repositories for the long-term survival of DNA has proven to be particularly
important for the analysis of biological samples recovered from regions where high
temperatures and/or humidity increase the rate of molecular degradation and result in low
concentrations of damaged DNA with reduced molecular complexity (e.g., Broushaki et al.
2016; Lazaridis et al. 2016; Schuenemann et al. 2017; Skoglund et al. 2017; Fregel et al. 2018;
Harney et al. 2018; van de Loosdrecht et al. 2018).

While use of the cochlea has contributed to the application of ancient DNA research to
a growing range of geographic and temporal contexts, it is important to balance analytical
goals with the irreparable damage to human skeletal remains that results from destructive
analyses (Prendergast and Sawchuk 2018; Sirak and Sedig in press). Ancient DNA is one of
several such analyses that are now widely used in archaeology (others include radiocarbon
dating and stable isotope analysis) (Hublin et al. 2008; Mays et al. 2013; Makarewicz et al.
2017; Pinhasi et al. 2019). To minimize damage to intact skulls from ancient DNA sampling
while still accessing the rich genetic data in the cochlea, we developed a “Cranial Base Drilling”
method to minimize damage to surrounding bone areas when a skull is intact (Sirak et al.
2017). However, even this method involves destructive sampling. Recent work has highlighted
the fact that morphological analysis of the inner ear part of the petrous pyramid (including the

cochlea) can reveal population relationships and thus harbors some information about
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population history (e.g., Spoor et al. 2003; Ponce de Ledn et al. 2018). While genetic
comparisons of samples involve analysis of tens of thousands of independent markers (single
nucleotide polymorphisms, or SNPs) which provide far higher statistical resolution than can
be obtained by study of the smaller number of data points that can be extracted from
morphological analysis, not all cochlear bone yields sufficient amounts of ancient DNA. The
fact that there is morphological information in the petrous pyramid that will be destroyed
through sampling of ancient DNA highlights the importance of being a careful steward of these
elements.

As part of a search for alternative optimal sources for ancient DNA that can be used in
place of the cochlea, we noted that auditory ossicles have similar developmental processes
and histological properties as the osseous inner ear. We therefore tested whether the ossicles
— the smallest bones in the human body — might serve as alternative optimal substrates for

ancient DNA analysis.

Ossicle development and histology

The mechanism by which cochlear bone preserves endogenous DNA better than other
skeletal elements or other regions of the same petrous pyramid is not well understood;
however, it is likely related to the fact that human petrous bones are unique in being
characterized by a near-absence of growth or remodeling following the completion of
ossification by approximately 24 weeks in utero (Sglvsten Sgrensen et al. 1992; Frisch et al.
1998; Hernandez et al. 2004). The inhibition of bone remodeling leads to the presence of a
larger number of mineralized osteocytes that reside in lacunae within the bone tissue
(Hernandez et al. 2004; Bell et al. 2008; Busse et al. 2010; Rask-Andersen et al. 2012). One
hypothesis (Pinhasi et al. 2019) is that ‘microniches’ created in the bone tissue by the
maintenance of mineralized osteocytes, combined with the protected location of the cochlea,
may act as repositories that encourage the long-term preservation of DNA (Bell et al. 2008;
Kontopoulos et al. 2019). Ossicles are similar to the cochlea in this respect (see below), and

we therefore hypothesized that they might also preserve high amounts of endogenous DNA.
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84 In humans, the middle ear (the region of the ear located medial to the eardrum and
85 lateral to the oval window of the inner ear) is enclosed within the temporal bone and contains
86  the three auditory ossicles: the malleus, incus, and stapes (Figure 1). The ossicles effectively
87  allow humans to hear by transmitting sound-induced mechanical vibrations from the outer to
88  the inner ear. Though the ossicles do not experience high-strain biomechanical loading, they
89  are subject to unique vibrational patterns that impact their development and characteristics
90  over the course of an individual’s lifespan (Rolvien et al. 2018). In contrast to the majority of
91 the human skeleton, but similar to the cochlea, the auditory ossicles present with their final
92  size and morphology at birth following the onset of the ossification of between 16 and 18
93  weeks in utero and the completion of ossification around 24 weeks gestational age (Marotti et
94  al. 1998; Yokoyama et al. 1999; Cunningham et al. 2000; Duboeuf et al. 2015; Richard et al.
95 2017). The ossicles and cochlea appear to follow the same developmental pattern of rapidly
96 increasing bone volume through cortical thickening and densification, along with
97  mineralization of the bony matrix (Richard et al. 2017).

