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ABSTRACT:

CRLF2 overexpression in B-ALL patients with an IGH-CRLF2 translocation activates JAK-
STAT, PI3K and ERK/MAPK signaling pathways. Although inhibitors of these pathways are
available, investigating alternate targets could reduce treatment-associated toxicities.
Comparing RNA-seq from IGH-CRLF2 and non-translocated patients we defined a translocation
gene signature. Next, we assembled a B-ALL cancer-specific regulatory network using 529 B-
ALL patient samples from the NCI TARGET database coupled with priors generated from
ATAC-seq peak TF-motif analysis. The network was used to infer differential changes in TF
activities predicted to control IGH-CRLF2 deregulated genes, thereby enabling identification of

translocation-associated pathways and potential new therapeutic targets.
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INTRODUCTION:

Acute lymphoblastic leukemia (ALL) is the most common cancer in children®. Historically,
clinical criteria have driven risk stratification for these patients, however over time many genetic
alterations have been identified as prognostic predictors. Several groups have described varied
genetic signatures associated with pediatric ALL with the aim of elucidating their contributions to
leukemogenesis?®. Improved risk stratification based on genetic signature has altered treatment
and led to significant improvements in overall survival'. However, about 20% of patients fail
current treatment strategies or die following relapse. Moreover, adults with ALL have a worse
prognosis and an average overall survival of 35-50%". Therefore, it is important to gain a better
understanding of the mechanisms by which genetic alterations drive leukemogenesis to refine
therapies that target the disease-essential pathways involved®.

Genetic alterations that lead to overexpression of the cytokine receptor-like factor 2
(CRLF2) gene have been associated with a high-risk subset of pediatric patients with B-cell
acute lymphoblastic leukemia (B-ALL). The CRLF2 gene encodes the thymic stromal
lymphopoietin receptor (TSLPR) which forms a heterodimer with IL-7 receptor alpha (IL7RA) to
bind TSLP®. Binding of TSLP to the IL7RA-TSLPR complex signals the phosphorylation of
Janus kinase 1 (JAK1) and Janus kinase 2 (JAK2), leading to the activation of the JAK-STAT
signaling pathway®. Studies have shown that stimulation of TSLP in B-ALL not only induces
activation of the JAK-STAT pathway, but also activates the PI3K/mTOR’ and ERK/MAPK
signaling pathways'.

CRLF2 overexpression occurs in 5-15% of patients with B-ALL and in 50-60% of
pediatric B-ALL patients with Down syndrome®®. CRLF2 overexpression in B-ALL can occur
either from a chromosomal translocation between CRLF2 and the immunoglobulin heavy chain
locus (/IGH) on chromosome 14 (IGH-CRLF2) or from an interstitial deletion of the
pseudoautosomal region of the X/Y chromosomes resulting in the fusion of CRLF2 to the

P2RY8 gene (P2RY8-CRLF2)°. CRLF2 deregulation very rarely occurs via activating mutations
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of CRLF2. The IGH-CRLF2 translocation occurs in precursor cells and is thought to result from
aberrant rejoining during V(D)J-recombination'®'". This translocation is most commonly found in
adolescents and adult patients and is typically associated with a poor prognoses, while the
P2RY8-CRLF2 fusion is found in younger patients’.

CRLF2 chromosomal alterations are often accompanied by mutations in JAK1, JAK2
and lkaros (IKZF1) genes. Several groups have suggested that aberrant CRLF2 signaling
cooperates with mutant JAK and IKZF1 activity to promote the development of leukemia®'>'3,
As a result, the focus has shifted towards the use of signal transduction inhibitors (STIs) to
target JAK-STAT, PI3K and MAPK signaling pathways'. Although, STIs have shown promise in

early clinical trials''®

, broad application of signal transduction inhibitors is challenging due to
the interconnected roles of their targets in biological processes (i.e. JAK kinases) including
immunity and hematopoiesis'’. Moreover, it has been shown that mutated JAK2 is required for
the initiation of leukemia, but it is not necessary for its maintenance '®. Therefore, there is a
need to more closely investigate the genome-wide impact of the IGH-CRLF2 alteration in B-ALL
to aid in the identification of novel therapeutic targets.

