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Abstract 18 

Many complex human traits exhibit differences between sexes. While numerous factors 19 

likely contribute to this phenomenon, growing evidence from genome-wide studies suggest a 20 

partial explanation: that males and females from the same population possess differing genetic 21 

architectures. Despite this, mapping gene-by-sex (G×S) interactions remains a challenge likely 22 

because the magnitude of such an interaction is typically and exceedingly small; traditional 23 

genome-wide association techniques may be underpowered to detect such events partly due to 24 

the burden of multiple test correction. Here, we developed a local Bayesian regression (LBR) 25 

method to estimate sex-specific SNP marker effects after fully accounting for local linkage-26 

disequilibrium (LD) patterns. This enabled us to infer sex-specific effects and G×S interactions 27 

either at the single SNP level, or by aggregating the effects of multiple SNPs to make inferences 28 

at the level of small LD-based regions. Using simulations in which there was imperfect LD 29 

between SNPs and causal variants, we showed that aggregating sex-specific marker effects with 30 

LBR provides improved power and resolution to detect G×S interactions over traditional single-31 

SNP-based tests. When using LBR to analyze traits from the UK Biobank, we detected a 32 

relatively large G×S interaction impacting bone-mineral density within ABO and replicated many 33 

previously detected large-magnitude G×S interactions impacting waist-to-hip ratio. We also 34 

discovered many new G×S interactions impacting such traits as height and BMI within regions 35 

of the genome where both male- and female-specific effects explain a small proportion of 36 

phenotypic variance (R2 < 1x10-4), but are enriched in known expression quantitative trait loci. 37 

By combining biobank-level data and techniques to estimate sex-specific SNP effects after 38 

accounting for local-LD patterns, we are providing evidence that numerous small-magnitude 39 

G×S interactions exist to influence sex differences in a variety of complex traits. 40 
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Author Summary 41 

Many complex human traits are known to be influenced by an impressive number of 42 

causal variants each with very small effects, posing great challenges for genome-wide 43 

association studies (GWAS). To add to this challenge, many causal variants may possess 44 

context-dependent effects such as effects that are dependent on biological sex. While GWAS are 45 

commonly performed using specific methods in which one single nucleotide polymorphism 46 

(SNP) at a time is tested for association with a trait, alternatively we utilize methods more 47 

commonly observed in the genomic prediction literature. Such methods are advantageous in that 48 

they are not burdened by multiple test correction in the same way as traditional GWAS 49 

techniques are, and can fully account for linkage-disequilibrium patterns to accurately estimate 50 

the true effects of SNP markers. Here we adapt such methods to estimate genetic effects within 51 

sexes and provide a powerful means to compare sex-specific genetic effects.  52 

 53 

Introduction 54 

Sex differences are widespread in nature, observed readily among many human traits and 55 

diseases. For quantitative traits, sex may affect the distribution of phenotypes at various levels, 56 

including mean-differences between genetic males and genetic females (hereafter referred to as 57 

males and females, respectively) as well as differences in variance. Sex differences are likely due 58 

to a myriad of factors including differential environmental exposures, unequal gene dosages for 59 

sex-linked genes as well as sex-heterogeneity in the architecture of genetic effects at one or more 60 

autosomal loci (i.e. gene-by-sex (G×S) interactions). In this way, sex is considered an 61 
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environmental variable, providing two well-defined conditions in which allele frequencies and 62 

linkage disequilibrium (LD) patterns are equivalent but nevertheless genetic effects of one or 63 

many autosomal loci may differ.  64 

Evidence for different genetic architectures between sexes among human populations is 65 

largely supported by genome-wide parameters [1–4] including unequal within-sex heritabilities 66 

(h2
male  ≠ h2

female) and between-sex genetic correlations less than one (rg < 1); the former suggests 67 

that the proportion of phenotypic variance explained by genetic factors varies between sexes, 68 

while the latter suggests genetic effects are disproportional between sexes [5]. Although many 69 

traits seem to have between-sex genetic correlation that is evidentially less than one, genome-70 

wide association (GWA) studies intended to map G×S interactions have struggled to pinpoint 71 

such loci [6,7]. Based on this dichotomy, G×S interactions presumably exist for many traits, but 72 

the magnitude of a typical G×S interaction is suspected to be exceedingly small, explaining why 73 

such events commonly elude detection, particularly after multiple test correction. However, just 74 

as numerous small effect causal loci accumulate to affect phenotypic variance, small G×S 75 

interactions may accumulate to influence both sex differences and phenotypic variance. 76 

Most GWA studies utilize single-marker regression (SMR), in which the phenotype is 77 

regressed upon allele content one SNP at a time, thereby obtaining marginal SNP effect size 78 

estimates that do not fully account for LD patterns. In contrast, whole-genome regression 79 

methods, in which the phenotype is regressed upon all SNPs across the genome concurrently, 80 

fully account for multi-locus LD. These methods are increasingly being used as a one-stop 81 

solution to estimate true (conditional) effect sizes of SNP markers and to provide genome-wide 82 

estimates including genomic heritability [8–10] and between-sex genetic correlations [2–4]. By 83 

estimating true SNP effect sizes, the goal across many studies is to select SNPs with non-zero 84 
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effects and to build a model for predicting polygenic scores [11–13]. Other works have directly 85 

illustrated the use of whole-genome regression methods for GWAS [14–17]. Whole-genome 86 

regressions are computationally challenging to use with biobank-level data; however, recent 87 

work suggests relatively accurate genomic prediction and SNP effect estimation can be achieved 88 

by simply accounting for local LD patterns (as opposed to global LD patterns) [18].  89 

Building on the idea of utilizing true SNP marker effects, here we developed local 90 

Bayesian regressions (LBR) in which the phenotype is regressed upon multiple SNPs spanning 91 

multiple LD blocks (thereby accounting for local LD patterns) to study sex differences in 92 

complex traits from the UK Biobank. The LBR model uses random-effect SNP-by-sex 93 

interactions [19,20] that decompose conditional SNP effects into three components: i) one shared 94 

across sexes, ii) a male-specific deviation from the shared component, and iii) a female-specific 95 

deviation from the shared component. Using samples from the posterior distribution of 96 

conditional SNP effects, we developed methods to infer sex-specific effects and G×S interactions 97 

at the single SNP level and by aggregating SNP effects within small LD-based regions, offering 98 

multiple perspectives to study sex-specific genetic architectures. 99 

In this study, we have utilized genotypes for 607,497 autosomal SNPs from ~259,000 100 

distantly related Caucasians from the UK Biobank for assessing LBR’s performance in analyzing 101 

simulated and real complex traits including height, BMI, waist-to-hip ratio (WHR), and heel 102 

bone-mineral density (BMD). Simulations showed that (i) for inferences of G×S interactions, 103 

