

1 Characterization of the untranslated region of lymphocytic choriomeningitis virus S segment

2

3 Running title: Characterization of the UTR of LCM virus S segment

4

5 Satoshi Taniguchi^a, Tomoki Yoshikawa^a, Masayuki Shimojima^a, Shuetsu Fukushi^a, Takeshi
6 Kurosu^a, Hideki Tani^{a,b}, Aiko Fukuma^a, Fumihiro Kato^a, Eri Nakayama^{a,c}, Takahiro Maeki^a,
7 Shigeru Tajima^a, Chang-Kweng Lim^a, Hideki Ebihara^d, Shigeru Kyuwa^e, Shigeru Morikawa^{f*},
8 Masayuki Saijo^a#

9 ^aDepartment of Virology I, National Institute of Infectious Diseases, Tokyo, Japan

10 ^bDepartment of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University
11 of Toyama, Toyama, Japan

12 ^cQIMR Berghofer Medical Research Institute, Brisbane, Qld. 4029, Australia

13 ^dDepartment of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA

14 ^eLaboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The
15 University of Tokyo, Tokyo, Japan

16 ^fDepartment of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan

17

18 #Address correspondence to Masayuki Saijo, msaijo@nih.go.jp

19 *Present address: Department of Veterinary Biochemistry, Faculty of Veterinary Medicine,
20 Okayama University of Science, Imabari-shi, Ehime

21 Abstract word count: 247 words

22 Importance word count: 116 words.

23 Text word count: 6479 words

24 **ABSTRACT**

25 Lymphocytic choriomeningitis virus (LCMV) is a prototypic arenavirus. The viral genome
26 consists of two RNA segments, L and S. The 5'- and 3'-termini of both L and S segments are
27 highly conserved among arenaviruses. These regions consist of 19 complementary base pairs and
28 are essential for viral genome replication and transcription. In addition to these 19 nucleotides in
29 the 5'- and 3'-termini, there are untranslated regions (UTRs) composed of 58 and 41 nucleotide
30 residues in the 5' and 3' UTRs, respectively, in the LCMV S segment. Their functional roles,
31 however, have yet to be elucidated. In this study, a reverse genetics and a minigenome system for
32 the LCMV strain WE were established and used to analyze the function of these regions. The
33 results obtained from these analyses, plus RNA secondary structure prediction, revealed that not
34 only these 19 nucleotides but also the 20th–40th and 20th–38th nucleotides located downstream
35 of the 19 nucleotides in the 5'- and 3'-termini, respectively, are heavily involved in viral genome
36 replication and transcription. Furthermore, the introduction of mutations in these regions
37 depressed viral propagation *in vitro* and enhanced attenuation *in vivo*. Conversely, recombinant
38 LCMVs (rLCMVs), which had various deletions in the other UTRs, propagated as well as wild-
39 type LCMV *in vitro* but were attenuated *in vivo*. Most mice previously infected with rLCMVs
40 with mutated UTRs, when further infected with a lethal dose of wild-type LCMV, survived.
41 These results suggest that rLCMVs with mutated UTRs could be candidates for an LCMV
42 vaccine.

43 (247 words)

44 **IMPORTANCE**

45 The function of untranslated regions (UTRs) of the arenavirus genome has not well been studied
46 except for the 19 nucleotides of the 5'- and 3'-termini. In this study the function of the UTRs of

47 the LCMV S segment was analyzed. It was found that not only the 19 nucleotides of the 5'- and
48 3'-termini but also the 20th–40th and 20th–38th nucleotides located downstream of the 19
49 nucleotides in the 5'- and 3'-termini, respectively, were involved in viral genome replication and
50 transcription. Furthermore, other UTRs in the S segment were involved in virulence *in vivo*. The
51 introduction of mutations to these regions makes it possible to establish attenuated LCMV and
52 potentially develop LCMV vaccine candidates.

53 (116 words)

54

55 INTRODUCTION

56 Lymphocytic choriomeningitis virus (LCMV) belongs to the genus *Mammarenavirus*,
57 family *Arenaviridae*. There are two groups of *Mammarenavirus*, New World and Old World
58 arenaviruses (1). LCMV belongs to the Old World arenavirus group, as does Lassa virus
59 (LASV), the causative agent of Lassa fever. LCMV can infect humans, causing flu-like fever,
60 nausea, neck stiffness, headache, and occasionally photophobia. Severe cases can lead to
61 meningitis and encephalitis (2-6). The natural reservoir of LCMV is reported to be the house
62 mouse (*Mus musculus*). Humans can be infected with LCMV if they are exposed to the body
63 fluids of infected mice.

64 Since LCMV was first isolated in 1933, it has been one of the most widely used model
65 systems with which to study immunology, persistent infection, and pathogenesis relating to
66 viruses (7-9). Furthermore, LCMV is the prototype arenavirus, and the LCMV strain Armstrong
67 (LCMV-ARM), a laboratory strain that causes acute neurotropic infection in mice, has been
68 commonly used in these studies. Minigenome and reverse genetics systems based on LCMV-
69 ARM have been developed and are powerful tools used for the study of LCMV-ARM
70 pathogenesis and propagation mechanisms (10-17). However, molecular biological analyses
71 based on other strains of LCMV have not previously been performed.

72 Infection with different strains of LCMV causes different manifestations of disease in
73 various animal models (18-22). For example, the LCMV-ARM and LCMV strain WE (LCMV-
74 WE) cause neurotropic and viscerotropic symptoms in mice, respectively. LCMV-ARM
75 infection causes no symptoms in rhesus macaques, while LCMV-WE causes hemorrhagic fever,
76 hepatic damage, and meningitis in this species (21, 23-27). The infection of non-human primates
77 with LCMV-WE is considered a suitable animal model for giving insights into Lassa fever in

78 humans. Despite its uniqueness and importance there have been few basic tools developed, such
79 as a reverse genetics system, to analyze the virologic characteristics of LCMV-WE.

80 The genome of LCMV consists of two negative-sense single-stranded RNA segments,
81 designated S and L. The S segment, which is approximately 3.4 kilobases (kb) in length, encodes
82 a viral glycoprotein precursor (GPC) and a nucleoprotein (NP), while the L segment, which is
83 approximately 7.2 kb long, encodes a viral RNA-dependent RNA polymerase (L) and a
84 polypeptide that contains a small zinc finger-domain (Z) (1). Each segment has an ambisense
85 coding strategy, encoding two proteins in opposite orientations, separated by an intergenic region
86 (IGR) that folds into a predictable and stable secondary structure. Recently, it was reported that
87 replacement of the L segment IGR with the S segment IGR resulted in highly attenuated LCMV
88 *in vivo* and induced protective immunity against a lethal challenge with wild-type LCMV
89 (wtLCMV) (28).

90 Untranslated regions (UTRs) are located at the termini of each genome segment, and
91 the 19 nucleotides of the 5'- and 3'-termini of both S and L segments are reported as being
92 essential regions for viral transcription and replication (29, 30). These regions in the S and L
93 segments are predicted to comprise complementary base pairs and are recognized as promoters
94 of L-polymerase-driven viral genome transcription and replication (29, 30). However, the
95 functional roles in virulence and propagation of other regions within the UTRs have yet to be
96 elucidated. To investigate the roles of these regions, we developed reverse genetics and
97 minigenome systems for LCMV-WE and predicted the secondary structures of the RNA
98 sequences of the 5'- and 3'-terminal UTRs of the S segment. Based on the results of our RNA
99 secondary structure prediction, several variants of infectious clones lacking UTRs, except for the
100 19 nucleotides of the 5'- and 3'-termini of the S segment, were generated and the viral

101 propagation efficiency of the infectious clones was evaluated. The virulence of these infectious
102 clone variants in mice was also assessed. Furthermore, we generated variants of minigenome
103 RNAs lacking the UTRs of the S segment and elucidated their efficiency in viral genome
104 replication, transcription, and packaging of virus-like particles (VLPs).

105

106 **RESULTS**

107 **Design of plasmids for recombinant LCMV with mutations in the S segment UTRs and** 108 **prediction of their RNA secondary structure.**

109 The results of our RNA secondary structure predictions, made using the
110 CENTROIDFOLD server, are shown in Fig. 1 and 2. RNA produced from pRF-WE-SRG (i.e.,
111 LCMV genome segment S RNA) formed panhandle structures of 45 and 42 nucleotide (nt) at the
112 5'- and 3'-termini, respectively (Fig. 1A). pRF-WE-SRG was a plasmid prepared for the LCMV-
113 WE reverse genetics system, which coded the entire LCMV-WE S segment. In the terminal
114 panhandle structures, the 28th–33rd and the 26th–31st nt at the 5'- and 3'-termini, respectively,
115 formed base pairs with the highest base-pairing probability in addition to the 19 base pairs at the
116 termini. Focusing on the panhandle structure, in particular the base pairs comprising the 28th–
117 33rd nt at the 5'-terminus and the 26th–31st nt at the 3'-terminus, we designed pRF-WE-SRGs
118 with various mutations, which could generate various mutated LCMV S segment RNAs (Table 1
119 and 2). The results of the prediction of RNA secondary structures of RNA products derived from
120 pRF-WE-SRG-5UTRΔ20-40, pRF-WE-SRG-5UTRΔ41-60, pRF-WE-SRG-5UTRΔ60-77, pRF-
121 WE-SRG-3UTRΔ20-38, and pRF-WE-SRG-3UTRΔ39-60 are shown in Fig. 1B to 1F. The
122 RNAs produced from pRF-WE-SRG-5UTRΔ41-60, pRF-WE-SRG-5UTRΔ60-77, and pRF-WE-
123 SRG-3UTRΔ39-60 formed panhandle structures of more than 36 and 33 nt at the 5'-and 3'-

124 termini, respectively. The base pairs comprising the 28th–33rd nt at the 5'-terminus and the 26th–
125 31st nt at the 3'-terminus showed the highest base-pairing probability. The RNAs produced from
126 pRF-WE-SRG-5UTRΔ20-40 and pRF-WE-SRG-3UTRΔ20-38 did not form terminal panhandle
127 structures with the exception of the 19 base pairs in the termini.

128 To further investigate the effect of the base pairs comprising the 28th–33rd nt at the
129 5'-terminus and the 26th–31st nt at the 3'-terminus and their peripheral regions, various plasmids
130 with mutations or deletions in the regions of interest (20th–40th nt at the 5'-terminus and 20th–
131 38th nt at the 3'-terminus) were generated. The results of RNA secondary structure prediction of
132 the RNA products of pRF-WE-SRG-UTR-comple, pRF-WE-SRG-UTR 5-3 change, pRF-WE-
133 SRG-Δ26-40, pRF-WE-SRG-Δ20-25, pRF-WE-SRG-Δ20-30, and pRF-WE-SRG-Δ31-40 are
134 shown in Fig. 2. A summary of the results of the RNA secondary structure predictions is shown
135 in Table 3. Briefly, the RNAs produced from pRF-WE-SRG-UTR-comple, pRF-WE-SRG-UTR
136 5-3 change, pRF-WE-SRG-Δ20-25 and pRF-WE-SRG-Δ20-30 formed panhandle structures with
137 5'- and 3'- termini which were composed of the base pairs with high base-pairing probability, in
138 addition to the 19 base pairs in the termini. On the other hand, the RNAs produced from pRF-
139 WE-SRG-Δ26-40 and pRF-WE-SRG-Δ31-40 formed panhandle structures with 5'- and 3'-
140 termini but there were no base pairs with high base-pairing probability except for the 19 base
141 pairs in the termini.

142 **Rescue and characterization of recombinant LCMVs.**

143 First, recombinant non-mutated wild-type LCMV (rwtLCMV) was successfully
144 generated using pRF-WE-SRG. There was no significant difference in viral growth kinetics in
145 Vero cells between wild-type LCMV (wtLCMV) and rwtLCMV ($P = 0.0723$) (Fig. 3A). Next,
146 we tried to generate recombinant LCMVs (rLCMVs) from pRF-WE-SRG-5UTRΔ20-40, pRF-

147 WE-SRG-5UTR Δ 41-60, pRF-WE-SRG-5UTR Δ 60-77, pRF-WE-SRG-3UTR Δ 20-38, and pRF-
148 WE-SRG-3UTR Δ 39-60. The generation of rLCMVs using pRF-WE-SRG-5UTR Δ 41-60
149 (rLCMV-5UTR Δ 41-60), pRF-WE-SRG-5UTR Δ 60-77 (rLCMV-5UTR Δ 60-77), pRF-WE-SRG-
150 3UTR Δ 39-60 (rLCMV-3UTR Δ 39-60) was confirmed by immunofluorescent assay (IFA). The
151 generation of rLCMVs using pRF-WE-SRG-5UTR Δ 20-40 and pRF-WE-SRG-3UTR Δ 20-38
152 could not be confirmed. The viral growth kinetics of rLCMV-5UTR Δ 41-60, rLCMV-5UTR Δ 60-
153 77, and rLCMV-3UTR Δ 39-60 in Vero cells were compared with rwtLCMV or wtLCMV, the
154 result being that all LCMVs propagated efficiently in Vero cells with titers up to 1.0×10^6 – 10^7
155 focus-forming units (FFU)/ml at 72 hours post-infection (Fig. 3B). No significant differences in
156 viral growth efficiency in Vero cells were observed among rwtLCMV, rLCMV-5UTR Δ 41-60, or
157 rLCMV-5UTR Δ 60-77 ($P = 0.4698$ and 0.3250 ; total variation, which consists of the sum of the
158 squares of the differences of each mean with the grand mean: 0.06001% and 0.6165% ,
159 respectively). A significant difference in viral growth efficiency in Vero cells was observed
160 between rwtLCMV and rLCMV-3UTR Δ 39-60 ($P = 0.0001$; total variation = 5.941%), but no
161 significant difference in viral growth efficiency in Vero cells was observed between wtLCMV
162 and rLCMV-3UTR Δ 39-60 ($P = 0.6755$; total variation = 0.04217%).

