

1

2 Deciphering sex-specific genetic architectures using local Bayesian regressions

3

4 Scott A Funkhouser^{1¶}, Ana I Vazquez², Juan P Steibel³, Catherine W Ernst³, Gustavo de los
5 Campos^{2*¶}

6

7 ¹Genetics Graduate Program, Michigan State University, East Lansing, Michigan, United States

8 ²Departments of Epidemiology & Biostatistics and Statistics & Probability, Institute for
9 Quantitative Health Science and Engineering, Michigan State University, East Lansing,
10 Michigan, United States

11 ³Department of Animal Science, Michigan State University, East Lansing, Michigan, United
12 States

13

14 * Corresponding author

15 E-mail: gustavoc@msu.edu

16

17 ¶These authors contributed equally to this work.

18 Abstract

19 Many complex human traits exhibit differences between sexes. While numerous factors
20 likely contribute to this phenomenon, growing evidence from genome-wide studies suggest a
21 partial explanation: that males and females from the same population possess differing genetic
22 architectures. Despite this, mapping gene-by-sex (G×S) interactions remains a challenge likely
23 because the magnitude of such an interaction is typically and exceedingly small; traditional
24 genome-wide association techniques may be underpowered to detect such events partly due to
25 the burden of multiple test correction. Here, we developed a local Bayesian regression (LBR)
26 method to estimate sex-specific SNP marker effects after fully accounting for local linkage-
27 disequilibrium (LD) patterns. This enabled us to infer sex-specific effects and G×S interactions
28 either at the single SNP level, or by aggregating the effects of multiple SNPs to make inferences
29 at the level of small LD-based regions. Using simulations in which there was imperfect LD
30 between SNPs and causal variants, we showed that aggregating sex-specific marker effects with
31 LBR provides improved power and resolution to detect G×S interactions over traditional single-
32 SNP-based tests. When using LBR to analyze traits from the UK Biobank, we detected a
33 relatively large G×S interaction impacting bone-mineral density within *ABO* and replicated many
34 previously detected large-magnitude G×S interactions impacting waist-to-hip ratio. We also
35 discovered many new G×S interactions impacting such traits as height and BMI within regions
36 of the genome where both male- and female-specific effects explain a small proportion of
37 phenotypic variance ($R^2 < 1 \times 10^{-4}$), but are enriched in known expression quantitative trait loci.
38 By combining biobank-level data and techniques to estimate sex-specific SNP effects after
39 accounting for local-LD patterns, we are providing evidence that numerous small-magnitude
40 G×S interactions exist to influence sex differences in a variety of complex traits.

41 **Author Summary**

42 Many complex human traits are known to be influenced by an impressive number of
43 causal variants each with very small effects, posing great challenges for genome-wide
44 association studies (GWAS). To add to this challenge, many causal variants may possess
45 context-dependent effects such as effects that are dependent on biological sex. While GWAS are
46 commonly performed using specific methods in which one single nucleotide polymorphism
47 (SNP) at a time is tested for association with a trait, alternatively we utilize methods more
48 commonly observed in the genomic prediction literature. Such methods are advantageous in that
49 they are not burdened by multiple test correction in the same way as traditional GWAS
50 techniques are, and can fully account for linkage-disequilibrium patterns to accurately estimate
51 the true effects of SNP markers. Here we adapt such methods to estimate genetic effects within
52 sexes and provide a powerful means to compare sex-specific genetic effects.

53

54 **Introduction**

55 Sex differences are widespread in nature, observed readily among many human traits and
56 diseases. For quantitative traits, sex may affect the distribution of phenotypes at various levels,
57 including mean-differences between genetic males and genetic females (hereafter referred to as
58 males and females, respectively) as well as differences in variance. Sex differences are likely due
59 to a myriad of factors including differential environmental exposures, unequal gene dosages for
60 sex-linked genes as well as sex-heterogeneity in the architecture of genetic effects at one or more
61 autosomal loci (i.e. gene-by-sex (G×S) interactions). In this way, sex is considered an

62 environmental variable, providing two well-defined conditions in which allele frequencies and
63 linkage disequilibrium (LD) patterns are equivalent but nevertheless genetic effects of one or
64 many autosomal loci may differ.

65 Evidence for different genetic architectures between sexes among human populations is
66 largely supported by genome-wide parameters [1–4] including unequal within-sex heritabilities
67 ($h^2_{\text{male}} \neq h^2_{\text{female}}$) and between-sex genetic correlations less than one ($r_g < 1$); the former suggests
68 that the proportion of phenotypic variance explained by genetic factors varies between sexes,
69 while the latter suggests genetic effects are disproportional between sexes [5]. Although many
70 traits seem to have between-sex genetic correlation that is evidently less than one, genome-
71 wide association (GWA) studies intended to map G×S interactions have struggled to pinpoint
72 such loci [6,7]. Based on this dichotomy, G×S interactions presumably exist for many traits, but
73 the magnitude of a typical G×S interaction is suspected to be exceedingly small, explaining why
74 such events commonly elude detection, particularly after multiple test correction. However, just
75 as numerous small effect causal loci accumulate to affect phenotypic variance, small G×S
76 interactions may accumulate to influence both sex differences and phenotypic variance.

77 Most GWA studies utilize single-marker regression (SMR), in which the phenotype is
78 regressed upon allele content one SNP at a time, thereby obtaining marginal SNP effect size
79 estimates that do not fully account for LD patterns. In contrast, whole-genome regression
80 methods, in which the phenotype is regressed upon all SNPs across the genome concurrently,
81 fully account for multi-locus LD. These methods are increasingly being used as a one-stop
82 solution to estimate true (conditional) effect sizes of SNP markers and to provide genome-wide
83 estimates including genomic heritability [8–10] and between-sex genetic correlations [2–4]. By
84 estimating true SNP effect sizes, the goal across many studies is to select SNPs with non-zero

85 effects and to build a model for predicting polygenic scores [11–13]. Other works have directly
86 illustrated the use of whole-genome regression methods for GWAS [14–17]. Whole-genome
87 regressions are computationally challenging to use with biobank-level data; however, recent
88 work suggests relatively accurate genomic prediction and SNP effect estimation can be achieved
89 by simply accounting for local LD patterns (as opposed to global LD patterns) [18].

90 Building on the idea of utilizing true SNP marker effects, here we developed local
91 Bayesian regressions (LBR) in which the phenotype is regressed upon multiple SNPs spanning
92 multiple LD blocks (thereby accounting for local LD patterns) to study sex differences in
93 complex traits from the UK Biobank. The LBR model uses random-effect SNP-by-sex
94 interactions [19,20] that decompose conditional SNP effects into three components: i) one shared
95 across sexes, ii) a male-specific deviation from the shared component, and iii) a female-specific
96 deviation from the shared component. Using samples from the posterior distribution of
97 conditional SNP effects, we developed methods to infer sex-specific effects and G×S interactions
98 at the single SNP level and by aggregating SNP effects within small LD-based regions, offering
99 multiple perspectives to study sex-specific genetic architectures.

100 In this study, we have utilized genotypes for 607,497 autosomal SNPs from ~259,000
101 distantly related Caucasians from the UK Biobank for assessing LBR’s performance in analyzing
102 simulated and real complex traits including height, BMI, waist-to-hip ratio (WHR), and heel
103 bone-mineral density (BMD). Simulations showed that (i) for inferences of G×S interactions,
104 LBR offers higher power with lower FDR than methods based on marginal effects (aka single-
105 marker regression) and (ii) we show that under imperfect LD between SNPs and causal variants
106 (i.e., when causal variants are not genotyped), aggregating SNP effects within small LD-based
107 regions offers higher power than methods based on testing individual SNPs.

108 The traits analyzed in this study span a range of genome-wide metrics and G×S
109 suggestibility; from height and BMI for which previous studies indicate males and females
110 possess very similar genetic architectures [3], to WHR, a trait with well-documented G×S
111 interactions [21–24], and BMD, for which G×S interactions are thought to exist but have eluded
112 detection [25]. LBR provided evidence of G×S interactions impacting height, BMI, and BMD at
113 regions of the genome where sex-specific genetic effects are relatively small, however such
114 regions are enriched in known eQTL. For WHR, LBR replicated many large-magnitude G×S
115 interactions previously discovered using single-marker regression, but also located novel G×S
116 interactions near such genes as the estrogen receptor *ESR1*.

117 **Results**

118 **Overview of the LBR model, inference methods, and implementation**

119 To study sex differences we regressed male and female phenotypes (\mathbf{y}_m and \mathbf{y}_f) on male and
120 female genotypes (\mathbf{X}_m and \mathbf{X}_f) using a SNP-by-sex interaction model of the form

$$\begin{bmatrix} \mathbf{y}_m \\ \mathbf{y}_f \end{bmatrix} = \begin{bmatrix} \mathbf{1} \mu_m \\ \mathbf{1} \mu_f \end{bmatrix} + \begin{bmatrix} \mathbf{X}_m \\ \mathbf{X}_f \end{bmatrix} \mathbf{b}_0 + \begin{bmatrix} \mathbf{X}_m \\ \mathbf{0} \end{bmatrix} \mathbf{b}_m + \begin{bmatrix} \mathbf{0} \\ \mathbf{X}_f \end{bmatrix} \mathbf{b}_f + \begin{bmatrix} \boldsymbol{\varepsilon}_m \\ \boldsymbol{\varepsilon}_f \end{bmatrix}. \#(1)$$

121 Above, μ_m and μ_f are male and female intercepts, $\mathbf{b}_0 = \{b_{0j}\}$ ($j = 1, \dots, p$) is a vector of main
122 effects, $\mathbf{b}_m = \{b_{mj}\}$ and $\mathbf{b}_f = \{b_{fj}\}$ are male and female interactions, respectively and $\boldsymbol{\varepsilon}_m =$
123 $\{\varepsilon_{mi}\}$ and $\boldsymbol{\varepsilon}_f = \{\varepsilon_{fi}\}$ are male and female errors which were assumed to follow normal
124 distributions with zero mean and sex-specific variances. Female-specific and male-specific SNP
125 effects are defined as $\beta_{fj} = b_{0j} + b_{fj}$ and $\beta_{mj} = b_{0j} + b_{mj}$, respectively.

126

127 **Prior assumptions.** For SNP effects we adopted priors from the spike-slab family with a point
128 of mass at zero and a Gaussian slab [26] specifically, $p(b_{k_j}) = \pi_k N(0, \sigma_{b_k}^2) + (1 -$
129 $\pi_k)1(b_{k_j} = 0)$ (where $k = 0, f$ or m). Here, π_k and $\sigma_{b_k}^2$ are hyper-parameters representing the
130 proportion of nonzero effects and the variance of the slab; these hyper-parameters were treated as
131 unknown and given their own hyperpriors (see Methods).

