

1 **Ventral Pallidum is Essential for Cocaine Reinstatement After Voluntary Abstinence**

2 ¹Mitchell R. Farrell*, B.A., ¹Christina M. Ruiz*, M.S., ¹Erik Castillo, B.S., ²Lauren Faget, Ph.D., ¹Christine Khanbijian,
3 B.S., ¹Siyu Liu, B.S., ¹Hannah Schoch, Ph.D., ¹Gerardo Rojas, B.S., ^{2,3}Thomas S. Hnasko, Ph.D., ¹Stephen V. Mahler,
4 Ph.D.

5 **Affiliations**

6 **¹Department of Neurobiology & Behavior**
7 **University of California, Irvine**
8 **1203 McGaugh Hall**
9 **Irvine, CA 92697**

10 **²Department of Neurosciences**
11 **University of California, San Diego**
12 **9500 Gilman Drive**
13 **La Jolla, CA 92093**

14
15 **³VASDHS Research Service**
16 **3350 La Jolla Village Dr**
17 **San Diego, CA 92161**
18

19 **Corresponding Author:** Stephen V. Mahler, Ph.D., Department of Neurobiology & Behavior University of
20 California, Irvine, 1203 McGaugh Hall, Irvine, CA 92697, (O) (949) 824-6128, (Fax) (949) 824-2447

VP Essential for Cocaine Reinstatement

21

Abstract

22 Addiction is a chronic relapsing disorder, and during recovery many people experience several relapse events as
23 they attempt to voluntarily abstain from drug. New preclinical relapse models have emerged which capture this
24 common human experience of relapse after voluntary abstinence, and mounting evidence indicates that
25 reinstatement of drug seeking after voluntary abstinence recruits neural circuits distinct from reinstatement
26 following experimenter-imposed abstinence, or abstinence due to extinction training. Ventral pallidum (VP), a key
27 limbic node involved in drug seeking, has well-established roles in conventional reinstatement models tested
28 following extinction training, but it is unclear whether this region also participates in more translationally-relevant
29 models of relapse. Here we show that chemogenetic inhibition of VP neurons strongly attenuates cocaine-,
30 context-, and cue-induced reinstatement tested after voluntary, punishment-induced abstinence. This effect was
31 strongest in the most compulsive, punishment-resistant rats, and reinstatement was associated with neural
32 activity in anatomically-defined VP subregions. VP inhibition also attenuated the propensity of rats to display
33 'hesitations,' a risk assessment behavior seen during punished drug taking that is likely due to concurrent
34 approach and avoidance motivations. These results indicate that VP, unlike other connected limbic brain regions,
35 is essential for reinstatement of drug seeking after voluntary abstinence. Since VP inhibition effects were
36 strongest in the most compulsively cocaine-seeking individuals, this could indicate that VP plays a particularly
37 important role in the most pathological, addiction-like behavior, making it an attractive target for future
38 therapeutic interventions.

39

40

41

42

VP Essential for Cocaine Reinstatement

43

Introduction

44 Addiction is characterized by persistent drug use despite negative consequences, and a lasting
45 vulnerability to relapse after protracted periods of abstinence [1-3]. Typically, human addicts eventually recognize
46 the negative consequences of their behavior, and choose to cease using drugs—a decision they usually renege
47 upon when tempted by drug cues, small doses of drug, or stressors [4]. In rodent relapse models, reinstatement
48 of seeking is triggered by analogous stimuli, usually following a period of imposed abstinence from drug
49 (incubation), or explicit extinction training. Recently, voluntary abstinence-based rodent models have emerged,
50 capturing the fact that in many cases addicted people choose to stop using drugs due to mounting negative life
51 consequences, rather than due to extinction training or external forces [5-9]. This is important because in rodents,
52 the neural substrates underlying reinstatement differ based upon how abstinence was achieved, be it
53 experimenter-imposed, through extinction training, or through voluntary cessation due to punishment or
54 availability of more attractive alternative reinforcers [10-15]. If the brain substrates of human relapse similarly
55 depend upon why a person stopped using drugs, then considering these factors in preclinical models will be
56 essential for developing effective interventions to treat addiction.

57 A hallmark of addiction is an inability to limit drug intake in the face of negative life consequences. This
58 can be modeled in rodents by training them to self-administer drugs, then introducing consequences to continued
59 use, such as co-delivered footshock [5, 6, 16-20]. As in humans, most rodents readily suppress their drug intake
60 when negative outcomes begin to result from their drug use. However, a subset of rodents show punishment-
61 resistant drug intake [17, 21-23], similar to the proportion of humans who use drugs that ultimately become
62 addicted [24]. Punishment-resistant animals also exhibit the most robust reinstatement of cocaine and
63 methamphetamine seeking [17, 25], suggesting that compulsive use and liability to relapse involve common
64 underlying neural mechanisms. Indeed, the circuitry underlying compulsive cocaine intake overlaps with the
65 limbic substrates of reinstatement behavior, at least when tested following extinction training [23, 26-29].

66 One brain region that has emerged as being crucial for motivated behavior is the ventral pallidum (VP),
67 the main efferent target of nucleus accumbens [30-35]. VP is thought to help translate motivation into action [36-

VP Essential for Cocaine Reinstatement

68 39], and accordingly, VP neural activity encodes reward motivation in rodents, monkeys, and humans [40-42],
69 including for cocaine [43]. VP is also required for seeking of several abused drugs [44-49], and for cocaine
70 reinstatement triggered by cues, stress, or cocaine following extinction training [47, 50, 51]. Notably, VP is a
71 heterogeneous structure, with functionally and anatomically distinct dorsolateral/ventromedial, and
72 rostral/caudal subregions that mediate distinct aspects of reward seeking, including cocaine reinstatement [43,
73 47, 52-59]. Given these results, and recent findings that VP contains phenotypically distinct populations of reward-
74 and aversion-related neurons [30-32, 60-62], its role in drug seeking under translationally-relevant mixed
75 motivation circumstances was of interest to us.

76 Here we explore effects of transiently and reversibly inhibiting VP neurons of punishment-resistant or
77 punishment-sensitive rats with designer receptors (DREADDs) [63], determining effects on punished cocaine
78 seeking, context, discrete cue, and primed reinstatement after voluntary abstinence, as well as on cocaine-
79 induced locomotion. We also assessed reinstatement-related Fos in VP subregions. These studies shed light on
80 the functions of this essential, but understudied nucleus within cocaine addiction-related neural circuits.

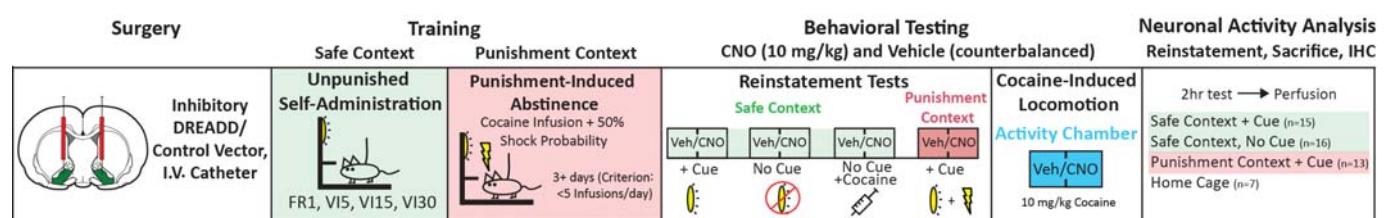
81
82 **Methods**

83 **Subjects.** Male ($n=50$) and female ($n=36$) Long-Evans rats (220-250g at the start of experiments) were bred at the
84 University of California Irvine or obtained from Envigo, and were pair housed on a 12hr reverse light/dark cycle
85 with *ad libitum* food and water for all experiments. All training and testing was conducted in the dark period.
86 Procedures were approved by the UCI Institutional Animal Care and Use Committee, and are in accordance with
87 the NIH Guide for the Care and Use of Laboratory Animals [64].

88 **Surgery.** Animals were anesthetized with ketamine (56.5mg/kg), xylazine (8.7mg/kg), and the non-opioid
89 analgesic meloxicam (1.0mg/kg), and implanted with indwelling jugular catheters exiting the dorsal back. In the
90 same surgery, they also received bilateral viral vector injections (250-300nL) into VP with pressure injections using
91 a Picospritzer and glass micropipette. See **Figure 1** for schematic of procedures.

VP Essential for Cocaine Reinstatement

92 **Viral Constructs.** To transduce VP neurons with hM4Di inhibitory DREADDs, we used a human synapsin (hSyn)


93 promoter-driven AAV with mCitrine ($n=44$; U North Carolina vector core: AAV2-*hSyn-HA-hM4D(Gi)-IRES-mCitrine*)

94 or mCherry ($n=16$; Addgene: AAV2-*hSyn-hM4D(Gi)-mCherry*) reporter. To control for non-specific impact of viral

95 transduction and clozapine-N-oxide (CNO) in the absence of DREADDs, an eGFP-only reporter without DREADDs

96 ($n=7$; Addgene: AAV2-*hSyn-eGFP*), was employed in a group of control rats [65-67].

Figure 1. Schematic of experimental timeline. Following DREADD or control AAV injection, rats underwent cocaine self-administration, punishment training, followed by reinstatement and cocaine-induce locomotor testing. A final reinstatement test preceded sacrifice for neuronal activity (Fos) analysis.

97 **Anatomical Analysis of DREADD Expression.** hM4Di DREADD/reporter expression was visualized with
98 immunofluorescent amplification, with Substance P co-stain allowing demarcation of VP borders (see **Table S1** for
99 detailed list of antibodies). Rats with at least 40% of VP volume expressing DREADDs/reporter, and at least 40% of
100 virus expression localized within VP borders were considered hits ($n=46$). Rats with more than 60% of DREADD
101 expression localized outside VP (quantified blind to group and behavioral results) were considered misses ($n=13$).
102 Since rats with extra-VP DREADD expression did not behaviorally differ from fluorophore-only rats on
103 reinstatement tests (no main effect of group or CNO treatment on reinstatement types, $Fs<1.29$, $ps>0.27$; **Fig. S1**),
104 they were combined into a single control group ($n=20$) for subsequent analyses of CNO effects in the absence of
105 VP DREADDs.

106 **RNAscope Analysis of DREADD Expression in VP Neurons.** PFA-fixed brains were serially cut (16 μ m) on a cryostat
107 and mounted directly onto glass slides. Sections were stored at -80°C until processing for RNAscope Multiplex
108 Fluorescent assay (Advanced Cell Diagnostics). Briefly, sections were warmed on a hot plate for 30 minutes at

VP Essential for Cocaine Reinstatement

109 60°C then boiled at 100° for 6 min in target retrieval solution. Sections were then dehydrated in 100% ethanol and
110 treated with protease (pretreatment reagents, cat. No. 322380). RNA hybridization probes included antisense
111 probes against rat *gad1* (316401-C1) and *slc17a6* (317011-C3), respectively labeled with alexa488 and atto647
112 fluorophores. Slides were then incubated with rabbit anti-DsRed primary antibodies (632496, Clontech) and
113 donkey anti-rabbit AlexaFluor 594 secondary antibodies (711-585-152, Jackson ImmunoResearch), counterstained
114 with DAPI, and coverslipped using Fluoromount-G mounting medium. Images for cell counting were taken at 63x
115 (1.4 NA) magnification using a Zeiss AxioObserver Z1 widefield Epifluorescence microscope with a Zeiss ApoTome
116 2.0 for structured illumination and Zen Blue software. An average of 186 +/- 11 cells positive for AAV-hSyn-
117 hM4D(Gi)-mCherry were counted per brain ($n=3$ rats).