163 rLCMVs with mutations in the UTRs of interest (the 20th–40th nt at the 5'-terminus
164 and the 20th–38th nt at the 3'-terminus) were generated from pRF-WE-SRG-UTR-comple, pRF-
165 WE-SRG-UTR 5-3 change, pRF-WE-SRG- Δ 26-40, pRF-WE-SRG- Δ 20-25, pRF-WE-SRG- Δ 20-
166 30, and pRF-WE-SRG- Δ 31-40 (Table 4). The generation of rLCMVs using pRF-WE-SRG-UTR-
167 comple (rLCMV-UTR-comple), pRF-WE-SRG-UTR 5-3 change (rLCMV-UTR 5-3 change),
168 and pRF-WE-SRG- Δ 26-40 (rLCMV- Δ 26-40) was confirmed. Because the propagation efficiency
169 of rLCMV-UTR 5-3 change and rLCMV- Δ 26-40 was low, they were further passaged in Vero

170 cells before use. The generation of rLCMVs using pRF-WE-SRG-Δ20-25 (rLCMV-Δ20-25),
171 pRF-WE-SRG-Δ20-30 (rLCMV-Δ20-30), and pRF-WE-SRG-Δ31-40 (rLCMV-Δ31-40) was not
172 confirmed. The viral growth capacity of rLCMV-UTR-comple, rLCMV-UTR 5-3 change, and
173 rLCMV-Δ26-40 in Vero cells was significantly less than that of rwtLCMV (Fig. 3C, $P = 0.0008$,
174 0.0003, and 0.0003; total variation = 22.55%, 31.86%, and 30.51%, respectively).

175 The focus morphologies of wtLCMV and rLCMVs generated in this study are
176 shown in Fig. 3D. The size of foci was concordant with viral growth-capacity features. The focus
177 sizes of rLCMV-5UTRΔ41-60, rLCMV-5UTRΔ60-77, and rLCMV-3UTRΔ39-60 were
178 equivalent to those of wtLCMV and rwtLCMV. The focus sizes of rLCMV-UTR-comple and
179 rLCMV-Δ26-40 were smaller than those of wtLCMV and rwtLCMV. The focus size of rLCMV-
180 UTR 5-3 change was the smallest among them.

181 **Pathogenicity of rLCMVs in mice.**

182 To investigate the virulence of the rLCMVs (rwtLCMV, rLCMV-5UTRΔ41-60,
183 rLCMV-5UTRΔ60-77, rLCMV-3UTRΔ39-60, rLCMV-UTR-comple, rLCMV-UTR 5-3 change,
184 and rLCMV-Δ26-40), CBA/NSlc and DBA/1JmsSlc mice were infected intraperitoneally (i.p.)
185 with wtLCMV or the generated rLCMVs at 1.0×10^2 FFU/head.

186 CBA/NSlc mice infected with wtLCMV (wtLCMV-CBA/NSlc mice), rwtLCMV
187 (rwtLCMV-CBA/NSlc mice), rLCMV-5UTRΔ41-60 (rLCMV-5UTRΔ41-60-CBA/NSlc mice),
188 or rLCMV-5UTRΔ60-77 (rLCMV-5UTRΔ60-77-CBA/NSlc mice) showed several clinical signs
189 of infection, such as ruffled fur and limb tremors at 7 days post-infection (d.p.i.), and weight loss
190 at 8 d.p.i. (Fig. 4A). All wtLCMV-CBA/NSlc mice, 4 out of 5 rwtLCMV-CBA/NSlc mice, 4 out
191 of 5 rLCMV-5UTRΔ60-77-CBA/NSlc mice, and 2 out of 5 rLCMV-5UTRΔ41-60-CBA/NSlc
192 mice died within 20 d.p.i. (Fig. 4B and Table 4). Significant differences in survival rates were not

193 observed between rwtLCMV and rLCMV-5UTRΔ60-77 ($P = 0.3997$) or between rwtLCMV and
194 rLCMV-5UTRΔ41-60 ($P = 0.3148$). Hazard ratios for rwtLCMV / rLCMV-5UTRΔ60-77 and
195 rwtLCMV / rLCMV-5UTRΔ41-60 were 1.517 and 2.266, respectively. On the other hand, all
196 CBA/NSlc mice infected with either rLCMV-3UTRΔ39-60 (rLCMV-3UTRΔ39-60-CBA/NSlc
197 mice), rLCMV-UTR-comple (rLCMV-UTR-comple-CBA/NSlc mice), rLCMV-UTR 5-3 change
198 (rLCMV- UTR 5-3 change -CBA/NSlc mice), or rLCMV-Δ26-40 (rLCMV-Δ26-40-CBA/NSlc
199 mice) showed no clinical signs and survived. Significant differences in survival rates were
200 observed between rwtLCMV compared with either rLCMV-3UTRΔ39-60, rLCMV-UTR-
201 comple, rLCMV-UTR 5-3 change, or rLCMV-Δ26-40 ($P = 0.0133$) (Fig. 4A and B, and Table 4).

202 All DBA/1JJmsSlc mice infected with wtLCMV (wtLCMV-DBA/1JJmsSlc mice)
203 or rwtLCMV (rwtLCMV-DBA/1JJmsSlc mice) showed several clinical signs of infection at 5
204 d.p.i., such as ruffled fur, limb tremors, and weight loss, and approximately half the wtLCMV-
205 DBA/1JJmsSlc mice and rwtLCMV-DBA/1JJmsSlc mice died within 13 d.p.i. (Fig. 4C and D,
206 and Table 4). DBA/1JJmsSlc mice infected with rLCMV-5UTRΔ41-60 (rLCMV-5UTRΔ41-60-
207 DBA/1JJmsSlc mice), rLCMV-5UTRΔ60-77 (rLCMV-5UTRΔ60-77-DBA/1JJmsSlc mice), or
208 rLCMV-3UTRΔ39-60 (rLCMV-3UTRΔ39-60-DBA/1JJmsSlc mice) showed clinical signs of
209 infection by 7 d.p.i. However, limb tremors were not observed and ruffled fur was mild. All
210 rLCMV-5UTRΔ41-60-DBA/1JJmsSlc mice and rLCMV-5UTRΔ60-77-DBA/1JJmsSlc mice
211 showed weight loss but survived. Although one rLCMV-3UTRΔ39-60-DBA/1JJmsSlc mouse
212 showed weight loss and died at 8 d.p.i., 4 out of 5 rLCMV-3UTRΔ39-60-DBA/1JJmsSlc mice
213 did not show weight loss and survived. Significant differences in survival rates were not
214 observed between rwtLCMV and rLCMV-3UTRΔ39-60 ($P = 0.2194$). The hazard ratio for
215 rLCMV / rLCMV-3UTRΔ39-60 was 3.603. All DBA/1JJmsSlc mice infected with either

216 rLCMV-UTR-comple (rLCMV-UTR-comple-DBA/1JJmsSlc mice), rLCMV-UTR 5-3 change
217 (rLCMV-UTR 5-3 change-DBA/1JJmsSlc mice), or rLCMV-Δ26-40 (rLCMV-Δ26-40-
218 DBA/1JJmsSlc mice) showed no clinical signs and survived (Fig. 4C and D, and Table 4).

219 **Acquired immunity against LCMV in mice induced by infection with rLCMVs.**

220 The neutralization titers against LCMV in sera collected from CBA/NSlc mice at
221 37 days after first infection and DBA/1JJmsSlc mice at 40 days after first infection were
222 evaluated. Among the 53 sera specimens collected from rLCMV-infected mice all specimens but
223 one, collected from an rLCMV-3UTRΔ39-60-CBA/NSlc mouse, showed negative reactions in
224 the focus reduction neutralization test. The 50% focus reduction neutralization titer (FRNT₅₀) of
225 the positive sample was 40.

226 Mice that survived inoculation with rLCMVs were further i.p. infected with 1.0 ×
227 10³ FFU of wtLCMV 40 days after the first inoculation. Although all CBA/NSlc mice previously
228 inoculated with medium alone (the control) died within 11 d.p.i., all rLCMV-5UTRΔ41-60-,
229 rLCMV-5UTRΔ60-77-, rLCMV-3UTRΔ39-60-, rLCMV-UTR-comple-, rLCMV-UTR 5-3
230 change-, and rLCMV-Δ26-40- CBA/NSlc mice survived the secondary viral challenge,
231 exhibiting no clinical signs of infection (Fig. 5A and B, and Table 4).

232 All control DBA/1JJmsSlc mice died within 8 d.p.i. Conversely, all rLCMV-
233 5UTRΔ41-60-, rLCMV-5UTRΔ60-77-, rLCMV-3UTRΔ39-60-, rLCMV-UTR-comple-,
234 rLCMV-UTR 5-3 change-, and rLCMV-Δ26-40- DBA/1JJmsSlc mice (with the exception of one
235 rLCMV-Δ26-40-DBA/1JJmsSlc mouse) survived the secondary viral challenge (Fig. 5C and D,
236 and Table 4). None of the rLCMV-5UTRΔ41-60-, rLCMV-5UTRΔ60-77-, or rLCMV-
237 3UTRΔ39-60- DBA/1JJmsSlc mice showed any clinical symptoms. One of the 5 rLCMV-UTR-
238 comple-DBA/1JJmsSlc mice showed ruffled fur and weight loss at 6 d.p.i. Several rLCMV-UTR

239 5-3' change- and rLCMV-Δ26-40- DBA/1JJmsSlc mice showed weight loss 2 d.p.i.; all rLCMV-
240 UTR 5-3' change- and rLCMV-Δ26-40- DBA/1JJmsSlc mice showed ruffled fur 5 d.p.i.; and one
241 rLCMV-Δ26-40-DBA/1JJmsSlc mouse died 8 d.p.i.

242 **Minigenome assay and VLP assay.**

243 To clarify the effect of various mutations or deletions in the UTRs on viral genome
244 transcription and replication, a minigenome assay was established and the function of UTRs with
245 mutated minigenome plasmids (SMGs) was analyzed. To construct SMG-GFP or SMG-luc,
246 cDNA fragments containing the S 5' UTR, S IGR, GFP or Renilla luciferase open reading frames
247 (ORFs) in an antisense orientation with respect to the 5' UTR, and the S 3' UTR were cloned
248 between a murine pol I promoter and a terminator of the pRF vector system (Fig. 6A). The
249 expression of GFP or luciferase was observed only in BHK cells, which were co-transfected with
250 SMG-GFP (or SMG-luc) and both pC-NP and pC-L (Fig. 6B and C). Neither GFP nor luciferase
251 expression was observed in BHK-21 cells transfected with SMG-GFP or -luc and either pC-NP
252 or pC-L.

253 We generated various mutated SMGs in which the mutations were equivalent to the
254 mutations introduced to pRF-WE-SRGs (Table 1 and 2). Detailed information relating to the
255 mutated SMG-GFP or -luc is described in the Materials and Methods section. We evaluated the
256 efficiency of genome transcription and replication of the RNAs derived from SMG-GFP (or -
257 luc), SMG-5UTRΔ20-40-GFP (or -luc), SMG-5UTRΔ41-60-GFP (or -luc), SMG-5UTRΔ60-77-
258 GFP (or -luc), SMG-3UTRΔ20-38-GFP (or -luc), SMG-3UTRΔ39-60-GFP (or -luc), and SMG-
259 UTR-comple-luc (Fig. 7A and B). As previously reported (11), the expression of minigenome-
260 derived reporter genes was hampered by the co-expression of GPC and Z protein (Fig. 7A). Viral
261 genome transcription and replication were either not observed or observed less frequently when

262 cells were transfected with SMG-5UTRΔ20-40-GFP (or -luc). The efficiency of viral genome
263 transcription and replication in cells transfected with SMG-3UTRΔ20-38-GFP (or -luc) or SMG-
264 UTR-comple-luc was significantly lower compared with cells transfected with SMG-GFP (or -
265 luc). The level of luciferase expression in cells transfected with SMG-5UTRΔ41-60-luc, SMG-
266 5UTRΔ60-77-luc, or SMG-3UTRΔ39-60-luc was equivalent to that of cells transfected with
267 SMG-luc (Fig. 7B).

268 We also evaluated the packaging efficiency of the viral genome RNA analogs into
269 VLPs (Fig. 7C and D). The levels of luciferase expression in cells infected with VLPs which
270 encapsulated RNA products derived from SMG, SMG-5UTRΔ41-60-luc, SMG-5UTRΔ60-77-
271 luc, or SMG-3UTRΔ39-60-luc were approximately equal to each other. Luciferase expression in
272 cells infected with those VLPs that encapsulated RNA products derived from SMG-UTR-
273 comple-luc was significantly lower than that of cells infected with VLPs that encapsulated RNA
274 products derived from SMG-luc, but significantly higher than that of cells treated with
275 supernatant derived from cells transfected with SMG-luc without VLP expression plasmids (pC-
276 Z and pC-GPC) ($P = 0.0003$) (Fig. 7D).

277

278 **DISCUSSION**

279 Although there have been limited reports of infection by most arenaviruses, there
280 have been reports of LCMV infection and detection worldwide (1). Furthermore, LCMV has
281 long been widely used not only in virologic research but also in immunological research (9).
282 Understanding the role the LCMV genome plays in virulence and propagation may help to
283 inform the development of new vaccine strategies and/or antiviral therapeutic strategies.

284 Here we have described how we established an LCMV-WE reverse genetics system

285 and a minigenome system (Fig. 3A and 6). To date, a polymerase-I-driven LCMV-ARM reverse
286 genetics system has been reported by Lukas et al., with analyses of LCMV-ARM using this
287 system also reported (15). The identities of the nucleotide sequences between the S and L
288 segments of LCMV WE and LCMV-ARM are 85% and 82%, respectively. Several reports have
289 described characteristic differences between these strains. Our LCMV-WE reverse genetics
290 system has enabled us to clarify these characteristic differences from the virologic perspective. It
291 has been reported that LCMV-WE infection in non-human primates causes viral hemorrhagic
292 fever that resembles human infection with LASV (26, 27). The LCMV-WE reverse genetics
293 system can enable us to understand the pathogenic mechanisms of viral hemorrhagic fever
294 caused by arenaviruses without the need for Biosafety Level 4 facilities.