To do so, we first sought to identify transcriptional regulators that control differentially
expressed genes associated with the /IGH-CRLF2 translocation through a comparative analysis
of translocated versus non-translocated (Non-T) /IGH-CRLF2 B-ALL samples in both patients
and cell lines. While robust genome-wide changes in gene expression were separately
observed in patients and cell lines, only a small subset of changes were consistent amongst the
two groups. Thus, we chose to define the IGH-CRLF2 associated gene set using only patient
samples. We constructed a B-ALL transcriptional network to define the interactions between

19-21

transcription factors (TFs) and the genes they regulate using 529 B-ALL patient samples

from the NCI TARGET database. We inferred the targets of TFs linked to the gene set

22,23

associated with the IGH-CRLF2 cohort using the Inferelator algorithm , along with RNA-seq,

ATAC-seq, and TF-motif analysis. The network was then used to predict differential transcription
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factor activity (TFA) in IGH-CRLF2 versus non-translocated (Non-T) samples. This approach
enabled the identification of ten potential regulators of differentially expressed genes (including
DNMT1, EGR1, FOXP1, ZBTB7A). The differentially expressed gene targets of these TFs are
enriched in anticipated and novel CRLF2-associated pathways. Transcription of several of these
gene targets (ILTRAP, LEF1, PPP1R13B, etc.) change across all patients and cell line samples.
It is of note that these genes have been implicated in both Acute myeloid leukemia (AML)*?
and ALL%?". Thus, it is plausible that the genes along with their regulators could contribute to
the maintenance of leukemia and be potential candidates for therapeutic targeting in /IGH-
CRLF2 B-ALL. The network-based approach we applied has been similarly implemented in

several other systems to infer regulatory interactions that have been experimentally validated®®

31

RESULTS:
Genome-wide transcriptional changes in primary IGH-CRLF2 patient samples

Traditional chemotherapy is non-specific and targets rapidly dividing cells. As a result,
toxicity results in injury to healthy cells, causing further morbidity and at times, can be dose-
limiting 2. To reduce overall toxicity and improve prognosis, most research has been directed
towards understanding the underlying molecular pathology of the leukemia. In this study, we
focused on identifying pathways associated with the IGH-CRLF2 translocation (Fig. 1a) with the
goal of finding new potential therapeutic targets in this subset of B-ALL patients.

Gene expression profiles associated with the IGH-CRLF2 translocation were identified
by comparing RNA-sequencing from 17 primary B-ALL patient samples, with the translocation
(n=13) with non-translocated (Non-T, n=4) patients. Differential analysis performed using
DESeq2* uncovered a total of 1,179 de-regulated genes with an adjusted p-value of less than
0.01 and |logz2FoldChange| >1 (Fig. 1b). Of these 507 genes (~43%) were up-regulated and 669

(~57%) down-regulated in the IGH-CRLF2 translocated patients. To determine whether the
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gene expression changes were localized to the translocated chromosomes we analyzed the
percentage of differentially expressed genes per chromosome. The results clearly demonstrate
that expression changes are distributed across all chromosomes and there is no enrichment of
deregulated genes on chromosome 14 or the pseudoautosomal region of X/Y (Supplementary
Fig. 1a).

To further analyze the changes in gene expression between the /IGH-CRLF2 and the
Non-T patient samples we performed a principal component analysis. This revealed a clear
separation between the two groups of patients (Supplementary Fig. 1b). In addition,
hierarchical clustering of the 1,179 differentially expressed genes not only separates the IGH-
CRLF2 and Non-T samples, but also clearly divides the IGH-CRLF2 patients into two groups,
referred to as Group 1 and Group 2 (Fig. 1¢). These two groups could not be distinguished by
the presence or absence of activating mutations in JAK and IKZF1 which were found in most of
the translocated cohort: 12/13 and 10/13 /IGH-CRLF2 patients, respectively (Fig. 1c). As
expected the IGH-CRLF2 translocation clearly results in the up-regulation of CRLF2
(logzFoldChange= 5.53) in the translocated versus Non-T control patient samples as shown by
RNA-seq tracks on IGV (Fig. 1d), suggesting activation of JAK-STAT signaling. Furthermore,
SOCS6, a suppressor gene of cytokine signaling®, is statistically significantly down-regulated
(log2FoldChange= -1.68) in IGH-CRLF2 samples (Supplementary Fig. 1c¢), further supporting
the observation that JAK-STAT"* signaling is activated in these samples.

Using the log2 fold changes of the 1,179 differentially expressed genes, ingenuity
pathway analysis (IPA) was performed. Positive and negative z-scores indicate pathways that
are activated or repressed respectively in the IGH-CRLF2 samples. The IPA analysis
(Supplementary Fig. 1d) identified 20 significant pathways, the majority of which (19/20) had
negative z-scores, indicating that the majority of the pathways are repressed. The PI3K and
ERK pathways were included in the repressed cohort which was unexpected as activation of