132
133 **Local-regression.** Implementing the above model with whole-genome SNPs ($p \sim 600K$) and
134 very large sample size ($n \sim 300K$) is computationally extremely challenging. However, LD in
135 homogeneous un-structured human populations spans over relatively short regions (R^2 between
136 allele dosages typically vanishes within 1-2 Mb; S1 Fig). Therefore, we applied LBR to long,
137 overlapping chromosome segments (Fig. 1). Specifically, we divided the genome into “core”
138 segments containing 1,500 contiguous SNPs (roughly 8Mb, on average), then applied the
139 regression in equation (1) to SNPs in the core segment plus 250 SNPs (i.e., roughly 1Mb) in each
140 flanking region, which were added to account for LD between SNPs at the edge of each core
141 segment with SNPs in neighboring segments.

142
143 **Inferences.** We used the BGLR [27] software to draw samples from the posterior distribution of
144 the model parameters and used these samples to make inference about individual SNP effects
145 including: (i) the posterior probability that the j^{th} SNP has a nonzero effect in males (PPM_{SNP_j})
146 and females (PPF_{SNP_j}) and (ii) the posterior probability that the female and male effects are
147 different ($PPDiff_{SNP_j}$).

148 In regions involving multiple SNPs in strong LD, inferences at the individual-SNP level
149 may be questionable. Therefore we borrowed upon previous work by Fernando et al. [14],

150 enabling us to aggregate multiple sex-specific SNP effects within relatively small regions using
151 “window variances”. For each SNP j we defined a window j^* around the SNP based on local LD
152 patterns (see Methods). We then defined the male-specific and female-specific window variances
153 as $\sigma_{g_{m,j^*}}^2 = \text{var} (X_{j^*} \boldsymbol{\beta}_{m,j^*})$ and $\sigma_{g_{f,j^*}}^2 = \text{var} (X_{j^*} \boldsymbol{\beta}_{f,j^*})$, respectively. Here, X_{j^*} represent
154 genotypes at SNPs within the j^* window and $\text{var}(\cdot)$ is the sample variance operator. Prior to
155 model fitting, the phenotype is scaled across sexes; thus, sex-specific window variances may be
156 interpreted as the proportion of total phenotypic variance explained by sex-specific SNP effects.
157 From samples of sex-specific window variances, we computed the posterior probability of (i)
158 nonzero male-specific window variance ($\text{PPM}_{\sigma_{g_{j^*}}^2}$), (ii) nonzero female-specific window variance
159 ($\text{PPF}_{\sigma_{g_{j^*}}^2}$), and (iii) sex difference in window variances (denoted as $\text{PPDiff}_{\sigma_{g_{j^*}}^2}$).

160

161 **Local Bayesian regressions offer improved power with lower false-discovery rates**

162 We used simulations to assess the power and false discovery rate (FDR) of LBR and to
163 compare it with that of standard single-marker-regression (SMR). Traits were simulated using
164 SNP genotypes from the Axiom UK-Biobank (119,190 males and 139,738 females, all distantly
165 related Caucasians). We simulated a highly complex trait with one causal variant (CV) per \sim 2Mb
166 which on average explained a proportion of the phenotypic variance equal to 3.3×10^{-4} . Our
167 simulation used a total of 60,000 SNPs (consisting of 6,000 consecutive SNPs taken from 10
168 different chromosomes) and 150 CVs; on the complete human genome “scale” this corresponds
169 to a trait with 1,500 CVs and a heritability of 0.5 (see Methods for further details). 40% of the

170 CVs (a total of 60 SNPs in our simulation) had differing sex-specific effects and the remaining
171 60% (90 SNPs) had effects that were the same in males and females.

172

173 **Power and FDR when causal variants are genotyped.** First, we analyzed the simulated
174 phenotypes using all SNPs (including the 150 causal ones). Initially interested in inferring G×S
175 interactions, we ranked SNPs based on LBR's $PPDiff_{SNP_j}$ metric and based on SMR's *p*-value
176 for sex difference (*pvalue-diff*, see Methods) and used the two ranks to estimate power and FDR
177 as a function of the number of SNPs selected (Fig 2). LBR showed consistently higher power
178 (achieving a power of ~80% when selecting the top 50 SNPs with highest $PPDiff_{SNP_j}$) and lower
179 FDR than SMR. The false discovery rate of LBR was very low when selecting the top-50 SNPs
180 with highest $PPDiff_{SNP_j}$ and exhibited a very sharp phase-transition with fast increase in FDR
181 thereafter.

182 We also compared the two methods based on arbitrary, albeit commonly used, mapping
183 thresholds for SMR and LBR. At $PPDiff_{SNP_j} \geq 0.95$, LBR selected an average (across simulation
184 replicates) of 38.33 SNPs with an estimated power of 0.634 and estimated FDR of 0.007.
185 Conversely, at $pvalue-diff \leq 5 \times 10^{-8}$, SMR selected an average of 50.7 SNPs with an estimated
186 power of 0.436 and estimated FDR of 0.451. Altogether, these results suggest that for G×S
187 discovery, LBR offers higher power and lower FDR than SMR—the method most widely used in
188 GWA studies—at least when G×S interactions are observed.

189 When trying to map SNPs that had effect in at least one sex, we used $PP_{SNP_j} =$
190 $\max \left[PPM_{SNP_j}, PPF_{SNP_j} \right]$ and *p*-values from an F-test (see Methods) as metrics for LBR and
191 SMR methods, respectively. Again, LBR showed higher power with lower FDR than a standard
192 SMR *p*-value (S1 Fig). At traditional mapping thresholds, LBR and SMR had similar power but

193 LBR achieved that power with much lower FDR; at $PP_{SNP_j} \geq 0.95$, the average number of SNPs
194 selected was 120.83 with an estimated power of 0.799 and estimated FDR of 0.009 while at p -
195 value $\leq 5 \times 10^{-8}$, the number of SNPs selected was 374.56 with an estimated power of 0.794 and
196 FDR of 0.66.

197

198 **Power and FDR under imperfect LD.** In a second round of analyses, we removed all CVs from
199 the panel of SNPs used in the analysis to represent a situation where CVs are not observed, and
200 genotyped SNPs are tagging CVs at varying degrees. As before, we initially assessed the relative
201 performance of LBR to infer segments harboring G×S interactions. Power and FDR were
202 assessed at several resolutions: 1Mb, 500Kb and 250Kb regions around each CV. At each
203 resolution, a discovery was considered true if the finding laid within a segment harboring a G×S
204 CV. Power and FDR were computed at different thresholds ($PPDiff_{SNP_j}$ and $PPDiff_{\sigma_{g_{j*}}^2}$ for LBR
205 and $pvalue$ -diff for SMR; Fig 3). When using a 1Mb target area—such that correct G×S
206 discoveries must be within 500Kb on either side of a true G×S event— $PPDiff_{\sigma_{g_{j*}}^2}$ thresholds
207 (LBR’s window-based metrics) provided highest power within an FDR range of 0-0.3, thereafter
208 SMR provided slightly higher power. As expected, when removing CVs, power was estimated to
209 be much lower than when CVs were observed; at $PPDiff_{\sigma_{g_{j*}}^2} \geq 0.95$, the estimated power and
210 FDR were 0.454 and 0.004, respectively, while at $pvalue$ -diff $\leq 5 \times 10^{-8}$, estimated power and
211 FDR were 0.22 and 0.006. As seen in Fig 3, when considering a finer resolution (500Kb and
212 250Kb) the performance of both LBR-based approaches was more robust than SMR. Altogether
213 this indicates that for the discovery and mapping of unobserved G×S interactions, LBR’s
214 window-based metric provides higher power with equivalent FDR and finer resolution than
215 single-marker regression methods.

216 To infer segments containing CVs that affect at least one sex, we again used LBR to
217 decide whether either sex-specific effect was nonzero at the level of individual SNPs or
218 windows. Using a 1MB target area, LBR's window-based metrics provided the highest power
219 within an FDR range of 0-0.025. When decreasing the target area, LBR provided the highest
220 power over larger FDR ranges (S2 Fig).

221

222 **For real human traits, many newly discovered G×S interactions show relatively small sex-**
223 **specific effects**

224 We analyzed four complex human traits (height, BMI, BMD, and WHR) measured
225 among ~259,000 distantly related Caucasians from the UK Biobank (~119,000 males and
226 ~140,000 females). For each trait, we fit the LBR model (eq. 1) across the entire autosome
227 consisting of 607,497 genotyped SNPs using 417 overlapping segments (Fig. 1) and obtained
228 evidence of G×S interactions at the level of SNP j and window j^* .

229 To compare both the magnitude and sign of sex-specific SNP effects, we plotted each
230 $\hat{\beta}_{f_j}$ against $\hat{\beta}_{m_j}$ (Fig 4a). The trait was scaled across sexes prior to model fitting; thus, male- and
231 female- specific effects were not constrained to the same scale. In this way, one might expect
232 male-specific SNP effects to uniformly differ from female-specific SNP effects by a
233 multiplicative factor if the variance of the phenotype is different between sexes (sample statistics
234 within each sex are provided within S1 Table). Surprisingly, we did not observe evidence of sex-
235 specific SNP effects uniformly differing due to differences in phenotypic scale; for height, BMD,
236 and BMI, as seen in Fig. 4a, most large effect SNPs lie near the blue diagonal line. For WHR, we
237 observed largely consistent results from prior studies [21–23]: namely the prevalence of

238 numerous SNPs with relatively large effects in females but little to no effect in males. No traits
239 exhibited evidence of any SNPs with (i) high confidence male- and female- specific effects (no
240 SNPs with $PPM_{SNP_j} \geq 0.9$ and $PPF_{SNP_j} \geq 0.9$) and (ii) differing signs between sexes.

241 We then aggregated sex-specific SNP effects within small LD-based regions to estimate
242 sex-specific window variances $\sigma_{g_{mj^*}}^2$ and $\sigma_{g_{fj^*}}^2$ and compared the magnitude of each (Fig 4b).
243 Interestingly for traits such as height, many large effect regions bear slightly larger window
244 variances for males than for females. This was not observed at the single SNP level, suggesting
245 that many regions bearing numerous small effect SNPs produce aggregate effects that are
246 potentially larger (although not reaching a $PPDiff_{\sigma_{g_{j^*}}^2} \geq 0.9$ threshold) in males than in females.

247 One example is the GDF5 locus, previously known to strongly associate with adult height [28],
248 where a peak $PPDiff_{\sigma_{g_{j^*}}^2}$ signal centered on rs143384 had slightly different estimated sex-specific
249 window variances ($\hat{\sigma}_{g_{mj^*}}^2 = 3.0 \times 10^{-3}$ and $\hat{\sigma}_{g_{fj^*}}^2 = 2.6 \times 10^{-3}$) but weak evidence of a $G \times S$ interaction
250 ($PPDiff_{\sigma_{g_{j^*}}^2} = 0.544$). For BMD, several large effect regions show suggestive evidence of $G \times S$
251 interactions including the AKAP11 locus and the CCDC170 locus ($PPDiff_{\sigma_{g_{j^*}}^2} = 0.856$ and 0.745 ,
252 respectively), both previously associated with bone mineral density [29–32].