295 The 19 nt of both termini of the genome segments have been reported to be the
296 minimal genomic promoters necessary for viral replication and transcription (29). However,
297 there are dozens of nucleotides in the UTRs of the segments and their function has not yet been
298 studied. In this study, we focused on the S segment UTRs and performed RNA secondary
299 structure prediction of the LCMV S segment UTRs (Fig. 1A). The results of this prediction
300 demonstrated that not only the terminal 19 nt in both 5'- and 3'-termini but also the 28th–33rd nt
301 in the 5'-terminus and the 26th–31st nt in the 3'-terminus formed base pairs with the highest
302 base-pairing probability (Table 3). The results of generating various mutated rLCMVs suggested
303 that the base pairs comprising the 20th–40th nt in the 5'-terminus and the 20th–38th nt in the 3'-
304 terminus, which included the 28th–33rd nt in the 5'-terminus and the 26th–31st nt in the 3'-
305 terminus, greatly affected viral propagation (Fig. 1 to 3, and Table 4). The successful generation
306 of rLCMV-UTR-comple, rLCMV-UTR 5-3 change, and rLCMV-Δ26-40, and the failure to
307 generate rLCMV-Δ20-25, rLCMV-Δ20-30, and rLCMV-Δ31-40 suggested that both the

308 conformation of the panhandle structure and the nucleotide sequences of these base pairs were
309 important for the recognition of the L protein and affected viral propagation. The predicted RNA
310 secondary structure of the rLCMV-Δ26-40 S segment showed no base pairs with high base-
311 pairing probability with the exception of the 19 base pairs in the termini. The reason why
312 rLCMV-Δ26-40 could propagate was not clarified in this study but the conservation of base pairs
313 comprising the 20th–25th nt in both termini and the RNA conformation might enable rLCMV-
314 Δ26-40 to propagate.

315 The viral growth capacity and focus size of rLCMV-5UTRΔ41-60, rLCMV-
316 5UTRΔ60-77, and rLCMV-3UTRΔ39-60 were equivalent or similar to those of wtLCMV and
317 rwtLCMV (Fig. 3B and D, and Table 4). This also supported the suggestion that the conservation
318 of the base pairs comprising the 20th–40th nt in the 5'-terminus and the 20th–38th nt in the 3'-
319 terminus was not essential but did have a considerable effect on viral propagation, although the
320 other UTRs did not affect viral propagation *in vitro*.

321 The results of our mice experiments demonstrated that mutations or deletions in
322 UTRs of the S segment of LCMV could attenuate its virulence *in vivo* (Fig. 4, and Table 4). In
323 particular, mutations in the base pairs of the 20th–40th nt in the 5'-terminus and the 20th–38th nt
324 in the 3'-terminus (rLCMV-UTR-comple, rLCMV-UTR 5-3 change, and rLCMV-Δ26-40)
325 caused major attenuation of LCMV *in vivo*. Low efficiency of viral propagation *in vitro* is
326 thought to lead to viral attenuation *in vivo*. Significant differences between the survival curves of
327 rwtLCMV and rLCMV-3UTRΔ39-60 in CBA/NSlc mice and between the survival curves of
328 rwtLCMV and rLCMV-5UTRΔ41-60 or rLCMV-5UTRΔ60-77 in DBA/1JJmsSlc mice were
329 observed. Although there were no significant differences between the survival curves of
330 rwtLCMV and rLCMV-5UTRΔ60-77 or rLCMV-5UTRΔ41-60 in CBA/NSlc mice, or between

331 the survival curves of rwtLCMV and rLCMV-3UTR Δ 39-60 in DBA/1JJmsSlc mice, the hazard
332 ratios suggested that rLCMV-5UTR Δ 41-60, rLCMV-5UTR Δ 60-77, and rLCMV-3UTR Δ 39-60
333 possessed less virulence compared with wtLCMV or rwtLCMV. Recently, several reports have
334 suggested that UTRs in other viruses are involved in virulence. For example, it has been reported
335 that the variable region of the 3' UTR of the tick-borne encephalitis virus genome was associated
336 with virulence in mice (31, 32). It has also been reported that UTRs of the picornavirus genome
337 can affect viral infection and host innate immunity (33). In this study, the role of the 41st–77th nt
338 in the 5' UTR and the 39th–60th nt in the 3' UTR was not elucidated. However, the results of the
339 mice experiments suggested that these UTRs could play a role in affecting host innate immunity
340 *in vivo*. CBA/Nslc mice have been widely used in infectious disease and immunity research (34–
341 36). A single amino acid mutation in Bruton's tyrosine kinase and reduced function of B cells in
342 CBA/NSlc mice has been reported (37, 38). Although one out of five rLCMV-3UTR Δ 39-60–
343 DBA/1JJmsSlc mice lost body weight and died, none of the rLCMV-3UTR Δ 39-60–CBA/NSlc
344 mice showed any apparent symptoms and survived the first infection. These results suggest that
345 the 39th–60th nt in the 3' UTR might affect innate immunity, but further investigation is required
346 to make a firm conclusion about this.

347 The results of a secondary infection with a lethal dose of wtLCMV in mice that
348 survived suggested that protective immunity was induced in these mice (Fig. 5 and Table 4).
349 rLCMV-UTR-comple-, rLCMV-UTR 5-3 change-, and rLCMV- Δ 26-40- DBA/1JJmsSlc mice
350 developed symptoms following the secondary infection and one mouse died at 8 d.p.i. On the
351 other hand, none of the rLCMV-5UTR Δ 41-60-, rLCMV-5UTR Δ 60-77-, or rLCMV-3UTR Δ 39-
352 60- DBA/1JJmsSlc mice showed any clinical symptoms. These results indicate that mice
353 infected with rLCMVs that propagated in a similar way to wtLCMV induce higher protective

354 immunity than mice infected with rLCMVs that had a low capacity for propagation. The results
355 of the neutralization assay suggested that neutralizing antibodies against LCMV were not
356 induced in most mice. This is consistent with previous studies which showed that the generation
357 of anti-LCMV neutralizing antibodies was not detectable for between 60 to 120 days following
358 LCMV-WE infection in mice and that CD8⁺ T-cell-mediated cytotoxicity played a key role in
359 LCMV-WE infection (39).

360 UTRs play an important role in virus lifecycles, such as viral genome transcription,
361 replication, encapsidation, and packaging into VLPs. It has been reported that deletions in the
362 UTRs attenuated viral growth properties in Bunyamwera virus (BUNV) but that serial passage *in*
363 *vitro* endowed BUNV with partial recovery of its viral growth properties (40). In that report, the
364 authors found amino acid changes in the C-terminal domain of the L protein and suggested that
365 these changes might be involved in the evolution of the L polymerase, allowing it to recognize
366 the deleted UTRs more efficiently. In our study, the results of a minigenome assay with various
367 mutated MGs suggested that deletions or other mutations in the base pairs comprising the 20th–
368 40th nt in the 5'-terminus and the 20th–38th nt in the 3'-terminus greatly hampered viral genome
369 transcription and replication (Fig. 7A and B). This seemed to be the cause of the non-production
370 of rLCMVs derived from pRF-WE-SRG-5UTRΔ20-40 and pRF-WE-SRG-3UTRΔ20-38. These
371 results supported the notion that the panhandle structure composed of these base pairs is involved
372 in the recognition site of the L protein. In this study, viruses which acquired mutations in the L
373 protein and recovered their viral growth properties did not emerge in the viral growth-capacity
374 experiment. However, there is a possibility that the L protein of rLCMV-UTR-comple, rLCMV-
375 UTR 5-3 change, and rLCMV-Δ26-40 can undergo amino acid changes and adapt its
376 conformation to the mutated UTRs. Deletions in the other UTRs (the 5' UTR 41st–60th nt, the 5'

377 UTR 60th–77th nt, and the 3' UTR 39th–60th nt) did not affect viral genome transcription and
378 replication efficiency in the minigenome assay or viral genome packaging efficiency in the VLP
379 assay (Fig. 7). These results suggest that UTRs, except for those base pairs composed of 40 nt in
380 the 5'-terminus and 38 nt in the 3'-terminus, were not involved in viral genome transcription,
381 replication, or packaging. Furthermore, these minigenome assay data suggest a low possibility
382 for the conformational adaptation of L protein to the mutated UTRs in rLCMV-5UTRΔ41-60,
383 rLCMV-5UTRΔ60-77, and rLCMV-3UTRΔ39-60.

384 Although luciferase expression levels from SMG-3UTRΔ20-38-luc were higher
385 than those from SMG-UTR-comple-luc, the packaging efficiency of the RNA products from
386 SMG-UTR-comple-luc was significantly higher compared with that of SMG-3UTRΔ20-38-luc
387 (Fig. 7B and D). These results suggest that RNA products derived from SMG-UTR-comple-luc
388 were certainly packaged into VLPs and carried to the next cells but at low efficiency, and that the
389 sequence and/or conformation of UTRs also affected viral genome packaging efficiency.

390 In summary, we found that not only the 19 nucleotide base pairs in both termini of
391 the S segment but also the nucleotide base pairs of the 20th–40th nucleotides in the 5'-terminus
392 and the 20th–38th nucleotides in the 3'-terminus of the S segment formed panhandle structures
393 with high base-pairing probabilities. These regions affected viral propagation because they were
394 heavily involved in viral genome transcription and replication in terms of their nucleotide
395 sequence and conformation. Furthermore, our findings suggest that the other UTRs were
396 involved in viral pathogenicity *in vivo*, though they did not affect the efficiency of viral genome
397 transcription, replication, and packaging. The mechanism of attenuation of the virus *in vivo*
398 remains to be determined but the attenuation of LCMV without amino acid changes in
399 component proteins might help us to develop new vaccines.

400

401 **MATERIALS AND METHODS**

402 **Cells and viruses.**

403 BHK-21 and Vero cells were maintained in Dulbecco's modified minimal essential
404 medium (DMEM) supplemented with 5% fetal bovine serum (FBS) and 100 µg/ml penicillin–
405 streptomycin (all from Life Technologies, Carlsbad, CA) (DMEM-5FBS) and cultured at 37°C in
406 a 5% CO₂ atmosphere. LCMV-WE-NIID (GenBank accession numbers LC413283 and
407 LC413284) was amplified in Vero cells and used in this study.

408 **Immunofocus assay and immunofluorescence assay (IFA).**

409 The infectious dose of LCMV was determined using a viral immunofocus assay.
410 Briefly, after absorption of virus solution into Vero cells cultured in 12-well plates, cells were
411 further cultured for 120 hours at 37°C in DMEM supplemented with 1% FBS and 100 µg/ml
412 penicillin–streptomycin (DMEM-1FBS) with agarose (1%). The cell monolayers were then fixed
413 with 10% formalin in PBS, permeabilized by incubating with 0.2% Triton X-100 in PBS, and
414 stained with anti-LCMV-WE recombinant NP immunized rabbit serum and HRP-goat anti-rabbit
415 IgG (H+L) DS Grd (lot: 917439A, Life Technologies, Carlsbad, CA) (41). Cells were then
416 stained with Peroxidase Stain DAB Kit (Nacalai, Kyoto, Japan) according to the manufacturer's
417 protocol, and the number of stained foci were counted. For IFA, Alexa Fluor 488 goat anti-rabbit
418 IgG (H + L) (Life Technologies, Carlsbad, CA) was used as the secondary antibody. The cells
419 were observed to determine if they were LCMV-positive or -negative under a fluorescent
420 microscope (BZ-9000, KEYENCE, Osaka, Japan).

421 **Plasmids.**

422 To construct pRF-WE-SRG and pRF-WE-LRG plasmids, cDNA fragments

423 containing either whole S or L segments were cloned between the murine pol I promoter and the
424 terminator of the pRF vector. The pRF vector system was kindly provided by Dr. Shuzo Urata,
425 Nagasaki University and Dr. Juan Carlos de la Torre, of the Scripps Research Institute (San
426 Diego, CA) (17). Insertion of additional G residue directly downstream of the promoter has been
427 reported to enhance the efficiency of both reverse genetics and minigenome systems. The viral
428 cDNA constructs were inserted in sense-orientation for viral complementary (c)RNA. Several
429 mutated pRF-WE-SRG plasmids (pRF-WE-SRG-5UTRΔ20-40, pRF-WE-SRG-5UTRΔ41-60,
430 pRF-WE-SRG-5UTRΔ60-77, pRF-WE-SRG-3UTRΔ20-38, pRF-WE-SRG-3UTRΔ39-60, pRF-
431 WE-SRG-UTR-comple, pRF-WE-SRG-UTR reverse, pRF-WE-SRG-UTR 5-3 change, pRF-
432 WE-SRG-Δ26-40, pRF-WE-SRG-Δ20-25, pRF-WE-SRG-Δ20-30, and pRF-WE-SRG-Δ31-40),
433 which had mutations in the S segment UTRs, were generated using the site-directed mutagenesis
434 method.

435 To construct SMG-GFP and SMG-luc as minigenome plasmids, cDNA fragments
436 containing the S 5' UTR, the S IGR, and either GFP or Renilla luciferase ORFs in the antisense
437 orientation to the 5' UTR, and the S 3' UTR were cloned between the murine pol I promoter and
438 the terminator of the pRF vector in sense-orientation to the viral cRNA. Additional G residue
439 was also inserted between the murine pol I promoter and the viral minigenome sequence, as well
440 as the reverse genetics system. Several mutated SMG-GFP or -luc plasmids, which had
441 mutations in their S segment UTRs [SMG-5UTRΔ20-40 (-GFP or -luc), SMG-5UTRΔ41-60 (-
442 GFP or -luc), SMG-5UTRΔ60-77 (-GFP or -luc), SMG-3UTRΔ20-38 (-GFP or -luc), SMG-
443 3UTRΔ39-60 (-GFP or -luc), and SMG-UTR-comple (-luc)] were generated using the site-
444 directed mutagenesis method.