these pathways is normally linked to CRLF2 overexpression’, Additionally, the JAK-STAT
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signaling pathway did not emerge as being statistically enriched according to the gene set we
defined, despite the fact that translocated patients have activating mutations in JAK genes. One
possible explanation for this outcome is that heterogeneity between patient samples leads to
noise in gene expression changes which blurs the analysis. In summary, analysis of RNA-seq
data in primary patient samples identifies many significant transcriptional changes associated
with the translocated /GH-CRLF2 chromosomal alteration. Furthermore, hierarchical clustering
of the patient samples using the differentially expressed gene list, not only clearly distinguishes
IGH-CRLF2 patients from Non-T, but also defines two distinct IGH-CRLF2 group of patients.
Differential analysis between the two distinct Group 1 and Group 2 patients results in
456 differentially expressed genes. Although pathway analysis results in no significant pathway
enrichment we identified six differentially expressed genes involved in p53 signaling, including
the proto-oncogene MDM?2 and p53 regulator MDM4 that are down-regulated in Group 1 (Fig.
1e). We postulated there maybe a link between p53 signaling and relapse but were not able to
confirm whether p53 signaling in one subtype provides any advantage in this context, as there
were 25% (1 of 4) Group 1 patients that relapsed, compared to 33% (3 of 9) of patients in Group

2.

IGH-CRLF2 patient samples have limited changes in chromatin accessibility

To further investigate the impact of the /IGH-CRLF2 translocation, we hypothesized IGH-
CRLF2 transcriptional changes could be accompanied by changes in chromatin accessibility. To
test this hypothesis, we performed ATAC-sequencing and compared chromatin accessibility in
IGH-CRLF2 versus Non-T patient samples (18 IGH-CRLF2 and 6 Non-T). These patient
numbers are different to the numbers used for RNA-seq analysis as some of the patient
samples for RNA-seq did not pass quality control. Differential analysis of all the ATAC-seq
peaks identified 162 regions that were more accessible and 126 regions with reduced

accessibility in the IGH-CRLF2 translocated condition (Fig. 2a). The majority of ATAC-seq
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peaks were not significantly differential, indicating accessibility is for the most part stable
between IGH-CRLF2 and Non-T patient samples. Significant accessibility changes were evenly
distributed across promoters, gene bodies, and intergenic regions (Supplementary Fig. 2b).
Differential peaks were assigned to promoters (within 3kb of TSS), UTRs, exons and
introns of genes (Fig. 2b). About 82.6% (238) of differential ATAC-seq peaks were associated
with genes (n=224), either on promoters or gene bodies. Of the genes that had at least one
differential ATAC-seq peak in the promoter or gene body, 14.2% (32) were significantly
differentially expressed in IGH-CRLF2 versus Non-T patient samples. The majority of the
differential ATAC-seq peaks that overlap differentially expressed genes were regulated in the
same direction, with the exception of 7 ATAC-gene pairs (Fig. 2b). In the example shown in Fig.
2c, three significantly more accessible peaks were associated with overexpressed DPP4 in
IGH-CRLF2 patients. Conversely, the down-regulated PKIA gene was linked to a significant
reduction in accessibility (Supplementary Fig. 2c). We also observed several instances where
a significant change in accessibility was linked to a gene whose expression was not affected by
the IGH-CRLF2 translocation (Supplementary Fig. 2d). Importantly, the majority of
transcriptional changes were not associated with significant changes in chromatin accessibility
near the promoter or within the gene bodies (Fig. 2d), as demonstrated for the RRAS gene and
two other examples shown in Fig. 2e, Supplementary Fig. 2e-f. Thus, we conclude that
overall, the IGH-CRLF2 translocation leads to limited genome-wide chromatin accessibility
changes and accessibility remains stable even at promoter regions of differentially expressed
genes. However, we postulated that differences in transcription factor (TF) binding at stable
ATAC-seq peaks could influence gene expression changes and turned to patient-derived cell

lines as a model to address this question.

Transcriptional changes in patient IGH-CRLF2 derived cell lines are not recapitulated in

patient samples
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The patient-derived cell lines used in our analysis were MHH-CALL-4* (CALL) and
MUTZ5%* (MUTZ) that harbor IGH-CRLF2 translocations, and a control non-T pre-B leukemic
cell line, SMS-SB*” (SMS). As seen in the RNA-seq tracks of Fig. 3a, CRLF2 is clearly
overexpressed in the IGH-CRLF2 translocated CALL and MUTZ cell lines, compared to the
Non-T SMS control. Principal component analysis (PCA) of cell line RNA-seq samples
(Supplementary Fig. 3a) indicates that the majority of the variance (71%) lies between IGH-
CRLF2 cell lines and Non-T cell lines, while about 26% of variance separates the two
translocated cell lines. Thus the PCA analysis indicates that the IGH-CRLF2 translocation is the
major cause of differences between the two conditions, consistent with what was observed in
patient samples.

Differential gene expression analysis of CALL versus SMS (3,045 DE genes) and MUTZ
versus SMS (2,702 DE genes) identified thousands of differentially expressed genes (Fig. 3b),
with roughly equivalent numbers of up and down-regulated genes in each case. The number of
overlapping differentially expressed genes (ie those likely to be related to the translocation
event) is shown in Fig. 3c. As with the patient samples, the gene expression changes were
distributed across all chromosomes (Supplementary Fig. 3b).