98

99

100 Figure 1: The three auditory ossicles. From left to right, the stapes, malleus, and incus.

101
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102 Like the cochlea, ossicular bone tissue is rapidly modeled around the time of birth;
103 although it may undergo further postnatal maturation, there are no signs of bone remodeling
104  observed above the age of one year (Richard et al. 2017; Rolvien et al. 2018). The inhibition
105  of bone remodeling of the auditory ossicles is evident from features such as the presence of
106  a dense meshwork of collagenous fibers organized in an interlacing woven pattern, a smooth
107  fibrous appearance, and limited vascular channels and viable osteocytes (Marotti et al. 1998;
108  Chen et al. 2008). As in the case of the cochlea and in contrast to other skeletal elements,
109  mineralized osteocytes appear to accumulate in the ossicles throughout an individual’s life
110  without resulting in increased bone absorption (Marotti et al. 1998; Kanzaki et al. 2006; Rolvien
111 et al. 2018), likely conserving the overall architecture of the ossicles in order to maintain
112 optimal sound transmission (Kanzaki et al. 2006; Rolvien et al. 2018). While the consequences
113 of inhibited bone remodeling and the accumulation of mineralized osteocytes have only been
114  previously studied from a clinical perspective, we hypothesized that these features might
115  contribute to optimized DNA preservation similar to that in the cochlea by creating the
116  ‘microniches’ that enable long-term DNA survival (Bell et al. 2008).

117

118  Use of ossicles in ancient DNA research

119 Due to their small size and tendency to become dislodged from the skull, ossicles are
120  only seldom recovered during excavation and are easily lost in collections excavated decades
121  ago. While ossicles are not recovered for every burial in every context, we have empirically
122 found that these bones may remain lodged within the middle ear of intact skulls or can be
123 identified in the vicinity of a burial during excavation (Qvist et al. 2000). Given the value of the
124  ossicles as a substrate for ancient DNA analysis, demonstrated in this study, we hope that
125  more archaeologists and anthropologists and museum curators will focus on preserving these
126  elements.

127 It is important to recognize that ossicles, just like the cochlea, are morphologically
128 informative. Indeed, there is a growing body of literature examining the comparative

129  morphology and pathology of the ossicles (e.g., Rak and Clarke 1979; Arensburg et al. 1981,
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130  2005; Siori et al. 1995; Spoor et al. 2003; Crevecoeur et al. 2007; Quam and Rak 2008; Quam
131 et al. 2013a, 2013b; Stoessel et al. 2016). While differences in metric and non-metric features
132 of the auditory ossicles may be taxonomically informative for comparisons across the genus
133 Homo (e.g., Heim 1982; Spoor et al. 2003; Quam and Rak 2008; though see Arensburg et al.
134 1981), it is unclear whether phylogenetic and population relationship information can be
135  retrieved from the auditory ossicles. In cases where ossicle morphology may be a subject of
136  future research, we encourage that anthropological study (including description,
137  measurement, and evaluation of any apparent pathologies) and surface or micro-CT scanning
138  to collect metric and morphological information prior to ancient DNA analysis. Any ossicles
139  that exhibit visible pathologies should be avoided.

140 Though some anthropological attention has been given to the ossicles, we are not
141  aware of previous genetic analyses of these bones. Only a single study has attempted to
142 analyze DNA from the ossicles, collecting the ossicles during medical autopsies of recently-
143  deceased individuals and determining them to be a reliable DNA source from bodies ranging
144  from freshly deceased to highly putrefied (Schwark et al. 2015).

145

146 RESULTS

147 We carried out pilot work to assess if the quality and quantity of ancient DNA data
148  recovered from the ossicles was approximately similar to that recovered from the cochlea
149  (described in Supplemental Material). The results of this pilot work (Supplementary Table 1)
150  suggested that ossicles perform comparably to the cochlea in metrics such as amount of
151  endogenous human DNA recovered and frequency of damage at the terminal nucleotide of
152  the DNA molecule (a commonly used measure of ancient DNA authenticity). Based on these
153  results we selected 10 ossicles from archaeological samples from a wide range of geographic
154  locations with varying climates and dated to between ~6500-1720 years before present (yBP)
155 (Table 1, with detailed sample information in Supplementary Table 2). To be included in this
156  study, each specimen was required to have at least one ossicle as well as the cochlea of the