253 To make $G \times S$ inferences at the level of window variances irrespective of the magnitude
254 of sex-specific effects, we adopted a $PPDiff_{\sigma_{g_{j^*}}^2}$ threshold of 0.9, which in simulations (Fig 3)
255 provided optimal power at an estimated FDR of 0.029 when using a 1MB target area. For height,
256 a total of eight distinct regions possessed a $PPDiff_{\sigma_{g_{j^*}}^2} \geq 0.9$, two of which possessed a $PPDiff_{\sigma_{g_{j^*}}^2}$
257 ≥ 0.95 . For BMI, 5 distinct regions possessed a $PPDiff_{\sigma_{g_{j^*}}^2} \geq 0.9$ with none reaching a more
258 stringent $PPDiff_{\sigma_{g_{j^*}}^2} \geq 0.95$ threshold, and none overlapping with two previously suggested BMI

259 G×S SNPs [33]. As seen in Fig 4C, inferred G×S interactions for height and BMI possess
260 relatively small sex-specific window variances; as an example, for height, the window centered
261 on SNP rs1535515 (near *LRRC8C*) had a $\text{PPDiff}_{\sigma_{g_j^*}^2} = 0.96$, while $\hat{\sigma}_{g_m^*}^2 = 2.1 \times 10^{-5}$ and $\hat{\sigma}_{g_f^*}^2 =$
262 1.1×10^{-4} . For BMD, seven regions reached a 0.9 $\text{PPDiff}_{\sigma_{g_j^*}^2}$ threshold while one higher-
263 confidence G×S interaction ($\text{PPDiff}_{\sigma_{g_j^*}^2} \geq 0.95$) was detected within *ABO*, the gene controlling
264 blood type.

265 For WHR, roughly 45 distinct genomic regions possessed a $\text{PPDiff}_{\sigma_{g_j^*}^2} \geq 0.9$, while 34 of
266 these possessed a $\text{PPDiff}_{\sigma_{g_j^*}^2} \geq 0.95$. We found many previously detected G×S interactions known
267 to associate with WHR or a related trait, WHR adjusted for BMI (WHRadjBMI) [21–24]. These
268 included interactions at *LYPLAL1*, *MAP3K1*, *COBLL1*, *RSPO3*, and *VEGFA* among others. We
269 also detected numerous novel G×S interactions (Table 1) near physiologically intriguing genes
270 such as the estrogen receptor gene *ESR1* and the ATP binding cassette transporter A1 gene
271 *ABCA1* known to play a role in HDL metabolism ($\text{PPDiff}_{\sigma_{g_j^*}^2} \geq 0.95$). As seen in Table 1, both
272 novel signals possessed a high-confidence female-specific effect with weak evidence for a male-
273 specific effect ($\text{PPF}_{\sigma_{g_j^*}^2} \geq 0.95$; $\text{PPM}_{\sigma_{g_j^*}^2} \leq 0.6$), however the magnitude of the female-specific
274 effect was relatively small ($\hat{\sigma}_{g_f^*}^2 \leq 1.4 \times 10^{-4}$). As evident from Table 1, most novel WHR G×S
275 interactions detectable with LBR are those with relatively small sex-specific effects.

276

277

278

279

280

281 **Table 1. G×S interactions inferred through sex-specific window variances.** Listed are loci
 282 with at least 0.95 posterior probability that sex-specific window variances differ. The table is
 283 sorted first by trait, then by magnitude of the female-specific window variance. Results are
 284 filtered such that each window listed consisted of a distinct set of SNPs. A full list of all G×S
 285 signals at a $PPDiff_{\sigma_{g_j}^2} \geq 0.90$ threshold is provided in S2 Table.

Focal SNP ^a	trait	$\hat{\sigma}_{g_{m_j}}^2$ ^b	$\hat{\sigma}_{g_{f_j}}^2$ ^b	PPM $_{\sigma_{g_j}^2}$	PPF $_{\sigma_{g_j}^2}$	PPDiff $_{\sigma_{g_j}^2}$	Nearest gene ^c	location	eQTL ^d
rs1876719	BMD	0.06000	0.00182	1.000	0.794	1.000	<i>ABO</i>	exon/frameshift	yes
rs1535515	height	0.00211	0.01170	0.819	0.999	0.956	<i>LRRC8C</i>	intron	yes
rs1544926	height	0.00763	0.00035	0.983	0.418	0.955	<i>COL23A1</i>	UTR-3	yes
rs6905288	WHR	0.00567	0.22200	0.920	1.000	1.000	<i>VEGFA</i>	downstream	
rs72961013	WHR	0.03260	0.18100	1.000	1.000	1.000	<i>RSPO3</i>	downstream	
rs1128249	WHR	0.00132	0.10700	0.614	1.000	1.000	<i>COBLL1</i>	intron	yes
rs12022722	WHR	0.00080	0.07180	0.490	1.000	1.000	<i>LYPLAL1</i>	downstream	yes
rs1776897	WHR	0.00870	0.06140	0.976	1.000	0.950	<i>HMGAI</i>	upstream	yes
rs11057401	WHR	0.00438	0.06030	0.846	1.000	1.000	<i>CCDC92</i>	exon/missense	yes
rs17777180	WHR	0.00031	0.05950	0.291	1.000	1.000	<i>CMIP</i>	intron	yes
rs4607103	WHR	0.00195	0.05920	0.809	1.000	1.000	<i>ADAMTS9-AS2</i>	intron	yes
rs6937293	WHR	0.00457	0.04660	0.839	1.000	1.000	<i>LOC728012</i>	downstream	yes
rs16861373	WHR	0.00066	0.04300	0.389	1.000	0.995	<i>PLXND1</i>	intron	
rs73068463	WHR	0.00068	0.04220	0.461	1.000	1.000	<i>SNX10</i>	intron	yes
rs9376422	WHR	0.00107	0.04180	0.524	1.000	1.000	<i>LOC645434</i>	upstream	
rs6867983	WHR	0.00192	0.03820	0.440	1.000	0.998	<i>MAP3K1</i>	upstream	
rs2171522	WHR	0.00241	0.03650	0.561	1.000	0.998	<i>ITPR2</i>	downstream	yes
rs3810068	WHR	0.00026	0.03590	0.174	1.000	1.000	<i>EMILIN2</i>	upstream	yes
rs568890	WHR	0.00129	0.03110	0.809	1.000	1.000	<i>NKX2-6</i>	upstream	yes
rs1332955	WHR	0.00647	0.02940	0.970	1.000	0.973	<i>LOC284688</i>	downstream	yes
rs13133548	WHR	0.00019	0.02400	0.175	0.969	0.956	<i>FAM13A</i>	intron	yes
rs11263641	WHR	0.00207	0.02340	0.723	1.000	0.991	<i>MYEOV</i>	downstream	yes
rs2800999	WHR	0.00201	0.02220	0.691	1.000	0.979	<i>TSHZ2</i>	intron	
rs2244506	WHR	0.00101	0.02070	0.453	0.998	0.985	<i>MIR5694</i>	downstream	
rs7259285	WHR	0.00182	0.01710	0.767	1.000	0.989	<i>HAUS8</i>	downstream	yes
rs4450871	WHR	0.00002	0.01680	0.027	1.000	1.000	<i>CYTL1</i>	downstream	
rs4080890	WHR	0.00153	0.01630	0.594	0.999	0.975	<i>KCNJ2</i>	downstream	
rs4684859	WHR	0.00039	0.01570	0.330	0.998	0.994	<i>PPARG</i>	downstream	
rs7704120	WHR	0.00049	0.01370	0.476	0.998	0.991	<i>STC2</i>	downstream	
rs10991417	WHR	0.00048	0.01230	0.339	0.986	0.966	<i>ABCA1</i>	intron	yes
rs12454712	WHR	0.00087	0.01020	0.360	0.996	0.965	<i>BCL2</i>	intron	yes
rs62070804	WHR	0.00004	0.00887	0.052	0.969	0.961	<i>ABHD15</i>	exon/missense	yes
rs10760322	WHR	0.00027	0.00812	0.282	0.986	0.968	<i>LHX2</i>	downstream	
rs1361024	WHR	0.00022	0.00760	0.203	0.982	0.962	<i>ESR1</i>	intron	
rs1358503	WHR	0.00021	0.00716	0.309	0.989	0.966	<i>SEMA3C</i>	upstream	yes
rs13156948	WHR	0.00016	0.00660	0.079	0.970	0.957	<i>IRX1</i>	downstream	
rs12432376	WHR	0.01740	0.00074	1.000	0.552	0.994	<i>STXBP6</i>	upstream	

286 ^aFocal SNP is defined as the center SNP j in window j^* .

287 ^b Male- and female-specific window variances, expressed as a percentage.

288 ^c Nearest gene and location identified through Axiom UKB WCSG annotations, release 34. The
 289 gene/locus is bold if it has been previously detected as a G×S interaction for WHR or WHR
 290 adjusted for BMI [21–24].

291 ^dIf “yes”, the focal SNP is significantly associated with gene expression in at least one tissue,
 292 according to GTEx V7.

293

294 Additionally, we utilized a traditional SMR approach (see Methods) for the discovery of

295 G×S interactions among traits to compare *pvalue*-diff signals to $PPDiff_{\sigma_{g_j}^2}$ signals (S3 Fig). At

296 $pvalue$ -diff $\leq 5 \times 10^{-8}$, there were no genome-wide significant G×S-interacting SNPs for height,
297 one significant SNP for BMI nearby a window with $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2} \geq 0.9$, and one significant peak
298 within *ABO* for BMD (the same signal detected using $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2}$). Regions with a $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2} \geq 0.9$
299 generally coincided with at least nominally-significant $pvalue$ -diff signals; for height and BMD,
300 regions with $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2} \geq 0.9$ also possessed a peak SNP with $pvalue$ -diff ≤ 0.01 . For BMI,
301 $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2} \geq 0.9$ signals possessed a peak SNP of $pvalue$ -diff ≤ 0.1 . This, together with the fact
302 that novel G×S interactions found using LBR possess relatively small sex-specific effects,
303 suggests that LBR may be detecting G×S interactions that are otherwise missed due to low
304 power. Lastly for WHR, most of the high-confidence $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2} \geq 0.9$ signals coincided with clear
305 and obvious $pvalue$ -diff peaks.