LBR offers higher power with lower FDR than methods based on marginal effects (aka single-104 

marker regression) and (ii) we show that under imperfect LD between SNPs and causal variants 105 

(i.e., when causal variants are not genotyped), aggregating SNP effects within small LD-based 106 

regions offers higher power than methods based on testing individual SNPs.  107 
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The traits analyzed in this study span a range of genome-wide metrics and G×S 108 

suggestibility; from height and BMI for which previous studies indicate males and females 109 

possess very similar genetic architectures [3], to WHR, a trait with well-documented G×S 110 

interactions [21–24], and BMD, for which G×S interactions are thought to exist but have eluded 111 

detection [25]. LBR provided evidence of G×S interactions impacting height, BMI, and BMD at 112 

regions of the genome where sex-specific genetic effects are relatively small, however such 113 

regions are enriched in known eQTL. For WHR, LBR replicated many large-magnitude G×S 114 

interactions previously discovered using single-marker regression, but also located novel G×S 115 

interactions near such genes as the estrogen receptor ESR1. 116 

Results 117 

Overview of the LBR model, inference methods, and implementation 118 

To study sex differences we regressed male and female phenotypes (�� and ��) on male and 119 

female genotypes (�� and ��) using a SNP-by-sex interaction model of the form 120 

�����

� � �������

� � �����

� 	� � ���
 � 	� � � 

��

� 	� � �����

� . #�1�  

Above, �� and �� are male and female intercepts, 	� � ����
� (j = 1, … , p) is a vector of main 121 

effects, 	� � ����
� and 	� � ����

� are male and female interactions, respectively and �� �122 

����
� and  �� � ����

� are male and female errors which were assumed to follow normal 123 

distributions with zero mean and sex-specific variances. Female-specific and male-specific SNP 124 

effects are defined as ���
� ���

� ���
 and ���

� ���
� ���

, respectively.  125 

 126 
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Prior assumptions. For SNP effects we adopted priors from the spike-slab family with a point 127 

of mass at zero and a Gaussian slab [26] specifically, � ����
� � ����0,  ��

� ! � �1 "128 

���1 ����
� 0� (where # � 0, f or m). Here, �� and  ��

�  are hyper-parameters representing the 129 

proportion of nonzero effects and the variance of the slab; these hyper-parameters were treated as 130 

unknown and given their own hyperpriors (see Methods). 131 

  132 

Local-regression. Implementing the above model with whole-genome SNPs (p ~ 600K) and 133 

very large sample size (n ~ 300K) is computationally extremely challenging. However, LD in 134 

homogeneous un-structured human populations spans over relatively short regions (R2 between 135 

allele dosages typically vanishes within 1-2 Mb; S1 Fig). Therefore, we applied LBR to long, 136 

overlapping chromosome segments (Fig. 1). Specifically, we divided the genome into “core” 137 

segments containing 1,500 contiguous SNPs (roughly 8Mb, on average), then applied the 138 

regression in equation (1) to SNPs in the core segment plus 250 SNPs (i.e., roughly 1Mb) in each 139 

flanking region, which were added to account for LD between SNPs at the edge of each core 140 

segment with SNPs in neighboring segments.  141 

 142 

Inferences. We used the BGLR [27] software to draw samples from the posterior distribution of 143 

the model parameters and used these samples to make inference about individual SNP effects 144 

including: (i) the posterior probability that the jth SNP has a nonzero effect in males (PPM��	�
) 145 

and females (PPF��	�
) and (ii) the posterior probability that the female and male effects are 146 

different (PPDiff��	�
). 147 

In regions involving multiple SNPs in strong LD, inferences at the individual-SNP level 148 

may be questionable. Therefore we borrowed upon previous work by Fernando et al. [14], 149 
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enabling us to aggregate multiple sex-specific SNP effects within relatively small regions using 150 

“window variances”. For each SNP j we defined a window j* around the SNP based on local LD 151 

patterns (see Methods). We then defined the male-specific and female-specific window variances 152 

as  
���
� � +,- ����.���

� and  
���
� � +,- ����.���

�, respectively. Here, ��� represent 153 

genotypes at SNPs within the j* window and +,-� � is the sample variance operator. Prior to 154 

model fitting, the phenotype is scaled across sexes; thus, sex-specific window variances may be 155 

interpreted as the proportion of total phenotypic variance explained by sex-specific SNP effects. 156 

From samples of sex-specific window variances, we computed the posterior probability of (i) 157 

nonzero male-specific window variance (PPM����
2 ), (ii) nonzero female-specific window variance 158 

(PPF����
2 ), and (iii) sex difference in window variances (denoted as PPDiff����2 ). 159 

 160 

Local Bayesian regressions offer improved power with lower false-discovery rates 161 

We used simulations to assess the power and false discovery rate (FDR) of LBR and to 162 

compare it with that of standard single-marker-regression (SMR). Traits were simulated using 163 

SNP genotypes from the Axiom UK-Biobank (119,190 males and 139,738 females, all distantly 164 

related Caucasians). We simulated a highly complex trait with one causal variant (CV) per ~2Mb 165 

which on average explained a proportion of the phenotypic variance equal to 3.3x10-4. Our 166 

simulation used a total of 60,000 SNPs (consisting of 6,000 consecutive SNPs taken from 10 167 

different chromosomes) and 150 CVs; on the complete human genome “scale” this corresponds 168 

to a trait with 1,500 CVs and a heritability of 0.5 (see Methods for further details). 40% of the 169 
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CVs (a total of 60 SNPs in our simulation) had differing sex-specific effects and the remaining 170 

60% (90 SNPs) had effects that were the same in males and females.  171 

 172 

Power and FDR when causal variants are genotyped. First, we analyzed the simulated 173 

phenotypes using all SNPs (including the 150 causal ones). Initially interested in inferring G×S 174 

interactions, we ranked SNPs based on LBR’s PPDiff��	�
 metric and based on SMR’s p-value 175 

for sex difference (pvalue-diff , see Methods) and used the two ranks to estimate power and FDR 176 

as a function of the number of SNPs selected (Fig 2). LBR showed consistently higher power 177 