445 The detailed information for each mutated pRF-WE-SRG and SMG-GFP or -luc is

446 shown in Tables 1 and 2. Briefly, pRF-WE-SRG (or SMG)-5UTR Δ 20-40, pRF-WE-SRG (or
447 SMG)-5UTR Δ 41-60, and pRF-WE-SRG (or SMG) -5UTR Δ 60-77 lacked the 20th–40th, the
448 41st–60th, and the 60th–77th nt residues in the S segment UTRs of their 5'-terminus,
449 respectively. pRF-WE-SRG (or SMG)-3UTR Δ 20-38 and pRF-WE-SRG (or SMG)-3UTR Δ 39-60
450 lacked the 20th–38th and the 39th–60th nt residues in the S segment UTRs of their 3'-terminus,
451 respectively. pRF-WE-SRG (or SMG)-UTR-comple had complementary nucleic sequences in
452 the 20th–26th nt residues in their 5'-terminus and the 20th–24th nt residues in their 3'-terminus,
453 respectively. pRF-WE-SRG-UTR 5-3-change had the 20th–38th nt residues in the 3'-terminus in
454 place of the 20th–40th nt residues in the 5'-terminus and vice versa in the 3'-terminus. pRF-WE-
455 SRG- Δ 26-40, pRF-WE-SRG- Δ 20-25, pRF-WE-SRG- Δ 20-30, and pRF-WE-SRG- Δ 31-40 lacked
456 the 26th–40th, 20th–25th, 20th–30th, and 31st–40th nt residues in the S segment UTRs of their
457 5'-terminus, respectively. They also lacked the 24th–38th, 20th–23rd, 20th–28th, and 29th–38th
458 nt residues in the S segment UTRs of their 3'-terminus, respectively.

459 Plasmids for the expression of LCMV-WE NP, L, Z, and GPC (referred to as pC-
460 NP, pC-L, pC-Z, and pC-GPC, respectively) were obtained as follows. To generate NP, cDNA
461 encoding the NP ORF flanked by EcoRI and NheI restriction sites was amplified by PCR. The
462 PCR product, digested with EcoRI and NheI, was cloned into the EcoRI-NheI restriction site of
463 plasmid pCAGGS. To generate pC-L, the L ORF flanked by KpnI and NheI restriction sites was
464 amplified by PCR. The PCR product was cloned into the KpnI-NheI restriction site of pCAGGS.
465 To generate Z, cDNA encoding the Z ORF flanked by EcoRI and NheI restriction sites was
466 amplified by PCR. The PCR product, digested with EcoRI and NheI, was cloned into the EcoRI-
467 NheI restriction site of plasmid pCAGGS. To generate pC-GPC, the GPC ORF flanked by EcoRI
468 and NheI restriction sites was amplified by PCR. The PCR product was cloned into the EcoRI-

469 NheI restriction site of pCAGGS.

470 **Transfection, minigenome, and reverse genetics system.**

471 For the minigenome, 1.0×10^5 BHK-21 cells were seeded into 24-well plates to
472 reach approximately 80% confluence. Cells were transfected with minigenome plasmids (SMG-
473 GFP or SMG-luc), pC-NP, and pC-L using TansIT-LT1 DNA transfection reagent (Mirus Bio,
474 Madison, WI). The total amount of DNA transfected ranged from 0.8 μ g to 2.6 μ g depending on
475 the volume of pC-NP and pC-L added, but the amount of transfection reagent was kept constant
476 at three volumes (μ l) per added DNA (μ g). The transfected cells were incubated for 2 days at
477 37°C, then the GFP expression level was observed under a fluorescent microscope and luciferase
478 activity was measured using a Renilla Luciferase Assay System (Promega, Fitchburg, WI). The
479 detailed methodology is described in the luciferase assay section.

480 For the reverse genetics system, 3.0×10^5 BHK-21 cells were seeded into 6-well
481 plates to reach approximately 80% confluence. Cells were transfected using TansIT-LT1 DNA
482 transfection reagent with 0.8 μ g pRF-WE-SRG, 1.4 μ g pRF-WE-LRG, 0.8 μ g pC-NP, and 1.0
483 μ g pC-L. The total amount of DNA transfected was 4.0 μ g and the amount of transfection
484 reagent used was 12.0 μ l. Under these transfection conditions, the cells were incubated for at
485 least 3 days at 37°C. The supernatant was harvested and the infectious dose of recombinant virus
486 was measured using an immunofocus assay or IFA. The RNA of each rLCMV was extracted and
487 viral genome sequences of all rLCMVs were confirmed to be as intended using the Sanger
488 Sequence method.

489 **Rescue of LCMV RNA analogs into LCMV-like particles.**

490 The rescue of LCMV RNA analogs into VLPs was carried out as previously
491 reported (11), with 3.0×10^5 BHK-21 cells in 2.0 ml of DMEM-5FBS seeded into 6-well plates

492 to reach approximately 80% confluence. The cell culture medium was changed to DMEM
493 supplemented with 2% FBS and 100 µg/ml penicillin–streptomycin (DMEM-2FBS). The cells
494 were transfected using TansIT-LT1 DNA transfection reagent with 1.0 µg SMGs-GFP or -luc
495 (SMG-GFP or -luc or various mutated SMGs-GFP or -luc), 0.8 µg pC-NP, 1.0 µg pC-L, 0.1 µg
496 pC-Z, and 0.3 µg pC-GPC. As a background control for the rescue of LCMV RNA analogs into
497 VLPs, cells transfected with 1.0 µg SMG, 0.8 µg pC-NP, and 1.0 µg pC-L were used [SMG-GFP
498 (no VLPs) and SMG-luc (no VLPs)]. The amount of transfection reagent was kept to three
499 volumes (µl) per amount of DNA added (µg). After incubation for 48 hours at 37°C with 5%
500 CO₂, the expression of GFP or luciferase was examined, then 1.2 ml of supernatant from each
501 well was harvested. Fresh monolayers of BHK-21 cells seeded into 6-well plates were infected
502 with the supernatants. Cells were incubated with the supernatants for 4 hours at 37°C and
503 infected with helper LCMV at a multiplicity of infection (moi) of 2 FFU/cell. Ninety hours post-
504 infection, the cells were examined for GFP or luciferase expression.

505 **RNA secondary structure prediction.**

506 To predict RNA secondary structures the web application CENTROIDFOLD was
507 used (<http://www.ncrna.org/centroidfold/>) (42). The RNA sequences of the 5' and 3'-termini
508 UTRs and 50 nt lengths of ORF (GPC or NP ORF) regional RNA sequences, which were directly
509 downstream of the UTRs, were linked and sent to the CENTROIDFOLD server. The
510 CONTRAfold model (weight of base pairs: 2²) was used to calculate base-pairing probabilities.
511 The results of RNA secondary structure prediction were referenced in the generation of rLCMVs,
512 in which mutations were introduced into the UTRs.

513 **Luciferase assay.**

514 Cells were washed with PBS and lysed with 100 µl Renilla Luciferase Assay

515 System Lysis Buffer (Promega). Cell lysates (20 μ l) were mixed with 100 μ l Renilla Luciferase
516 Assay System Substrate (Promega). The luminescence level was measured and the relative light
517 units (RLUs) of luciferase were determined using GloMax 96 luminometer (Promega) according
518 to the manufacturer's protocol. To analyze the efficiency of viral genome packaging, the RLUs
519 acquired from cells infected with VLPs was divided by the RLUs acquired from cells transfected
520 with corresponding minigenome plasmids. Bar graphs were drawn using GraphPad Prism
521 software (GraphPad Software, Inc.) and statistically analyzed using an unpaired two-tailed *t*-test.

522 **Viral growth kinetics.**

523 Viral growth kinetics of wtLCMV, rwtLCMV, and recombinant LCMV with
524 various mutations in Vero cells were analyzed. Briefly, confluent monolayers of Vero cells
525 cultured in 12-well plates were infected with each LCMV at an moi of 0.01 per cell. Cells were
526 washed 3 times with DMEM-2FBS after a one-hour adsorption period at 37°C, and 1 ml DMEM-
527 2FBS was added to each well. Supernatant samples were collected at 0, 24, 48, 72, 96, and 120 h
528 post-infection. The supernatants were centrifuged at 8,000 g for 5 min to remove cell debris and
529 stored at -80°C until the infectious dose was measured using a viral immunofocus assay. Viral
530 growth curves of LCMVs were drawn using GraphPad Prism software (GraphPad Software, Inc.)
531 and statistically analyzed using two-way ANOVA.

532 **Animal experiments.**

533 Animal experiments were performed under Animal Biosafety Level 3 laboratory.
534 All experiments were performed in accordance with the Guidelines for Animal Experimentation
535 of National Institute of Infectious Diseases (NIID), Japan, under the approval of the Committee
536 on Experimental Animals at NIID (No. 116038). Specific-pathogen-free 7-week-old female
537 CBA/NSlc mice and specific-pathogen-free 8-week-old female DBA/1JJmsSlc mice were

538 purchased from Japan SLC, Inc. (Shizuoka, Japan). Mice were i.p. infected with 1.0×10^2 FFU
539 wtLCMV, rwtLCMV, mutated rLCMVs, or medium alone. Mice were monitored daily for 21
540 days for clinical symptoms, body weight, and survival. Mice showing more than 20% weight
541 loss were euthanized out of ethical consideration. Blood was collected from the caudal vein of
542 each mouse that survived to 37 days post-infection (CBA/NSIc mice) or 40 days post-infection
543 (DBA/1JJmsSlc mice). Following the first infection, mice that survived and showed no apparent
544 symptoms at 40 days post-infection were further i.p. inoculated with 1.0×10^3 FFU of wtLCMV
545 and again monitored daily for 21 days for clinical symptoms, body weight, and survival. After 21
546 days post-infection, mice were euthanized under isoflurane deep anesthesia. Survival curves
547 were drawn using GraphPad Prism software (GraphPad Software, Inc.) and statistically analyzed
548 using the log-rank (Mantel–Cox) test. The curves of body weight changes were drawn using
549 GraphPad Prism software (GraphPad Software, Inc.) and statistically analyzed using multiple *t*-
550 tests. Discovery was determined using the two-stage linear step-up produced by Benjamini,
551 Krieger, and Yekutieli, with $Q = 5\%$ (43).

552 **Neutralization assay.**

553 Blood was collected from the caudal vein of each mouse at either 37 d.p.i. or 40
554 d.p.i. using BD Microtainer blood collection tubes (BD, Franklin Lakes, NJ) and centrifuged at
555 8,000 g for 5 min. Separated plasma was inactivated by heat-treatment at 56°C for 30 min.
556 Plasma was serially diluted with DMEM-2FBS from 1:20 to 1:160 (two-fold serial dilution) and
557 mixed with an equal volume of DMEM-2FBS containing 40–70 FFU/50 µl wtLCMV. The
558 mixtures were incubated for 1 hour at 37°C. Vero cells cultured in 12-well plates were inoculated
559 with 100 µl of each mixture and cultured at 37°C for 1 hour for adsorption. The cells were
560 overlaid with 1 ml maintenance medium (Eagle's minimal essential medium containing 1%

561 methylcellulose, 2mM L-glutamine, 0.22% sodium bicarbonate, and 2% FBS). The plates were
562 incubated at 37°C in 5% CO₂ for 120 hours. Cells were fixed with 10% formaldehyde,
563 permeabilized by incubation with PBS containing 0.2% Triton X-100 (SIGMA-ALDRICH, St.
564 Louis, MO), and then stained with anti-LCMV-WE recombinant NP immunized rabbit serum
565 and HRP-goat anti-rabbit IgG (H+L) DS Grd (Life Technologies, Carlsbad, CA) (41). The cells
566 were then stained with Peroxidase Stain DAB Kit (Nacalai, Kyoto, Japan) according to the
567 manufacturer's protocol. The number of stained foci were counted as described above, and the
568 FRNT₅₀ was measured. The FRNT₅₀ titers were defined as the reciprocal of the serum dilution
569 level at which the focus number became less than 50% of the control, the focus number of the
570 wells inoculated with the mixture of non-plasma containing DMEM-2FBS and DMEM-2FBS
571 containing 40–70 FFU/50 µl of wtLCMV.

572

573 ACKNOWLEDGMENTS

574 Japan Society for the Promotion of Science (JSPS) provided funding to Satoshi
575 Taniguchi under grant numbers 15K21645 and 11J02534. JSPS provided funding to Masayuki
576 Shimojima under grant number 16K08041. Japan Agency for Medical Research and
577 Development (AMED) provided funding to Masayuki Saijo under grant numbers
578 19fk0108072j0002.

579 We thank Prof. Juan Carlos de la Torre and Dr. Shuzo Urata for providing us with
580 the pRF vector system and giving us technical advice on how to rescue recombinant LCMV. We
581 thank Prof. Yoshiharu Matsuura for providing us with LCMV-WE-NIID strain. We thank Dr.
582 Koichiro Iha, Dr. Kie Yamamoto, Dr. Yoshimi Tsuda, Ms. Momoko Ogata, Dr. Yuto Suda, Ms.
583 Makiko Ikeda, Mr. Kenichi Shibasaki, and Ms. Nor Azila Muhammad Azami for their technical

584 assistance. This research was supported by Grant-in-aids from the Japan Society for the
585 Promotion of Science KAKENHI (15K21645, 11J02534, and 16K08041).

586

587 **REFERENCES**

- 588 1. **Buchmeier MJ, Peters CJ, de la Torre JC.** 2007. Arenaviridae: the viruses and their
589 replication, p 1791-1851. *In* Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA,
590 Roizman B, Straus SE. (ed), Fields virology, 5th ed, vol 2 Lippincott Williams & Wilkins,
591 Philadelphia, PA.
- 592 2. **Jahrling PB, Peters CJ.** 1992. Lymphocytic choriomeningitis virus. A neglected
593 pathogen of man. *Arch Pathol Lab Med* **116**:486-488.
- 594 3. **Barton LL, Mets MB, Beauchamp CL.** 2002. Lymphocytic choriomeningitis virus:
595 emerging fetal teratogen. *Am J Obstet Gynecol* **187**:1715-1716.
- 596 4. **Fischer SA, Graham MB, Kuehnert MJ, Kotton CN, Srinivasan A, Marty FM,
597 Comer JA, Guarner J, Paddock CD, DeMeo DL, Shieh WJ, Erickson BR, Bandy U,
598 DeMaria A, Jr., Davis JP, Delmonico FL, Pavlin B, Likos A, Vincent MJ, Sealy TK,
599 Goldsmith CS, Jernigan DB, Rollin PE, Packard MM, Patel M, Rowland C, Helfand
600 RF, Nichol ST, Fishman JA, Ksiazek T, Zaki SR, Team LiTRI.** 2006. Transmission of
601 lymphocytic choriomeningitis virus by organ transplantation. *N Engl J Med* **354**:2235-
602 2249.
- 603 5. **Peters CJ.** 2006. Lymphocytic choriomeningitis virus--an old enemy up to new tricks. *N
604 Engl J Med* **354**:2208-2211.
- 605 6. **Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J,
606 Marshall J, Simons JF, Egholm M, Paddock CD, Shieh WJ, Goldsmith CS, Zaki SR,
607 Catton M, Lipkin WI.** 2008. A new arenavirus in a cluster of fatal transplant-associated
608 diseases. *N Engl J Med* **358**:991-998.
- 609 7. **Armstrong C, Lillie RD.** 1934. Experimental lymphocytic choriomeningitis of monkeys

610 and mice produced by a virus encountered in studies of the 1933 St. Louis encephalitis
611 epidemic. *Public Health Reports* **49**:1019-1027.