As shown in Fig. 3d, the log> fold change of (CALL/SMS) and (MUTZ/SMS)
demonstrated that about 97% of the genes were in convergent orientation (960 up-regulated,
772 down-regulated). However, of the common 1,732 convergent differentially expressed genes
in the cell lines, only 221 overlapped with the differentially expressed genes found in
translocated versus non-T patient samples (Fig. 3e). Furthermore, only 181 out of the 221
genes were in convergent orientation (Fig. 3f), indicating that the profile of gene expression
changes in cell lines may not be the best representation of what is occurring in patients.
Furthermore, no significantly enriched pathways were identified from the overlapping gene set.

To identify the gene list that best separates the translocated class from the non-

translocated class, we performed PCA using the differentially expressed genes from cell lines
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(Set 1) and patient samples (Set 2). The PCA results associated with the 1,792 differentially
expressed genes from Set 1, demonstrate a clear separation between translocated cell lines
and non-translocated cell lines. In contrast, the patient samples cluster together and do not
separate according to the PC scores calculated using Set 1 genes (Fig. 3g — upper panel). In
contrast, when the PCA associated with Set 2 was performed (1,176 differentially expressed
genes in patients), we found a clear separation between cell lines and patients on the first
principal component that separates the IGH-CRLF2 from Non-T condition on the second
principal component, indicating that Set 2 genes are more representative of the effect of the
translocation in both primary patient samples and cell line samples (Fig. 3g — lower panel). In
summary, we found many significant transcriptional changes in cell lines but only a subset of
these were recapitulated in patients. On the other hand, the top 500 patient-associated
transcriptional changes can be used to not only distinguish between patients and cell lines

(PC1), but also clearly separate the IGH-CRLF2 samples from the Non-T samples (PC2).

Chromatin accessibility changes in IGH-CRLF2 translocated cell lines are more
numerous than those in patient samples

Our analyses reveal little compatibility in expression changes between IGH-CRLF2 and
Non-T in cell lines and patient samples. To investigate this further we analyzed chromatin
accessibility using ATAC-sequencing. Significant ATAC-seq peaks were called and a reference
peakome of 41,111 peaks was created to include all possible ATAC-seq peaks across the three
cell lines, CALL, MUTZ, and SMS. DESeqg2 analysis on the cell line peakome identified 2,550
altered ATAC-seq peaks between CALL and the SMS control, and 2,718 between MUTZ and
the SMS control (Fig. 4a). The overlap between the two comparisons identified 1,396
differentially accessible ATAC-seq peaks (Fig. 4b), of which 99.7 % (1392/1396) were in
convergent orientation (Fig. 4c). This number is incompatible with the total number of

differentially accessible ATAC-seq peaks (288) identified in patient samples. However, we
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postulated that regions that were changing in patients should change similarly in cell lines. To
determine this, we ranked all differential ATAC-seq peaks in patient samples (Fig. 2a) according
to fold change and adjusted p-value, and took the 162 most accessible peaks and 126 least
accessible peaks in IGH-CRLF2 patient samples and calculated the ATAC signal of the cell
lines at these regions. The limited alterations in accessibility in patients were weakly
recapitulated in cell lines as shown in Fig. 4d However, compared to the stability of ATAC-seq
peaks in patients, we observed more alterations in acessbility in cell lines. This finding further
supports the conclusion that using cell lines as a model to study the IGH-CRLF2 translocation is
not ideal. Therefore, all the downstream analysis focused solely on the transcriptional changes

identified in patient samples.

Construction of a B-ALL regulatory network using ATAC-motif derived priors

CRLF2 overexpression activates a signaling cascade that involves many TF regulators
and gene targets. Although, we identified a subset of gene expression changes that could be
important for the pathogenesis of the leukemia, it is not clear how all of these genes are
regulated and connected. Here, our aim was to first identify which TFs could potentially be
regulating the differentially expressed genes we identified, and second to infer the relationship
between these TFs and their target genes. To address this, we performed TF-motif analysis,
using FIMO®®, at ATAC-seq peaks that fall within promoter regions (20kb upstream of TSS) of
all genes genome-wide. We used a hyper-geometric test to test for enrichment of TF-motifs at
differentially expressed genes, which resulted in 102 unique significant TF motifs enriched at
significantly up- and down-regulated genes with four motifs DMRTC2, DUXA, PITX1, and PITX3
were found in both sets (Fig. 5a). Thus, motif enrichment analysis resulted in a list of 102
unique potential TF regulators that could be important for the regulation of the /IGH-CRLF2

associated gene signature.
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To better understand the relationship between the candidate TF regulators identified in
Fig. 5a and the genes they potentially regulate, we sought to infer a transcriptional regulatory
network using the Inferelator algorithm?*?, The main limitation of network inference is the
sample size, to model transcriptional interactions in a B-ALL specific context requires a large
dataset that included hundreds of B-ALL patient samples, not limited to samples with an IGH-
CRLF2 rearrangement. Making use of the TARGET initiative we analyzed 529 B-ALL RNA-seq
samples and obtained a normalized gene expression matrix that could be used for the
construction of a B-ALL specific regulatory network.