118 **Drugs.** Cocaine HCl (NIDA) was dissolved in 0.9% saline. Cocaine was available for self-administration at
119 0.2mg/50 μ L infusion for male rats, and 0.15mg/50 μ L infusion for female rats [68, 69]. Cocaine (10mg/kg) was
120 used for primed reinstatement and locomotion testing. CNO was dissolved in a vehicle of 5% DMSO in 0.9% saline,
121 and injected i.p. at 10mg/kg 30min prior to behavioral testing.

122 **Behavioral Testing Apparatus.** Self-administration training and testing took place in Med Associates operant
123 chambers within sound-attenuating boxes, equipped with two retractable levers with white lights above them,
124 and a tone generator. Cocaine-induced locomotion testing was conducted in 43x43x30.5cm Med Associates
125 locomotor testing chambers.

126 **Self-Administration Training in Safe Context.** We employed a punishment-induced abstinence/reinstatement
127 protocol modeled after previous reports [5, 20]. Initial self-administration occurred in a 'safe context,' signaled by
128 presence of a white or red house light, peppermint or orange scent, and plain or polka dot pattern walls
129 (randomly assigned). Intravenous cocaine was administered via a pump located outside the sound-attenuating
130 box. Rats received five daily 2hr sessions of fixed-ratio 1 (FR1) training where an active lever press delivered a
131 3.6sec cocaine infusion, and concurrent stimulus light + 2.9-kHz tone. A 20sec timeout period (signaled by
132 dimming of the house light) followed each infusion/cue presentation, during which additional lever presses did
133 not yield cocaine delivery. Pressing on an inactive lever was recorded but had no consequences. Following FR1

134 VP Essential for Cocaine Reinstatement

135 training to criterion (>10 infusions), rats then completed 3 days of variable-interval 5 schedule (VI5), on which an
136 active lever press initiated a timer with an average duration of 5sec, and another press after that interval
137 delivered a cocaine infusion with the light+tone cue. The VI schedule was increased to VI15 for the next 3 days,
then VI30 for an additional 3-6 days until rats had stable performance (**Fig. S2**).

138 **Punishment Context Testing and Training.** Following safe context self-administration training, rats ($n=35$) began

139 punishment training in a distinct chamber, with the opposite context used for safe context training. Rats

140 continued on a VI30 schedule, but 50% of cocaine infusions/cues were accompanied by a 0.3mA foot shock

141 (0.5sec). To test effects of inhibiting VP during punished cocaine intake, a subset of animals were injected with

142 CNO ($n=22$) or vehicle ($n=13$) prior to each of two daily shock punishment (0.3 mA) training sessions. In a

143 crossover design, these rats were administered the opposite treatment (vehicle/CNO) prior to a third punished

144 intake session 48hrs later, then a fourth punished cocaine intake training session with no vehicle or CNO injection

145 24hrs later. Another group of rats ($n=31$) received no injections during punishment context training. After 3-4 days

146 of shock training at 0.30mA, shock increased by 0.15mA every 2 training days, up to 0.75mA, until voluntary

147 abstinence criterion was met in all rats (<5 active lever presses for 2 consecutive days). Sensitivity to punishment

148 was determined in two ways. A suppression ratio (infusions on day 1 punishment/infusions on last day

149 unpunished; [17, 70]) was calculated as a measure of initial punishment sensitivity, with high ratios reflecting

150 relative insensitivity to shock-suppression of intake. Rats were also coded based on the maximum level of shock

151 they tolerated during punishment training, before meeting abstinence criterion.

152 **Measuring Mixed Motivations During Punished Cocaine Intake: “Hesitation” Behavior.** During punished cocaine

153 intake training sessions, rats exhibited a species-typical risk assessment behavior [71, 72] we term ‘hesitation

154 behavior,’ in which they stretch their trunk and extend their forepaw towards the active or inactive lever, but

155 rapidly retract it without completing the press to deliver cocaine and probabilistic shock. Hesitations directed at

156 the active and inactive levers were quantified using video analysis by a blinded observer on the final day of safe

157 context self-administration, and the first day of punishment context self-administration in CNO- and vehicle-

158 treated rats.

VP Essential for Cocaine Reinstatement

159 **Reinstatement Tests.** A series of 2hr reinstatement tests commenced 48hrs after rats met abstinence criterion,
160 with 48hrs elapsing between each test. Reinstatement tests occurred in: the safe context with response
161 contingent cues ($n=66$; vehicle and CNO administered on separate days in counterbalanced order), the safe
162 context without cues (vehicle/CNO, $n=31$), the safe context with no cues immediately after a cocaine priming
163 injection (10mg/kg; vehicle/CNO, $n=38$), the punishment context with cues (vehicle/CNO, $n=35$), and the
164 punishment context without cues (vehicle only, $n=24$). For reinstatement tests with cues, active lever presses
165 yielded 3.6sec cocaine-associated cue presentations (with no cocaine or shock), delivered on a VI-30 schedule,
166 and followed by a 15sec timeout period. For tests without discrete cues, lever presses were inconsequential, but
167 were recorded.

168 **Cocaine Induced-Locomotion.** Following reinstatement tests, a subset of rats ($n=51$) were habituated to a
169 locomotor testing chamber for 2 consecutive days, followed by two 2hr locomotor tests, 48hrs apart. Next, rats
170 were immediately placed in the chamber for 30min after vehicle/CNO, injected with cocaine, and returned to the
171 chamber for 90min. Horizontal locomotor activity and vertical rearing were recorded via infrared beam breaks.

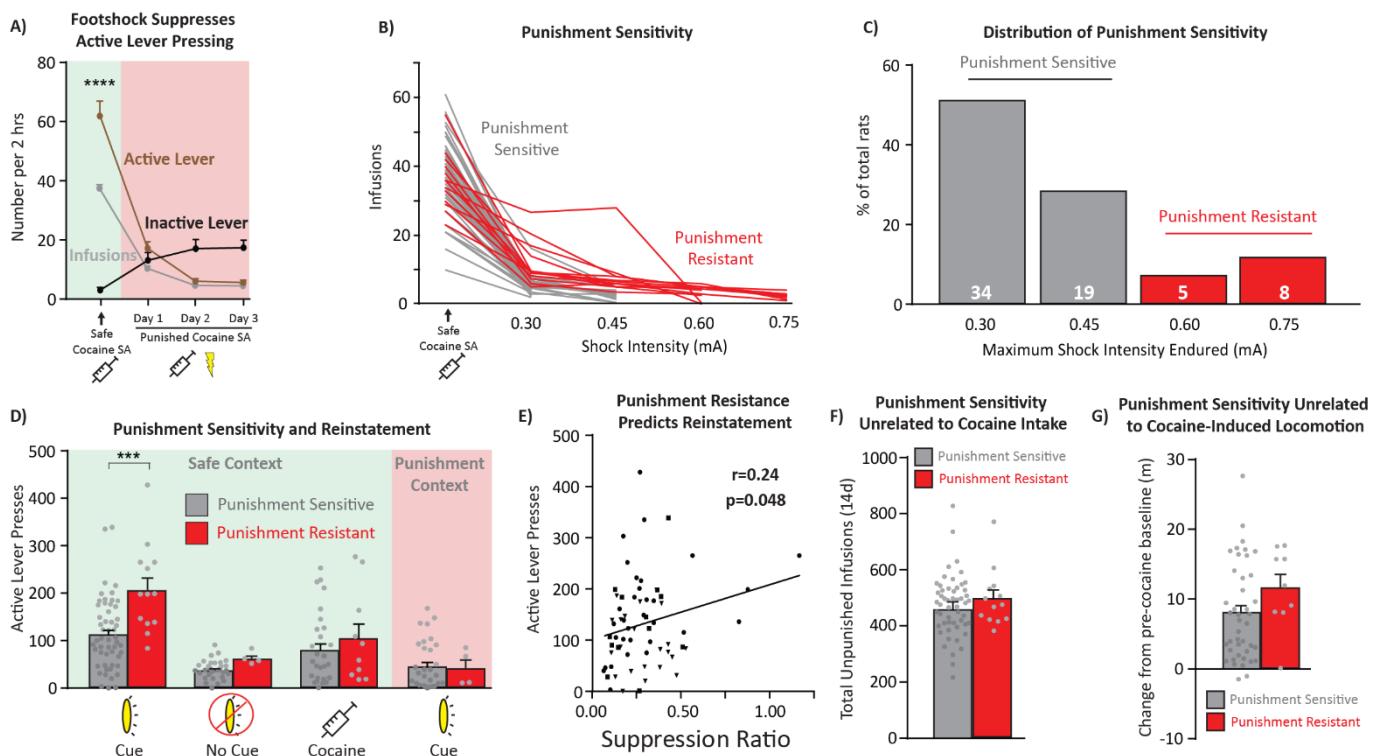
172 **Reinstatement-Related Fos.** To examine VP neuronal activity during reinstatement, rats underwent a final drug-
173 free 2hr reinstatement test, 48hr after their last vehicle/CNO reinstatement test. They were tested in one of the
174 following reinstatement types: the safe context with response contingent cues ($n=15$), the safe context without
175 cues ($n=16$), the punishment context with cues ($n=13$), or no reinstatement (removed directly from their home
176 cage after equivalent self-administration/reinstatement training, $n=7$). After the 2hr test, rats were returned to
177 their home cages for 1hr, then perfused with saline (0.9%) and paraformaldehyde (4%), and brains sectioned
178 (40 μ m) following cryoprotection in 20% sucrose azide.

179 **Fos Quantification.** To allow Fos quantification within anatomically-defined VP subregions, we stained for Fos +
180 substance P to define VP borders. Ventromedial, ventrolateral, and dorsolateral subregions of substance P-
181 defined VP were delineated with reference to adjacent sections stained for substance P and neuropeptides, defining
182 ventromedial/dorsolateral VP [54, 73] (**Table S1**). Images of VP were taken at 5x magnification, and one
183 section/animal was quantified bilaterally in rostral VP (+0.12 to +0.60 mm relative to Bregma), and another in

184 VP Essential for Cocaine Reinstatement

184 caudal VP (-0.48 to -0.24 mm; [74]). Fos+ neurons were identified using the Stereoinvestigator (Microbrightfield)
185 particle counter tool with thresholding parameters incorporating particle size (average size 100 μm^2), minimum
186 distance between nuclei (150 μm), and color relative to background. Fos density (Fos/mm 2) was computed for
187 each VP subregion on each slice (average of both hemispheres) of each rat. All structure delineation and
188 quantification was done blind to experimental conditions, and imaging/analysis settings were consistent across
189 animals.