612 8. **Rivers TM, McNair Scott TF.** 1935. Meningitis in Man Caused by a Filterable Virus.
613 *Science* **81**:439-440.

614 9. **Zinkernagel RM.** 2002. Lymphocytic choriomeningitis virus and immunology. *Curr Top*
615 *Microbiol Immunol* **263**:1-5.

616 10. **Lee KJ, Novella IS, Teng MN, Oldstone MB, de La Torre JC.** 2000. NP and L proteins
617 of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription
618 and replication of LCMV genomic RNA analogs. *J Virol* **74**:3470-3477.

619 11. **Lee KJ, Perez M, Pinschewer DD, de la Torre JC.** 2002. Identification of the
620 lymphocytic choriomeningitis virus (LCMV) proteins required to rescue LCMV RNA
621 analogs into LCMV-like particles. *J Virol* **76**:6393-6397.

622 12. **Sanchez AB, de la Torre JC.** 2005. Genetic and biochemical evidence for an oligomeric
623 structure of the functional L polymerase of the prototypic arenavirus lymphocytic
624 choriomeningitis virus. *J Virol* **79**:7262-7268.

625 13. **Flatz L, Bergthaler A, de la Torre JC, Pinschewer DD.** 2006. Recovery of an
626 arenavirus entirely from RNA polymerase I/II-driven cDNA. *Proc Natl Acad Sci U S A*
627 **103**:4663-4668.

628 14. **Sanchez AB, de la Torre JC.** 2006. Rescue of the prototypic Arenavirus LCMV entirely
629 from plasmid. *Virology* **350**:370-380.

630 15. **de la Torre JC.** 2008. Reverse genetics approaches to combat pathogenic arenaviruses.
631 *Antiviral Res* **80**:239-250.

632 16. **Martinez-Sobrido L, Emonet S, Giannakas P, Cubitt B, Garcia-Sastre A, de la Torre**

633 **JC.** 2009. Identification of amino acid residues critical for the anti-interferon activity of
634 the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. *J Virol*
635 **83:**11330-11340.

636 17. **Emonet SE, Urata S, de la Torre JC.** 2011. Arenavirus reverse genetics: new
637 approaches for the investigation of arenavirus biology and development of antiviral
638 strategies. *Virology* **411:**416-425.

639 18. **Buchmeier MJ, Welsh RM, Dutko FJ, Oldstone MB.** 1980. The virology and
640 immunobiology of lymphocytic choriomeningitis virus infection. *Adv Immunol* **30:**275-
641 331.

642 19. **Djavani M, Lukashevich IS, Salvato MS.** 1998. Sequence comparison of the large
643 genomic RNA segments of two strains of lymphocytic choriomeningitis virus differing in
644 pathogenic potential for guinea pigs. *Virus Genes* **17:**151-155.

645 20. **Oehen S, Hengartner H, Zinkernagel RM.** 1991. Vaccination for disease. *Science*
646 **251:**195-198.

647 21. **Lukashevich IS, Rodas JD, Tikhonov, II, Zapata JC, Yang Y, Djavani M, Salvato**
648 **MS.** 2004. LCMV-mediated hepatitis in rhesus macaques: WE but not ARM strain
649 activates hepatocytes and induces liver regeneration. *Arch Virol* **149:**2319-2336.

650 22. **Takagi T, Ohsawa M, Yamanaka H, Matsuda N, Sato H, Ohsawa K.** 2017. Difference
651 of two new LCMV strains in lethality and viral genome load in tissues. *Exp Anim*
652 **66:**199-208.

653 23. **Danes L, Benda R, Fuchsova M.** 1963. [Experimental Inhalation Infection of Monkeys
654 of the Macacus Cynomolgus and Macacus Rhesus Species with the Virus of Lymphocytic
655 Choriomeningitis (We)]. *Bratisl Lek Listy* **2:**71-79.

656 24. **Lukashevich IS, Djavani M, Rodas JD, Zapata JC, Usborne A, Emerson C, Mitchen**
657 **J, Jahrling PB, Salvato MS.** 2002. Hemorrhagic fever occurs after intravenous, but not
658 after intragastric, inoculation of rhesus macaques with lymphocytic choriomeningitis
659 virus. *J Med Virol* **67**:171-186.

660 25. **Lukashevich IS, Tikhonov I, Rodas JD, Zapata JC, Yang Y, Djavani M, Salvato MS.**
661 2003. Arenavirus-mediated liver pathology: acute lymphocytic choriomeningitis virus
662 infection of rhesus macaques is characterized by high-level interleukin-6 expression and
663 hepatocyte proliferation. *J Virol* **77**:1727-1737.

664 26. **Zapata JC, Pauza CD, Djavani MM, Rodas JD, Moshkoff D, Bryant J, Ateh E,**
665 **Garcia C, Lukashevich IS, Salvato MS.** 2011. Lymphocytic choriomeningitis virus
666 (LCMV) infection of macaques: a model for Lassa fever. *Antiviral Res* **92**:125-138.

667 27. **Salvato MS, Lukashevich IS, Yang Y, Medina-Moreno S, Djavani M, Bryant J,**
668 **Rodas JD, Zapata JC.** 2018. A Primate Model for Viral Hemorrhagic Fever. *Methods*
669 *Mol Biol* **1604**:279-290.

670 28. **Iwasaki M, Ngo N, Cubitt B, Teijaro JR, de la Torre JC.** 2015. General Molecular
671 Strategy for Development of Arenavirus Live-Attenuated Vaccines. *J Virol* **89**:12166-
672 12177.

673 29. **Perez M, de la Torre JC.** 2003. Characterization of the genomic promoter of the
674 prototypic arenavirus lymphocytic choriomeningitis virus. *J Virol* **77**:1184-1194.

675 30. **Hass M, Westerkofsky M, Muller S, Becker-Ziaja B, Busch C, Gunther S.** 2006.
676 Mutational analysis of the lassa virus promoter. *J Virol* **80**:12414-12419.

677 31. **Sakai M, Yoshii K, Sunden Y, Yokozawa K, Hirano M, Kariwa H.** 2014. Variable
678 region of the 3' UTR is a critical virulence factor in the Far-Eastern subtype of tick-borne

679 encephalitis virus in a mouse model. *J Gen Virol* **95**:823-835.

680 32. **Sakai M, Muto M, Hirano M, Kariwa H, Yoshii K.** 2015. Virulence of tick-borne
681 encephalitis virus is associated with intact conformational viral RNA structures in the
682 variable region of the 3'-UTR. *Virus Res* **203**:36-40.

683 33. **Kloc A, Rai DK, Rieder E.** 2018. The Roles of Picornavirus Untranslated Regions in
684 Infection and Innate Immunity. *Front Microbiol* **9**:485.

685 34. **Cohen DI, Hedrick SM, Nielsen EA, D'Eustachio P, Ruddle F, Steinberg AD, Paul
686 WE, Davis MM.** 1985. Isolation of a cDNA clone corresponding to an X-linked gene
687 family (XLR) closely linked to the murine immunodeficiency disorder xid. *Nature*
688 **314**:369-372.

689 35. **Chen L, Zhang Z, Sendo F.** 2000. Neutrophils play a critical role in the pathogenesis of
690 experimental cerebral malaria. *Clin Exp Immunol* **120**:125-133.

691 36. **Chen L, Sendo F.** 2001. Cytokine and chemokine mRNA expression in neutrophils from
692 CBA/NSlc mice infected with *Plasmodium berghei* ANKA that induces experimental
693 cerebral malaria. *Parasitol Int* **50**:139-143.

694 37. **Scher I, Steinberg AD, Berning AK, Paul WE.** 1975. X-linked B-lymphocyte immune
695 defect in CBA/N mice. II. Studies of the mechanisms underlying the immune defect. *J
696 Exp Med* **142**:637-650.

697 38. **Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L,
698 Mohr RN, Bazan JF, Howard M, Copeland NG, et al.** 1993. Mutation of unique region
699 of Bruton's tyrosine kinase in immunodeficient XID mice. *Science* **261**:358-361.

700 39. **Battegay M, Moskophidis D, Waldner H, Brundler MA, Fung-Leung WP, Mak TW,
701 Hengartner H, Zinkernagel RM.** 1993. Impairment and delay of neutralizing antiviral

702 antibody responses by virus-specific cytotoxic T cells. *J Immunol* **151**:5408-5415.

703 40. **Mazel-Sanchez B, Elliott RM.** 2012. Attenuation of bunyaamwera orthobunyavirus
704 replication by targeted mutagenesis of genomic untranslated regions and creation of
705 viable viruses with minimal genome segments. *J Virol* **86**:13672-13678.

706 41. **Saijo M, Georges-Courbot MC, Marianneau P, Romanowski V, Fukushi S, Mizutani
707 T, Georges AJ, Kurata T, Kurane I, Morikawa S.** 2007. Development of recombinant
708 nucleoprotein-based diagnostic systems for Lassa fever. *Clin Vaccine Immunol* **14**:1182-
709 1189.

710 42. **Sato K, Hamada M, Asai K, Mituyama T.** 2009. CENTROIDFOLD: a web server for
711 RNA secondary structure prediction. *Nucleic Acids Res* **37**:W277-280.

712 43. **Benjamini Y, Krieger AM, Yekutieli D.** 2006. Adaptive linear step-up procedures that
713 control the false discovery rate. *Biometrika* **93**:491-507.

714

715 **Figure legends**

716 FIG 1 Prediction of RNA secondary structures of LCMV strain WE (LCMV-WE) S segment
717 UTR and its various mutated UTRs which have 18–22 nt deletions in the 5'- or 3'-termini. (A)
718 Predicted RNA secondary structure of LCMV-WE S segment UTR derived from pRF-WE-SRG.
719 The location of the 19 base pairs in the termini and the base pairs comprising the 28th–33rd nt in
720 the 5'-terminus and the 26th–31st nt in the 3'-terminus are shown (B to F). Predicted RNA
721 secondary structures of LCMV-WE S segment UTRs which have 18–22 nt deletions in the 5'- or
722 3'-terminal UTRs. These RNAs were derived from pRF-WE-SRG-5UTRΔ20-40 (B), pRF-WE-
723 SRG-5UTRΔ41-60 (C), pRF-WE-SRG-5UTRΔ60-77 (D), pRF-WE-SRG-3UTRΔ20-38 (E), and
724 pRF-WE-SRG-3UTRΔ39-60 (F). RNA sequences of LCMV-WE S segment genome 5'-terminal
725 and 3'-terminal UTRs (or various mutated UTRs) and 50 nt of ORF regional RNA sequences that
726 were directly downstream of the UTRs were linked, sent to the CENTROIDFOLD server, and
727 analyzed using the CONTRAfold model (weight of base pairs: 2^2). Each predicted base pair is
728 colored with heat-color gradation from blue to red, corresponding to the base-pairing probability
729 from 0 to 1. Detailed information about pRF-WE-SRG and the various mutated pRF-WE-SRGs
730 is given in Table 1 and 2.

731

732 FIG 2 Prediction of RNA secondary structures of mutated LCMV strain WE (LCMV-WE) S
733 segment UTRs which have deletions or mutations in the 20th–40th nt in the 5'-terminus or 20th–
734 38th nt in the 3'-terminus (A to F). These RNAs were derived from pRF-WE-SRG-UTR-comple
735 (A), pRF-WE-SRG-UTR 5-3 change (B), pRF-WE-SRG-Δ20-30 (C), pRF-WE-SRG-Δ26-40
736 (D), pRF-WE-SRG-Δ31-40 (E), and pRF-WE-SRG-Δ20-25 (F). RNA sequences of the mutated
737 LCMV-WE S segment genome 5'-terminal and 3'-terminal UTRs and 50 nt of ORF regional

738 RNA sequences that were directly downstream of the UTRs were linked, sent to the
739 CENTROIDFOLD server, and analyzed using the CONTRAfold model (weight of base pairs:
740 2^2). Each predicted base pair is colored with heat-color gradation from blue to red,
741 corresponding to the base-pairing probability from 0 to 1. Detailed information about the various
742 mutated pRF-WE-SRGs is given in Table 1 and 2.

743

744 FIG 3 Viral growth properties in Vero cells. Confluent monolayers of Vero cells were infected
745 with wtLCMV or rLCMVs at an moi of 0.01 per cell. Cells were washed three times with
746 DMEM-2%FBS after a one-hour adsorption period, and 1 ml DMEM-2%FBS was added to each
747 well. Supernatant samples were collected at 0, 24, 48, 72, 96, and 120 hours post-infection. The
748 supernatants were centrifuged at 8,000 rpm for 5 min to remove cell debris and stored at -80°C.
749 The infectious dose was measured using a viral immunofocus assay. Viral growth curves of
750 LCMVs were statistically analyzed using two-way ANOVA. (A) Viral growth properties of wild-
751 type LCMV (wtLCMV) and recombinant non-mutated wild-type LCMV (rwtLCMV) in Vero
752 cells were compared. (B) Viral growth kinetics of rLCMV-5UTR Δ 41-60, rLCMV-5UTR Δ 60-77,
753 and rLCMV-3UTR Δ 39-60 in Vero cells were compared with wtLCMV and rwtLCMV. (C) Viral
754 growth kinetics of rLCMV-UTR-comple, rLCMV-UTR 5-3 change, and rLCMV- Δ 26-40 in Vero
755 cells were compared with wtLCMV and rwtLCMV. (D) Focus morphology of wtLCMV and
756 rLCMVs in Vero cells. The focus morphologies of wtLCMV and rLCMVs generated in this
757 study are shown. Error bars in FIG 3A, B, and C indicate standard deviations.