(achieving a power of ~80% when selecting the top 50 SNPs with highest PPDiff��	�
) and lower 178 

FDR than SMR. The false discovery rate of LBR was very low when selecting the top-50 SNPs 179 

with highest PPDiff��	�
 and exhibited a very sharp phase-transition with fast increase in FDR 180 

thereafter.  181 

We also compared the two methods based on arbitrary, albeit commonly used, mapping 182 

thresholds for SMR and LBR. At PPDiff��	�  / 0.95, LBR selected an average (across simulation 183 

replicates) of 38.33 SNPs with an estimated power of 0.634 and estimated FDR of 0.007. 184 

Conversely, at pvalue-diff 0 5x10-8, SMR selected an average of 50.7 SNPs with an estimated 185 

power of 0.436 and estimated FDR of 0.451. Altogether, these results suggest that for G×S 186 

discovery, LBR offers higher power and lower FDR than SMR—the method most widely used in 187 

GWA studies—at least when G×S interactions are observed. 188 

 When trying to map SNPs that had effect in at least one sex, we used PP��	�
�189 

max 4PPM��	�
, PPF��	�

5 and p-values from an F-test (see Methods) as metrics for LBR and 190 

SMR methods, respectively. Again, LBR showed higher power with lower FDR than a standard 191 

SMR p-value (S1 Fig). At traditional mapping thresholds, LBR and SMR had similar power but 192 
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LBR achieved that power with much lower FDR; at PP��	�
/ 0.95, the average number of SNPs 193 

selected was 120.83 with an estimated power of 0.799 and estimated FDR of 0.009 while at p-194 

value ≤ 5x10-8, the number of SNPs selected was 374.56 with an estimated power of 0.794 and 195 

FDR of 0.66.  196 

 197 

Power and FDR under imperfect LD. In a second round of analyses, we removed all CVs from 198 

the panel of SNPs used in the analysis to represent a situation where CVs are not observed, and 199 

genotyped SNPs are tagging CVs at varying degrees. As before, we initially assessed the relative 200 

performance of LBR to infer segments harboring G×S interactions. Power and FDR were 201 

assessed at several resolutions: 1Mb, 500Kb and 250Kb regions around each CV. At each 202 

resolution, a discovery was considered true if the finding laid within a segment harboring a G×S 203 

CV.  Power and FDR were computed at different thresholds (PPDiff��	�
and  PPDiff

��

�  for LBR 204 

and pvalue-diff for SMR; Fig 3). When using a 1Mb target area—such that correct G×S 205 

discoveries must be within 500Kb on either side of a true G×S event—PPDiff

��
�  thresholds 206 

(LBR’s window-based metrics) provided highest power within an FDR range of 0-0.3, thereafter 207 

SMR provided slightly higher power. As expected, when removing CVs, power was estimated to 208 

be much lower than when CVs were observed; at PPDiff

��
� / 0.95, the estimated power and 209 

FDR were 0.454 and 0.004, respectively, while at pvalue-diff 0 5x10-8, estimated power and 210 

FDR were 0.22 and 0.006. As seen in Fig 3, when considering a finer resolution (500Kb and 211 

250Kb) the performance of both LBR-based approaches was more robust than SMR. Altogether 212 

this indicates that for the discovery and mapping of unobserved G×S interactions, LBR’s 213 

window-based metric provides higher power with equivalent FDR and finer resolution than 214 

single-marker regression methods. 215 
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 To infer segments containing CVs that affect at least one sex, we again used LBR to 216 

decide whether either sex-specific effect was nonzero at the level of individual SNPs or 217 

windows. Using a 1MB target area, LBR’s window-based metrics provided the highest power 218 

within an FDR range of 0-0.025. When decreasing the target area, LBR provided the highest 219 

power over larger FDR ranges (S2 Fig).  220 

 221 

For real human traits, many newly discovered G×S interactions show relatively small sex-222 

specific effects 223 

We analyzed four complex human traits (height, BMI, BMD, and WHR) measured 224 

among ~259,000 distantly related Caucasians from the UK Biobank (~119,000 males and 225 

~140,000 females). For each trait, we fit the LBR model (eq. 1) across the entire autosome 226 

consisting of 607,497 genotyped SNPs using 417 overlapping segments (Fig. 1) and obtained 227 

evidence of G×S interactions at the level of SNP j and window j*.   228 

To compare both the magnitude and sign of sex-specific SNP effects, we plotted each 229 

�6��
  against �6��

 (Fig 4a). The trait was scaled across sexes prior to model fitting; thus, male- and 230 

female- specific effects were not constrained to the same scale. In this way, one might expect 231 

male-specific SNP effects to uniformly differ from female-specific SNP effects by a 232 

multiplicative factor if the variance of the phenotype is different between sexes (sample statistics 233 

within each sex are provided within S1 Table). Surprisingly, we did not observe evidence of sex-234 

specific SNP effects uniformly differing due to differences in phenotypic scale; for height, BMD, 235 

and BMI, as seen in Fig. 4a, most large effect SNPs lie near the blue diagonal line. For WHR, we 236 

observed largely consistent results from prior studies [21–23]: namely the prevalence of 237 
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numerous SNPs with relatively large effects in females but little to no effect in males. No traits 238 

exhibited evidence of any SNPs with (i) high confidence male- and female- specific effects (no 239 

SNPs with PPM��	�
/ 0.9 and PPF��	�

/ 0.9) and (ii) differing signs between sexes. 240 

We then aggregated sex-specific SNP effects within small LD-based regions to estimate 241 

sex-specific window variances  
���
�  and  
���

�  and compared the magnitude of each (Fig 4b). 242 

Interestingly for traits such as height, many large effect regions bear slightly larger window 243 

variances for males than for females. This was not observed at the single SNP level, suggesting 244 

that many regions bearing numerous small effect SNPs produce aggregate effects that are 245 

potentially larger (although not reaching a PPDiff��
��

2 / 0.9 threshold) in males than in females. 246 

One example is the GDF5 locus, previously known to strongly associate with adult height [28], 247 

where a peak PPDiff


��
�  signal centered on rs143384 had slightly different estimated sex-specific 248 

window variances ( 7
���

� � 3.0x10-3 and  7
�
��

� = 2.6x10-3) but weak evidence of a G×S interaction 249 

(PPDiff


��
� � 0.544). For BMD, several large effect regions show suggestive evidence of G×S 250 

interactions including the AKAP11 locus and the CCDC170 locus (PPDiff


��
� = 0.856 and 0.745, 251 

respectively), both previously associated with bone mineral density [29–32].  252 