190 **Statistical Analyses.** Effects of punishment on self-administration were examined with repeated measures


191 ANOVAs, including day (1 unpunished, 3 punished days) and behavioral output (active lever, inactive lever,
192 infusions) factors. Punishment sensitive versus resistant groups were compared on reinstatement with a two-way
193 ANOVA with punishment sensitivity group and reinstatement type as factors. Pearson correlation was used for
194 assessing relationships between suppression ratio and reinstatement behavior. Effects of punishment sensitivity
195 group on unpunished cocaine intake and cocaine-induced locomotion were examined with unpaired *t*-tests.

196 Effects of CNO in control and VP-hM4Di rats on hesitation behavior were computed with one-way ANOVA. Effects
197 of CNO on each reinstatement type in VP hM4Di-expressing and control rats were examined using separate
198 repeated measures ANOVAs with drug (vehicle/CNO) and lever (active/inactive) factors. Effects of VP inhibition on
199 reinstatement in punishment resistant and punishment sensitive rats were computed as change from vehicle day
200 behavior (CNO-vehicle), and compared with unpaired *t*-test. Separate one-way ANOVAs compared behavioral
201 groups on Fos in each VP subregion. Effects of rostrocaudal VP location on Fos was examined with a two-way
202 ANOVA with rostral/caudal site, and reinstatement type factors. Separate two-way ANOVAs were used to
203 compare CNO effects on cocaine-induced horizontal distance and rearing in control and VP-hM4Di rats. Tukey and
204 Bonferroni corrected *t*-tests were used for posthoc comparisons as appropriate.

205
206 **Results**

207 **Unpunished Self-Administration.** Rats readily discriminated between the inactive and active lever (Lever: $F_{(1,}$
208 $_{130})=55.3$, $p<0.0001$), and daily cocaine intake was stable by the final 3 days of training ($F_{(2, 130)}=0.87$, $p=0.42$; **Fig.**

VP Essential for Cocaine Reinstatement

Figure 2. Punishment-resistant rats are more prone than punishment sensitive rats to cue, but not cocaine primed reinstatement. **A)** Probabilistic footshock reduces active lever pressing across all rats, while increasing the number of inactive presses. SA = self-administration. **B)** Individual variation in punishment sensitivity. Rats that reached at least 0.60mA footshock were considered punishment resistant (red). Punishment sensitive rats (gray) stopped taking cocaine at <0.60mA footshock intensities. **C)** Distribution of punishment resistance. Most rats cease cocaine intake at low shock levels (Punishment Sensitive: gray): 53/66 rats, 80.3%, but a subset reached the highest shock levels (Punishment Resistant: red): 13/66 rats, 19.7%. **D)** Punishment resistant rats reinstated more in the safe context with cues relative to punishment sensitive rats. This effect was specific to this reinstatement condition, and punishment sensitivity did not relate to context-only or cocaine primed reinstatement. **E)** Punishment effects on cocaine taking as quantified with suppression ratio [16,67] correlated with the degree of reinstatement in the safe context with cues. **F-G)** Punishment resistant rats were no different than sensitive rats on cocaine intake (F) or cocaine-induced locomotion (G). *** $p<0.001$. Panel E, squares = vehicle injection, triangles = CNO injection, circles = no injection.

209 **S2).** Male and female rats did not differ in active lever presses or sex-adjusted cocaine doses self-administered
 210 during the last 3d of training (no main effect of sex (lever: $F_{(1, 64)}=1.8$, $p=0.19$, infusions: $F_{(1, 64)}=0.29$, $p=0.59$) or day
 211 X sex interaction (Lever: $F_{(2, 128)}=1.0$, $p=0.37$, infusion: $F_{(2, 128)}=0.48$, $p=0.62$).
 212 **Individual Differences in Cocaine Seeking under Punishment.** As expected, cocaine-coincident shock (50% of
 213 infusions) in the punishment context suppressed cocaine self-administration overall (Day: $F_{(3, 585)}=30.1$, $p<0.0001$,
 214 **Fig. 2A).** Most rats (80.3%; $n=53$) reached suppression criterion at the two lowest shock intensities (0.30-0.45mA;

VP Essential for Cocaine Reinstatement

215 'punishment sensitive' rats), but a subset of rats (19.7%, $n=13$) persisted in responding up to higher shock

216 intensities (0.60-0.75mA: 'punishment resistant' rats; **Fig. 2B-C**). In addition, punishment resistant rats had higher

217 suppression ratios (infusions on the first day in the punishment context/infusions on the last day in the safe

218 context [17, 70]; mean \pm SEM = 0.48 ± 0.09) than punishment sensitive rats (mean \pm SEM = 0.25 ± 0.02 ; $t_{64}=4.4$,

219 $p<0.0001$). Notably, of the 13 punishment resistant rats in this study, 8 were female (26.7% of tested females),

220 while 5 were male (13.9% of tested males).

221 **Punishment Resistant Rats Reinstated More.** Punishment resistant rats, once they received shock intensities high

222 enough to suppress even their seeking, showed greater cue-induced reinstatement than punishment sensitive

223 rats. However, this was only true in the "safe," unpunished context, and not when response contingent cues were

224 delivered in the "punishment" context (punishment sensitivity x reinstatement type interaction: $F_{(3, 166)}=2.91$,

225 $p=0.036$; punishment resistant vs. sensitive in safe context with cues: $t_{166}=4.63$, $p<0.0001$; **Fig. 2D**). Punishment

226 suppression ratio also correlated with the magnitude of cue reinstatement in the safe context ($r=0.24$, $p=0.048$;

227 **Fig. 2E**), further supporting a relationship between shock resistance and reinstatement propensity.

228 Punishment resistance was unrelated to total prior cocaine infusions (punishment resistant vs. sensitive total

229 unpunished infusions: $t_{64}=0.67$, $p=0.50$; **Fig. 2F**), or to cocaine's locomotor stimulating or reinstating effects

230 (horizontal distance traveled: $t_{49}=1.45$, $p=0.15$; **Fig. 2G**; rearing: $t_{49}=1.77$, $p=0.084$; cocaine primed reinstatement:

231 $t_{36}=0.83$, $p=0.41$), indicating that punishment resistance and cue-induced reinstatement likely involve underlying

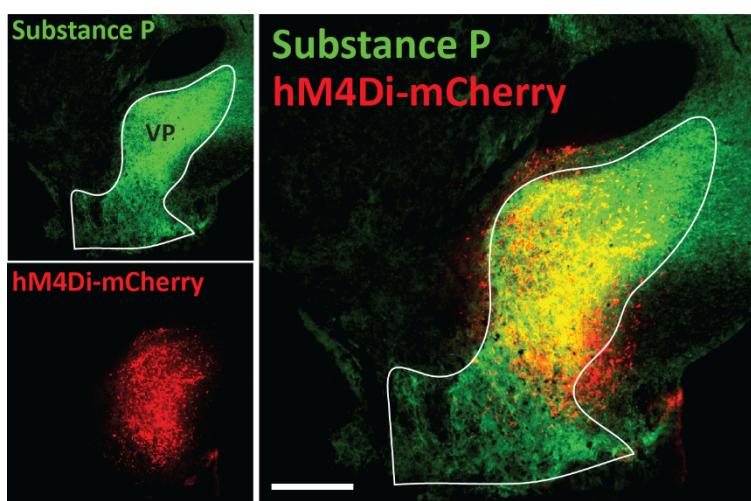
232 individual differences in addiction-like compulsive cocaine seeking, rather than sensitivity to cocaine's effects per

233 se.

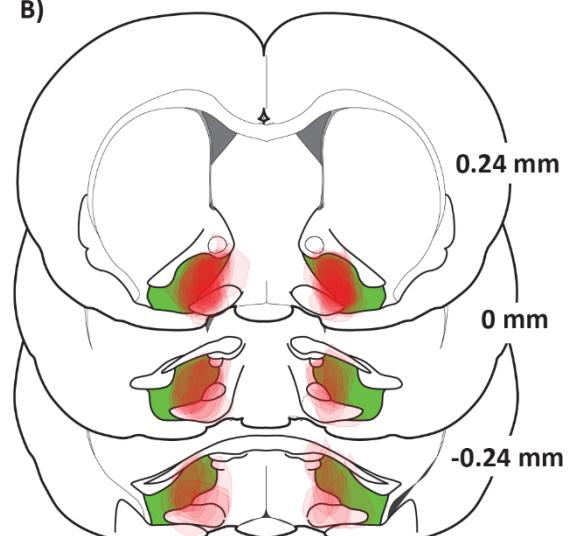
234 **DREADD Expression in VP Neuronal Populations.** Robust hM4Di-DREADD expression was observed throughout

235 the rostrocaudal extent of VP in this study (**Fig. 3A-B**). Fluorescent *in situ* hybridization (RNAscope) revealed

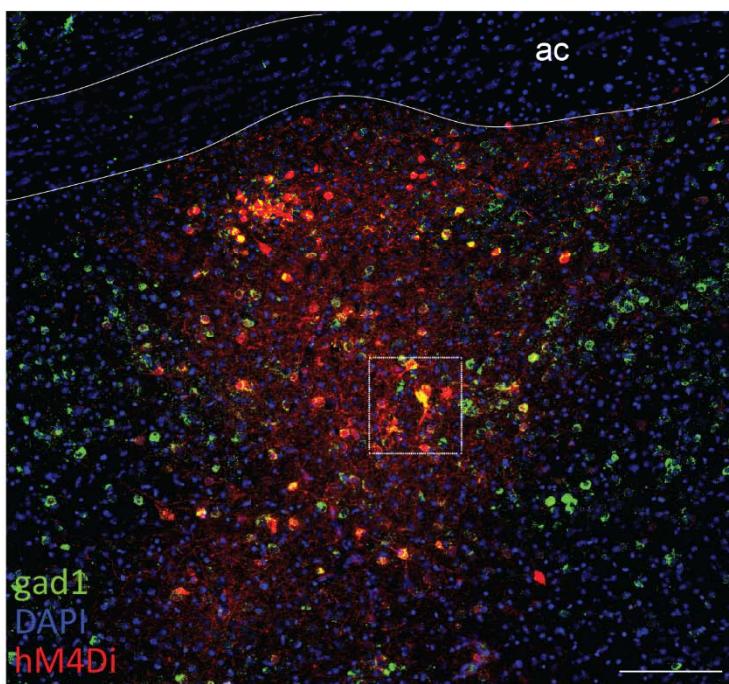
236 colocalization of hM4Di expression with *gad1*⁺ neurons (85.3 +/- 3.2 %), with a smaller percentage colocalizing

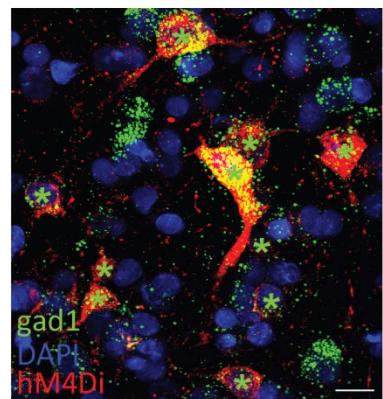

237 with *gad1*⁻ neurons (14.7 +/- 3.2 %; **Fig. 3C-E**), consistent with unbiased transfection of all VP neurons, as GABA

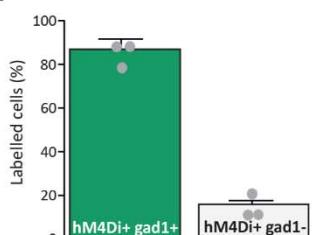
238 neurons represent the predominant neuronal phenotype in VP [31]. Non-GABA neurons likely represent


239 intermingled glutamatergic and cholinergic cell-types [31, 54].