758

759

760 FIG 4 Virulence of wtLCMV and rLCMVs in CBA/NSlc mice and DBA/1JJmsSlc mice. (A and

761 B) Changes in body weight and survival rate of CBA/NSlc mice. Seven-week-old female
762 CBA/NSlc mice (5 mice per group) were intraperitoneally (i.p.) infected with 1.0×10^2 FFU of
763 wtLCMV, rwtLCMV, or various mutated rLCMVs. (C and D) Changes in body weight and
764 survival rate of DBA/1JJmsSlc mice. Eight-week-old female DBA/1JJmsSlc (5 mice per group)
765 were i.p. infected with 1.0×10^2 FFU of wtLCMV or various mutated rLCMVs. Error bars in
766 FIG 4A and C indicate standard errors of the mean. Asterisks indicate that significant differences
767 were observed between the mean body weight of mice infected with medium alone and that of
768 mice infected with LCMVs, displayed in the same colors.

769

770 FIG 5 Mice previously infected with rLCMVs were given a lethal dose infection of wtLCMV.
771 Mice that survived inoculation with rLCMVs were further infected intraperitoneally (i.p.) with
772 1.0×10^3 FFU of wtLCMV 40 days after the first inoculation. (A and B) Changes in body weight
773 and survival rate of CBA/NSlc mice. CBA/NSlc mice previously inoculated with rLCMV-
774 5UTR Δ 41-60 (3 mice per group), rLCMV-5UTR Δ 60-77 (1 mouse per group), rLCMV-
775 3UTR Δ 39-60 (5 mice per group), rLCMV-UTR-comple (5 mice per group), rLCMV-UTR 5-3
776 change (5 mice per group), rLCMV- Δ 26-40 (5 mice per group), or medium (5 mice per group)
777 were used. (C and D) Changes in body weight and survival rate of DBA/1JJmsSlc mice.
778 DBA/1JJmsSlc mice previously inoculated with rwtLCMV (3 mice per group), rLCMV-
779 5UTR Δ 41-60 (5 mice per group), rLCMV-5UTR Δ 60-77 (5 mouse per group), rLCMV-
780 3UTR Δ 39-60 (4 mice per group), rLCMV-UTR-comple (5 mice per group), rLCMV-UTR 5-3
781 change (5 mice per group), rLCMV- Δ 26-40 (5 mice per group), or medium (5 mice per group)
782 were used. Error bars in FIG 5A and C indicate standard errors of the mean.

783

784 FIG 6 Establishment of a minigenome system for LCMV strain WE (LCMV-WE). (A)
785 Schematic diagram of SMG-GFP or -luc. A cDNA fragment containing the S 5' UTR, S IGR,
786 GFP or Renilla luciferase ORFs in an antisense orientation with respect to the 5' UTR, and the S
787 3' UTR were cloned between the murine pol I promoter and the terminator of a pRF vector.
788 Additional G residue was inserted between the murine pol I promoter and the viral genome
789 sequence. (B and C) BHK-21 cells were transfected with minigenome plasmids [SMG-GFP (B)
790 or SMG-luc (C)] and both pC-NP and pC-L, or either pC-NP or pC-L. The transfected cells were
791 incubated for 2 days at 37°C then the level of GFP expression was observed under a fluorescent
792 microscope (B) or luciferase activity was measured using the Renilla Luciferase Assay System
793 (C). (* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$) Error bars indicate standard
794 deviations.

795
796 FIG 7 Evaluation of the efficiency of viral genome transcription, replication, and packaging in
797 virus-like particles (VLPs). (A and B) Viral genome transcription and replication were observed
798 in BHK-21 cells transfected with SMG-GFP or -luc, SMG-5UTRΔ41-60-GFP or -luc, SMG-
799 5UTRΔ60-77-GFP or -luc, SMG-3UTRΔ20-38-GFP or -luc, SMG-3UTRΔ39-60-GFP or -luc, or
800 SMG-UTR-comple-luc under conditions of the co-expression of NP, L protein, GPC, and Z
801 protein. BHK-21 cells were transfected with each mutated SMG-GFP or -luc, pC-NP, pC-L, pC-
802 Z, and pC-GPC. As a background control for the rescue of LCMV RNA analogs into VLPs, cells
803 transfected with SMG-GFP or -luc, pC-NP, and pC-L were used [SMG-GFP (no VLPs) and
804 SMG-luc (no VLPs)]. After incubation for 48 hours at 37°C with 5% CO₂, GFP or luciferase
805 expression was examined. (C and D) Viral genome RNA analogs derived from SMG-GFP or -
806 luc, SMG-5UTRΔ41-60-GFP or -luc, SMG-5UTRΔ60-77-GFP or -luc, SMG-3UTRΔ39-60-GFP

807 or -luc, or SMG-UTR-comple-luc were packaged into VLPs. Supernatants from each well of FIG
808 7A or B were harvested and used to infect fresh monolayers of BHK-21 cells, which were then
809 incubated for 4 hours at 37°C before adding helper LCMV. Ninety hours post-infection, the
810 passage culture was examined for GFP or luciferase expression. The packaging efficiency of
811 each SMG was determined by dividing the relative light units (RLUs) value obtained from the
812 passage culture 90 hours post-infection by the RLUs value obtained in FIG 7D. (* $P < 0.05$, ** P
813 < 0.01 , *** $P < 0.001$, **** $P < 0.0001$). Error bars indicate standard deviations.

814

815 Table 1 The 5' nucleotide sequences of untranslated regions (UTRs) of the plasmids for the reverse genetics and minigenome systems.

Plasmid	5' UTR nucleotide sequence (from 5' to 3', vRNA polarity)
pRF-WE-SRG or SMG	CGCACCGGGGATCCTAGGCTTTGGATTGCGCTTCCTTAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG (or SMG)-5UTRΔ20-40	CGCACCGGGGATCCTAGG C -----TAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG (or SMG)-5UTRΔ41-60	CGCACCGGGGATCCTAGGCTTTGGATTGCGCTTC C TT-----TTCTATCCAGTAAAAGG
pRF-WE-SRG (or SMG) -5UTRΔ60-77	CGCACCGGGGATCCTAGGCTTTGGATTGCGCTTC C TTAGGACAAC TGGTGCTGG-----
pRF-WE-SRG (or SMG)-3UTRΔ20-38	CGCACCGGGGATCCTAGGCTTTGGATTGCGCTTC C TTAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG (or SMG)-3UTRΔ39-60	CGCACCGGGGATCCTAGGCTTTGGATTGCGCTTC C TTAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG (or SMG)-UTR-comple	CGCACCGGGGATCCTAGG <u>CCAAAAA</u> TTGCGCTTC C TTAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG-UTR 5-3 change	CGCACCGGGGATCCTAGG <u>CTAA</u> ----- <u>CTAACGCGAAATAA</u> ATAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG-Δ26-40	CGCACCGGGGATCCTAGGCTTTG-----TAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG-Δ20-25	CGCACCGGGGATCCTAGG C -----GATTGCGCTTC C TTAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG-Δ20-30	CGCACCGGGGATCCTAGG C -----CGCTTC C TTAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG
pRF-WE-SRG-Δ31-40	CGCACCGGGGATCCTAGGCTTTGGATTG-----TAGGACAAC TGGTGCTGGATTCTATCCAGTAAAAGG

816 Underscores indicate mutated nucleotide sequences. Hyphens indicate that nucleotide sequences in these positions do not exist.

817

818 Table 2 The 3' nucleotide sequences of untranslated regions (UTRs) of the plasmids for the reverse genetics and minigenome systems.

Plasmid	3' UTR nucleotide sequence (from 3' to 5', cRNA polarity)
pRF-WE-SRG or SMG	GCGTGTACCTAGGATCCGTAAA--CTAACGCGAAAATAAACCTTAAGTAACACACTGTTT
pRF-WE-SRG (or SMG)-5UTR Δ 20-40	GCGTGTACCTAGGATCCGTAAA--CTAACGCGAAAATAAACCTTAAGTAACACACTGTTT
pRF-WE-SRG (or SMG)-5UTR Δ 41-60	GCGTGTACCTAGGATCCGTAAA--CTAACGCGAAAATAAACCTTAAGTAACACACTGTTT
pRF-WE-SRG (or SMG)-5UTR Δ 60-77	GCGTGTACCTAGGATCCGTAAA--CTAACGCGAAAATAAACCTTAAGTAACACACTGTTT
pRF-WE-SRG (or SMG)-3UTR Δ 20-38	GCGTGTACCTAGGATCCG-----ACCTTAAGTAACACACTGTTT
pRF-WE-SRG (or SMG)-3UTR Δ 39-60	GCGTGTACCTAGGATCCGAAAATAA-----
pRF-WE-SRG (or SMG)-UTR-comple	GCGTGTACCTAGGATCCG-GTTA-TAACGCGAAAATAAACCTTAAGTAACACACTGTTT
pRF-WE-SRG-UTR 5-3 change	GCGTGTACCTAGGATCCGTTTGGATTGCGCTTCCTAACCTTAAGTAACACACTGTTT
pRF-WE-SRG- Δ 26-40	GCGTGTACCTAGGATCCGTAAA-----ACCTTAAGTAACACACTGTTT
pRF-WE-SRG- Δ 20-25	GCGTGTACCTAGGATCCG-----CTAACGCGAAAATAAACCTTAAGTAACACACTGTTT
pRF-WE-SRG- Δ 20-30	GCGTGTACCTAGGATCCG-----GCGAAAATAAACCTTAAGTAACACACTGTTT
pRF-WE-SRG- Δ 31-40	GCGTGTACCTAGGATCCGTAAA-CTAAC-----ACCTTAAGTAACACACTGTTT

819 Underscores indicate mutated nucleotide sequences. Hyphens indicate that nucleotide sequences in these positions do not exist.

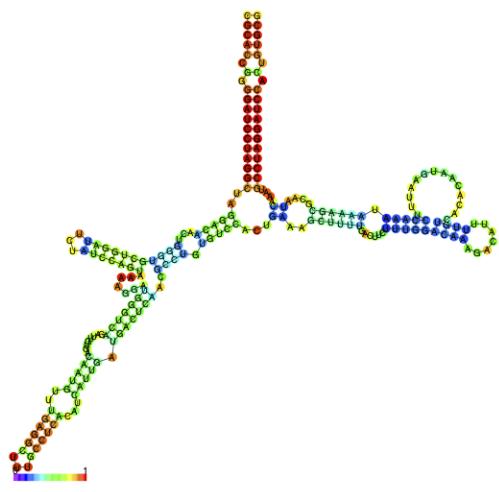
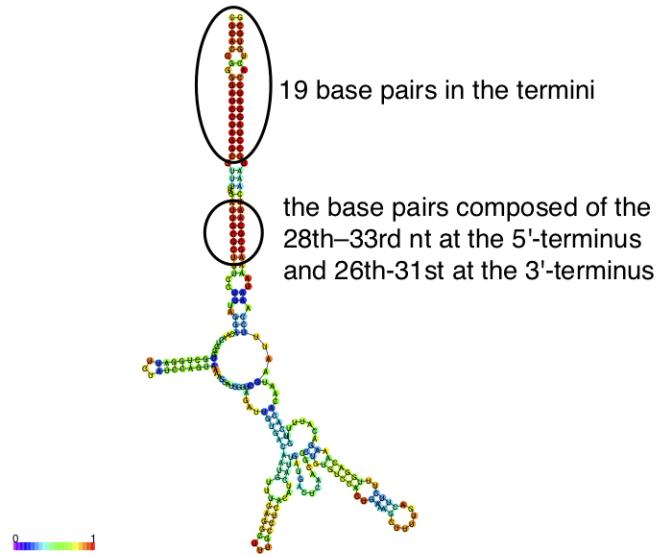
820

821 Table 3 Summary of the results of RNA secondary structure prediction of the LCMV S segment RNA produced from each plasmid.

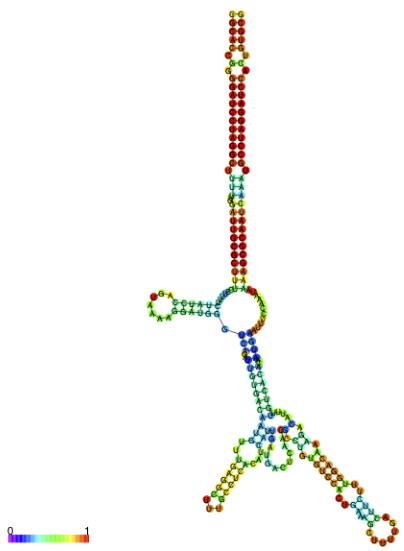
Plasmid	Number of nucleotides forming a panhandle structure at the termini			Base pairs with high base-pairing probability, except for the 19 base pairs at the termini	
	At the terminus	5'-	At the 3'-terminus	At the 5'-terminus	At the 3'-terminus
pRF-WE-SRG	45 nt		42 nt	28th–33rd nt	26th–31st nt
pRF-WE-SRG-5UTRΔ20-40	18 nt		18 nt	none	none
pRF-WE-SRG-5UTRΔ41-60	36 nt		33 nt	28th–33rd nt	26th–31st nt
pRF-WE-SRG-5UTRΔ60-77	45 nt		42 nt	28th–33rd nt	26th–31st nt
pRF-WE-SRG-3UTRΔ20-38	27 nt		23 nt	none	none
pRF-WE-SRG-3UTRΔ39-60	36 nt		33 nt	28th–33rd nt	26th–31st nt
pRF-WE-SRG-UTR-comple	45 nt		42 nt	28th–33rd nt	26th–31st nt
pRF-WE-SRG-UTR 5-3 change	34 nt		36 nt	26th–31st nt	28th–33rd nt
pRF-WE-SRG-Δ26-40	25 nt		25 nt	none	none
pRF-WE-SRG-Δ20-25	39 nt		39 nt	20th–27th nt	20th–27th nt
pRF-WE-SRG-Δ20-30	34 nt		33 nt	20th–22nd nt	20th–22nd nt
pRF-WE-SRG-Δ31-40	35 nt		32 nt	none	none

822

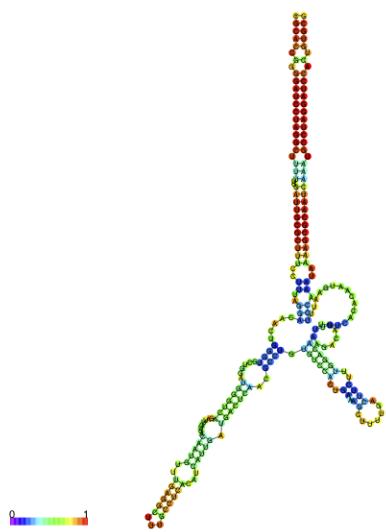
823

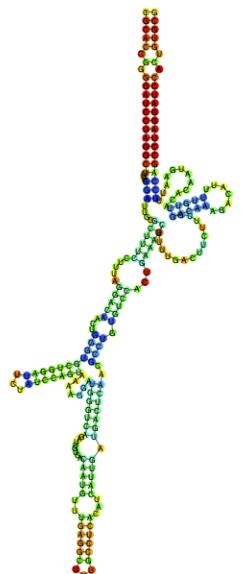


824 Table 4 Summary of viral growth efficiency *in vitro* and pathogenicity *in vivo* of each recombinant LCMV generated from each
 825 plasmid.