157  petrous bone available for comparative analysis. Whenever possible, a petrous bone that had
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158  an antimere was chosen (Prendergast and Sawchuk 2018); we did not sample the antimeres
159  in order to preserve them for future analyses.
160 A summary of sequencing results for the 10 individuals reported in this paper is
161  presented in Table 1 and Figure 2; for more detailed information, see Supplementary Table 2.
162
163 Table 1: Sample information and summary of sequencing results.
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165

166 Out of 10 individuals included in this study, both the cochlea and ossicles produced
167  enough data to call mitochondrial DNA (mtDNA) haplogroups, assess damage patterns at the
168 terminal nucleotide of the molecule, and make contamination estimations for seven
169 individuals; these individuals are henceforth referred to as the ‘working individuals.” One
170  individual from Thailand produced marginal data that allowed the same analyses, but
171  produced a larger error interval for the mtDNA contamination estimate — calculated as 1 minus
172 the rate of mitochondrial matches to the consensus sequence (Fu et al. 2013) — only when the
173  ossicles were used; two individuals, both from Yemen, did not produce enough data to allow
174  for the determination of the mtDNA haplogroup or contamination estimates. Both the cochlea
175  and ossicles were therefore considered to have ‘failed’ our analysis for these latter individuals.
176  We performed Wilcoxon Signed-Rank tests to compare the data generated using the ossicles
177  and cochlear samples.

178 We obtained an average endogenous DNA vyield of 45.87% for the seven working
179  cochlea samples and 51.30% for the corresponding ossicles (Table 1, Figure 2 Panel A)
180  (p=0.2969 for the difference; Supplementary Table 3). Complexity, defined here as the
181  percentage of unique reads expected out after down-sampling to 500,000 sequences that
182  align to the ~1.2 million targeted SNPs, is a potentially more informative metric for comparing
183  performance between the cochlea and ossicles because it is directly related to the maximum
184 amount of sequencing data the extract or library can possibly yield and is not biased by
185  differences in sequencing depth across samples. The average complexity for cochlea and
186  ossicles was 87.1% and 86.0%, respectively (Table 1, Figure 2 Panel B); this difference is
187  also non-significant (p=0.4688; Supplementary Table 3). Overall, these results suggest that
188 the data generated using ossicles is comparable to that generated using the cochlea. Any
189  minor differences are likely due to chance rather than a systematic difference in DNA

190  preservation between the cochlea and ossicles.

191
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193  Figure 2: Comparative results between cochlea (yellow) and ossicle (green) samples from
194  the same individuals. Panel a. Endogenous shotgun DNA ratios of the total reads. Panel b.
195  Complexity as percentage of unique reads expected from 500,000 reads hitting targets. Panel
196  c. Deamination frequencies on the terminal bases of the 1240K capture sequences. Panel d.
197  Contamination estimates calculated by subtracting the rate of mitochondrial matches to the
198  consensus sequence from 1 (smooth bars) and based the heterozygosity of the X-
199  chromosome of male individuals (textured bars). Error bars indicate the 95% confidence
200  interval.

201

202 The average mtDNA coverage was 525x for the seven working petrous samples and
203  486x for the corresponding ossicles (Supplementary Table 2), which were not significantly

204  different (p=0.6875; Supplementary Table 3). The average coverage of the ~1.2 million
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205 targeted SNPs from across the genome was 1.53x for the seven working petrous samples,
206  and 1.47x for the ossicles (Table 1); on average, 727,500 SNPs were called when the cochlea
207 was used and 714,312 were called when the ossicles were used (Table 1). Both of these
208  differences were non-significant (p=0.9375 and 0.6875, respectively; Supplementary Table 3).
209 For a sample from burial phase Middle Period VIl at Ban Chiang, northeast Thailand
210  (BCB 26), the cochlea failed to produce enough data even for estimating contamination, with
211 only 266 nuclear SNPs covered; however, we observe a ~46-fold increase in SNPs hit
212 associated with the use of the ossicles (12,438 SNPs) (Table 1). In addition, the mitochondrial
213 coverage was seen to increase from 0.08x with the cochlea to 5.15x with the ossicles, an
214  increase of ~63-fold (Table 1, Supplementary Table 2). Looking further into this data increase,
215  we note a ~4-fold decrease in frequency of deamination at the terminal base (from 6.40% to
216  1.30%) for the nuclear data as well as a high mitochondrial contamination estimate (point
217  estimate, 6.0%; 95% confidence interval: 2.8-12.3%), which may indicate the presence of
218  DNA contamination (Table 1, Figure 2). Because of this, we are unable to equate the increase
219 in data to the use of the ossicle.