To make G×S inferences at the level of window variances irrespective of the magnitude 253 

of sex-specific effects, we adopted a PPDiff


��
�  threshold of 0.9, which in simulations (Fig 3) 254 

provided optimal power at an estimated FDR of 0.029 when using a 1MB target area. For height, 255 

a total of eight distinct regions possessed a PPDiff


��
�  ≥ 0.9, two of which possessed a PPDiff

��

�  256 

≥ 0.95. For BMI, 5 distinct regions possessed a PPDiff

��
�  ≥ 0.9 with none reaching a more 257 

stringent PPDiff

��
�  ≥ 0.95 threshold, and none overlapping with two previously suggested BMI 258 
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G×S SNPs [33]. As seen in Fig 4C, inferred G×S interactions for height and BMI possess 259 

relatively small sex-specific window variances; as an example, for height, the window centered 260 

on SNP rs1535515 (near LRRC8C) had a PPDiff��
��

2 = 0.96, while �7
���

� � 2.1x10-5 and �7
�
��

� = 261 

1.1x10-4. For BMD, seven regions reached a 0.9 PPDiff


��
� threshold while one higher-262 

confidence G×S interaction (PPDiff


��
�  ≥ 0.95) was detected within ABO, the gene controlling 263 

blood type. 264 

For WHR, roughly 45 distinct genomic regions possessed a PPDiff


��

� ≥ 0.9, while 34 of 265 

these possessed a PPDiff


��

� ≥ 0.95. We found many previously detected G×S interactions known 266 

to associate with WHR or a related trait, WHR adjusted for BMI (WHRadjBMI) [21–24]. These 267 

included interactions at LYPLAL1, MAP3K1, COBLL1, RSPO3, and VEGFA among others. We 268 

also detected numerous novel G×S interactions (Table 1) near physiologically intriguing genes 269 

such as the estrogen receptor gene ESR1 and the ATP binding cassette transporter A1 gene 270 

ABCA1 known to play a role in HDL metabolism (PPDiff


��
� ≥ 0.95). As seen in Table 1, both 271 

novel signals possessed a high-confidence female-specific effect with weak evidence for a male-272 

specific effect (PPF


��

� ≥ 0.95; PPM


��
� ≤ 0.6), however the magnitude of the female-specific 273 

effect was relatively small (�7
�
��

� 0 1.4x10-4).  As evident from Table 1, most novel WHR G×S 274 

interactions detectable with LBR are those with relatively small sex-specific effects. 275 

 276 

 277 

 278 

 279 
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 280 

Table 1. G×S interactions inferred through sex-specific window variances. Listed are loci 281 
with at least 0.95 posterior probability that sex-specific window variances differ. The table is 282 
sorted first by trait, then by magnitude of the female-specific window variance. Results are 283 
filtered such that each window listed consisted of a distinct set of SNPs. A full list of all G×S 284 
signals at a PPDiff

��

� ≥ 0.90 threshold is provided in S2 Table. 285 

Focal SNPa trait ����
��

� b 
����

��

� b 
PPM����

�  PPF����
�  PPDiff����

�  Nearest genec location eQTLd 

rs8176719 BMD 0.06000 0.00182 1.000 0.794 1.000 ABO exon/frameshift yes 
rs1535515 height 0.00211 0.01170 0.819 0.999 0.956 LRRC8C intron yes 
rs1544926 height 0.00763 0.00035 0.983 0.418 0.955 COL23A1 UTR-3 yes 
rs6905288 WHR 0.00567 0.22200 0.920 1.000 1.000 VEGFA downstream  

rs72961013 WHR 0.03260 0.18100 1.000 1.000 1.000 RSPO3 downstream  
rs1128249 WHR 0.00132 0.10700 0.614 1.000 1.000 COBLL1 intron yes 

rs12022722 WHR 0.00080 0.07180 0.490 1.000 1.000 LYPLAL1 downstream yes 
rs1776897 WHR 0.00870 0.06140 0.976 1.000 0.950 HMGA1 upstream yes 

rs11057401 WHR 0.00438 0.06030 0.846 1.000 1.000 CCDC92 exon/missense yes 
rs17777180 WHR 0.00031 0.05950 0.291 1.000 1.000 CMIP intron yes 
rs4607103 WHR 0.00195 0.05920 0.809 1.000 1.000 ADAMTS9-AS2 intron yes 
rs6937293 WHR 0.00457 0.04660 0.839 1.000 1.000 LOC728012 downstream yes 

rs16861373 WHR 0.00066 0.04300 0.389 1.000 0.995 PLXND1 intron  
rs73068463 WHR 0.00068 0.04220 0.461 1.000 1.000 SNX10 intron yes 
rs9376422 WHR 0.00107 0.04180 0.524 1.000 1.000 LOC645434 upstream  
rs6867983 WHR 0.00192 0.03820 0.440 1.000 0.998 MAP3K1 upstream  
rs2171522 WHR 0.00241 0.03650 0.561 1.000 0.998 ITPR2 downstream yes 
rs3810068 WHR 0.00026 0.03590 0.174 1.000 1.000 EMILIN2 upstream yes 
rs568890 WHR 0.00129 0.03110 0.809 1.000 1.000 NKX2-6 upstream yes 
rs1332955 WHR 0.00647 0.02940 0.970 1.000 0.973 LOC284688 downstream yes 