VP Essential for Cocaine Reinstatement


A)


B)


C)

D)

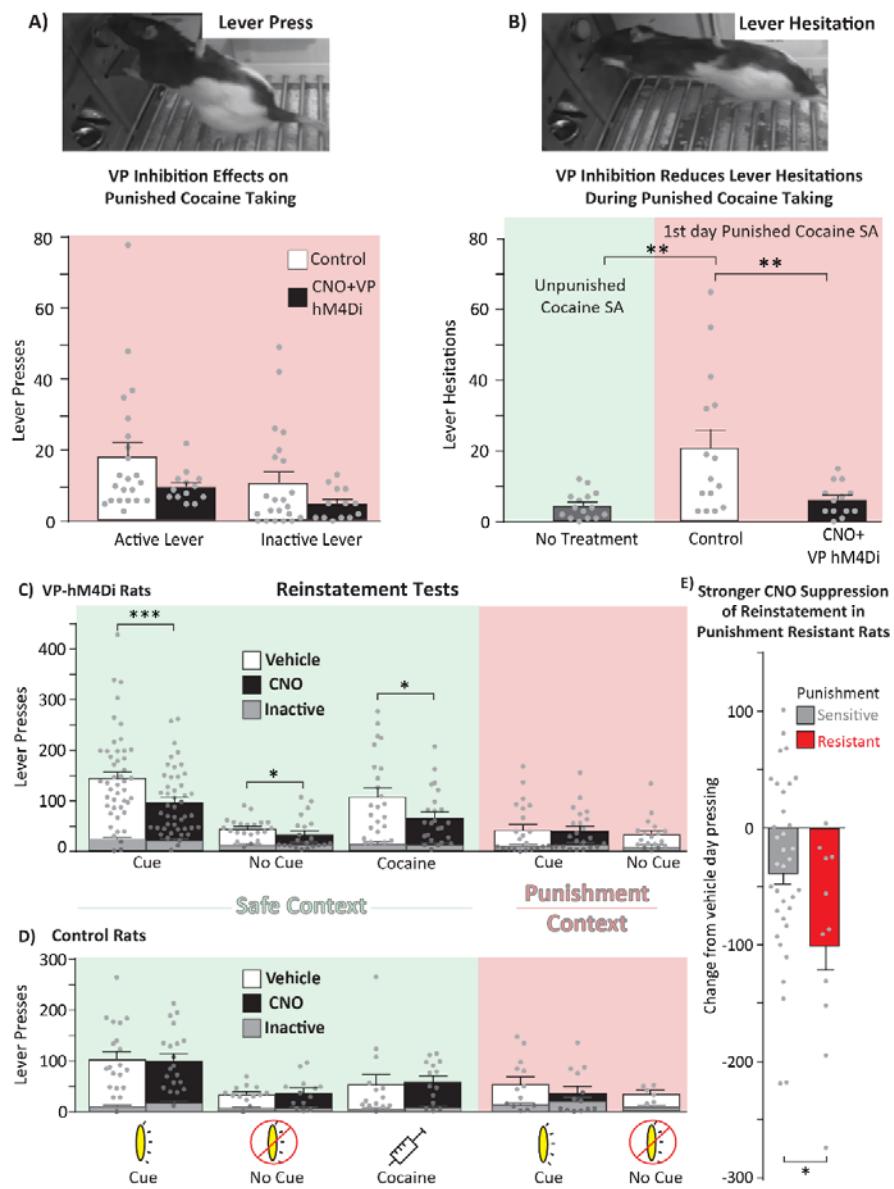
E)

Figure 3. Inhibitory DREADD localization in VP. **A)** Immunofluorescent co-stain for hM4Di-mCherry (red) within Substance P-expressing VP borders (green). **B)** Virus expression for individual animals on rostrocaudal VP axis. **C)** Wide-field and **D)** high magnification images of fluorescent *in situ* hybridization for *gad1* (green) combined with immunofluorescence for hM4Di-mCherry (red). Co-positive hM4Di⁺ *gad1*⁺ cells labeled with green stars. **E)** 85.3 +/- 3.2 % of hM4Di⁺ cells are co-positive for *gad1*. 14.7 +/- 3.2 % of hM4Di⁺ cells are *gad1*⁻ (n=3 rats, total of 559 hM4Di⁺ cells counted). VM = ventromedial, VL = ventrolateral, DL = dorsolateral. AC = anterior commissure. Scale bars = 500μm (B), 200μm (C), and 20μm (D).

240 **CNO Effects on Punishment-Induced Suppression of Cocaine Intake in VP-hM4Di rats.** On day 1 of punished
 241 cocaine self-administration, CNO in VP-hM4Di rats modestly, but non-significantly, decreased the number of
 242 active and inactive lever presses relative to control rats (Treatment: $F_{(1, 33)}=3.41$, $p=0.073$; **Fig. 4A**), with no

243 VP Essential for Cocaine Reinstatement

244 interaction of Treatment x Lever ($F_{(1, 33)}=0.27, p=0.61$). CNO had no effect on lever pressing on day 2, though rats
245 decreased their responding relative to day 1 (Day: $F_{(1, 33)}=20.56, p<0.0001$). When vehicle and CNO treatments
246 were reversed on punishment day 3, no further changes were observed ($p>0.05$).


247 Footshock+cocaine also increased “hesitation” behaviors targeted toward both the active and inactive

248 levers, relative to the low levels seen during unpunished self-administration in the same context ($F_{(2, 40)}=7.93,$
249 $p=0.0013$; self-administration vs. vehicle: $p=0.0022$; **Fig. 4B**). Hesitations were highest in rats with the most active
250 lever presses (correlation of hesitations and presses after both CNO; $r=0.61, p=0.027$; and vehicle; $r=0.61,$
251 $p=0.016$), suggesting that hesitations may be a sensitive measure of deliberation about pursuing the now
252 dangerous cocaine. Accordingly, CNO strongly suppressed hesitations, returning them to unpunished levels in VP-
253 hM4Di rats ($p=0.0013$; CNO vs. vehicle: $p=0.0082$; **Fig. 4B**).

254 **VP DREADD Inhibition Suppresses Cocaine Reinstatement After Voluntary Abstinence.** CNO in VP-hM4Di rats

255 robustly suppressed context only-, cue-, and cocaine-induced reinstatement in the safe context, but failed to do
256 so in control rats without VP DREADDs. In VP-hM4Di rats, CNO (compared to vehicle) reduced cue-induced active,
257 but not inactive lever pressing in the safe context (Drug x Lever interaction: $F_{(1, 45)}=18.53, p<0.0001$; **Fig. 4C**), and
258 also suppressed safe context pressing without response-contingent cues (Drug x Lever interaction: $F_{(1, 20)}=4.31,$
259 $p=0.05$; **Fig. 4C**). Similarly, cocaine primed reinstatement (no cues) in the safe context was also suppressed by CNO
260 in VP hM4Di rats (Drug x Lever interaction: $F_{(1, 23)}=7.94, p=0.01$; **Fig. 4C**). Although we previously showed that
261 rostral and caudal VP differentially mediate cue- and primed reinstatement [47], in these experiments our viral
262 infection spanned most of the rostrocaudal axis of VP. In contrast to the safe context, CNO in VP-hM4Di rats failed
263 to reduce cue-induced reinstatement in the punishment context (Drug x Lever interaction: $F_{(1, 21)}=0.19, p=0.66$;
264 **Fig. 4C**). In control rats without VP DREADDs, CNO had no effects on lever pressing in any reinstatement test (p
265 values>0.05; **Fig. 4D**), suggesting that CNO effects here, as previously shown [45, 47, 75, 76], were specific to VP
DREADD-expressing rats.

VP Essential for Cocaine Reinstatement

Figure 4. VP inhibition reduces reinstatement especially in punishment resistant rats. A) Top panel: Example picture of a standard lever press. Bottom panel: CNO in VP-hM4Di rats modestly reduces active and inactive lever pressing for cocaine under threat of punishment. Control = vehicle-injected rats and CNO-injected misses. **B)** Top panel: Hesitation behavior in which the rat stretches its trunk towards the lever and extends its paw without depressing the lever. Bottom panel: Active and inactive lever hesitations quantified during safe (green shading) and punished (red shading). CNO in VP-hM4Di rats reduced hesitations to relative to control rats. VP inhibition reduced hesitations to unpunished levels. Control = vehicle-injected rats and CNO-injected misses. **C)** Within subjects comparisons of reinstatement for VP-hM4Di rats in safe (green shading) and punishment (red shading) contexts. CNO in VP-hM4Di rats reduced reinstatement in the safe context with cues, without cues, and with cocaine and no cues, but not in the punishment context with cues. **D)** CNO in control rats did not affect reinstatement under any condition. Control = eGFP-only rats and rats with hM4Di expression primarily outside VP. **E)** CNO in VP-hM4Di punishment resistant rats (red bars) elicited a greater decrease in reinstatement relative to punishment sensitive rats (gray bars). Data presented as change from vehicle test baseline. $p<0.05^*$, $p<0.01^{**}$, $p<0.001^{***}$.

VP Essential for Cocaine Reinstatement

266 **VP Inhibition Suppressed Reinstatement the Most in Punishment-Resistant Rats.** VP inhibition reduced safe

267 context cue-induced reinstatement more in punishment-resistant rats than punishment-sensitive rats ($t_{44}=2.23$,

268 $p=0.031$; **Fig. 4E**). This effect was specific to the safe context with cues, as there was no such effect on other

269 reinstatement types (t scores <1.26 , $ps>0.22$). This finding suggests that VP plays an especially important role in

270 relapse after punishment-imposed abstinence for the individual rats showing the most addiction-like behavior.

271 **VP Inhibition did not Affect Cocaine-Induced Locomotion.** CNO failed to affect the locomotor-activating effects of

272 cocaine in either VP-hM4Di or control groups (Treatment: $F_{(1, 49)}=0.63$, $p=0.43$; treatment x group interaction: $F_{(1,$

273 $49)}=0.58$, $p=0.45$; **Fig. S3A**), though it did reduce rearing behavior after cocaine in VP-hM4Di rats, but not controls

274 (treatment x group interaction: $F_{(1, 49)}=10.24$, $p=0.0024$; **Fig. S3B**), further suggesting specificity of these findings to

275 cocaine seeking in particular. Moreover, CNO did not differentially reduce horizontal locomotion or rearing

276 behavior in punishment-sensitive versus punishment-resistant VP-hM4Di rats (group x treatment interaction;

277 locomotion: $F_{(3, 93)}=0.70$, $p=0.55$; Rearing: $F_{(3, 93)}=0.61$, $p=0.61$).