306

307 **Inferred G×S interactions are enriched in tissue-specific eQTL**

308 As seen previously, many G×S interactions inferred using LBR have exceedingly small
309 sex-specific effects. To further investigate whether G×S detections using the $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2}$ metric
310 may be functionally relevant, we inferred whether such signals are enriched in eQTL identified
311 from GTEx. Specifically, using a hypergeometric test we asked whether $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2}$ -selected
312 focal SNPs (SNP j within window j^*) were enriched in eQTL, then compared to eQTL
313 enrichment from $pvalue$ -diff-selected SNPs as a function of the number of SNPs selected (S4
314 Fig). $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2}$ -selected focal SNPs showed consistently higher eQTL enrichment than $pvalue$ -
315 diff-selected SNPs for all traits except WHR. For instance, at $PPDiff_{\sigma_{\tilde{g}_{j^*}}^2} \geq 0.9$, the total number

316 of windows (focal SNPs) selected was 36, 264, 34, and 13, for height, WHR, BMD, and BMI,
317 respectively. With these selections, eQTL enrichment *p*-values were 2.39×10^{-4} , 1.52×10^{-12} ,
318 2.01×10^{-12} , and 8.33×10^{-4} , for height, WHR, BMD, and BMI, respectively. When selecting the
319 same number of SNPs using *pvalue*-diff, enrichment *p*-values were 2.25×10^{-2} , 1.56×10^{-28} ,
320 5.54×10^{-8} , 1.93^{-1} , for height, WHR, BMD, and BMI, respectively.

321 To provide more information about how genetic regions bearing G×S interactions may
322 impact gene expression in specific tissues, we determined whether focal SNPs at $PPDiff_{\sigma_{g_{j*}}^2} \geq 0.9$
323 are enriched in tissue-specific eQTL (Fig. 5). For height, BMD, and WHR, such SNPs showed
324 significant eQTL enrichment in at least one tissue, using a conservative bonferroni corrected
325 enrichment *p*-value of 2.6×10^{-4} (correcting for 192 tests in total; 48 tissues and 4 traits).
326 Interestingly, BMD's G×S signals are very strongly enriched in eQTL with associated eGenes
327 (including *ABO* and *CYP3A5*) expressed in the adrenal gland, among other tissues. For height,
328 we observed small enrichment *p*-values across many tissues since G×S focal SNPs are enriched
329 in eQTL with associated eGenes (including *LOC101927975* and *CNDP2*) expressed across many
330 tissues. Lastly for WHR, we observed G×S detections to be heavily enriched in eQTL with
331 associated eGenes expressed in fibroblast, adipose, and skin tissues.

332

333 **Discussion**

334 We have investigated the degree to which sex-specific genetic architectures differ at local
335 regions, using large biobank data ($N \sim 119,000$ males and $\sim 140,000$ females) and Bayesian
336 multiple regression techniques that estimate sex-specific marker effects accounting for local LD
337 patterns. The flexibility of the Bayesian approach enables multi-resolution inference of sex-
338 specific effects: from individual SNP effects to window-variances that aggregate SNP effects

339 within chromosome segments. These inferences can be drawn all using the results of the same
340 model fit (eq. 1) but different post-processing of samples of SNP effects from the posterior
341 distribution.

342 The Bayesian multiple regression technique performed in this study, along with
343 estimation of window variances, was largely inspired by Fernando et al. [14]. In that study,
344 windows were defined using disjoint, fixed intervals. In contrast, for each SNP we define a
345 window based on local LD patterns, resulting in heavily overlapping, dynamically sized
346 windows. The methods presented here also bear resemblance to those of Vilhjálmsdóttir et al. [18],
347 which utilized point-normal priors to estimate human SNP effects after accounting for local LD
348 patterns. In that study, posterior means of SNP effects were estimated for the purposes of
349 prediction while in this study, we numerically derive the full posterior distribution, allowing for
350 inference of non-null SNP effects and window variances.

351 Through simulations, we showed that local Bayesian regressions (LBR) provide superior
352 power and precision to detect causal variants and those specifically bearing G×S interactions. We
353 rationalize improvements in power upon traditional SMR methods by noting that the magnitude
354 of a typical causal variant or G×S interaction is exceedingly small and can elude hypothesis
355 testing partly due to the burden of multiple test correction. We also note that the resolution (peak
356 size) in SMR signals is relatively large when using large sample sizes (due to not fully
357 accounting for local LD patterns). To overcome this problem, we provided evidence that LBR
358 methods—either by estimating true marker effects or by aggregating true marker effects within
359 relatively small regions—can achieve improved resolution when working with large sample sizes
360 such as biobank-level data.

361 When using LBR to analyze real human traits, we have provided credence to our
362 posterior probability-based discoveries by determining that LBR-detected G×S interactions are
363 generally more enriched in eQTL than SMR-detected interactions. For BMD, we provided new
364 evidence that sex-specific effects differ within *ABO* and that G×S interactions are highly
365 enriched in adrenal gland-specific eQTL. This encourages the hypothesis that some G×S are
366 eQTL that may modulate gene expression in the adrenal gland, with gene function dependent on
367 the presence or absence of sex hormones. This was also an intriguing finding given that ABO
368 blood groups have been known to associate with osteoporosis and osteoporosis severity [34,35].
369 For WHR, we detected previously known, large-magnitude G×S interactions that were
370 discovered using WHR or WHRadjBMI [21–24], but additionally discovered novel, small
371 magnitude G×S interactions near such genes as *ESRI* and *ABCA1*. In a previous work analyzing
372 WHRadjBMI, *ABCA1* showed a significant female-specific genetic effect only, however the test
373 for G×S interaction failed to reach significance [24].

374 For traits like height and BMI, large effect loci are estimated to have very similar effects
375 between males and females and loci with evidence of G×S interactions were those possessing
376 relatively small sex-specific effects. As seen in Fig 4B, many relatively large window variances
377 for height are estimated to be slightly higher for males than for females albeit not reaching a
378 $PPDiff_{\sigma_{g_j^*}^2} \geq 0.9$ threshold. This is consistent with the fact that the global genomic variance for
379 height was estimated to be higher in males than in females in a previous study using the interim
380 release of the UK Biobank [4]. Similarly, the same prior study estimated the global genomic
381 variance of BMI to be higher in females than in males and we observe, if anything, evidence of
382 sex-specific window variances leading to the same conclusion. These observations may
383 potentially indicate that relatively large causal variants have slightly different sex-specific effects

384 for traits like height and BMI, however, if that is the case we are still underpowered to
385 confidently detect such interactions.

386 It is important to acknowledge that while the methods presented here appear useful to
387 decipher sex-specific genetic architectures from large human samples, additional work will be
388 required to determine how these techniques may infer heterogeneous genetic effects in other
389 contexts (other types of gene-by-covariate interactions), or when using different sample sizes or
390 samples from different populations. With large sample sizes, the increased power and flexibility
391 of the LBR comes with the cost of a significantly larger computational burden than the one
392 involved in the traditional SMR approach; however, working with large datasets can be made
393 manageable by adjusting size of each fitted segment (Fig 1) and parallel processing the fitting of
394 each segment. Alternatively, LBR may be used as a follow up to traditional SMR tests, using
395 pre-selected regions of interest. Another limitation inherent to aggregating SNP effects using
396 window variances is that the sign of the effect is lost. In this way, when inferring G×S
397 interactions through window variance differences, we cannot comment on whether sex-specific
398 effects had the same sign or differing signs.

399 To conclude, we have demonstrated the powerful and flexible use of local Bayesian
400 regressions for GWA to infer sex-specific genetic effects and G×S interactions using the UK
401 Biobank. This was largely done by showing various means to utilize estimates of true
402 (accounting for local LD), sex-specific SNP marker effects for GWA even when causal variants
403 are not on the SNP panel for analysis. We anticipate that many more traits will be analyzed with
404 this method to increasingly learn more about what is contributing to differences between males
405 and females in human populations.

406

407 **Methods**

408 **Genotype data**

409 Individuals from the UK Biobank [36] were genotyped using the custom UK Biobank
410 Axiom Array (<http://www.ukbiobank.ac.uk/scientists-3/uk-biobank-axiom-array/>) containing
411 ~800,000 SNPs. SNP quality control proceeded with the Caucasian cohort (N = 409,700); SNPs
412 with a minor allele frequency < 0.01 and missing call rate > 0.05 were removed. SNPs from sex
413 chromosomes and the mitochondrial chromosome were not considered in this study, resulting in
414 607,497 autosomal SNPs. Individuals with coefficient of relatedness of 0.03 or greater were
415 removed from analysis, resulting in 258,928 distantly related genotyped individuals for use in
416 this study.

417

418 **Phenotype data**

419 All phenotypic data was collected using baseline measurements of UK Biobank
420 participants. For height, the description “Standing height” from the UK Biobank was used.
421 Individuals with heights (cm) less than 147 or more than 210 were removed from analysis. For
422 BMD, the descriptions “Heel bone mineral density (BMD)”, “Heel bone mineral density (BMD)
423 (left)”, and “Heel bone mineral density (BMD) (right)” were used in conjunction; for individuals
424 with missing “Heel bone mineral density (BMD)” records, either the (left), the (right), or if
425 available, the average between (left) and (right) was used. For BMI, the description “Body mass
426 index (BMI)” was used and for WHR, the ratio of “Waist circumference” to “Hip circumference”
427 was used. Prior to model fitting, all traits were pre-corrected for sex, age, batch, genotyping
428 center, and the first 5 principle components derived from genomic data. The adjusted phenotypes

429 consisted of least-squares residuals from a model that included the effects listed above. For each
430 trait, sample sizes and within-sex summary statistics are provided in S1 Table.

431

432 **LBR hyperparameters**

433 Hyperparameters used in the LBR model (eq. 1) were error variances for each sex, the
434 proportion of nonzero effects for each SNP effect component, and the variances of nonzero
435 effects for each SNP effect component $\{\sigma_m^2, \sigma_f^2, \pi_0, \pi_m, \pi_f, \sigma_{b_0}^2, \sigma_{b_m}^2, \sigma_{b_f}^2\}$. Variances (of either
436 SNP effect components or sex-specific errors) were given a scaled-inverse Chi-square prior,
437 parameterized by a degree of freedom parameter df (set to 5) and scaling parameter S . S is set
438 according to built-in rules of the BGLR package using a prior model R-squared of 0.03 for main
439 effects and 0.01 for the sex-interaction terms. More detail on how the scale parameter S is
440 calculated can be found in Perez and de los Campos, 2014 [27]. π_k was given a beta prior with
441 shape parameters $\alpha = 2$ and $\beta = 2$. An example of how to implement LBR (eq. 1) using BGLR
442 with the above hyperparameter specifications is provided at [https://github.com/funkhou9/LBR-
443 sex-interactions](https://github.com/funkhou9/LBR-sex-interactions).

444

445 **Inference using post-processing of posterior samples**

446 BGLR uses Markov chain Monte Carlo (MCMC) to sample from the posterior
447 distribution of sex-specific effects. For each MCMC sample we derived male and female effects
448 using $\beta_{m_{j(s)}} = b_{0_{j(s)}} + b_{m_{j(s)}}$ and $\beta_{f_{j(s)}} = b_{0_{j(s)}} + b_{f_{j(s)}}$, where $s = 1, \dots, 4,350$ indexes MCMC
449 samples. Here, results were obtained using three separate MCMC chains. Each chain was

450 obtained using 3,400 MCMC samples; the first 500 samples were discarded as burn-in and the
451 remaining samples were thinned by an interval of 2, leading to 1,450 samples per chain.