rs13133548 WHR 0.00019 0.02400 0.175 0.969 0.956 FAM13A intron yes 
rs11263641 WHR 0.00207 0.02340 0.723 1.000 0.991 MYEOV downstream yes 
rs2800999 WHR 0.00201 0.02220 0.691 1.000 0.979 TSHZ2 intron  
rs2244506 WHR 0.00101 0.02070 0.453 0.998 0.985 MIR5694 downstream  
rs7259285 WHR 0.00182 0.01710 0.767 1.000 0.989 HAUS8 downstream yes 
rs4450871 WHR 0.00002 0.01680 0.027 1.000 1.000 CYTL1 downstream  
rs4080890 WHR 0.00153 0.01630 0.594 0.999 0.975 KCNJ2 downstream  
rs4684859 WHR 0.00039 0.01570 0.330 0.998 0.994 PPARG downstream  
rs7704120 WHR 0.00049 0.01370 0.476 0.998 0.991 STC2 downstream  
rs10991417 WHR 0.00048 0.01230 0.339 0.986 0.966 ABCA1 intron yes 
rs12454712 WHR 0.00087 0.01020 0.360 0.996 0.965 BCL2 intron yes 
rs62070804 WHR 0.00004 0.00887 0.052 0.969 0.961 ABHD15 exon/missense yes 
rs10760322 WHR 0.00027 0.00812 0.282 0.986 0.968 LHX2 downstream  
rs1361024 WHR 0.00022 0.00760 0.203 0.982 0.962 ESR1 intron  
rs1358503 WHR 0.00021 0.00716 0.309 0.989 0.966 SEMA3C upstream yes 
rs13156948 WHR 0.00016 0.00660 0.079 0.970 0.957 IRX1 downstream  
rs12432376 WHR 0.01740 0.00074 1.000 0.552 0.994 STXBP6 upstream  
a Focal SNP is defined as the center SNP j in window j*. 286 
b Male- and female-specific window variances, expressed as a percentage.  287 
c Nearest gene and location identified through Axiom UKB WCSG annotations, release 34. The 288 
gene/locus is bold if it has been previously detected as a G×S interaction for WHR or WHR 289 
adjusted for BMI [21–24]. 290 
dIf “yes”, the focal SNP is significantly associated with gene expression in at least one tissue, 291 
according to GTEx V7. 292 
 293 

Additionally, we utilized a traditional SMR approach (see Methods) for the discovery of 294 

G×S interactions among traits to compare pvalue-diff signals to PPDiff��
��

2  signals (S3 Fig). At 295 
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pvalue-diff  ≤ 5x10-8, there were no genome-wide significant G×S-interacting SNPs for height, 296 

one significant SNP for BMI nearby a window with PPDiff��
��

2 � 0.9, and one significant peak 297 

within ABO for BMD (the same signal detected using PPDiff����2 ). Regions with a PPDiff��
��

2 ≥ 0.9 298 

generally coincided with at least nominally-significant pvalue-diff signals; for height and BMD, 299 

regions with PPDiff��
��

2 ≥ 0.9 also possessed a peak SNP with pvalue-diff ≤ 0.01. For BMI, 300 

PPDiff����2 ≥ 0.9 signals possessed a peak SNP of pvalue-diff ≤ 0.1. This, together with the fact 301 

that novel G×S interactions found using LBR possess relatively small sex-specific effects, 302 

suggests that LBR may be detecting G×S interactions that are otherwise missed due to low 303 

power. Lastly for WHR, most of the high-confidence PPDiff��
��

2 ≥ 0.9 signals coincided with clear 304 

and obvious pvalue-diff peaks. 305 

 306 

Inferred G×S interactions are enriched in tissue-specific eQTL 307 

 As seen previously, many G×S interactions inferred using LBR have exceedingly small 308 

sex-specific effects. To further investigate whether G×S detections using the PPDiff

��
� metric 309 

may be functionally relevant, we inferred whether such signals are enriched in eQTL identified 310 

from GTEx. Specifically, using a hypergeometric test we asked whether PPDiff


��
� -selected 311 

focal SNPs (SNP j within window j*) were enriched in eQTL, then compared to eQTL 312 

enrichment from pvalue-diff-selected SNPs as a function of the number of SNPs selected (S4 313 

Fig). PPDiff


��
� -selected focal SNPs showed consistently higher eQTL enrichment than pvalue-314 

diff-selected SNPs for all traits except WHR. For instance, at PPDiff


��
�  ≥ 0.9, the total number 315 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2019. ; https://doi.org/10.1101/653386doi: bioRxiv preprint 

https://doi.org/10.1101/653386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

of windows (focal SNPs) selected was 36, 264, 34, and 13, for height, WHR, BMD, and BMI, 316 

respectively. With these selections, eQTL enrichment p-values were 2.39x10-4, 1.52x10-12, 317 

2.01x10-12, and 8.33x10-4, for height, WHR, BMD, and BMI, respectively. When selecting the 318 

same number of SNPs using pvalue-diff, enrichment p-values were 2.25x10-2, 1.56x10-28, 319 

5.54x10-8, 1.93-1, for height, WHR, BMD, and BMI, respectively.  320 

To provide more information about how genetic regions bearing G×S interactions may 321 

impact gene expression in specific tissues, we determined whether focal SNPs at PPDiff

��
�  ≥ 0.9 322 

are enriched in tissue-specific eQTL (Fig. 5). For height, BMD, and WHR, such SNPs showed 323 

significant eQTL enrichment in at least one tissue, using a conservative bonferroni corrected 324 

enrichment p-value of 2.6x10-4 (correcting for 192 tests in total; 48 tissues and 4 traits). 325 

Interestingly, BMD’s G×S signals are very strongly enriched in eQTL with associated eGenes 326 

(including ABO and CYP3A5) expressed in the adrenal gland, among other tissues. For height, 327 

we observed small enrichment p-values across many tissues since G×S focal SNPs are enriched 328 

in eQTL with associated eGenes (including LOC101927975 and CNDP2) expressed across many 329 

tissues. Lastly for WHR, we observed G×S detections to be heavily enriched in eQTL with 330 

associated eGenes expressed in fibroblast, adipose, and skin tissues.  331 

 332 

Discussion 333 

We have investigated the degree to which sex-specific genetic architectures differ at local 334 

regions, using large biobank data (N ~ 119,000 males and ~140,000 females) and Bayesian 335 

multiple regression techniques that estimate sex-specific marker effects accounting for local LD 336 

patterns. The flexibility of the Bayesian approach enables multi-resolution inference of sex-337 

specific effects: from individual SNP effects to window-variances that aggregate SNP effects 338 
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within chromosome segments. These inferences can be drawn all using the results of the same 339 

model fit (eq. 1) but different post-processing of samples of SNP effects from the posterior 340 

distribution.  341 

The Bayesian multiple regression technique performed in this study, along with 342 

estimation of window variances, was largely inspired by Fernando et al. [14]. In that study, 343 

windows were defined using disjoint, fixed intervals. In contrast, for each SNP we define a 344 

window based on local LD patterns, resulting in heavily overlapping, dynamically sized 345 

windows. The methods presented here also bear resemblance to those of Vilhjálmsson et al. [18], 346 

which utilized point-normal priors to estimate human SNP effects after accounting for local LD 347 

patterns. In that study, posterior means of SNP effects were estimated for the purposes of 348 