Recent studies have incorporated prior information of TF target genes from different data
types, like ChIP-seq, ATAC-seq, and TF-motif analysis to considerably improve network
inference 2% Here, we focused on combining chromatin accessibility data together with TF-
motif analysis of the IGH-CRLF2 cohort to generate priors and infer the B-ALL network (Fig.
5b). We selected only regulatory interactions of TFs that were significantly enriched at
promoters of differentially expressed genes between /IGH-CRLF2 and Non-T patient samples
(102 TFs — Fig. 5a). Transcription factor activities estimated using the ATAC-seq motif derived
priors and the gene expression matrix obtained from the TARGET database were used for the
Inferelator algorithm (Fig. 5b). Finally, a B-ALL specific regulatory network involving 102 TFs
and 37,086 interactions with combined confidences > 0.5 was inferred. The number of gene
targets inferred for each individual TF is shown in Supplementary Fig. 4a, and the number of
differentially expressed gene targets in the IGH-CRLF2 cohort are shown in Supplementary

Fig. 4b.

Defining a sub-regulatory network with TFs affected by CRLF2 alteration
Transcriptional regulatory networks shed light on the relationship between transcription
factors (TFs) and their gene targets. Here, we constructed a B-ALL specific regulatory network

involving 102 TFs that may be important regulators of the IGH-CRLF2 gene signature. To

12


https://doi.org/10.1101/654418
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/654418; this version posted May 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

narrow down the list, we created a sub-network and identified TF regulators in the IGH-CRLF2
cohort that were altered either at the mRNA level or the protein activity level. First, we analyzed
the expression levels of all genes encoding the 102 TF regulators and identified five TF
regulators that were significantly differentially expressed between IGH-CRLF2 and Non-T
patients (Supplementary Fig. 4c). Next, we determined TFs that had differences in their
activity in the IGH-CRLF2 cohort. Transcription factor activity (TFA) is commonly estimated from
MRNA levels, however since posttranslational modifications can influence TF activity, use of
mRNA as a proxy for TFA is not the best approach. If prior knowledge of interactions involving
TFs and their target genes is available it can considerably improve TFA estimation and network
inference?®®. Thus, to estimate the activities of the 102 TFs identified from motifs of significantly
up- and down-regulated genes in the IGH-CRLF2 versus Non-T patients, a normalized gene
expression matrix was used. This was combined with priors of TF-gene interactions identified
from the inferred B-ALL regulatory network (Fig. 5b). Sixteen TFs had significant differences in
the mean estimated TFA in the IGH-CRLF2 cohort (Supplementary Fig. 4b) and five had
significantly altered levels of expression giving a total of twenty significant TF regulators
(ZNF713 was identified in both analyses (Fig. 5¢). TFs with no significant differences in mean
TFA are shown in Supplementary Fig. 5a. We note that many TFs with significantly altered
activity are implicated in cancer. For instance, FOXP1, a member of the forkhead family of
transcription factors is known to play important roles in B-cell development and lymphoid
malignancies*® and could therefore potentially contribute to tumorigenesis in B-ALL patients with
the IGH-CRLF2 alteration.

We previously suggested that heterogeneity between patients could lead to noise in the
IGH-CRLF2 gene signature. To filter gene expression changes we focused on inferred target
genes of TFs that are affected by CRLF2 overexpression, either at the transcriptional level or TF
activity level. The 6,545 regulatory interactions in Fig. 5¢c describe the relationship between

significantly differential TFs and their gene targets. Of these, 387 interactions are regulatory

13


https://doi.org/10.1101/654418
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/654418; this version posted May 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

interactions involving differentially expressed genes (329 out of a total of 1177 unique genes -
28%) in the IGH-CRLF2 versus Non-T patient cohort (Fig. 6a,b). We define the filtered list of
329 differentially expressed genes and their twenty TF regulators as the CRLF2 specific sub-
network (Fig. 6¢). The number of differentially expressed gene targets for each TF regulator is
shown in Supplementary Fig. 6a. As seen in Supplementary Fig. 6b, several differentially

expressed gene targets are regulated by more than one TF.