220 For the seven working samples, the average deamination frequency was slightly reduced
221  from 12.32% to 11.28% when the ossicles were used, a decrease (Table 1, Figure 2 Panel C)
222 that, although small, was statistically significant (p=0.0313; Supplementary Table 3).
223 Mitochondrial contamination estimates (inferred by identifying mismatches to the mtDNA
224 consensus sequence (Fu et al. 2013)) increased from an average of 0.63% to 1.44%, (Table
225 1, Figure 2 Panel D) with a significant p-value of 0.0469 (Supplementary Table 3). This change
226  was driven by a single individual (818), which exhibited increased contamination in the ossicle
227  relative to the cochlea (Table 1, Figure 2, Supplementary Table 3). Contamination based on
228  the heterozygosity rate of the X-chromosome (a test only applicable to males) (Korneliussen
229  etal. 2014) averaged 0.52% for the cochlea and 1.12% for the ossicles (or excluding individual
230 818, 0.53% and 0.40%, respectively), a non-significant change (p=0.625 for the full test and
231  0.125 without individual 818) (Table 1, Figure 2, Supplementary Table 3). The overall low

232 levels of contamination are also supported by consistency in the estimation of mtDNA
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233 haplogroups and molecular sex for all cochlea-ossicles pairs (Table 1, Figure 2,
234 Supplementary Table 2).

235

236  DISCUSSION

237  DNA recovery from the auditory ossicles

238 This study presents a direct comparison of DNA recovery from the ossicles and
239  corresponding cochlear bone using archaeological specimens that originate from varying
240  geographic and temporal contexts and offers several new insights. First, we demonstrate that
241  the ossicles perform comparably to the cochlea in terms of ancient DNA recovery regardless
242 of sample preservation. Focusing on seven individuals from whom we were able to generate
243 enough working ancient DNA data to call mtDNA haplogroups, assess damage pattern, and
244  make contamination estimates, we find that the use of the cochlea or ossicles from each
245  individual produces similar amounts of endogenous DNA, mtDNA coverage, nuclear SNP
246  coverage, and number of SNPs called. We demonstrate that there is no substantial reduction
247  in data quantity or complexity associated with the analysis of the ossicles instead of the
248  cochlea. Second, although we find that the ossicles show a slight reduction in the frequency
249  of deamination (a signal of ancient DNA authenticity) compared to the corresponding cochlea,
250  the amounts of contamination estimated using both mtDNA and heterozygosity on the X
251  chromosome are comparable. Considered together, our data suggest that there is little
252 reduction in data quality associated with the analysis of the ossicles instead of the cochlea.
253  We conclude that the auditory ossicles, when present, are an alternative optimal skeletal
254  element that can be used in ancient DNA research in place of the cochlea

255 Though they are small, often isolated, and can be accessed without significant impact
256  tolarger, morphologically-informative parts of the skeleton, the use of ossicles for ancient DNA
257  analysis still requires the destruction of human skeletal material that may be anthropologically
258  valuable. Ossicles have previously been used in studies of comparative morphology; most
259  notably, they have provided insight into morphological differences and functional similarities

260  in the middle ear of Neandertals and anatomically modern humans, which has implications for
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261 understanding the auditory capacity of extinct hominins (e.g., Stoessel et al. 2016). For this
262  reason, we encourage all researchers contemplating ancient DNA analysis to balance their
263  analytical goals with the impact that sampling for ancient DNA analysis will have on future
264  availability of material.

265 In light of these findings, we suggest that archaeologists and curators attempt to
266 identify and preserve auditory ossicles whenever possible. Ideally, ossicles would be identified
267 and collected during archaeological recovery of human skeletal remains in a way that
268  minimizes the introduction of contamination. This includes wearing disposable medical gloves
269 that are changed frequently when handling samples, avoiding washing skeletal material with
270  water, and storing samples in a cold, dry place as soon as possible (Llamas et al. 2017).