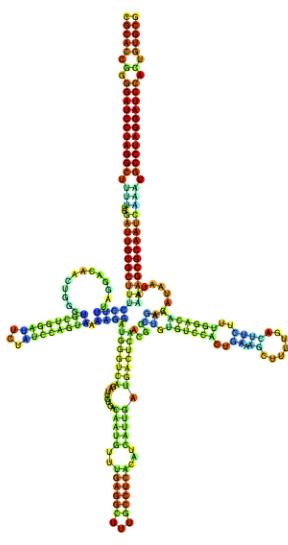
Plasmid name	Virus name	Viral growth efficiency <i>in vitro</i>	Viral pathogenicity <i>in vivo</i> (mortality rate)		
		Vero cell	CBA/NSlc mice	DBA/1JJmsSlc mice	Immunity acquired
pRF-WE-SRG	rwtLCMV	Equal to wtLCMV	80%	60%	Acquired
pRF-WE-SRG-5UTRΔ20-40	rLCMV-5UTRΔ20-40	None	Not done	Not done	Not done
pRF-WE-SRG-5UTRΔ41-60	rLCMV-5UTRΔ41-60	Equal to rwtLCMV	40%	0%	Acquired
pRF-WE-SRG-5UTRΔ60-77	rLCMV-5UTRΔ60-77	Equal to rwtLCMV	80%	0%	Acquired
pRF-WE-SRG-3UTRΔ20-38	rLCMV-3UTRΔ20-38	None	Not done	Not done	Not done
pRF-WE-SRG-3UTRΔ39-60	rLCMV-3UTRΔ39-60	Equal to wtLCMV	0%	20%	Acquired
pRF-WE-SRG-UTR-comple	rLCMV-UTR-comple	Less than rwtLCMV	0%	0%	Acquired*
pRF-WE-SRG-UTR 5-3 change	rLCMV-UTR 5-3 change	Less than rwtLCMV	0%	0%	Acquired**
pRF-WE-SRG-Δ26-40	rLCMV-Δ26-40	Less than rwtLCMV	0%	0%	Acquired***
pRF-WE-SRG-Δ20-25	rLCMV-Δ26-40	None	Not done	Not done	Not done
pRF-WE-SRG-Δ20-30	rLCMV-Δ20-30	None	Not done	Not done	Not done
pRF-WE-SRG-Δ31-40	rLCMV-Δ31-40	None	Not done	Not done	Not done


826 *One DBA/1JJmsSlc mouse infected with rLCMV-UTR-comple showed ruffled fur and weight loss.

827 **All DBA/1JJmsSlc mice showed ruffled fur and weight loss


828 ***All DBA/1JJmsSlc mice showed ruffled fur and weight loss and one of five mice died.


(C) pRF-WE-SRG-5UTRΔ41-60


(D) pRF-WE-SRG-5UTRΔ60-77

(E) pRF-WE-SRG-3UTRΔ20-38

(F) pRF-WE-SRG-3UTRΔ39-60

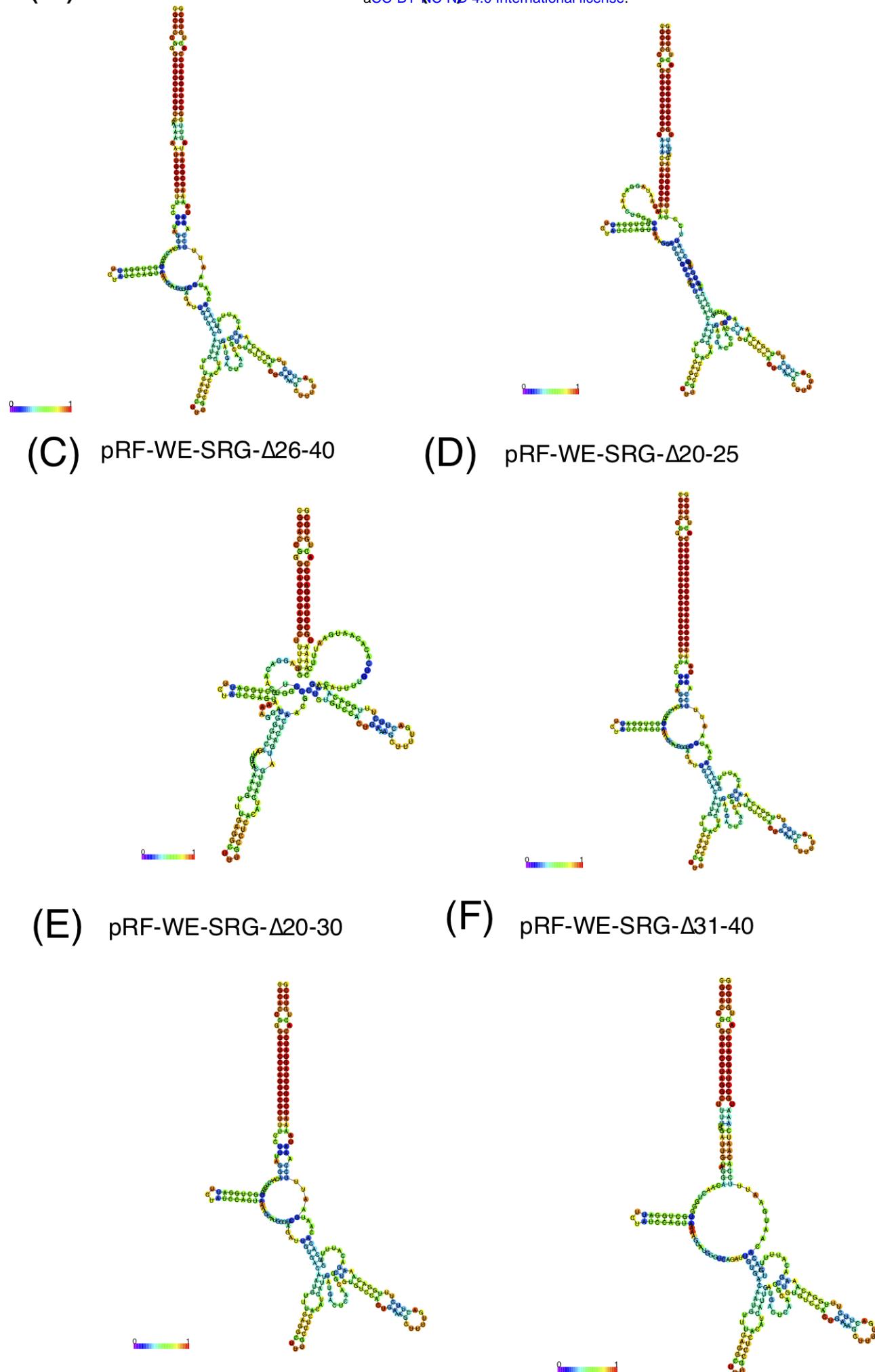
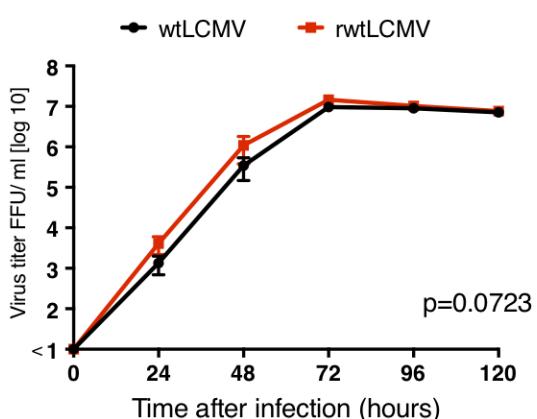
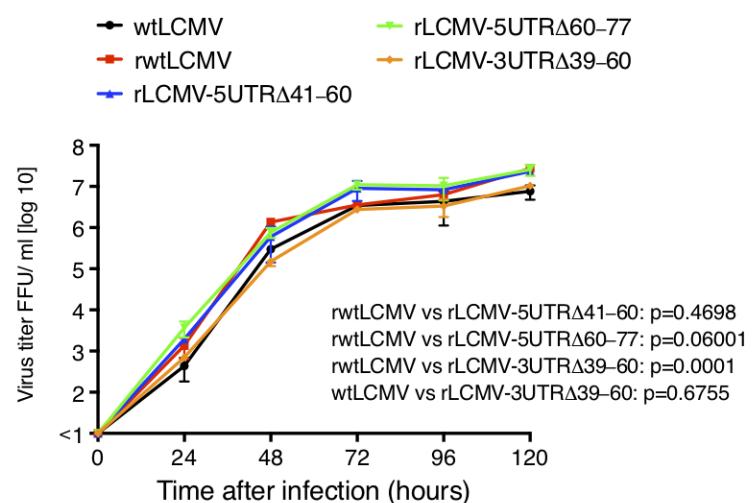
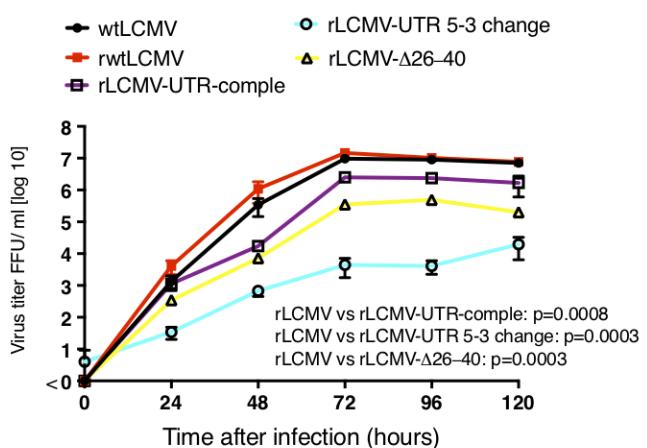
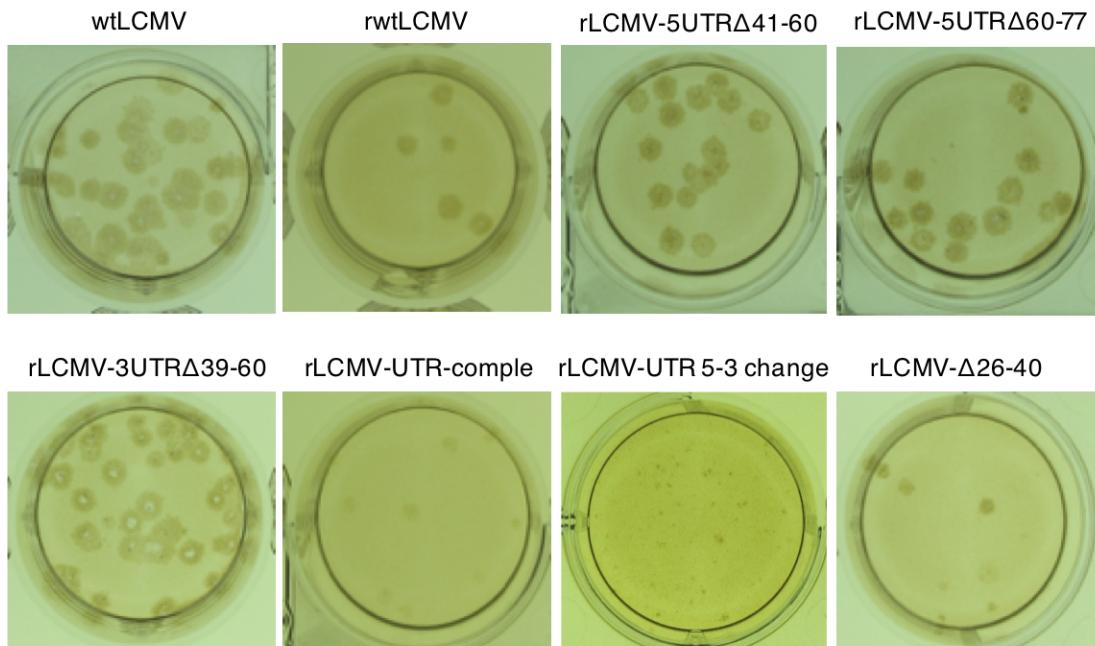
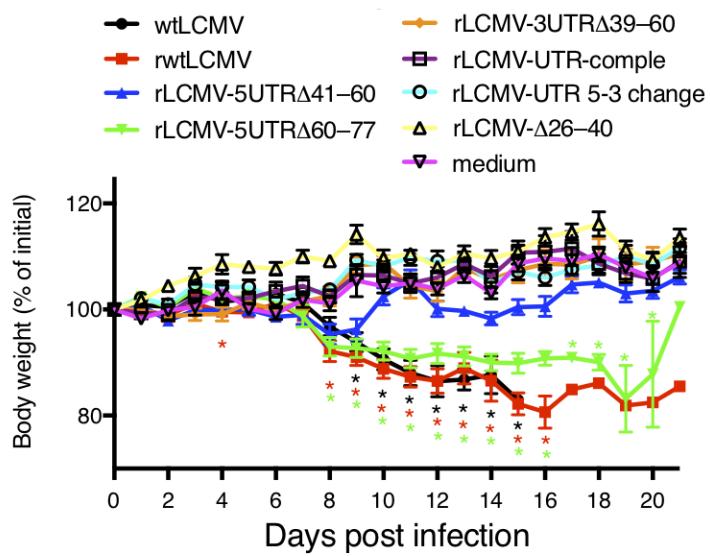
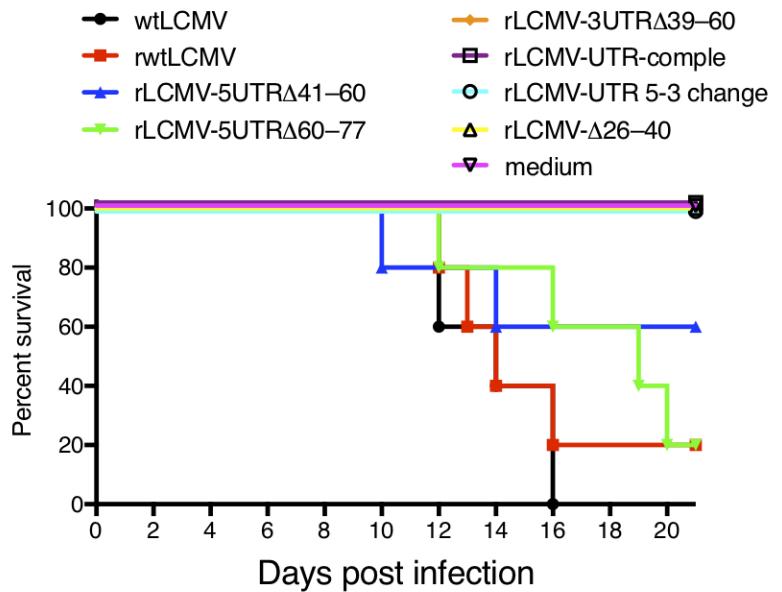