278 **VP Subregion Fos Recruited During Reinstatement.** Relative to cocaine/shock-experienced rats sacrificed from

279 their homecages, VP subregions showed strong Fos activation during all tested reinstatement conditions ($F_{(3,$

280 $47)}=3.93$, $p=0.014$; punishment+cues, $p=0.013$; safe+cues, $p=0.019$; safe+no cues, $p=0.043$). Ventromedial VP was

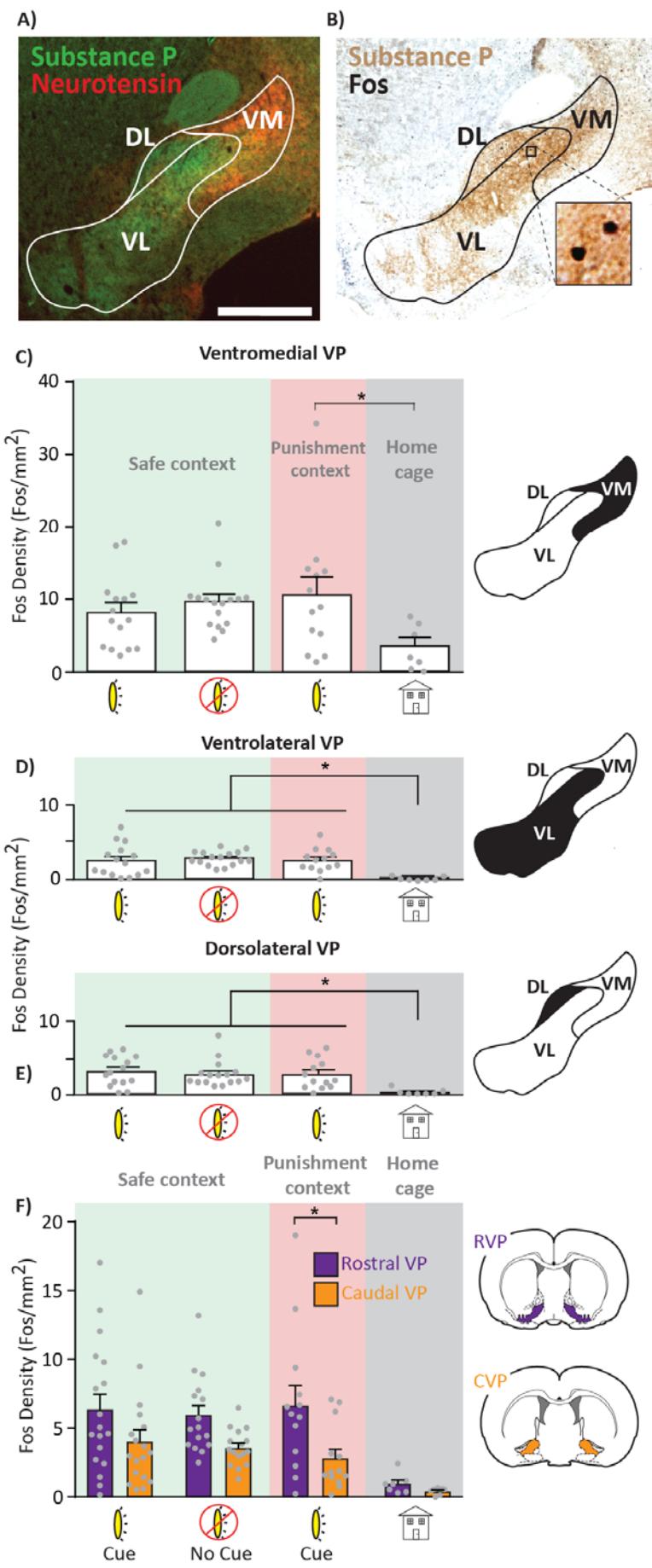
281 selectively activated (relative to home cage) by the punishment context with cues, but not by either safe context

282 reinstatement test ($F_{(3, 47)}=2.67$, $p=0.05$; punishment+cues: $p=0.048$; safe+cues: $p=0.28$; safe+no cues: $p=0.09$; **Fig.**

283 **5A-C**). In contrast, ventrolateral and dorsolateral VP were activated in all reinstatement conditions relative to

284 homecage controls (ventrolateral: $F_{(3, 47)}=5.98$, $p=0.0015$; safe+cues: $p=0.0051$; safe+no cues: $p=0.0011$;

285 punishment+cues: $p=0.0049$; **Fig. 5D**; dorsolateral: $F_{(3, 47)}=4.63$, $p=0.006$; home cage vs. safe+cues: $p=0.0043$;


286 safe+no cues: $p=0.017$; punishment+cues: $p=0.021$; **Fig. 5E**). We then examined rostral and caudal sections of VP,

287 given known rostrocaudal functional and anatomical differences [47, 54-56]. Overall, rostral VP had greater Fos

288 density than caudal VP ($F_{(3, 47)}=4.8$, $p=0.0051$), though this did significantly differ between reinstatement types (no

289 reinstatement type X rostrocaudal position interaction: $F_{(3, 47)}=1.42$, $p=0.25$; **Fig. 5F**).

VP Essential for Cocaine Reinstatement

Figure 5. VP subregion Fos expression after reinstatement. **A)** Representative image of substance P (VP borders) and neurotensin (ventromedial VP marker) immunofluorescent co-stain. **B)** Representative image of substance P and Fos co-stain for Fos quantification. **C-E)** Comparison of ventromedial (C), ventrolateral (D), and dorsolateral (E) Fos density across reinstatement conditions. Green shading = safe context, red shading = punishment context, gray shading = home cage controls. **F)** Rostrocaudal Fos density across reinstatement conditions. Rostral VP reached significant only in the punishment context with cues. $p < 0.05^*$; VM = ventromedial, VL = ventrolateral, DL = dorsolateral. AC = anterior commissure. Scale bar = 1000 μ m.

291 VP Essential for Cocaine Reinstatement

292 **Sex Differences.** Few sex differences with regard to VP manipulations were detected. Male and female rats

293 exhibited comparable levels of punishment-induced suppression of cocaine self-administration (suppression ratio:

294 $t_{64}=1.65$, $p=0.10$). As previously reported, female rats exhibited more cocaine-induced locomotion than males

295 (Sex; $F_{(1, 31)}=4.91$, $p=0.034$, [77]), though CNO (relative to vehicle) in VP-hM4Di did not differentially impact

296 locomotion between sexes (Sex x Treatment interaction; $F_{(1, 31)}=0.33$, $p=0.57$) or reinstatement under any

297 condition ($F<2.5$, $p>0.13$). Despite enhanced cocaine-induced locomotion, no sex differences were detected for

298 cocaine-primed reinstatement (Sex: $F_{(1, 22)}=2.06$, $p=0.17$), suggesting that cocaine promotes non-specific

299 locomotor activation in females, without enhancing the incentive motivational properties of cocaine under these

300 conditions.

300 Discussion

301 These findings point to a crucial role for VP in cocaine reinstatement following voluntary abstinence, a

302 translationally-relevant model of humans who quit drugs due to mounting negative life outcomes. Indeed, we

303 found that VP plays an especially important role in the most compulsive cocaine-seeking individuals, i.e., the ~20%

304 of rats that tolerated significant footshock punishment to continue taking cocaine. We also found robust

305 reinstatement-related activity in anatomically-defined VP subregions. Our results suggest that unlike connected

306 limbic nuclei, VP plays a critical role in reinstatement regardless of how abstinence was achieved or how relapse

307 was initiated, thereby placing it amongst the most essential nodes within the neural circuits of cocaine addiction.

308 Persistent drug use despite negative consequences, and long-lasting relapse propensity are cardinal

309 features of addiction in humans [78]. Though compulsive drug intake despite punishment is common in rodents

310 following extended drug access [22, 23, 70], some rats seem to transition to compulsive use even after short

311 access to cocaine. Here, we observed such a subset of compulsive rats, and found that these same animals were

312 also more prone to cue+context reinstatement after voluntary abstinence, similar to prior findings [17, 25].

313 Importantly, VP inhibition in these compulsive rats had a greater reinstatement-suppressing effect than in

314 punishment sensitive rats, suggesting that VP plays a particularly important role in those rats which pathologically

315 seek drug. VP inhibition only modestly reduced punished cocaine self-administration, but instead selectively

316 VP Essential for Cocaine Reinstatement

317 reduced hesitations to press the cocaine/shock and inactive levers, which we interpret as reflecting motivation to
318 pursue cocaine, tempered by motivation to avoid being shocked. These results highlight the sensitivity of this
319 novel assay of conflicting motivations during cocaine seeking, and the importance of careful ethological analysis of
complex drug-seeking behaviors during such neural circuit manipulation experiments.

320 Relapse is not a unitary phenomenon, since brain circuits underlying drug reinstatement depend on the

321 drug of choice, mode of abstinence, and relapse trigger [10-12, 26, 79-82]. This said, we show that even under
322 maximally human-relevant conditions VP is broadly implicated in reinstatement regardless of trigger or mode of
323 abstinence. In contrast, other VP-connected limbic regions seem to be engaged differentially during
324 reinstatement after different modes of abstinence. For example, inhibition of basolateral amygdala *decreases*
325 reinstatement after extinction training, whereas the same manipulation during reinstatement following
326 punishment-induced abstinence *increases* drug seeking [10]. These results are consistent with the idea that VP
327 serves as a 'final common pathway' of drug seeking [38, 39]. Therefore, VP holds promise as a potential
328 therapeutic target for suppressing relapse in humans, especially since a prior human fMRI report found that
329 activity in the vicinity of VP predicts relapse propensity [83].

330 Interestingly, in the unpunished safe context, VP inhibition attenuated reinstatement with or without

331 cues, and also after a cocaine priming injection, yet VP inhibition did not reduce cue reinstatement in the
332 punishment context. As expected, conditioned suppression of seeking was observed in this context relative to the
333 safe context, but response-contingent cues nonetheless supported some pressing, reducing the likelihood of a
334 floor effect (**Fig. 4**). We therefore speculate that VP promotes conditioned drug seeking in a context-gated
335 manner, consistent with prior reports that VP is necessary for context-induced reinstatement of alcohol seeking
336 [44, 45, 49, 84].

337 VP is heterogeneous, with rostrocaudally- and mediolaterally located subregions, and functionally distinct,

338 genetically-defined neuronal subpopulations [30-32, 54, 60, 84]. We observed broad recruitment of Fos in VP
339 subregions during cue reinstatement tests in both the safe and punishment context, and even in the safe context
340 in the absence of response-contingent cues. This homecage-relative Fos recruitment was most pronounced in

341 VP Essential for Cocaine Reinstatement

341 rostral, relative to caudal VP. These results suggest a global recruitment of numerous VP subregions during both
342 context- and cue-induced reinstatement, including in the punished context where global VP inhibition failed to
343 suppress cocaine seeking. One possible explanation for this puzzling pattern of effects is that functionally opposed
344 VP cells are engaged in the safe- and punished-contexts, such as the intermingled VP GABA and glutamate
345 neurons which drive appetitive and aversive behavior, respectively [30-32, 61, 62]. Our pan-neuronal
346 chemogenetic approach primarily targeted reward-related VP GABA neurons (~85%), consistent with observed
347 reinstatement suppression in the safe context, where aversion-related glutamate neurons would be less relevant.
348 We speculate that in the punishment context, glutamate and GABA neurons were recruited (explaining Fos
349 results), but inhibiting both concurrently with DREADDs suppressed motivation as well as aversion, resulting in a
350 null effect. More work is needed to parse the specific behavioral roles for VP subregions and neuronal
351 subpopulations in addiction-related behaviors.