Differentially expressed gene targets of TFs with predicted altered activity are enriched in
expected and novel CRLF2-associated pathways

We performed pathway analysis focusing on the differentially expressed gene targets in
the CRLF2-altered sub-network (Fig. 7a) and identified 21 enriched pathways including the
anticipated activation of canonical JAK-STAT, PI3K, and ERK pathways. Thus, in contrast to our
initial analysis which focused on all differentially expressed genes in the IGH-CRLF2
translocated versus Non-T patient samples, we were able to identify known CRLF2-associated
pathways including the JAK-STAT signaling pathway. These findings validate the approach
taken in order to identify a more CRLF2-relevant differentially expressed gene list. In Fig. 7a,
differentially regulated genes (33) are labeled and connected with the appropriate pathway. For
example, PI3K up-regulation of signaling is linked to the differential expression of SOCSE,
RALB, RRAS, and PTPN6. Additionally, the FLT3 signaling*'*? pathway, which is known to be
associated with CRLF2 overexpression, is identified as being upregulated.

The other pathways identified by our analyses could also be playing an important role in
CRLF2-overexpressing B-ALL. As such, we wanted to define a handful of interesting genes that
could have the highest potential as therapeutic targets. For this, we compared all 33
differentially expressed genes in the patient samples and in each pairwise cell line comparison
(CALL versus SMS, and MUTZ versus SMS). Although, we previously found that patient-derived

transcriptional changes and cell line-derived transcriptional changes do not strongly overlap,
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there are some patient-derived transcriptional changes that are recapitulated in the cell lines.
Thus, we compared log2 fold changes and significance of the 33 differentially expressed genes
across all patient and cell line comparisons (Fig. 7b) and identified six common genes.
Upregulation of ILTRAP, LEF1, CD79B, CTGF, and repression of PPM1H, PPP1R13B was

robust across all IGH-CRLF2 patient and cell lines. Previous studies?* 24344

implicate the
maijority of these genes in hematologic malignancies but their affect on IGH-CRLF2 B-ALL is not
known. Therefore, analysis of the changes in TF activity and gene target mRNA level in the

CRLF2 affected sub-network identified a list of genes that are strong candidates for targeted

therapies in IGH-CRLF2 translocated leukemia.

Discussion

Patients with B-ALL who carry the IGH-CRLF2 translocation are at increased risk for
refractory disease and relapse. This alteration leads to CRLF2 overexpression and activation of
JAK-STAT and other associated pathways'. Available treatments include non-specific cytotoxic
chemotherapies which are often effective but responsible for many of the toxicities seen in these
patients. The addition of Tyrosine-Kinase Inhibitors and JAK inhibitors in the treatment of
leukemias has allowed for targeted treatments with fewer toxicities, however, alternate pathway-
specific therapies are needed to further tailor treatment. To better study the impact of the IGH-
CRLF2 translocation, we analyzed RNA-seq from rearranged /IGH-CRLF2 and Non-T B-ALL
patient samples and identified hundreds of differentially expressed genes, but were unable to
link these changes to the expected pathway alterations associated with the IGH-CRLF2
translocation. We subsequently analyzed ATAC-seq data to evaluate the effect of this genetic
alternation on DNA accessibility. We found accessibility to be mostly stable near the promoters
of genes with altered gene expression and conclude that chromatin accessibility is not driving
changes in the transcriptional landscape. Instead, we inferred binding of specific proteins at

accessible sites at differentially expressed gene promoters that influence transcription.
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Leveraging hundreds of available B-ALL RNA-seq samples from the TARGET database along
with prior knowledge of TF-motifs at accessible promoters, we inferred a global B-ALL network.
Deeper investigation of the TF regulators and their targets in this network identified a candidate
list of potential therapeutic targets.

ILT1RAP, one of the significantly overexpressed candidates we identified in IGH-CRLF2
rearranged patients, encodes a component of the interleukin complex. Upregulation of this gene
is known to occur in Acute myeloid leukemia (AML), another lymphoid malignancy associated
with poor prognosis?. Using antibodies targeting the IL1RAP receptor expressed on the surface
of immature AML cells, Agerstam et al. demonstrated clear antileukemic effects in xenograft
models.. Targeting IL1RAP also blocks IL-1 signaling and inhibits proliferation of human AML
cells?®. Using antibodies, RNA interference, and deletion of ILTRAP, a more recent study
demonstrated it was possible to inhibit pathogenesis in vivo and in vitro without disrupting
normal hematopoietic function®. IL1RAP plays an important role in potentiating AML cells, and
there is strong evidence for its therapeutic effects in AML. However, its function in B-ALL is not
known.