452 Estimates of sex-specific SNP effects ($\hat{\beta}_{m_j}$ and $\hat{\beta}_{f_j}$) were obtained from their posterior
453 means. We estimated the posterior probability of a female-specific non-zero SNP effect using
454 $PPF_{SNP_j} = \max \left[\Pr \left(\beta_{f_j} > 0 \mid \mathcal{D} \right), \Pr \left(\beta_{f_j} < 0 \mid \mathcal{D} \right) \right]$, where \mathcal{D} represents the observed data.
455 This was done by counting the proportion of β_{f_j} samples above zero and below zero. This was
456 repeated for inferring the male-specific SNP effect. The posterior probability of sex-difference at
457 individual SNP-effects was estimated using $PPDiff_{SNP_j} = \max \left[\Pr \left(\beta_{m_j} > \beta_{f_j} \mid \mathcal{D} \right), \Pr \left(\beta_{m_j} < \beta_{f_j} \mid \mathcal{D} \right) \right]$ where again these probabilities were estimated using the corresponding frequencies
458 from the posterior distribution samples.

460 For each MCMC sample we also aggregated SNP effects within window j^* using
461 $\mathbf{u}_{m_{j^*(s)}} = \mathbf{X}_{j^*} \boldsymbol{\beta}_{m_{j^*(s)}}$ and $\mathbf{u}_{f_{j^*(s)}} = \mathbf{X}_{j^*} \boldsymbol{\beta}_{f_{j^*(s)}}$. For this calculation we used a common genotype
462 matrix \mathbf{X}_{j^*} consisting of all N male and female genotypes to avoid differences in additive genetic
463 values arising from allele frequency differences between males and females occurring by random
464 sampling. Samples of sex-specific window variances were obtained using the sample variance:

465 $\sigma_{g_{m_{j^*(s)}}}^2 = (N - 1)^{-1} \sum_{i=1}^N \left(u_{m_{i j^*(s)}} - \bar{u}_{m_{j^*(s)}} \right)^2$ and $\sigma_{g_{f_{j^*(s)}}}^2 = (N - 1)^{-1} \sum_{i=1}^N \left(u_{f_{i j^*(s)}} - \bar{u}_{f_{j^*(s)}} \right)^2$. Estimates of sex-specific window variances were obtained from their posterior means.

466 Inferring sex-specific window variances was done by estimating $PPM_{\sigma_{g_{j^*}}^2} = \Pr \left(\sigma_{g_{m_{j^*}}}^2 > 0 \mid \mathcal{D} \right)$
467 and $PPF_{\sigma_{g_{j^*}}^2} = \Pr \left(\sigma_{g_{f_{j^*}}}^2 > 0 \mid \mathcal{D} \right)$ and inferring a G×S interaction at window j^* was done by
468 estimating:

$$\text{PPDiff}_{\sigma_{g_{j^*}}^2} = \max \left[\begin{array}{l} \Pr \left(\sigma_{g_{m_{j^*}}}^2 - \sigma_{g_{f_{j^*}}}^2 > t_{j^*} \mid \mathcal{D} \right), \\ \Pr \left(\sigma_{g_{m_{j^*}}}^2 - \sigma_{g_{f_{j^*}}}^2 < t_{j^*} \mid \mathcal{D} \right) \end{array} \right]$$

470 where t_{j^*} was used to exert judgment about how different sex-specific window variances must be
471 to declare a meaningful G×S interaction. Here, t_{j^*} was one-tenth of the mean of all posterior
472 samples of $\sigma_{g_{m_{j^*}}}^2$ and $\sigma_{g_{f_{j^*}}}^2$. Functions to process posterior samples to estimate and infer non-null
473 sex-specific effects and G×S interactions is provided at <https://github.com/funkhou9/LBR-sex-interactions>.
474

475

476 **Defining local, LD-based windows**

477 To define SNPs contained within window j^* , a region of LD centered on SNP j , we
478 collected all SNP j' immediately surrounding SNP j for which $\text{Cor}(\mathbf{x}_j, \mathbf{x}_{j'})^2 \geq 0.1$. We allowed
479 up to two consecutive SNPs in which $\text{Cor}(\mathbf{x}_j, \mathbf{x}_{j'})^2 < 0.1$ to allow for potential mapping errors
480 or other unexplained instances where LD with SNP j dips only briefly. The function
481 `getWindows()`, which provides windows given a genotype matrix X , is provided in
482 <https://github.com/funkhou9/LBR-sex-interactions>.

483

484 **Single marker regression**

485 We also performed single-marker regression analyses using following model:

$$\begin{bmatrix} \mathbf{y}_m \\ \mathbf{y}_f \end{bmatrix} = \begin{bmatrix} \mathbf{1} \mu_m \\ \mathbf{1} \mu_f \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{m_j} \\ \mathbf{x}_{f_j} \end{bmatrix} \beta_j + \begin{bmatrix} \mathbf{x}_{m_j} \\ \mathbf{0} \end{bmatrix} \beta_{j_{GS}} + \begin{bmatrix} \boldsymbol{\varepsilon}_m \\ \boldsymbol{\varepsilon}_f \end{bmatrix}.$$

486 As with the LBR model (eq. 1), we assume sex-specific errors are distributed normally with zero
487 mean and sex-specific variances. SNP effects and interactions were estimated using weighted
488 least squares. To test for a G×S interaction at SNP j , a t-test is used: $\hat{\beta}_{j_{GS}}/SE(\hat{\beta}_{j_{GS}}) \sim t_{N-3}$.
489 The p -value from such a test is referred to as *pvalue*-diff. To test for any association (either
490 among males, females, or both), we used an F-test, comparing a restricted model: $\begin{bmatrix} y_m \\ y_f \end{bmatrix} =$
491 $\begin{bmatrix} 1_{\mu_m} \\ 1_{\mu_f} \end{bmatrix} + \begin{bmatrix} \varepsilon_m \\ \varepsilon_f \end{bmatrix}$ against the unrestricted model: $\begin{bmatrix} y_m \\ y_f \end{bmatrix} = \begin{bmatrix} 1_{\mu_m} \\ 1_{\mu_f} \end{bmatrix} + \begin{bmatrix} x_{m_j} \\ x_{f_j} \end{bmatrix} \beta_j + \begin{bmatrix} x_{m_j} \\ 0 \end{bmatrix} \beta_{j_{GS}} + \begin{bmatrix} \varepsilon_m \\ \varepsilon_f \end{bmatrix}$.

492

493 **Simulations**

494 Simulated traits were developed using 60,000 genotyped SNPs (the first 6,000 SNPs from
495 the first ten chromosomes) from 119,190 males and 139,738 females. Using these SNP
496 genotypes, each trait was simulated as follows:

497 1. A total of 150 causal variants (CVs) were randomly sampled from 60,000 SNPs.

498 • Let $\mathbf{Z}_m = \{z_{m_{ik}}\}_{i=1, k=1}^{N_m=119,190, q=150}$ and $\mathbf{Z}_f = \{z_{f_{ik}}\}_{i=1, k=1}^{N_f=139,738, q=150}$ denote
499 matrices of male and female genotypes at sampled CVs.

500 2. Additive CV effect sizes were randomly sampled from the gamma distribution. 90
501 CVs (those with homogenous effects) were sampled from $\text{Gamma}(k = 10, \theta =$
502 1) and were made negative with a probability of 0.5. Of the 60 CVs with
503 differing sex-specific effects, 30 had nonzero effects in both sexes but with
504 deferring magnitudes: at random one sex's effects were sampled from
505 $\text{Gamma}(k = 5, \theta = 1)$ and the other from $\text{Gamma}(k = 20, \theta = 1)$. For the

506 remaining 30 CVs, at random one sex's effects were exactly zero while the other
507 sex's effects were sampled from $\text{Gamma}(k = 10, \theta = 1)$.

508 • Let $\boldsymbol{\gamma}_m = \{\gamma_{m_k}\}_{k=1}^{q=150}$ and $\boldsymbol{\gamma}_f = \{\gamma_{f_k}\}_{k=1}^{q=150}$ denote vectors of male-specific
509 and female-specific CV effects, respectively, for all 150 CVs.

510 3. Error variances for males $\sigma_{\delta_m}^2$ and females $\sigma_{\delta_f}^2$ were adjusted such that the
511 proportion of phenotypic variance explained by all QTL is 0.05 for both males
512 and females (on the complete genome scale this corresponds to a heritability of
513 about 0.5).

514 • Let $\delta_{m_i} \sim N(0, \sigma_{\delta_m}^2)$ and $\delta_{f_i} \sim N(0, \sigma_{\delta_f}^2)$ denote residual error for the i^{th}
515 male and i^{th} female.

516 4. Male traits $\boldsymbol{\phi}_m = \{\phi_{m_i}\}_{i=1}^{N_m=119,190}$ and female traits $\boldsymbol{\phi}_f = \{\phi_{f_i}\}_{i=1}^{N_f=139,738}$ were
517 simulated from a linear combination of QTL genotypes plus a residual error:

518 $\boldsymbol{\phi}_m = \mathbf{Z}_m \boldsymbol{\gamma}_m + \boldsymbol{\delta}_m$ and $\boldsymbol{\phi}_f = \mathbf{Z}_f \boldsymbol{\gamma}_f + \boldsymbol{\delta}_f$

519 5. Steps 1-4 are repeated for 30 Monte Carlo replicates.

520

521 **Acknowledgments**

522 Enrichment analysis performed in this manuscript was done using data from the Genotype-
523 Tissue Expression (GTEx) Project. Single-tissue cis-eQTL data was downloaded from
524 <https://gtexportal.org/home/datasets> on 02/01/19.

525 **References**

526 1. Weiss LA, Pan L, Abney M, Ober C. The sex-specific genetic architecture of quantitative

527 traits in humans. *Nat Genet*. 2006;38: 218–222. doi:10.1038/ng1726

528 2. Zillikens MC, Yazdanpanah M, Pardo LM, Rivadeneira F, Aulchenko YS, Oostra BA, et
529 al. Sex-specific genetic effects influence variation in body composition. *Diabetologia*.
530 2008;51: 2233–2241. doi:10.1007/s00125-008-1163-0

531 3. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Nolte IM, et al. Genome-wide
532 genetic homogeneity between sexes and populations for human height and body mass
533 index. *Hum Mol Genet*. 2015;24: 7445–7449. doi:10.1093/hmg/ddv443

534 4. Rawlik K, Canela-Xandri O, Tenesa A, Carrel L, Willard H, Rinn J, et al. Evidence for
535 sex-specific genetic architectures across a spectrum of human complex traits. *Genome
536 Biol. Genome Biology*; 2016;17: 166. doi:10.1186/s13059-016-1025-x

537 5. Lynch M WJ. *Genetics and Analysis of Quantitative Traits*. 1st ed. Sinauer Associates,
538 Inc; 1998.