271 The use of ossicles for ancient DNA analysis will contribute to the successful analysis
272  of skeletal material that does not have a petrous bone present, or sets of remains that have a
273  petrous bone that cannot be processed in a destructive manner for ancient DNA research (for
274  example, those that may be morphologically-intact and displayed in museum collections). On
275  abroader level, the identification of the ossicles as an alternative optimal skeletal element for
276  ancient DNA analysis contributes to the reduction in the amount of damage inflicted to human
277  skeletal samples for the purposes of ancient DNA analysis. It is another step toward the
278  preservation of DNA-rich and anthropologically-valuable skeletal material for future studies
279  that may benefit from methodological improvements that are unknown at present.

280

281 METHODS

282  Sample Selection and Preparation

283 The number of ossicles collected for each of the 10 archaeological samples varied
284  (see Table 1), but the incus and malleus were identified and collected most frequently (n=10
285 and n=8, respectively) while the stapes was identified and collected least frequently (n=2),
286 likely due to its diminutive size and fragility. In most cases, we recovered the ossicles while
287  following the standard cochlea sampling procedure (Pinhasi et al. 2019). In other cases, we

288 intentionally dislodged the ossicles from the skull for the purpose of this study; in most of these
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289 instances, the ossicles were partially visible within the external auditory meatus. To dislodge
290  the ossicles, we cleaned a small engraving burr (described in Sirak et al. 2017) by wiping it
291  with a diluted bleach solution (~10% concentration). We placed the cleaned burr inside the
292  external auditory meatus and gently manipulated it within the inner ear canal. This caused no
293  apparent damage to the ossicles or to the cranium from which they were retrieved. All ossicles
294 were immediately placed into a sterile 2.0mL tube upon their removal from the ear canal.

295 The preparation of all skeletal material for ancient DNA analysis was carried out in
296  dedicated cleanrooms at University College Dublin (UCD) or at the University of Vienna
297  following standard anti-contamination protocols (e.g., Hofreiter et al. 2001; Poinar 2003;
298 Llamas et al. 2017). All petrous bones were processed following a standard protocol (Pinhasi
299  etal. 2019). This protocol uses a dental sandblaster to systematically locate, isolate, and clean
300 the cochlea, which is then milled to homogeneous bone powder. Approximately 50 mg of bone
301 powder from the cochlea (range: 47-56 mg) was aliquoted for DNA extraction. Complete
302  auditory ossicles were decontaminated through exposure to UV irradiation for 10 minutes on
303 each side; after noting a substantial reduction in amount of bone powder associated with the
304 milling of complete ossicles to bone powder during pilot work, we chose not to grind the
305 ossicles to a fine powder, instead placing them inside a new sterile 2.0mL tube following
306 decontamination with UV irradiation. The tubes that included the whole ossicles or petrous
307  bone powder were then taken to a separate ancient DNA clean room for DNA extraction and
308 preparation of sequencing libraries.

309

310 DNA Extraction

311 DNA was extracted from the cochlear bone powder and the whole auditory ossicles in
312 ancient DNA facilities at the University of Vienna following a standard ancient DNA extravtion
313  protocol (Dabney et al. 2013) with a modification (Korlevi¢ et al. 2015) that uses the tube
314  assemblies from the High Pure Viral Nucleic Acid Large Volume kit (Roche, 05114403001).

315 The intact ossicles were placed in the extraction buffer, and completely dissolved during the
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316  incubation period in most cases. Lysates were washed twice with 650 uL of PE buffer (Qiagen)
317 and spun through the columns at 6000 rpm for 1 minute. After being put in a fresh 1.5mL
318  collection tube, 25uL of TET buffer was pipetted on the dry spun MinElute columns’ silica
319 membrane. After a 10-minute incubation at room-temperature, the columns were spun at
320  maximum speed for 1 minute. The elution step was repeated to give a final volume of 50uL of
321  DNA extract. A negative control that contained no bone material was included with each
322 extraction batch.