352 The present report firmly establishes VP as an essential node in the neural circuits of translationally-

353 relevant cocaine reinstatement behavior, especially in the most compulsive, addicted-like animals. By better
354 understanding how addiction-relevant behaviors map onto defined neural circuits in the addicted brain, we may
355 reveal neural signatures that could facilitate diagnosis and treatment of addiction in a personalized manner. These
356 and other results suggest that VP plays a key role across relapse triggers and modes of abstinence, making it a
357 promising target for future interventions to treat addiction.

358

359 **Funding and Disclosures.** This work was supported by PHS grants: R00DA035251, F31DA048578, P50DA044118,
360 R25GM055246, T32NS045540-15, and R21MH118748. The authors announce no conflicts of interest.

361 **Acknowledgements.** We thank Yavin Shaham for providing MED-PC code for punishment-induced abstinence
362 protocols. We thank Iohanna Pagnoncelli and Stephanie Lenogue for their assistance with behavioral testing.

VP Essential for Cocaine Reinstatement

363

References

- 364 1. Hunt, W.A., L.W. Barnett, and L.G. Branch, *Relapse rates in addiction programs*. Journal of clinical
365 psychology, 1971. **27**(4): p. 455-456.
- 366 2. Wikler, A., *Dynamics of drug dependence: Implications of a conditioning theory for research and*
367 *treatment*. Archives of general psychiatry, 1973. **28**(5): p. 611-616.
- 368 3. O'Brien, C.P., et al., *Classical Conditioning in Drug-Dependent Humans a*. Annals of the New York Academy
369 of Sciences, 1992. **654**(1): p. 400-415.
- 370 4. Shaham, Y., et al., *The reinstatement model of drug relapse: history, methodology and major findings*.
371 Psychopharmacology, 2003. **168**(1-2): p. 3-20.
- 372 5. Marchant, N.J., et al., *Context-induced relapse to alcohol seeking after punishment in a rat model*.
373 Biological psychiatry, 2013. **73**(3): p. 256-262.
- 374 6. Panlilio, L.V., E.B. Thorndike, and C.W. Schindler, *Reinstatement of punishment-suppressed opioid self-*
375 *administration in rats: an alternative model of relapse to drug abuse*. Psychopharmacology, 2003. **168**(1-
376 2): p. 229-235.
- 377 7. Marchant, N.J., X. Li, and Y. Shaham, *Recent developments in animal models of drug relapse*. Current
378 opinion in neurobiology, 2013. **23**(4): p. 675-683.
- 379 8. Economidou, D., et al., *High impulsivity predicts relapse to cocaine-seeking after punishment-induced*
380 *abstinence*. Biological psychiatry, 2009. **65**(10): p. 851-856.
- 381 9. Venniro, M., D. Caprioli, and Y. Shaham, *Animal models of drug relapse and craving: from drug priming-*
382 *induced reinstatement to incubation of craving after voluntary abstinence*. Progress in brain research,
383 2016. **224**: p. 25-52.
- 384 10. Pelloux, Y., et al., *Opposite effects of basolateral amygdala inactivation on context-induced relapse to*
385 *cocaine seeking after extinction versus punishment*. Journal of Neuroscience, 2018. **38**(1): p. 51-59.
- 386 11. Fuchs, R.A., R.K. Branham, and R.E. See, *Different neural substrates mediate cocaine seeking after*
387 *abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen*. Journal of
388 Neuroscience, 2006. **26**(13): p. 3584-3588.
- 389 12. Marchant, N.J., et al., *Context-induced relapse after extinction versus punishment: similarities and*
390 *differences*. Psychopharmacology, 2018: p. 1-10.
- 391 13. Venniro, M., et al., *The anterior insular cortex→central amygdala glutamatergic pathway is critical to*
392 *relapse after contingency management*. Neuron, 2017. **96**(2): p. 414-427.
- 393 14. Venniro, M., et al., *Volitional social interaction prevents drug addiction in rat models*. Nature
394 neuroscience, 2018. **21**(11): p. 1520.
- 395 15. Golden, S.A., M. Jin, and Y. Shaham, *Animal models of (or for) aggression reward, addiction, and relapse:*
396 *behavior and circuits*. Journal of neuroscience, 2019: p. 0151-19.
- 397 16. Belin, D., et al., *Pattern of intake and drug craving predict the development of cocaine addiction-like*
398 *behavior in rats*. Biological psychiatry, 2009. **65**(10): p. 863-868.
- 399 17. Deroche-Gammonet, V., D. Belin, and P.V. Piazza, *Evidence for addiction-like behavior in the rat*. Science,
400 2004. **305**(5686): p. 1014-1017.
- 401 18. Vanderschuren, L.J.M.J., et al., *Punishment models of addictive behavior*. Current opinion in behavioral
402 sciences, 2017. **13**: p. 77-84.
- 403 19. Smith, R.J. and L.S. Laiks, *Behavioral and neural mechanisms underlying habitual and compulsive drug*
404 *seeking*. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018. **87**: p. 11-21.
- 405 20. Pelloux, Y., et al., *Context-induced relapse to cocaine seeking after punishment-imposed abstinence is*
406 *associated with activation of cortical and subcortical brain regions*. Addiction biology, 2018. **23**(2): p. 699-
407 712.
- 408 21. Everitt, B.J., et al., *Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking*
409 *habits and addiction*. Philosophical Transactions of the Royal Society of London B: Biological Sciences,
410 2008. **363**(1507): p. 3125-3135.

VP Essential for Cocaine Reinstatement

411 22. Vanderschuren, L.J.M.J. and B.J. Everitt, *Drug seeking becomes compulsive after prolonged cocaine self-*
412 *administration*. *Science*, 2004. **305**(5686): p. 1017-1019.

413 23. Chen, B.T., et al., *Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine*
414 *seeking*. *Nature*, 2013. **496**(7445): p. 359.

415 24. Anthony, J.C., L.A. Warner, and R.C. Kessler, *Comparative epidemiology of dependence on tobacco,*
416 *alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey*.
417 *Experimental and clinical psychopharmacology*, 1994. **2**(3): p. 244.

418 25. Torres, O.V., et al., *Compulsive methamphetamine taking under punishment is associated with greater*
419 *cue-induced drug seeking in rats*. *Behavioural brain research*, 2017. **326**: p. 265-271.

420 26. Farrell, M.R., H. Schoch, and S.V. Mahler, *Modeling cocaine relapse in rodents: Behavioral considerations*
421 *and circuit mechanisms*. *Prog Neuropsychopharmacol Biol Psychiatry*, 2018. **87**(Pt A): p. 33-47.

422 27. Bock, R., et al., *Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine*
423 *use*. *Nature neuroscience*, 2013. **16**(5): p. 632.

424 28. Ersche, K.D., et al., *Abnormal structure of frontostriatal brain systems is associated with aspects of*
425 *impulsivity and compulsivity in cocaine dependence*. *Brain*, 2011. **134**(7): p. 2013-2024.

426 29. Yager, L.M., et al., *Chemogenetic inhibition of direct pathway striatal neurons normalizes pathological,*
427 *cue-induced reinstatement of drug-seeking in rats*. *Addiction biology*, 2019. **24**(2): p. 251-264.

428 30. Stephenson-Jones, M., et al., *Opposing contributions of GABAergic and glutamatergic ventral pallidal*
429 *neurons to motivational behaviours*. Available at SSRN 3367001, 2019.

430 31. Faget, L., et al., *Opponent control of behavioral reinforcement by inhibitory and excitatory projections*
431 *from the ventral pallidum*. *Nature communications*, 2018. **9**(1): p. 849.

432 32. Tooley, J., et al., *Glutamatergic ventral pallidal neurons modulate activity of the habenula-tegmental*
433 *circuitry and constrain reward seeking*. *Biological psychiatry*, 2018. **83**(12): p. 1012-1023.

434 33. Saga, Y., et al., *Ventral pallidum encodes contextual information and controls aversive behaviors*. *Cerebral*
435 *Cortex*, 2016. **27**(4): p. 2528-2543.

436 34. Swanson, L.W. and W.M. Cowan, *A note on the connections and development of the nucleus accumbens*.
437 *Brain research*, 1975. **92**(2): p. 324-330.

438 35. Williams, D.J., A.R. Crossman, and P. Slater, *The efferent projections of the nucleus accumbens in the rat*.
439 *Brain Research*, 1977. **130**(2): p. 217-227.

440 36. Heimer, L., R.D. Switzer, and G.W. Van Hoesen, *Ventral striatum and ventral pallidum: Components of the*
441 *motor system?* *Trends in Neurosciences*, 1982. **5**: p. 83-87.

442 37. Mogenson, G.J., D.L. Jones, and C.Y. Yim, *From motivation to action: functional interface between the*
443 *limbic system and the motor system*. *Progress in neurobiology*, 1980. **14**(2-3): p. 69-97.

444 38. Kalivas, P.W. and N.D. Volkow, *The neural basis of addiction: a pathology of motivation and choice*.
445 *American Journal of Psychiatry*, 2005. **162**(8): p. 1403-1413.

446 39. Smith, K.S., et al., *Ventral pallidum roles in reward and motivation*. *Behavioural brain research*, 2009.
447 **196**(2): p. 155-167.

448 40. Tachibana, Y. and O. Hikosaka, *The primate ventral pallidum encodes expected reward value and regulates*
449 *motor action*. *Neuron*, 2012. **76**(4): p. 826-837.

450 41. Pessiglione, M., et al., *How the brain translates money into force: a neuroimaging study of subliminal*
451 *motivation*. *Science*, 2007. **316**(5826): p. 904-906.

452 42. Richard, J.M., et al., *Ventral pallidum neurons encode incentive value and promote cue-elicited*
453 *instrumental actions*. *Neuron*, 2016. **90**(6): p. 1165-1173.

454 43. Root, D.H., et al., *Differential roles of ventral pallidum subregions during cocaine self-administration*
455 *behaviors*. *Journal of Comparative Neurology*, 2013. **521**(3): p. 558-588.

456 44. Perry, C.J. and G.P. McNally, *A role for the ventral pallidum in context-induced and primed reinstatement*
457 *of alcohol seeking*. *European Journal of Neuroscience*, 2013. **38**(5): p. 2762-2773.

458 45. Prasad, A.A. and G.P. McNally, *Ventral pallidum output pathways in context-induced reinstatement of*
459 *alcohol seeking*. *Journal of Neuroscience*, 2016. **36**(46): p. 11716-11726.

VP Essential for Cocaine Reinstatement

460 46. Rogers, J.L., S. Ghee, and R.E. See, *The neural circuitry underlying reinstatement of heroin-seeking*
461 *behavior in an animal model of relapse*. *Neuroscience*, 2008. **151**(2): p. 579-88.

462 47. Mahler, S.V., et al., *Designer receptors show role for ventral pallidum input to ventral tegmental area in*
463 *cocaine seeking*. *Nature neuroscience*, 2014. **17**(4): p. 577.

464 48. Hubner, C.B. and G.F. Koob, *The ventral pallidum plays a role in mediating cocaine and heroin self-*
465 *administration in the rat*. *Brain research*, 1990. **508**(1): p. 20-29.

466 49. Prasad, A.A. and G.P. McNally, *Ventral Pallidum and Alcohol Addiction*, in *Neuroscience of Alcohol*. 2019,
467 Elsevier. p. 163-170.