prediction while in this study, we numerically derive the full posterior distribution, allowing for 349 

inference of non-null SNP effects and window variances. 350 

Through simulations, we showed that local Bayesian regressions (LBR) provide superior 351 

power and precision to detect causal variants and those specifically bearing G×S interactions. We 352 

rationalize improvements in power upon traditional SMR methods by noting that the magnitude 353 

of a typical causal variant or G×S interaction is exceedingly small and can elude hypothesis 354 

testing partly due to the burden of multiple test correction. We also note that the resolution (peak 355 

size) in SMR signals is relatively large when using large sample sizes (due to not fully 356 

accounting for local LD patterns). To overcome this problem, we provided evidence that LBR 357 

methods—either by estimating true marker effects or by aggregating true marker effects within 358 

relatively small regions—can achieve improved resolution when working with large sample sizes 359 

such as biobank-level data. 360 
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When using LBR to analyze real human traits, we have provided credence to our 361 

posterior probability-based discoveries by determining that LBR-detected G×S interactions are 362 

generally more enriched in eQTL than SMR-detected interactions. For BMD, we provided new 363 

evidence that sex-specific effects differ within ABO and that G×S interactions are highly 364 

enriched in adrenal gland-specific eQTL. This encourages the hypothesis that some G×S are 365 

eQTL that may modulate gene expression in the adrenal gland, with gene function dependent on 366 

the presence or absence of sex hormones. This was also an intriguing finding given that ABO 367 

blood groups have been known to associate with osteoporosis and osteoporosis severity [34,35]. 368 

For WHR, we detected previously known, large-magnitude G×S interactions that were 369 

discovered using WHR or WHRadjBMI [21–24], but additionally discovered novel, small 370 

magnitude G×S interactions near such genes as ESR1 and ABCA1. In a previous work analyzing 371 

WHRadjBMI, ABCA1 showed a significant female-specific genetic effect only, however the test 372 

for G×S interaction failed to reach significance [24]. 373 

For traits like height and BMI, large effect loci are estimated to have very similar effects 374 

between males and females and loci with evidence of G×S interactions were those possessing 375 

relatively small sex-specific effects. As seen in Fig 4B, many relatively large window variances 376 

for height are estimated to be slightly higher for males than for females albeit not reaching a 377 

PPDiff


��
� / 0.9 threshold. This is consistent with the fact that the global genomic variance for 378 

height was estimated to be higher in males than in females in a previous study using the interim 379 

release of the UK Biobank [4]. Similarly, the same prior study estimated the global genomic 380 

variance of BMI to be higher in females than in males and we observe, if anything, evidence of 381 

sex-specific window variances leading to the same conclusion. These observations may 382 

potentially indicate that relatively large causal variants have slightly different sex-specific effects 383 
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for traits like height and BMI, however, if that is the case we are still underpowered to 384 

confidently detect such interactions. 385 

It is important to acknowledge that while the methods presented here appear useful to 386 

decipher sex-specific genetic architectures from large human samples, additional work will be 387 

required to determine how these techniques may infer heterogeneous genetic effects in other 388 

contexts (other types of gene-by-covariate interactions), or when using different sample sizes or 389 

samples from different populations.  With large sample sizes, the increased power and flexibility 390 

of the LBR comes with the cost of a significantly larger computational burden than the one 391 

involved in the traditional SMR approach; however, working with large datasets can be made 392 

manageable by adjusting size of each fitted segment (Fig 1) and parallel processing the fitting of 393 

each segment. Alternatively, LBR may be used as a follow up to traditional SMR tests, using 394 

pre-selected regions of interest. Another limitation inherent to aggregating SNP effects using 395 

window variances is that the sign of the effect is lost. In this way, when inferring G×S 396 

interactions through window variance differences, we cannot comment on whether sex-specific 397 

effects had the same sign or differing signs.  398 

 To conclude, we have demonstrated the powerful and flexible use of local Bayesian 399 

regressions for GWA to infer sex-specific genetic effects and G×S interactions using the UK 400 

Biobank. This was largely done by showing various means to utilize estimates of true 401 

(accounting for local LD), sex-specific SNP marker effects for GWA even when causal variants 402 

are not on the SNP panel for analysis. We anticipate that many more traits will be analyzed with 403 

this method to increasingly learn more about what is contributing to differences between males 404 

and females in human populations. 405 

 406 
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Methods 407 

Genotype data 408 

Individuals from the UK Biobank [36] were genotyped using the custom UK Biobank 409 

Axiom Array (http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/) containing 410 

~800,000 SNPs. SNP quality control proceeded with the Caucasian cohort (N = 409,700); SNPs 411 

with a minor allele frequency < 0.01 and missing call rate > 0.05 were removed. SNPs from sex 412 

chromosomes and the mitochondrial chromosome were not considered in this study, resulting in 413 

607,497 autosomal SNPs. Individuals with coefficient of relatedness of 0.03 or greater were 414 

removed from analysis, resulting in 258,928 distantly related genotyped individuals for use in 415 

this study. 416 

 417 

Phenotype data  418 

All phenotypic data was collected using baseline measurements of UK Biobank 419 

participants. For height, the description “Standing height” from the UK Biobank was used. 420 

Individuals with heights (cm) less than 147 or more than 210 were removed from analysis. For 421 

BMD, the descriptions “Heel bone mineral density (BMD)”, “Heel bone mineral density (BMD) 422 

(left)”, and “Heel bone mineral density (BMD) (right)” were used in conjunction; for individuals 423 

with missing “Heel bone mineral density (BMD)” records, either the (left), the (right), or if 424 

available, the average between (left) and (right) was used. For BMI, the description “Body mass 425 

index (BMI)” was used and for WHR, the ratio of "Waist circumference” to “Hip circumference” 426 

was used. Prior to model fitting, all traits were pre-corrected for sex, age, batch, genotyping 427 

center, and the first 5 principle components derived from genomic data. The adjusted phenotypes 428 
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consisted of least-squares residuals from a model that included the effects listed above. For each 429 

trait, sample sizes and within-sex summary statistics are provided in S1 Table. 430 