539 6. Liu C-T, Estrada K, Yerges-Armstrong LM, Amin N, Evangelou E, Li G, et al.
540 Assessment of gene-by-sex interaction effect on bone mineral density. *J Bone Miner Res.*
541 2012;27: 2051–64. doi:10.1002/jbmr.1679

542 7. Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY, et al.
543 Genome-wide association analyses using electronic health records identify new loci
544 influencing blood pressure variation. *Nat Genet*. 2017;49: 54–64. doi:10.1038/ng.3715

545 8. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-
546 wide dense marker maps. *Genetics*. 2001;157: 1819–1829. doi:11290733

547 9. de los Campos G, Sorensen D, Gianola D. Genomic Heritability: What Is It? PLoS Genet.
548 2015;11: 1–21. doi:10.1371/journal.pgen.1005048

549 10. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common
550 SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:
551 565–569. doi:10.1038/ng.608

552 11. Campos GDL, Gianola D, Allison DB. Predicting genetic predisposition in humans: the
553 promise of whole-genome markers. Nat Publ Gr. Nature Publishing Group; 2010;11: 880–
554 886. doi:10.1038/nrg2898

555 12. de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D. Prediction of
556 Complex Human Traits Using the Genomic Best Linear Unbiased Predictor. PLoS Genet.
557 2013;9. doi:10.1371/journal.pgen.1003608

558 13. Avery SG, Tellier L, Vazquez AI, de los Campos G, Lello L, Hsu SDH. Accurate
559 Genomic Prediction of Human Height. Genetics. 2018;210: 477–497.
560 doi:10.1534/genetics.118.301267

561 14. Fernando R, Toosi A, Wolc A, Garrick D, Dekkers J. Application of Whole-Genome
562 Prediction Methods for Genome-Wide Association Studies: A Bayesian Approach. J
563 Agric Biol Environ Stat. Springer US; 2017;22: 172–193. doi:10.1007/s13253-017-0277-6

564 15. Ayers KL, Cordell HJ. SNP Selection in genome-wide and candidate gene studies via
565 penalized logistic regression. Genet Epidemiol. 2010;34: 879–891.
566 doi:10.1002/gepi.20543

567 16. Yi N, George V, Allison DB. Stochastic Search Variable Selection for Identifying
568 Multiple Quantitative Trait Loci. *Genetics*. 2003;164: 1129 LP – 1138. Available:
569 <http://www.genetics.org/content/164/3/1129.abstract>

570 17. Zeng J, Pszczola M, Wolc A, Strabel T, Fernando RL, Garrick DJ, et al. Genomic
571 breeding value prediction and QTL mapping of QTLMAS2011 data using Bayesian and
572 GBLUP methods. *BMC Proc*. BioMed Central Ltd; 2012;6: S13. doi:10.1186/1753-6561-
573 6-S2-S7

574 18. Vilhjálmsson BJ, Yang J, Finucane HK, Gusev A, Lindström S, Ripke S, et al. Modeling
575 Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. *Am J Hum Genet*.
576 2015;97: 576–592. doi:10.1016/j.ajhg.2015.09.001

577 19. de los Campos G, Veturi Y, Vazquez AI, Lehermeier C, Pérez-Rodríguez P. Incorporating
578 Genetic Heterogeneity in Whole-Genome Regressions Using Interactions. *J Agric Biol
579 Environ Stat*. Springer US; 2015;20: 467–490. doi:10.1007/s13253-015-0222-5

580 20. Veturi Y, de los Campos G, Yi N, Huang W, Vazquez AI, Kühnel B. Modeling
581 heterogeneity in the genetic architecture of ethnically diverse groups using random effect
582 interaction models. *Genetics*. 2019;(accepted): 1–13.

583 21. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinhorsdottir V, et al. Meta-
584 analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual
585 dimorphism in the genetic basis of fat distribution. *Nat Genet*. 2010;42: 949–960.
586 doi:10.1038/ng.685

587 22. Randall JC, Winkler TW, Kutalik Z, Berndt SI, Jackson AU, Monda KL, et al. Sex-

588 stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual
589 Dimorphism in Genetic Loci for Anthropometric Traits. Gibson G, editor. PLoS Genet.
590 2013;9: e1003500. doi:10.1371/journal.pgen.1003500

591 23. Winkler TW, Justice AE, Graff M, Barata L, Feitosa MF, Chu S, et al. The Influence of
592 Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale
593 Genome-Wide Interaction Study. Adeyemo A, editor. PLOS Genet. 2015;11: e1005378.
594 doi:10.1371/journal.pgen.1005378

595 24. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, et al. New
596 genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:
597 187–196. doi:10.1038/nature14132

598 25. Karasik D, Ferrari SL. Contribution of gender-specific genetic factors to osteoporosis risk.
599 Ann Hum Genet. 2008;72: 696–714. doi:10.1111/j.1469-1809.2008.00447.x

600 26. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for
601 genomic selection. BMC Bioinformatics. 2011;12. doi:10.1186/1471-2105-12-186

602 27. Pérez P, De Los Campos G. Genome-wide regression and prediction with the BGLR
603 statistical package. Genetics. 2014;198: 483–495. doi:10.1534/genetics.114.164442

604 28. Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM, Bonnycastle LL, et al. Common
605 variants in the GDF5-UQCC region are associated with variation in human height. Nat
606 Genet. 2008;40: 198–203. doi:10.1038/ng.74

607 29. Correa-Rodríguez M, Rio-Valle JS, Rueda-Medina B. AKAP11 gene polymorphism is

608 associated with bone mass measured by quantitative ultrasound in young adults. *Int J Med*
609 *Sci.* 2018;15: 999–1004. doi:10.7150/ijms.25369

610 30. Zhu D-L, Chen X-F, Hu W-X, Dong S-S, Lu B-J, Rong Y, et al. Multiple functional
611 variants at 13q14 risk locus for osteoporosis regulate *RANKL* expression through long-
612 range super-enhancer. *J Bone Miner Res.* 2018; doi:10.1002/jbmr.3419

613 31. Mullin BH, Walsh JP, Zheng HF, Brown SJ, Surdulescu GL, Curtis C, et al. Genome-
614 wide association study using family-based cohorts identifies the WLS and
615 CCDC170/ESR1 loci as associated with bone mineral density. *BMC Genomics.* *BMC*
616 *Genomics;* 2016;17: 1–11. doi:10.1186/s12864-016-2481-0

617 32. Mullin BH, Zhao JH, Brown SJ, Perry JRB, Luan J, Zheng HF, et al. Genome-wide
618 association study meta-analysis for quantitative ultrasound parameters of bone identifies
619 five novel loci for broadband ultrasound attenuation. *Hum Mol Genet.* 2017;26: 2791–
620 2802. doi:10.1093/hmg/ddx174

621 33. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of
622 body mass index yield new insights for obesity biology. *Nature.* 2015;518: 197–206.
623 doi:10.1038/nature14177

624 34. Choi JW, Pai SH. Associations between ABO blood groups and osteoporosis in
625 postmenopausal women. *Ann Clin Lab Sci.* 2004;34: 150–153.

626 35. Lu BB, Li KH. Association between ABO blood groups and osteoporosis severity in
627 Chinese adults aged 50 years and over. *J Int Med Res.* 2011;39: 929–933.
628 doi:10.1177/147323001103900327

629 36. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK Biobank: An
630 Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases
631 of Middle and Old Age. PLOS Med. 2015;12: e1001779.
632 doi:10.1371/journal.pmed.1001779

633

634

635 **Supporting information**

636 **S1 Fig. LD statistics across distances.**

637 **S2 Fig. Estimated power and false-discovery rate for discovering observed SNPs with**
638 **effects in at least one sex.** Estimated power (left) and FDR (right) shown as a function of the
639 number of SNPs selected. Each point represents a sample average and error bars represent 95%
640 confidence intervals, each derived using 30 Monte Carlo replicates. LBR (SNP): local Bayesian
641 regression, utilizing PP_{SNP_j} . SMR: single-marker regression, utilizing the F-test-based p -value.

642 **S3 Fig. Power vs false-discovery rate for discovering genomic regions containing masked**
643 **causal variants.** Here power is defined as the expected proportion of causal variants that are
644 being tagged by at least one selected SNP j or window j^* . False discovery rate is defined as the
645 proportion of selected SNPs or windows that are not tagging any causal variants. Each point is an
646 estimate and error bars for both axes represent 95% confidence intervals. Point estimates and
647 intervals were derived using 30 Monte Carlo replicates. Each facet corresponds to a different
648 “target area”, a fixed width around each causal variant that defines the set of SNPs effectively
649 tagging it. LBR (SNP): uses the PP_{SNP_j} metric spanning 1-0. LBR (Window): uses the maximum

650 between $PPM_{\sigma_{g_j^*}^2}$ and $PPF_{\sigma_{g_j^*}^2}$ spanning 1-0. SMR: uses the F-test-based p -value spanning (on

651 the $-\log_{10}$ scale) 30-0.

652 **S4 Fig. Comparison between SMR and LBR for discovering G×S interactions.** Manhattan

653 plot showing *pvalue*-diff for each analyzed SNP. SNPs are colored yellow if they were focal

654 SNPs with a $PPDiff_{\sigma_{g_j^*}^2} \geq 0.9$ and colored red if they were focal SNPs with a $PPDiff_{\sigma_{g_j^*}^2} \geq 0.95$.

655 The dashed horizontal lines denote p -diff thresholds of 1×10^{-5} and 5×10^{-8} .

656 **S5 Fig. eQTL enrichment as a function of the number of SNPs selected.** LBR (Window):

657 uses the $PPDiff_{\sigma_{g_j^*}^2}$ metric. SMR: uses the *pvalue*-diff metric.

658 **S1 Table. Sex-specific phenotype statistics.** Height units: cm, BMD units: g/cm2, BMI units:

659 Kg/m2.

660 **S2 Table. Inferred G×S interactions using sex-specific window variances.** Listed are all

661 windows with a $PPDiff_{\sigma_{g_j^*}^2} \geq 0.9$.

662

663

664

665

666

667

668

669

670

671

672 **Fig 1. Strategy for implementing local Bayesian regressions genome-wide.** The phenotype is
673 regressed upon multiple sequential SNPs using a sliding window approach. The core region
674 contained 1500 SNPs (roughly 8Mb, on average) and each buffer region contained 250 SNPs
675 (roughly 1Mb, on average). Core parameters (posterior samples) are stitched together, then sex-
676 specific effects and G×S interactions are inferred at the level of SNP j and window j^* .

677 **Fig 2. Estimated power and false-discovery rate for discovering observed SNPs with G×S**
678 **interactions.** Shown as a function of the number of SNPs selected. Each point represents a
679 sample average and error bars represent 95% confidence intervals, each derived using 30 Monte
680 Carlo replicates. LBR (SNP): local Bayesian regression, utilizing $\text{PPDiff}_{\text{SNP}_j}$. SMR: single-
681 marker regression, utilizing *pvalue*-diff.