468 50. McFarland, K. and P.W. Kalivas, *The circuitry mediating cocaine-induced reinstatement of drug-seeking*
469 *behavior*. *Journal of Neuroscience*, 2001. **21**(21): p. 8655-8663.

470 51. McFarland, K., et al., *Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-*
471 *seeking behavior*. *Journal of Neuroscience*, 2004. **24**(7): p. 1551-1560.

472 52. Churchill, L. and P.W. Kalivas, *A topographically organized gamma-aminobutyric acid projection from the*
473 *ventral pallidum to the nucleus accumbens in the rat*. *Journal of Comparative Neurology*, 1994. **345**(4): p.
474 579-595.

475 53. Groenewegen, H.J., H.W. Berendse, and S.N. Haber, *Organization of the output of the ventral*
476 *striatopallidal system in the rat: ventral pallidal efferents*. *Neuroscience*, 1993. **57**(1): p. 113-42.

477 54. Root, D.H., et al., *The ventral pallidum: Subregion-specific functional anatomy and roles in motivated*
478 *behaviors*. *Progress in neurobiology*, 2015. **130**: p. 29-70.

479 55. Smith, K.S. and K.C. Berridge, *Opioid limbic circuit for reward: interaction between hedonic hotspots of*
480 *nucleus accumbens and ventral pallidum*. *Journal of neuroscience*, 2007. **27**(7): p. 1594-1605.

481 56. Smith, K.S. and K.C. Berridge, *The ventral pallidum and hedonic reward: neurochemical maps of sucrose*
482 *"liking" and food intake*. *Journal of neuroscience*, 2005. **25**(38): p. 8637-8649.

483 57. Calder, A.J., et al., *Disgust sensitivity predicts the insula and pallidal response to pictures of disgusting*
484 *foods*. *European Journal of Neuroscience*, 2007. **25**(11): p. 3422-3428.

485 58. Beaver, J.D., et al., *Individual differences in reward drive predict neural responses to images of food*.
486 *Journal of Neuroscience*, 2006. **26**(19): p. 5160-5166.

487 59. Stefanik, M.T., et al., *Optogenetic evidence that pallidal projections, not nigral projections, from the*
488 *nucleus accumbens core are necessary for reinstating cocaine seeking*. *Journal of Neuroscience*, 2013.
489 **33**(34): p. 13654-13662.

490 60. Knowland, D., et al., *Distinct ventral pallidal neural populations mediate separate symptoms of depression*.
491 *Cell*, 2017. **170**(2): p. 284-297.

492 61. Wulff, A.B., et al., *Ventral pallidal modulation of aversion processing*. *Brain research*, 2018.

493 62. Stephenson-Jones, M., *Pallidal circuits for aversive motivation and learning*. *Current Opinion in Behavioral*
494 *Sciences*, 2019. **26**: p. 82-89.

495 63. Armbruster, B.N., et al., *Evolving the lock to fit the key to create a family of G protein-coupled receptors*
496 *potently activated by an inert ligand*. *Proceedings of the National Academy of Sciences*, 2007. **104**(12): p.
497 5163-5168.

498 64. National Research, C., *Guide for the care and use of laboratory animals*. 2010: National Academies Press.

499 65. Mahler, S.V. and G. Aston-Jones, *CNO Evil? Considerations for the use of DREADDs in behavioral*
500 *neuroscience*. *Neuropsychopharmacology*, 2018. **43**(5): p. 934.

501 66. MacLaren, D.A.A., et al., *Clozapine N-oxide administration produces behavioral effects in Long-Evans rats: implications for designing DREADD experiments*. *eneuro*, 2016. **3**(5).

503 67. Gomez, J.L., et al., *Chemogenetics revealed: DREADD occupancy and activation via converted clozapine*.
504 *Science*, 2017. **357**(6350): p. 503-507.

505 68. Zhou, L., et al., *Fos expression induced by cocaine-conditioned cues in male and female rats*. *Brain*
506 *Structure and Function*, 2014. **219**(5): p. 1831-1840.

507 69. Kohtz, A.S. and G. Aston-Jones, *Cocaine seeking during initial abstinence is driven by noradrenergic and*
508 *serotonergic signaling in hippocampus in a sex-dependent manner*. *Neuropsychopharmacology*, 2017.
509 **42**(2): p. 408.

VP Essential for Cocaine Reinstatement

510 70. Pelloux, Y., B.J. Everitt, and A. Dickinson, *Compulsive drug seeking by rats under punishment: effects of*
511 *drug taking history*. *Psychopharmacology*, 2007. **194**(1): p. 127-137.

512 71. Blanchard, R.J., et al., *The effects of ethanol and diazepam on reactions to predatory odors*. *Pharmacology*
513 *Biochemistry and Behavior*, 1990. **35**(4): p. 775-780.

514 72. Blanchard, D.C., et al., *Risk assessment as an evolved threat detection and analysis process*. *Neuroscience*
515 & *Biobehavioral Reviews*, 2011. **35**(4): p. 991-998.

516 73. Zahm, D.S. and L. Heimer, *Ventral striatopallidal parts of the basal ganglia in the rat: I. Neurochemical*
517 *compartmentation as reflected by the distributions of neuropeptides and substance P immunoreactivity*.
518 *Journal of Comparative Neurology*, 1988. **272**(4): p. 516-535.

519 74. Paxinos, G. and C. Watson, *The rat brain in stereotaxic coordinates: hard cover edition*. 2006: Elsevier.

520 75. Chang, S.E., et al., *Chemogenetic manipulation of ventral pallidal neurons impairs acquisition of*
521 *sign-tracking in rats*. *European Journal of Neuroscience*, 2015. **42**(12): p. 3105-3116.

522 76. Mahler, S.V., et al., *Chemogenetic Manipulations of Ventral Tegmental Area Dopamine Neurons Reveal*
523 *Multifaceted Roles in Cocaine Abuse*. *Journal of Neuroscience*, 2019. **39**(3): p. 503-518.

524 77. Van Haaren, F. and M.E. Meyer, *Sex differences in locomotor activity after acute and chronic cocaine*
525 *administration*. *Pharmacology Biochemistry and Behavior*, 1991. **39**(4): p. 923-927.

526 78. American Psychiatric, A., *Diagnostic and statistical manual of mental disorders (DSM-5®)*. 2013: American
527 Psychiatric Pub.

528 79. Badiani, A., et al., *Opiate versus psychostimulant addiction: the differences do matter*. *Nature Reviews*
529 *Neuroscience*, 2011. **12**(11): p. 685.

530 80. Shalev, U., J.W. Grimm, and Y. Shaham, *Neurobiology of relapse to heroin and cocaine seeking: a review*.
531 *Pharmacological reviews*, 2002. **54**(1): p. 1-42.

532 81. Bossert, J.M., et al., *Neurobiology of relapse to heroin and cocaine seeking: an update and clinical*
533 *implications*. *European journal of pharmacology*, 2005. **526**(1-3): p. 36-50.

534 82. Mantsch, J.R., et al., *Stress-induced reinstatement of drug seeking: 20 years of progress*.
535 *Neuropsychopharmacology*, 2016. **41**(1): p. 335.

536 83. Li, Q., et al., *Predicting subsequent relapse by drug-related cue-induced brain activation in heroin*
537 *addiction: an event-related functional magnetic resonance imaging study*. *Addiction biology*, 2015. **20**(5):
538 p. 968-978.

539 84. Prasad, A.A., et al., *Complementary roles for ventral pallidum cell types and their projections in relapse*.
540 *bioRxiv*, 2019: p. 533554.

541 VP Essential for Cocaine Reinstatement

Figure Legends

542 **Figure 1. Schematic of experimental timeline.** Following DREADD or control AAV injection, rats underwent
543 cocaine self-administration, punishment training, followed by reinstatement and cocaine-induce locomotor
544 testing. A final reinstatement test preceded sacrifice for neuronal activity (Fos) analysis.

545 **Figure 2. Punishment-resistant rats are more prone to reinstatement than punishment sensitive rats. A)**

546 Probabilistic footshock reduces active lever pressing across all rats, while increasing the number of inactive
547 presses. SA = self-administration. **B)** Individual variation in punishment sensitivity. Rats that reached at least
548 0.60mA footshock were considered punishment resistant (red). Punishment sensitive rats (gray) stopped taking
549 cocaine at <0.60mA footshock intensities. **C)** Distribution of punishment resistance. Most rats cease cocaine
550 intake at low shock levels (Punishment Sensitive: gray): 53/66 rats, 80.3%, but a subset reached the highest shock
551 levels (Punishment Resistant: red): 13/66 rats, 19.7%. **D)** Punishment resistant rats reinstated more in the safe
552 context with cues relative to punishment sensitive rats. This effect was specific to this reinstatement condition. **E)**
553 Punishment effects on cocaine taking as quantified with suppression ratio [17, 70] correlated with the degree of
554 reinstatement in the safe context with cues. **F-G)** Punishment resistant rats were no different than sensitive rats
555 on cocaine intake (F) or cocaine-induced locomotion (G). *** $p<0.001$. Panel **E**, squares = vehicle injection,
556 triangles = CNO injection, circles = no injection.

557 **Figure 3. Inhibitory DREADD localization in VP. A)** Immunofluorescent co-stain for hM4Di-mCherry (red) within
558 Substance P-expressing VP borders (green). **B)** Virus expression for individual animals on rostrocaudal VP axis. **C)**
559 Wide-field and **D)** high magnification images of fluorescent *in situ* hybridization for *gad1* (green) combined with
560 immunofluorescence for hM4Di-mCherry (red). Co-positive hM4Di⁺ *gad1*⁺ cells labeled with green stars. **E)** 85.3
561 +/- 3.2 % of hM4Di⁺ cells are co-positive for *gad1*. 14.7 +/- 3.2 % of hM4Di⁺ cells are *gad1*⁻ (n=3 rats, total of 559
562 hM4Di⁺ cells counted). VM = ventromedial, VL = ventrolateral, DL = dorsolateral. AC = anterior commissure. Scale
563 bars=500 μ m (B), 200 μ m (C), and 20 μ m (D).

564 **Figure 4. VP inhibition reduces reinstatement especially in punishment resistant rats. A)** Top panel: Example
565 picture of a standard lever press. Bottom panel: CNO in VP-hM4Di rats modestly reduces active and inactive lever

VP Essential for Cocaine Reinstatement

566 pressing for cocaine under threat of punishment. Control = vehicle-injected rats and CNO-injected misses. **B**) Top
567 panel: Hesitation behavior in which the rat stretches its trunk towards the lever and extends its paw without
568 depressing the lever. Bottom panel: Active and inactive lever hesitations quantified during safe (green shading)
569 and punished (red shading). CNO in VP-hM4Di rats reduced hesitations to relative to control rats. VP inhibition
570 reduced hesitations to unpunished levels. Control = vehicle-injected rats and CNO-injected misses. **C**) Within
571 subjects comparisons of reinstatement for VP-hM4Di rats in safe (green shading) and punishment (red shading)
572 contexts. CNO in VP-hM4Di rats reduced reinstatement in the safe context with cues, without cues, and with
573 cocaine and no cues, but not in the punishment context with cues. **D**) CNO in control rats did not affect
574 reinstatement under any condition. Control = eGFP-only rats and rats with hM4Di expression primarily outside VP.
575 **E**) CNO in VP-hM4Di punishment resistant rats (red bars) elicited a greater decrease in reinstatement relative to
576 punishment sensitive rats (gray bars). Data presented as change from vehicle test baseline. $p<0.05^*$, $p<0.01^{**}$,
577 $p<0.001^{***}$.