 431 

LBR hyperparameters  432 

Hyperparameters used in the LBR model (eq. 1) were error variances for each sex, the 433 

proportion of nonzero effects for each SNP effect component, and the variances of nonzero 434 

effects for each SNP effect component � �
� ,  �

�, ��, ��, ��,  ��
� ,  ��

� ,  ��
� �.  Variances (of either 435 

SNP effect components or sex-specific errors) were given a scaled-inverse Chi-square prior, 436 

parameterized by a degree of freedom parameter df (set to 5) and scaling parameter S. S is set 437 

according to built-in rules of the BGLR package using a prior model R-squared of 0.03 for main 438 

effects and 0.01 for the sex-interaction terms. More detail on how the scale parameter S is 439 

calculated can be found in Perez and de los Campos, 2014 [27]. �� was given a beta prior with 440 

shape parameters 8 � 2 and � � 2. An example of how to implement LBR (eq. 1) using BGLR 441 

with the above hyperparameter specifications is provided at https://github.com/funkhou9/LBR-442 

sex-interactions. 443 

 444 

Inference using post-processing of posterior samples 445 

BGLR uses Markov chain Monte Carlo (MCMC) to sample from the posterior 446 

distribution of sex-specific effects. For each MCMC sample we derived male and female effects 447 

using ���
��
� ���
��

� ���
��
 and ���
��

� ���
��
� ���
��

, where s = 1,…, 4,350  indexes MCMC 448 

samples. Here, results were obtained using three separate MCMC chains. Each chain was 449 
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obtained using 3,400 MCMC samples; the first 500 samples were discarded as burn-in and the 450 

remaining samples where thinned by an interval of 2, leading to 1,450 samples per chain.  451 

Estimates of sex-specific SNP effects (�6��
 and �6��

) were obtained from their posterior 452 

means. We estimated the posterior probability of a female-specific non-zero SNP effect using 453 

PPF��	�
� max 4Pr ����

: 0 | <� , Pr ����
= 0 | <�5, where < represents the observed data. 454 

This was done by counting the proportion of ���
 samples above zero and below zero. This was 455 

repeated for inferring the male-specific SNP effect. The posterior probability of sex-difference at 456 

individual SNP-effects was estimated using PPDiff��	�
� max 4Pr ����

: ���
 | <� , Pr ����

=457 

���
 | <!5 where again these probabilities were estimated using the corresponding frequencies 458 

from the posterior distribution samples. 459 

For each MCMC sample we also aggregated SNP effects within window j* using  460 

>���
��
� ���.���
��

 and >���
��
� ���.���
��

. For this calculation we used a common genotype 461 

matrix ���  consisting of all N male and female genotypes to avoid differences in additive genetic 462 

values arising from allele frequency differences between males and females occurring by random 463 

sampling. Samples of sex-specific window variances were obtained using the sample variance: 464 

 
���
��

� � �� " 1 ��� ∑ �@����
��
" @A���
��

��
�
���  and  
�

��
��

� � �� " 1 ��� ∑ �@����
��
"�

���465 

@A���
��!�. Estimates of sex-specific window variances were obtained from their posterior means. 466 

Inferring sex-specific window variances was done by estimating PPM


��

� � Pr B 

�

���
: 0 | <C 467 

and PPF


��
� � Pr B 


�

���
: 0 | <C and inferring a G×S interaction at window j* was done by 468 

estimating: 469 
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PPDiff����
2 � max

	




�Pr� �

2

m
��

"  �
2

f
��

: D��  | <
 ,
Pr� �

2

m
��

"  �
2

f
��

= D��  | <
 ��
��
�
, 

where D��  was used to exert judgment about how different sex-specific window variances must be 470 

to declare a meaningful G×S interaction. Here, D��  was one-tenth of the mean of all posterior 471 

samples of  

�

���
 and  


�

���
. Functions to process posterior samples to estimate and infer non-null 472 

sex-specific effects and G×S interactions is provided at https://github.com/funkhou9/LBR-sex-473 

interactions. 474 

 475 

Defining local, LD-based windows 476 

 To define SNPs contained within window j*, a region of LD centered on SNP j, we 477 

collected all SNP E� immediately surrounding SNP j for which FG-�H� , H��!� / 0.1. We allowed 478 

up to two consecutive SNPs in which FG-�H� , H��!� = 0.1 to allow for potential mapping errors 479 

or other unexplained instances where LD with SNP j dips only briefly. The function 480 

getWindows(), which provides windows given a genotype matrix X, is provided in 481 

https://github.com/funkhou9/LBR-sex-interactions. 482 

 483 

Single marker regression 484 

 We also performed single-marker regression analyses using following model: 485 

�����

� � �������

� � IH��H��

J �� � 4H��
 5 �����
� �����

�. 
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As with the LBR model (eq. 1), we assume sex-specific errors are distributed normally with zero 486 

mean and sex-specific variances. SNP effects and interactions were estimated using weighted 487 

least squares. To test for a G×S interaction at SNP j, a t-test is used: �6����
KL��6����

!M N D���. 488 

The p-value from such a test is referred to as pvalue-diff. To test for any association (either 489 

among males, females, or both), we used an F-test, comparing a restricted model: 4��
��

5 �490 

4���
���

5 � 4��
��

5 against the unrestricted model: 4��
��

5 � 4���
���

5 � I���
���

J �� � 4���

�
5 �����

� 4��
��

5.  491 

 492 

Simulations 493 

Simulated traits were developed using 60,000 genotyped SNPs (the first 6,000 SNPs from 494 

the first ten chromosomes) from 119,190 males and 139,738 females. Using these SNP 495 

genotypes, each trait was simulated as follows: 496 

1. A total of 150 causal variants (CVs) were randomly sampled from 60,000 SNPs. 497 

• Let O� � �P���
�

���,���

�����!,�!� ,#��$�
 and O� � �P���

�
���,���

�����!,%�&,#��$�
 denote 498 

matrices of male and female genotypes at sampled CVs. 499 

2. Additive CV effect sizes were randomly sampled from the gamma distribution. 90 500 

CVs (those with homogenous effects) were sampled from Gamma�# � 10, R �501 

 1� and were made negative with a probability of 0.5. Of the 60 CVs with 502 

differing sex-specific effects, 30 had nonzero effects in both sexes but with 503 

deferring magnitudes: at random one sex’s effects were sampled from 504 

Gamma�# � 5, R �  1� and the other from Gamma�# � 20, R �  1�. For the 505 
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remaining 30 CVs, at random one sex’s effects were exactly zero while the other 506 