682 **Fig 3. Power vs false-discovery rate for discovering genomic regions containing masked**
683 **G×S interactions.** Here power is defined as the expected proportion of G×S interactions that are
684 being tagged by at least one selected SNP j or window j^* . False discovery rate is defined as the
685 expected proportion of selected SNPs or windows that are not tagging any G×S interactions.
686 Each point is an estimate and error bars for both axes represent 95% confidence intervals. Point
687 estimates and intervals were derived using 30 Monte Carlo replicates. Each facet corresponds to
688 a different “target area”, a fixed width around each G×S interaction that defines the set of SNPs
689 effectively tagging it. LBR (SNP): uses the $\text{PPDiff}_{\text{SNP}_j}$ metric spanning 1-0. LBR (Window):
690 uses the $\text{PPDiff}_{\sigma_{j^*}^2}$ metric spanning 1-0. SMR: uses the *pvalue*-diff metric spanning (on the -
691 \log_{10} scale) 8-0.

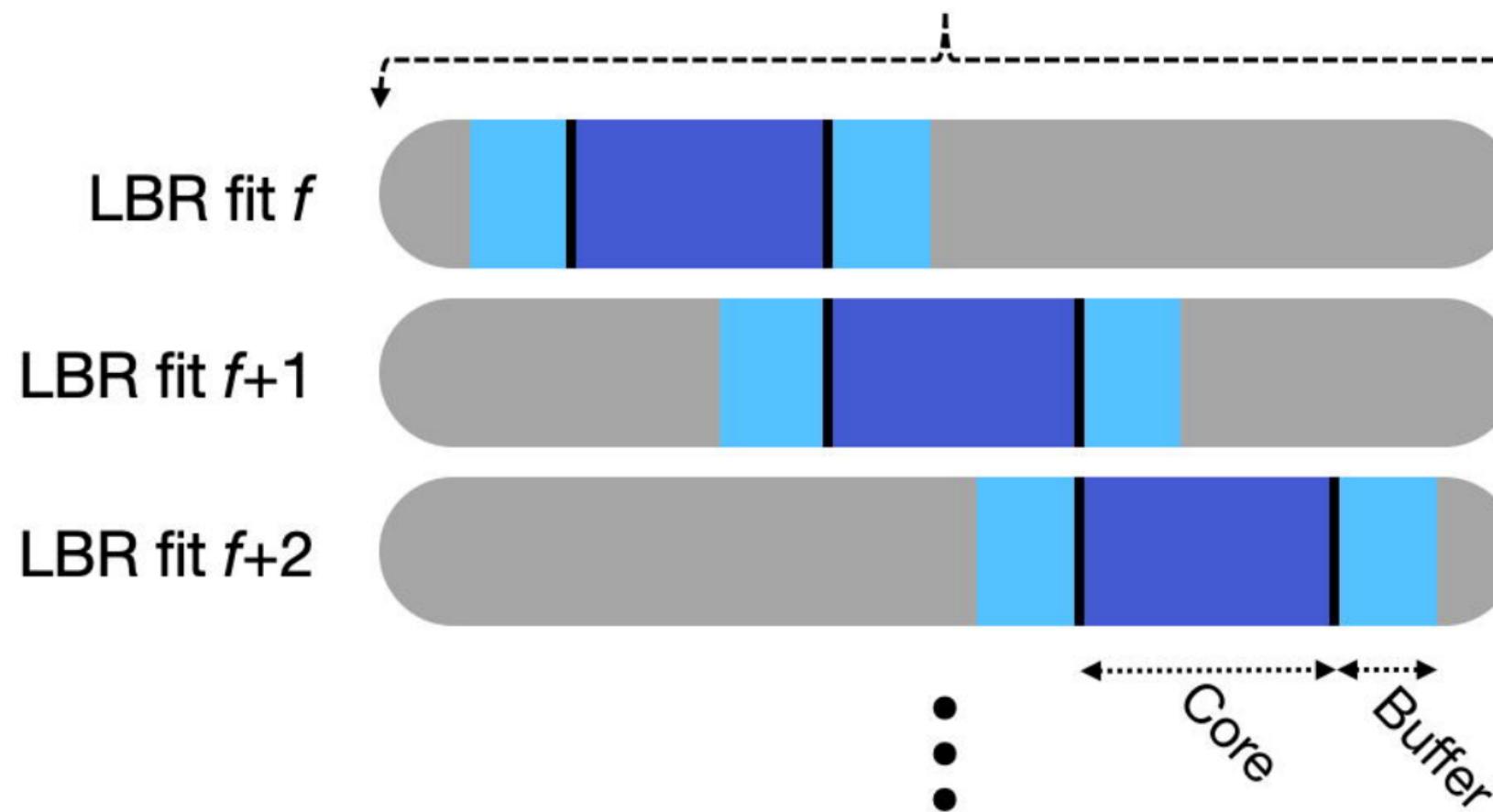
692 **Fig 4. Comparing sex-specific genetic effects. (A)** Plot of estimated female SNP effects against
693 estimated male SNP effects for all 607,497 genotyped autosomal SNPs. Points are colored by
694 their posterior probability of sex difference at the level of individual SNPs. **(B)** Plot of estimated

695 female window variances against estimated male window variances for all 607,497 LD-based
696 windows, with each window j^* centered on a different focal SNP j . Points are colored by their
697 posterior probability of sex difference at the level of window variances. **(C)** Miami-like plot
698 depicting location and magnitude of G×S interactions identified through sex-specific window
699 variances. For each trait, showing estimated male window variance above the x-axis and
700 estimated female window variance below the x-axis. Vertical lines denote changing
701 chromosomes. A sample of windows is labeled with nearest gene annotation, obtained from
702 Axiom UKB WCSG annotations, release 34. Gray labels indicate nearest genes with relatively
703 large window variances evidently shared across sexes, while red labels indicate nearest genes
704 with detected G×S interactions.

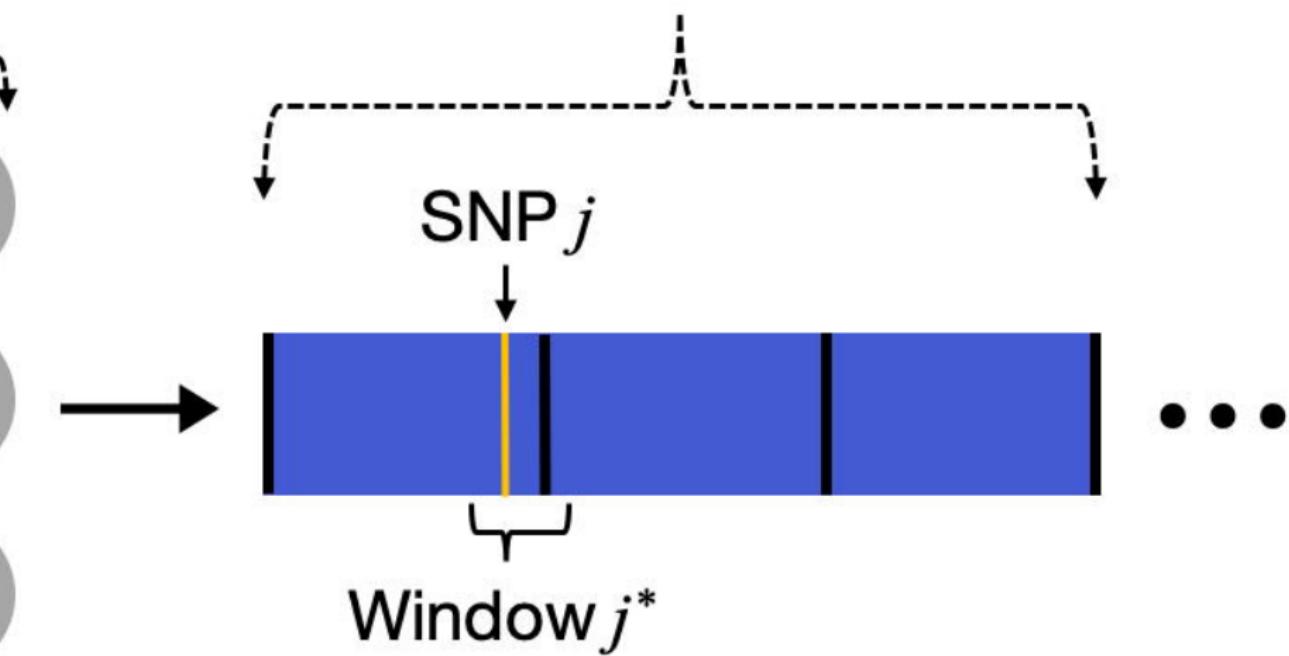
705 **Fig 5. Evidence that LBR-identified G×S interactions are enriched in tissue-specific eQTL.**
706 Plotted on the x-axis is the p -value obtained from a hypergeometric test providing evidence that
707 focal SNPs selected using $\text{PPDiff}_{\sigma_{g_j^*}^2} \geq 0.9$ are enriched in tissue-specific eQTL. The dashed line
708 represents a Bonferroni corrected significance threshold of 2.6×10^{-4} .