Other candidates, LEF1 and PPP1R13B have also been implicated in cancer. Lymphoid
enhancer-binding factor 1, LEF1, is a transcription factor that acts downstream of the Wnt/3-
catenin signaling pathway. This TF can independently regulate gene expression and is

t?®. Disrupted LEF1 is associated

necessary for stem cell maintenance and organ developmen
with cancer progression and proliferation of cells in ALL, chronic lymphocytic leukemia (CLL),
Burkitt lymphoma (BL), and colorectal cancer (CRC)?. In particular, one study clearly shows
high expression of LEF1 associated with shorter relapse-free survival (RFS) in B-ALL?". Overall,
this gene is considered a biomarker for patient prognosis in many hematological malignancies.
Though, we now provide evidence suggesting that it has a specific role in leukemogeneis in

translocated /GH-CRLF2 patients. Additionally, PPP1R13B, another candidate target, encodes

a member of the apoptosis stimulating p53 family of proteins (ASPP), this gene is known to be
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repressed in ALL and its reduced expression is due to hypermethylation of the PPP1R13B gene
promoter*344.

DNA methylation is associated with transcriptional repression and is maintained by the
DNMT1 protein. The DNMT1 motif was one of the top regulators identified via motif enrichment
analysis at differentially expressed gene promoters. The role of DNMT1 as a transcription factor
is not clear, however, it still may have regulatory potential through its function in maintaining
DNA methylation and in particular for patients with the /IGH-CRLF2 translocation. For instance,
Loudin et al. studied transcription and methylation profiles in overexpressing CRLF2 ALL
patients with Down syndrome. Their methylation profiles indicate high methylation levels
correlate with reduced gene expression including genes involved in cytokine-receptor
interactions*®. We hypothesize that methylation could be playing a role in this context.

Overall, we have investigated the transcriptional impact of CRLF2 overexpression in a
high-risk subset of B-ALL patients. Using an integrative approach, we derived regulatory
interactions that have identified strong candidates for targeted therapies in B-ALL patients with
an IGH-CRLF2 translocation or other leukemias. ILTRAP, LEF1, and PPP1R13B are amongst
the most interesting candidates as there is strong evidence for their role in hematological
malignancies. The strategy we have used here can further be adapted to elucidate important
regulators responsible for additional subsets of B-ALL and other challenging pediatric

malignancies.

Methods

All methods are available in supplemental note section of supplemental information
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Figure Legends

Fig. 1. Genome-wide transcriptional changes in primary IGH-CRLF2 patient samples. a,
Schematic of IGH-CRLF2 translocation between chromosome 14 and chromosome X/Y. b,
Volcano plot of the differentially expressed genes (FDR=5%, |log-> fold change| >1) between
IGH-CRLF2 patients and Non-T patients. Red points and blue points correspond to up- and
down regulated genes (n=507 and 669, respectively) in the IGH-CRLF2 patient samples. c,
Heatmap of 1,176 differential expressed genes from the 17 patient samples, with known

information corresponding to B-ALL associated variants and other metadata indicated at the top
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of the heatmap. d, Screenshot of RNA-seq tracks for Non-T, IGH-CRLF2 Group 1, and IGH-
CRLF2 Group 2 at CRLF2 locus. e, Volcano plot of the differentially expressed genes between
IGH-CRLF2 Group 1 Group 2 patients. Red and blue points correspond to up- and down-

regulated (n=77 and 379, respectively).

Fig. 2. IGH-CRLF2 patient samples have limited changes in chromatin accessibility. a,
Heatmap of 162 more accessible ATAC-seq peaks in IGH-CRLF2 patients (purple bar) and 126
less accessible ATAC-seq peaks in IGH-CRLF2 patients. b, Differentially accessible peaks
(n=36) linked to differentially expressed genes (n=32) and the log. fold change of gene
expression (x-axis) plotted against the log, fold change of ATAC-seq reads (y-axis). Linked
genes are labeled and colored according to genomic annotation. ¢, IGV screenshot of ATAC-
seq tracks at up-regulated DPP4 gene across all patients. The highlighted region indicates
significantly more accessible ATAC-seq peaks. d, Average ATAC-seq signal of Non-T (blue)
and IGH-CRLF2 (red) patients at 631 ATAC-seq peaks at up-regulated gene promoters in IGH-
CRLF2 patients (upper panel), and 706 ATAC-seq peaks at down-regulated gene promoters in
IGH-CRLF2 patients (lower panel). e, IGV screenshot of ATAC-seq tracks at up-regulated
RRAS gene across all patients, orange highlighted region indicates ATAC-seq region with no

significant difference.