sex’s effects were sampled from Gamma�# � 10, R �  1�. 507 

• Let U� � �V��
�

���

#��$�
 and U� � �V��

�
���

#��$�
 denote vectors of male-specific 508 

and female-specific CV effects, respectively, for all 150 CVs. 509 

3. Error variances for males  '�
�  and females  '�

�  were adjusted such that the 510 

proportion of phenotypic variance explained by all QTL is 0.05 for both males 511 

and females (on the complete genome scale this corresponds to a heritability of 512 

about 0.5).  513 

• Let W��
N ��0,  '�

� ! and W��
N ��0,  '�

� ! denote residual error for the X() 514 

male and X() female. 515 

4. Male traits Y� � �Z��
�

���

�����!,�!� 
 and female traits Y� � �Z��

�
���

�����!,%�&
 were 516 

simulated from a linear combination of QTL genotypes plus a residual error: 517 

Y� � O�U� � [� and Y� � O�U� � [� 518 

5. Steps 1-4 are repeated for 30 Monte Carlo replicates.  519 
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 634 

Supporting information 635 

S1 Fig. LD statistics across distances. 636 

S2 Fig. Estimated power and false-discovery rate for discovering observed SNPs with 637 

effects in at least one sex. Estimated power (left) and FDR (right) shown as a function of the 638 

number of SNPs selected. Each point represents a sample average and error bars represent 95% 639 

confidence intervals, each derived using 30 Monte Carlo replicates. LBR (SNP): local Bayesian 640 

regression, utilizing PP��	�
. SMR: single-marker regression, utilizing the F-test-based p-value. 641 

S3 Fig. Power vs false-discovery rate for discovering genomic regions containing masked 642 

causal variants. Here power is defined as the expected proportion of causal variants that are 643 

being tagged by at least one selected SNP j or window j*. False discovery rate is defined as the 644 

proportion of selected SNPs or windows that are not tagging any causal variants. Each point is an 645 

estimate and error bars for both axes represent 95% confidence intervals. Point estimates and 646 

intervals were derived using 30 Monte Carlo replicates. Each facet corresponds to a different 647 

“target area”, a fixed width around each causal variant that defines the set of SNPs effectively 648 

tagging it. LBR (SNP): uses the PP��	�
 metric spanning 1-0. LBR (Window): uses the maximum 649 
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between PPM


��

�  and PPF


��
�  spanning 1-0. SMR: uses the F-test-based p-value spanning (on 650 

the -log10 scale) 30-0. 651 

S4 Fig. Comparison between SMR and LBR for discovering G×S interactions. Manhattan 652 

plot showing pvalue-diff for each analyzed SNP. SNPs are colored yellow if they were focal 653 

SNPs with a PPDiff��
��

2  ≥ 0.9 and colored red if they were focal SNPs with a PPDiff��
��

2  ≥ 0.95. 654 

The dashed horizontal lines denote p-diff thresholds of 1x10-5 and 5x10-8.  655 

S5 Fig. eQTL enrichment as a function of the number of SNPs selected. LBR (Window): 656 

uses the PPDiff��
��

2  metric. SMR: uses the pvalue-diff metric. 657 

S1 Table. Sex-specific phenotype statistics. Height units: cm, BMD units: g/cm2, BMI units: 658 

Kg/m2. 659 

S2 Table. Inferred G×S interactions using sex-specific window variances. Listed are all 660 

windows with a PPDiff��
��

2  ≥ 0.9. 661 

 662 
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Fig 1. Strategy for implementing local Bayesian regressions genome-wide. The phenotype is 672 

regressed upon multiple sequential SNPs using a sliding window approach. The core region 673 

contained 1500 SNPs (roughly 8Mb, on average) and each buffer region contained 250 SNPs 674 

(roughly 1Mb, on average). Core parameters (posterior samples) are stitched together, then sex-675 

specific effects and G×S interactions are inferred at the level of SNP j and window j*. 676 

Fig 2. Estimated power and false-discovery rate for discovering observed SNPs with G×S 677 

interactions. Shown as a function of the number of SNPs selected. Each point represents a 678 

sample average and error bars represent 95% confidence intervals, each derived using 30 Monte 679 

Carlo replicates. LBR (SNP): local Bayesian regression, utilizing PPDiff��	�
. SMR: single-680 

marker regression, utilizing pvalue-diff. 681 

Fig 3. Power vs false-discovery rate for discovering genomic regions containing masked 682 

G×S interactions. Here power is defined as the expected proportion of G×S interactions that are 683 

being tagged by at least one selected SNP j or window j*. False discovery rate is defined as the 684 

expected proportion of selected SNPs or windows that are not tagging any G×S interactions. 685 

Each point is an estimate and error bars for both axes represent 95% confidence intervals. Point 686 

estimates and intervals were derived using 30 Monte Carlo replicates. Each facet corresponds to 687 

a different “target area”, a fixed width around each G×S interaction that defines the set of SNPs 688 

effectively tagging it. LBR (SNP): uses the PPDiff��	�
 metric spanning 1-0. LBR (Window): 689 

uses the PPDiff


��
�  metric spanning 1-0. SMR: uses the pvalue-diff metric spanning (on the -690 

log10 scale) 8-0. 691 

Fig 4. Comparing sex-specific genetic effects. (A) Plot of estimated female SNP effects against 692 

estimated male SNP effects for all 607,497 genotyped autosomal SNPs. Points are colored by 693 

their posterior probability of sex difference at the level of individual SNPs. (B) Plot of estimated 694 
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female window variances against estimated male window variances for all 607,497 LD-based 695 

windows, with each window j* centered on a different focal SNP j. Points are colored by their 696 

posterior probability of sex difference at the level of window variances. (C) Miami-like plot 697 

depicting location and magnitude of G×S interactions identified through sex-specific window 698 

variances. For each trait, showing estimated male window variance above the x-axis and 699 

estimated female window variance below the x-axis. Vertical lines denote changing 700 

chromosomes. A sample of windows is labeled with nearest gene annotation, obtained from 701 

Axiom UKB WCSG annotations, release 34. Gray labels indicate nearest genes with relatively 702 

large window variances evidently shared across sexes, while red labels indicate nearest genes 703 

with detected G×S interactions. 704 

Fig 5. Evidence that LBR-identified G×S interactions are enriched in tissue-specific eQTL. 705 

Plotted on the x-axis is the p-value obtained from a hypergeometic test providing evidence that 706 

focal SNPs selected using PPDiff


��
� / 0.9 are enriched in tissue-specific eQTL. The dashed line 707 

represents a Bonferroni corrected significance threshold of 2.6x10-4. 708 

 709 
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