578 **Figure 5. VP subregion Fos expression after reinstatement. A)** Representative image of substance P (VP borders)
579 and neurotensin (ventromedial VP marker) immunofluorescent co-stain. **B)** Representative image of substance P
580 and Fos co-stained for Fos quantification. **C-E)** Comparison of ventromedial (**C**), ventrolateral (**D**), and dorsolateral
581 (**E**) Fos density across reinstatement conditions. Green shading = safe context, red shading = punishment context,
582 gray shading = home cage controls. **F)** Rostrocaudal Fos density across reinstatement conditions. Rostral VP
583 reached significant only in the punishment context with cues. $p<0.05^*$; VM = ventromedial, VL = ventrolateral, DL
584 = dorsolateral. AC = anterior commissure. Scale Bar = 1000 μ m.

VP Essential for Cocaine Reinstatement

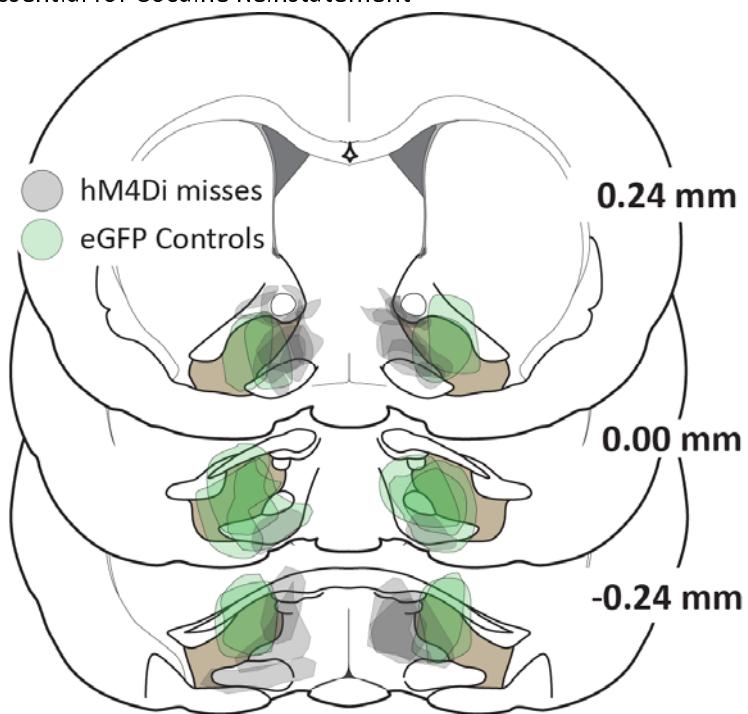
585

Supplemental Figures

586 **Supplemental Figure 1. Self-administration in male and female rats.** Males (black) did not differ from females
587 (gray) across 14d of self-administration on active lever presses (top), infusions obtained (middle), inactive lever
588 presses (bottom).

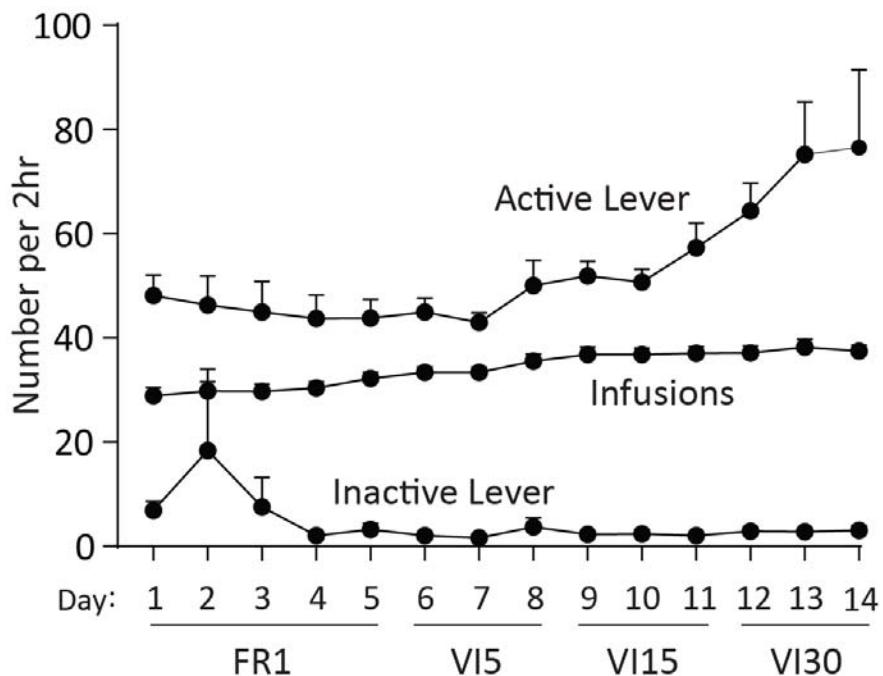
589 **Supplemental Figure 2. Viral expression in hM4Di misses and eGFP controls.** hM4Di misses (thin solid border)
590 and eGFP controls (thick dotted border) depicted on rostrocaudal VP sections.

591 **Supplemental Figure 3. VP inhibition decreases cocaine-induced rearing, but not distance traveled. A)** Within
592 subjects tests showed that CNO in VP-hM4Di rats fails to alter cocaine-induced horizontal locomotion. **B)** CNO
593 decreases rearing in VP-hM4Di rats. No effect of CNO in control rats for horizontal locomotion or rearing. Control
594 = hM4Di misses and eGFP-only rats. *** $p<0.001$


595 **Supplemental Table 1. List of antibodies used for immunofluorescence (columns 1-3) and for**
596 **immunohistochemistry (column 4).**

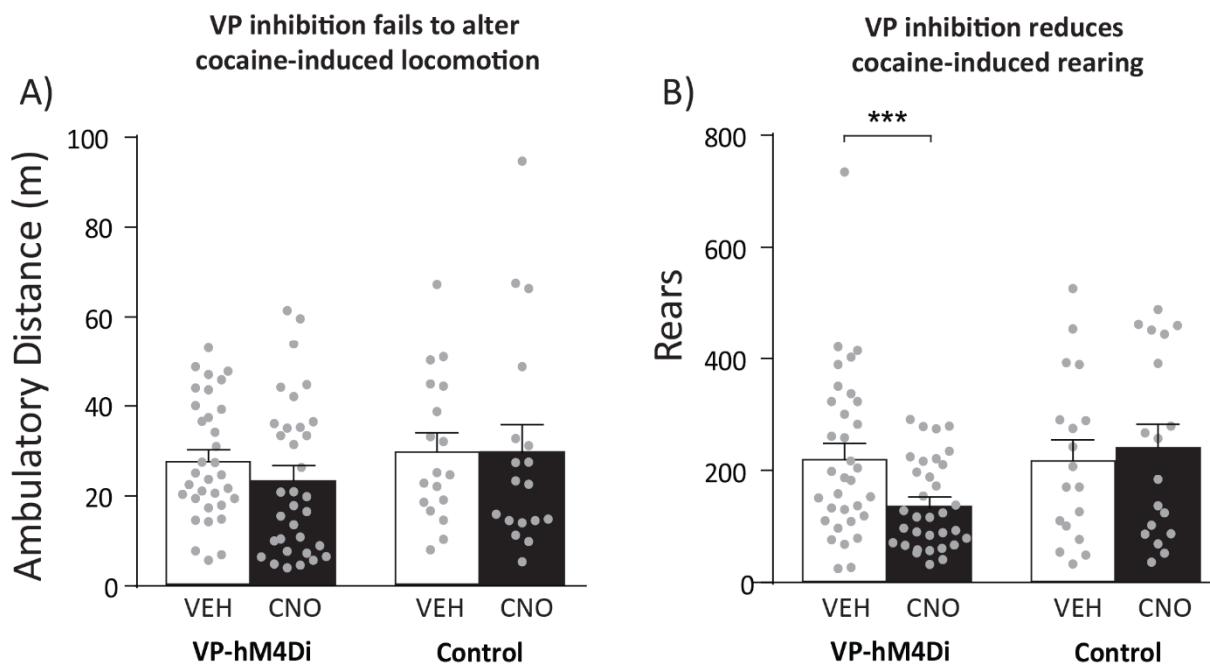
VP Essential for Cocaine Reinstatement

	mCherry+Substance P	GFP+Substance P	Neurotensin+Substance P	Fos+Substance P
Primary Antibodies	Substance P Immunostar (20064) Rabbit anti-substance P (1:5000) mCherry Clontech (632543) Mouse anti-mCherry (1:2000)	Substance P Immunostar (20064) rabbit anti-substance P (1:5000) GFP Abcam (AB13970) chicken anti-GFP (1:2000)	Substance P Abcam (ab14184) mouse anti-substance P (1:7500) Neurotensin Immunostar (24427) rabbit anti-neurotensin (1:5000)	Substance P Abcam (ab14184) mouse anti-substance P (1:5000) Fos Millipore (abe457) polyclonal rabbit anti-c-Fos (1:5,000)
Secondary Antibodies	Substance P Invitrogen (A21206) Donkey anti-rabbit AlexaFluor488 (1:500) mCherry Invitrogen (A21203) Donkey anti-mouse AlexaFluor594 (1:500)	Substance P Invitrogen (A-21207) donkey anti-rabbit AlexaFluor594 (1:500) GFP Jackson ImmunoResearch (703-545-155) donkey anti-chicken AlexaFluor488 (1:500)	Substance P Invitrogen (A21202) donkey anti-mouse AlexaFluor 488 (1:500) Neurotensin Invitrogen (A-21207) donkey anti-rabbit AlexaFluor594 (1:500)	Substance P Jackson ImmunoResearch (711-065-152) biotinylated goat anti-rabbit IgG (1:500) Fos Jackson ImmunoResearch (715-065-150) biotinylated donkey anti-mouse (1:500)


Supplemental Table 1. List of antibodies used for immunofluorescence (columns 1-3) and for immunohistochemistry (column 4).

VP Essential for Cocaine Reinstatement

Supplemental Figure 1. Viral expression in hM4Di misses and eGFP controls. hM4Di misses (thin solid border) and eGFP controls (thick dotted border) depicted on rostrocaudal VP sections.


VP Essential for Cocaine Reinstatement

Supplemental Figure 2. Self-administration in male and female rats.

Males (black) did not differ from females (gray) across 14d of self-administration on active lever presses (top), infusions obtained (middle), inactive lever presses (bottom).

VP Essential for Cocaine Reinstatement

Supplemental Figure 3. VP inhibition decreases cocaine-induced rearing, but not distance traveled.

A) Within subjects tests showed that CNO in VP-hM4Di rats fails to alter cocaine-induced horizontal locomotion. **B)** CNO decreases rearing in VP-hM4Di rats. No effect of CNO in control rats for horizontal locomotion or rearing. Control = hM4Di misses and eGFP-only rats. *** $p < 0.001$