323
324  Library Preparation

325 Next generation sequencing libraries were prepared in ancient DNA facilities at
326  Harvard Medical School from all extracts and controls using a library preparation method
327  optimized for ancient DNA (Rohland et al. 2015). This protocol uses a partial-UDG treatment
328 that causes characteristic C-to-T ancient DNA damage to be restricted to the terminal
329  molecules while nearly eliminating it in the interior of the DNA molecules so that the library
330 can be used to test for ancient DNA authenticity. 10uL of DNA extract was used as input during
331 library preparation. Libraries were enriched for ~1.2 million nuclear sites across the genome
332 (“1240K capture’) in addition to sites on the human mitochondrial genome (Fu et al. 2013,
333  2015; Haak et al. 2015; Mathieson et al. 2015). Enriched libraries were sequenced on an
334  lllumina NextSeq500 instrument, with 2x76 cycles and an additional 2x7 cycles used for
335 identification of indices. In addition, a small proportion of reads were generated from
336  unenriched versions of each library. This unenriched (‘shotgun’) data was used to estimate
337  the proportion of endogenous molecules in each library.

338

339 Data Processing

340 Following sequencing, we trimmed molecular adapters and barcodes from sequenced
341 reads prior to merging forward and reverse reads using custom software

342 (https://github.com/DReichLab/ADNA-Tools). We allowed up to three mismatches of low base

343 quality (<20) and up to one mismatch at higher base quality (=20), ensuring that the highest
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344  base quality in the overlap region was regained. We aligned reads to the mitochondrial RSRS
345 genome (Behar et al. 2012) and to the hg79 human reference sequence with the samse
346 command in bwa (v0.6.1) (Li and Durbin 2009).

347 We used the tool ContamMix (Fu et al. 2014) to determine the rate of matching
348  between the consensus RSRS sequence and reads which aligned to the mitochondrial
349  genome. We determined the rate of C-to-T substitution at the terminal ends of each molecule

350  using PMDtools (https://github.com/pontussk/PMDtools; Skoglund et al. 2014). We used the

351 tool ANGSD (Korneliussen et al. 2014) to determine the amount of contamination in the X-
352  chromosome of individuals identified as genetically male. The complexity of the sample was
353  assessed by quantifying the number of unique reads expected from a pre-determined number
354  of reads hitting target.

355

356 DATA ACCESS

357 Data are available at the European Nucleotide Archive under accession number
358 PRJEB32751.
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376  SUPPLEMENTARY MATERIAL

377  Pilot Work

378 Five archaeological samples representing a range of geographic locations were
379  selected for a pilot project aimed at obtaining initial insight into use of the ossicles for ancient
380 DNA analysis. We chose samples based on their age and depositional contexts to represent
381 arange of molecular preservation (sample information provided in Supplementary Table 1).
382  All specimens had at least two ossicles, and one petrous pyramid from the same individual
383  was selected for comparative analysis. Skeletal material was processed in dedicated ancient
384  DNA clean rooms at University College Dublin following standard anti-contamination protocols
385  (Hofreiter et al. 2001; Poinar 2003; Llamas et al. 2017). Petrous bones were processed as
386  described in Pinhasi et al. (2019) to create bone powder, and complete auditory ossicles were
387  decontaminated through exposure to UV irradiation for 10 minutes on each side and milled to
388 fine powder. DNA extraction and library preparation followed standard ancient DNA protocols,
389  described in the following section. All extraction and library preparation took place in a
390 separate clean room from that used for processing bones and also followed standard anti-
391 contamination protocols.

392 We generated raw sequencing data for this pilot work using low-coverage whole-
393  genome shotgun sequencing on the lllumina MiSeq and NextSeq platforms. Data were
394  processed using a custom bioinformatics pipeline to enable a basic comparison of
395  endogenous DNA yield from the cochlea and from the auditory ossicles (Supplementary Table
396 1). Our results suggested that the auditory ossicles were approximately equivalent to the
397  cochlea for endogenous DNA preservation, with the difference in endogenous DNA content
398 ranging between a 0.17-fold decrease and a 0.3-fold increase (Supplementary Table 1). The

399  endogenous DNA yields ranged from 0.16 to 68.19%, with a median of 54.68%, and no
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400  substantial difference between the ossicles and cochlea detected (Supplementary Table 1).
401  We identified damage patterns consistent with expectations for ancient DNA in the sequencing
402  data generated using both the ossicle and cochlea samples, with an average substitution
403  frequency on the 5’-end of the DNA molecule of 14.50% for the ossicle samples and 14.40%
404  for the petrous bone samples (Supplementary Table 1). Like endogenous yield, this difference
405 is not substantial. Overall similarity in endogenous yield and damage frequencies between the
406  auditory ossicle and cochlea samples from the same individual supported our hypothesis that
407  auditory ossicles may also be an effective substrate for ancient DNA analysis.

408
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