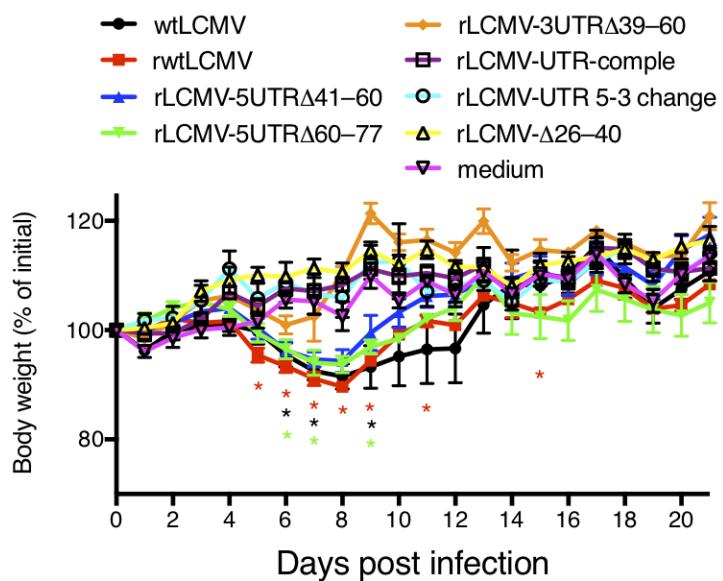
Fig. 3

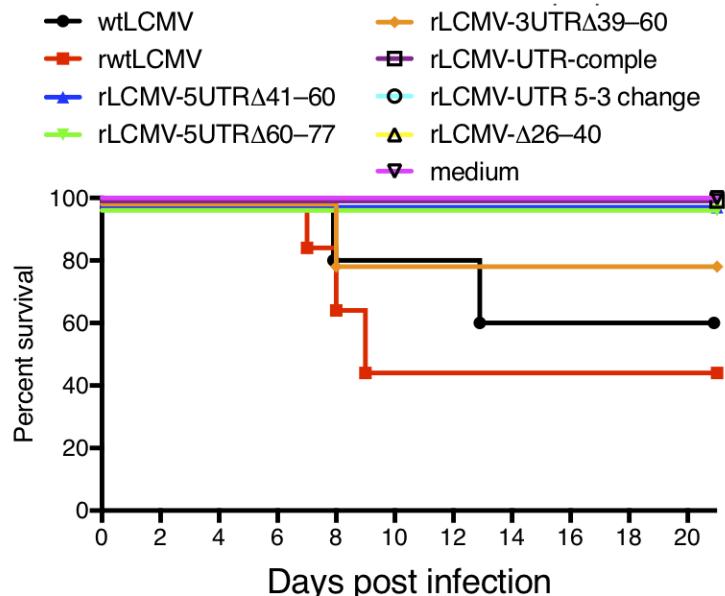

(A)

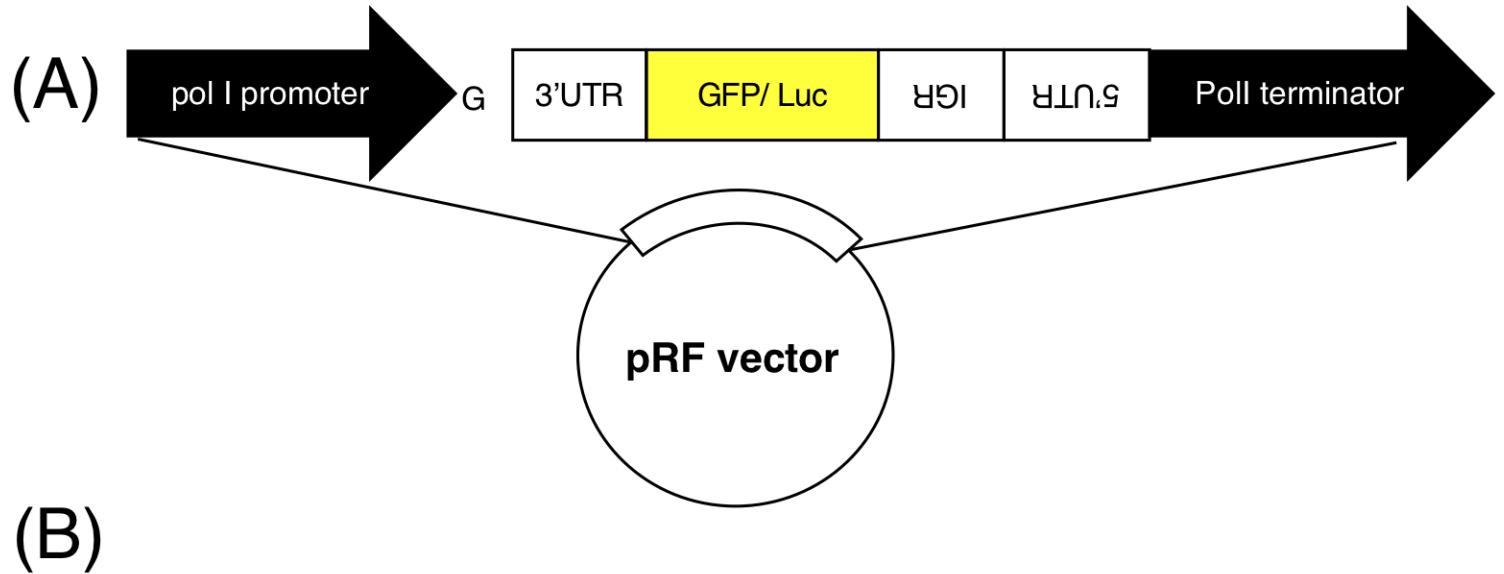

(B)


(C)


(D)

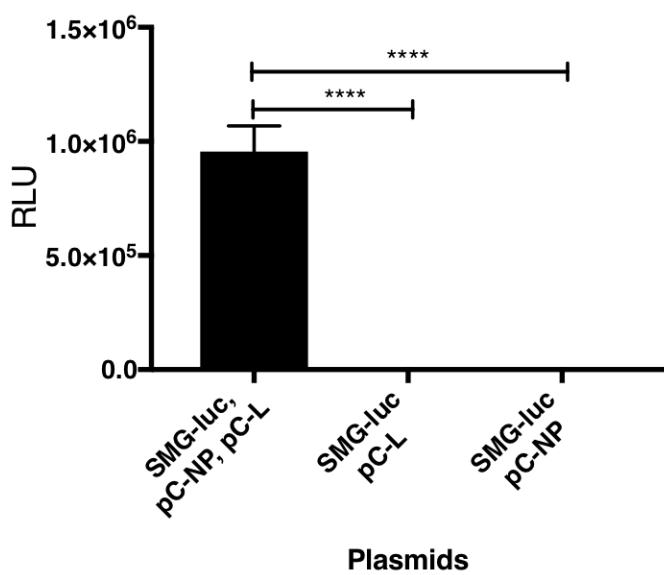

(A)


(B)

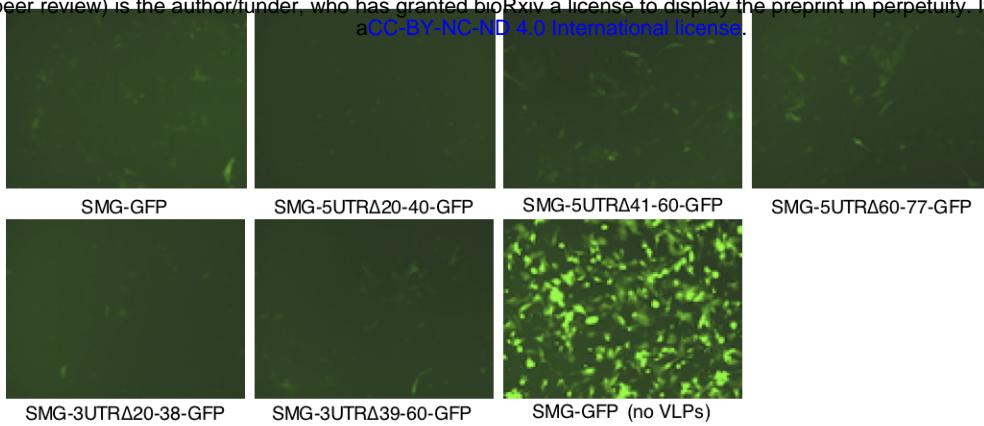

(C)

(D)

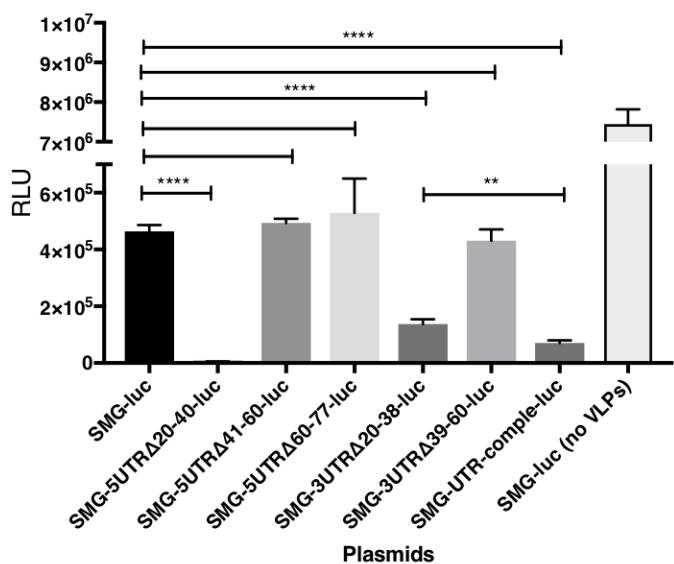
(B)

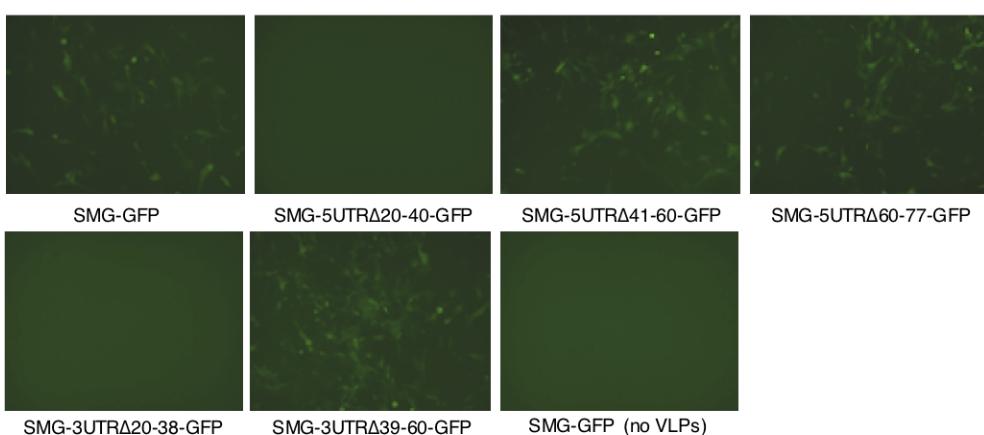


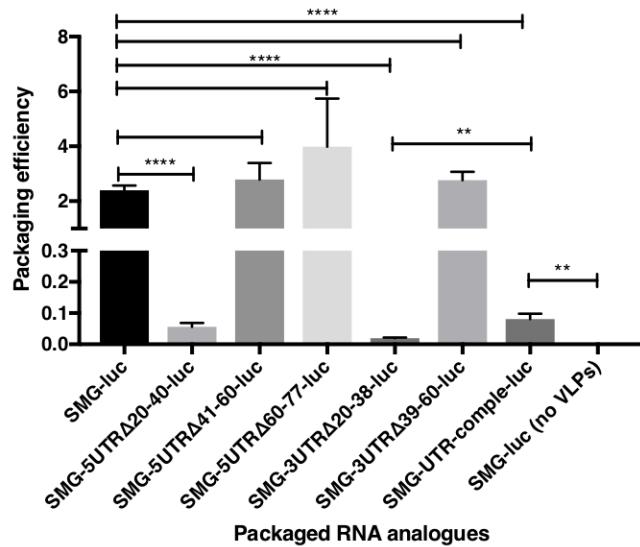
SMG-GFP pC-NP
pC-L


SMG-GFP
pC-L

SMG-GFP
pC-NP


(C)


(A)


(B)

(C)

(D)