Fig. 3. Transcriptional changes in patient IGH-CRLF2 derived cell lines are not
recapitulated in patient samples. a, IGV screenshot of RNA-seq tracks at CRLF2 gene on
chromosome Y in CALL, MUTZ, and SMS cell lines. CALL and MUTZ samples harbor the IGH-
CRLF2 translocation whereas the control cell line SMS does not. b, Number of differential
expressed genes between IGH-CRLF2 cell line samples (CALL and MUTZ) compared to SMS
control, red and blue bars indicate up- and down-regulated genes in CALL and MUTZ. c,

Overlap of differentially expressed gene sets between CALL and MUTZ compared to SMS
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control (1792 common differentially expressed genes) d, Scatter plot of the 1,792 common
genes plotting log. fold change of CALL and MUTZ (y and y-axis, respectively) and log. fold
change of over SMS control. e, Overlap of differentially expressed genes (221) between cell
lines (Set 1) and patient samples (Set 2). f, Scatterplots of log. fold change of RNA-seq counts
of translocated cell lines (CALL and MUTZ) over SMS control (x-axis) plotted against log. fold
change of IGH-CRLF2 patient over Non-T patient RNA-seq counts (y-axis). Red and blue points
indicate common convergent up- and down-regulated genes (n=120 and 61, respectively) in cell
line and patient samples. g, Principal component analysis of all patient and cell line samples
computed according to the differentially expressed genes in cell lines (Set 1) (upper panel) and
patients (Set 2). Cell lines and patient samples are clearly separated on the first principal
component, while translocated and non-translocated samples cluster according to condition on

the second principal component (highlighted by red ellipses).

Fig. 4. Chromatin accessibility changes are more numerous in cell lines than patient
samples. a, Number of differential ATAC-seq peaks between IGH-CRLF2 cell line samples
(CALL and MUTZ) compared to SMS control, red and blue bars indicate increased and
decreased peaks in CALL and MUTZ. b, Overlap of ATAC-seq peaks between CALL and MUTZ
indicate 1,396 -seq peaks commonly change in both CALL and MUTZ compared to SMS
control. ¢, Scatter plot of the 1,396 ATAC-seq peaks showing log> fold change of CALL and
MUTZ (y- and x-axis, respectively) over SMS control. d, Average ATAC-seq signal of Non-T
patients (blue), IGH-CRLF2 patients (red), SMS cell line samples (orange), CALL cell line
samples (green), MUTZ cell line samples (purple) at 162 and 126 significantly increased and
decreased peaks (upper and lower panels, respectively). Heatmaps show average signal 1kb

on either side of the midpoint of each ATAC-seq peak, .
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Fig. 5. Inferred B-ALL network identifies significant TFs in the IGH-CRLF2 patient cohort.
a, Significantly enriched TF motifs (102) at accessible regions 20 kb upstream of the promoters
of differentially up and down expressed genes. Plot indicates —log1o(p-value) on x-axis obtained
from the hyper-geometric test performed to evaluate enrichment (p-value <0.05) of a particular
TF motif. Blue and red bars indicate motif enrichment at down- and up-regulated genes,
respectively. b, Workflow for construction of B-ALL regulatory network. Inferelator algorithm was
used to infer a regulatory network with ATAC-motif derived priors and 529 RNA-seq B-ALL
patient samples from the TARGET database. Transcription Factor Activity (TFA) was calculated
using the prior matrix and TARGET gene expression matrix for enriched TF motifs at
differentially expressed genes in the IGH-CRLF2 cohort. The resulting network consists of 102
TFs and 37,086 significant regulatory interactions with combined confidences > 0.5. ¢, Filtered
B-ALL network involving regulatory interactions between significant TFs and their gene targets.
TFs are the source nodes labeled in black and the gene targets are the target nodes in blue.
The size of the source nodes reflects the number of targets each TF has. TF activation and

repression of a gene are represented by red and blue sedge, respectively.

Fig. 6. CRLF2 specific sub-network depicting significant TFs and their differentially
regulated target genes. a, Pie chart representing the percentage of differentially expressed
genes controlled by TFs affected by CRLF2 overexpression, either at the transcriptional level or
TF activity level (387). b, Pie chart representing the percentage of differentially expressed
genes (329) in the IGH-CRLF2 sub-network controlled by TFs with significantly altered
expression or activity. ¢, CRLF2 specific sub-network depicting significant TFs and their
differentially regulated target genes. TFs are labeled in black and their respective gene targets
are connected to them by red and blue edges indicating the type of regulation

(activation/repression).
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Fig. 7. Differentially expressed gene targets of predicted significant TFs are enriched in
expected and novel CRLF2-associated pathways. a, Significant pathways (-logi(B-H p-
value > 0.5 & |z-score| > 1) identified from analysis of differentially expressed gene targets in
the CRLF2 specific sub-network are shown at the top of the figure, ranked by the -
log1o(Benjamini-Hochberg p-value). Z-score in the bar plot indicates sign of the pathway with red
and blue representing up- and down-regulation of the pathway. Differentially expressed genes
enriched in these pathways are indicated by purple bins while green bins indicate TF-gene
interactions. b, Positive and negative log, fold changes of all the differentially expressed genes
in IGH-CRLF2 vs Non-T patients and cell lines (CALL vs SMS, MUTZ vs SMS) are indicated as

red (positive) and blue (negative) bins with significantly deregulated genes labeled with white

stars.
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