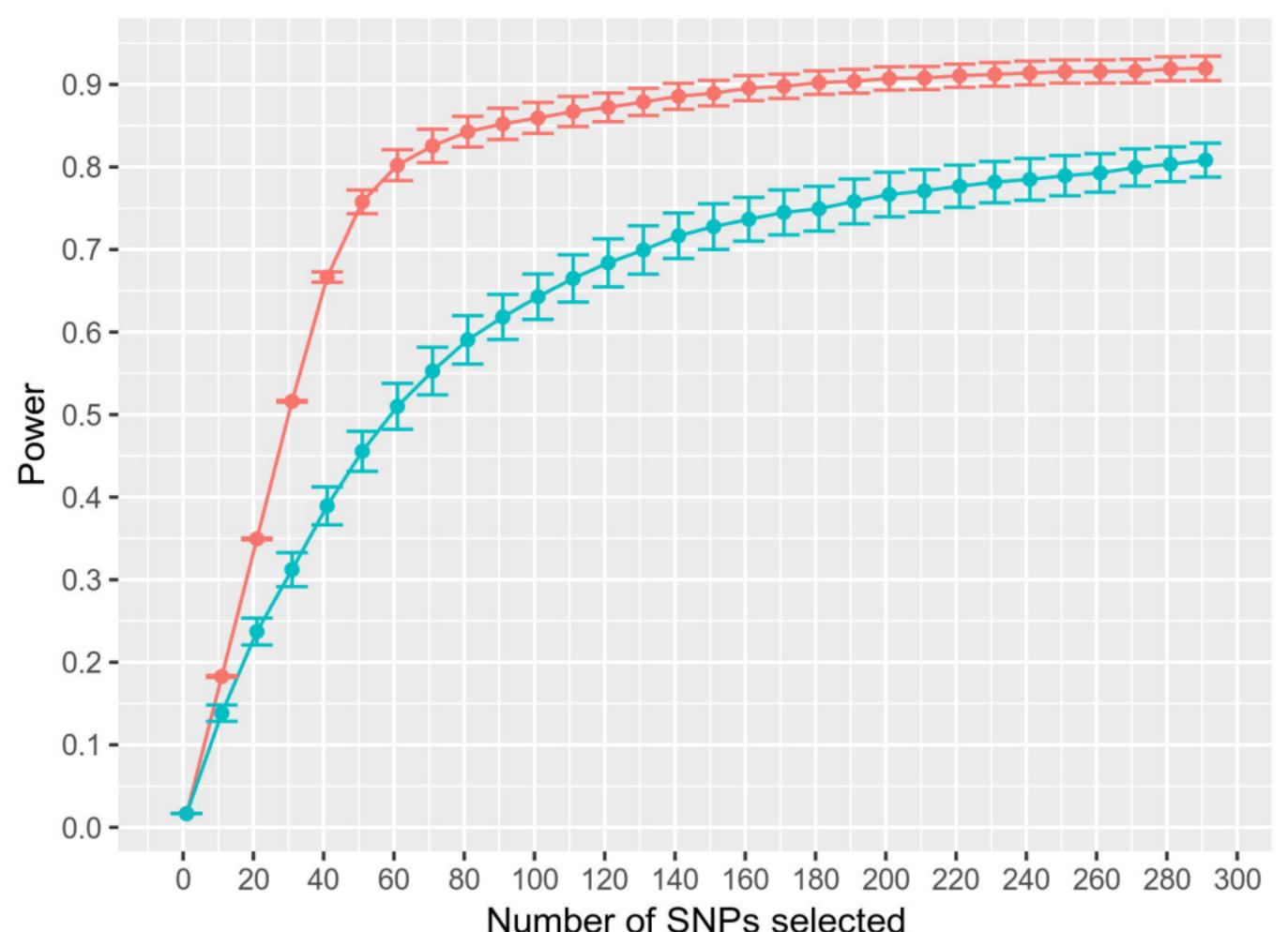
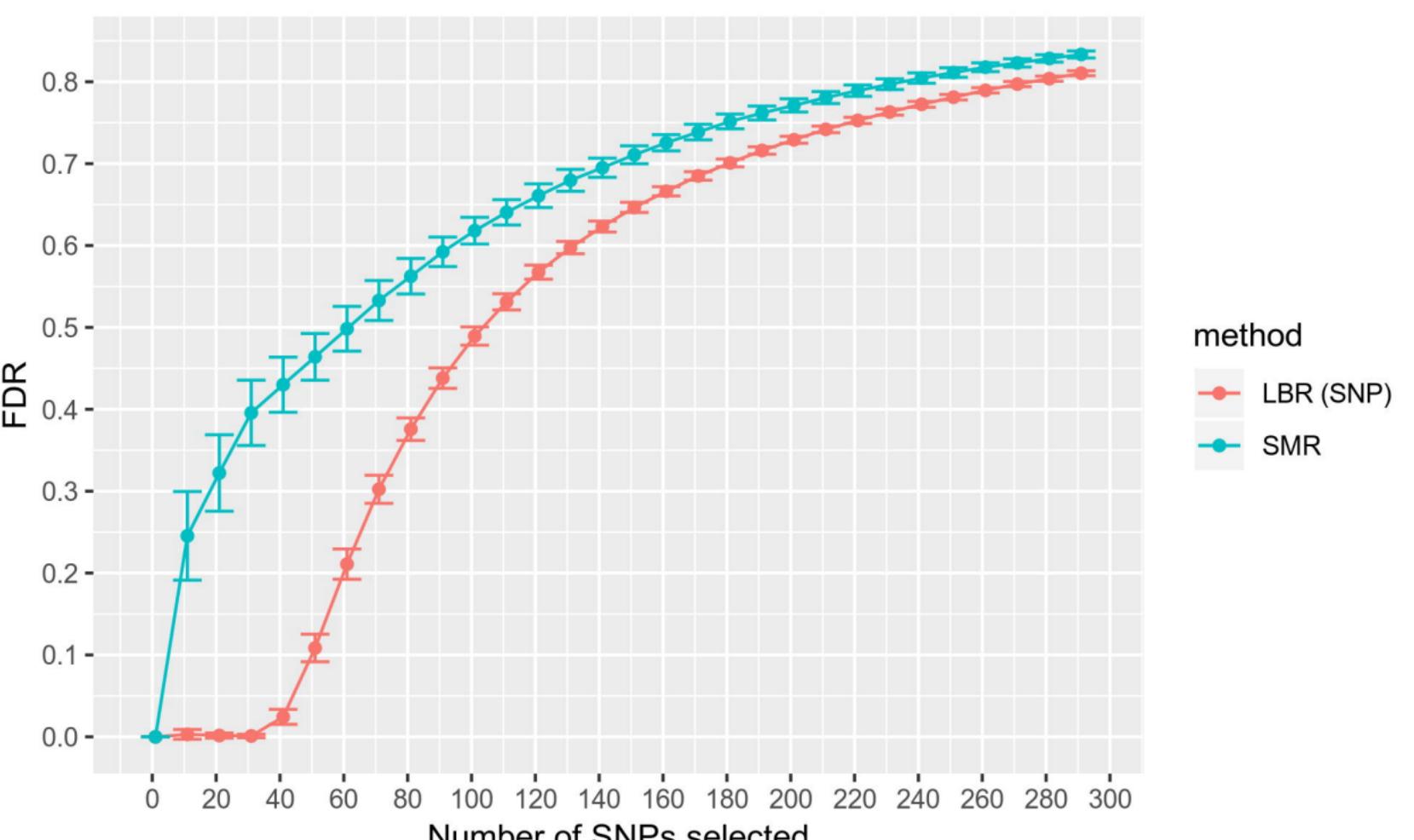
709

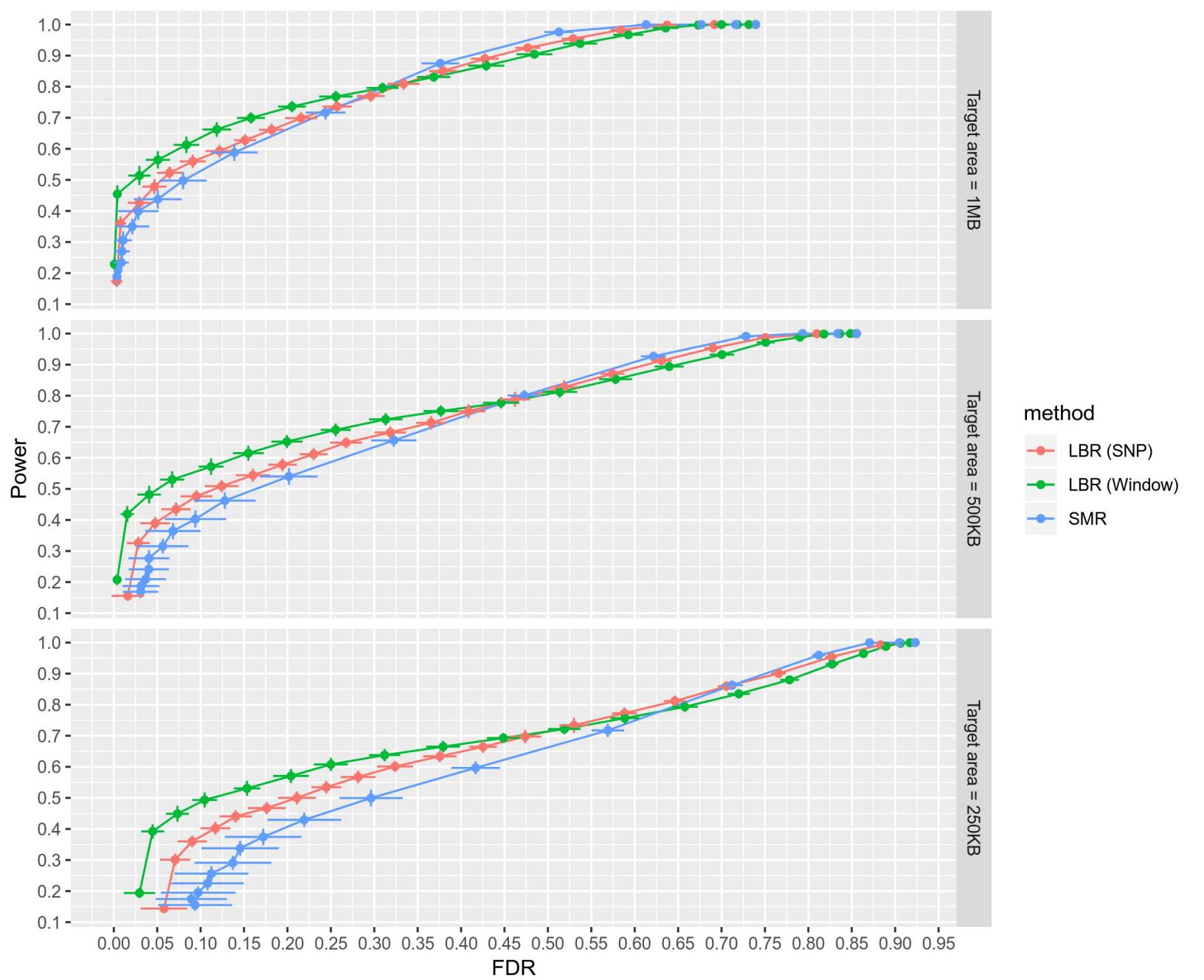
Chromosome segment

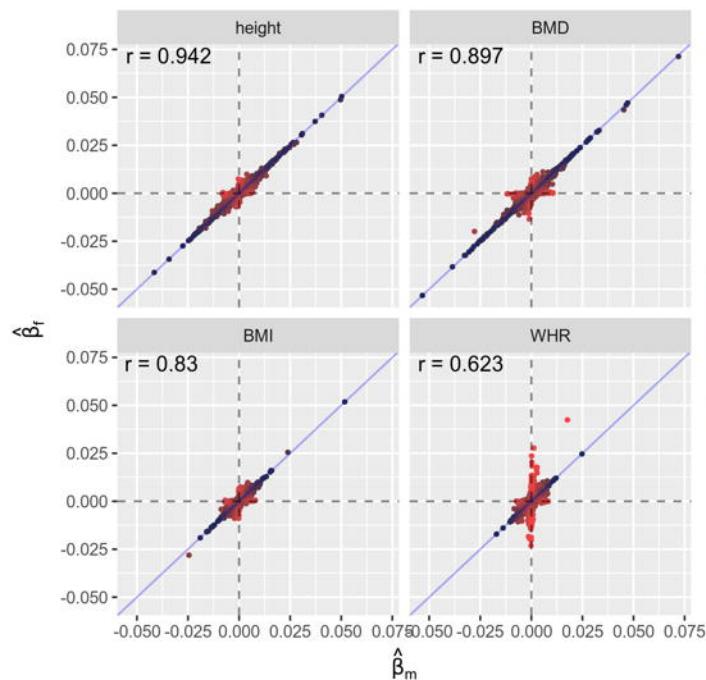
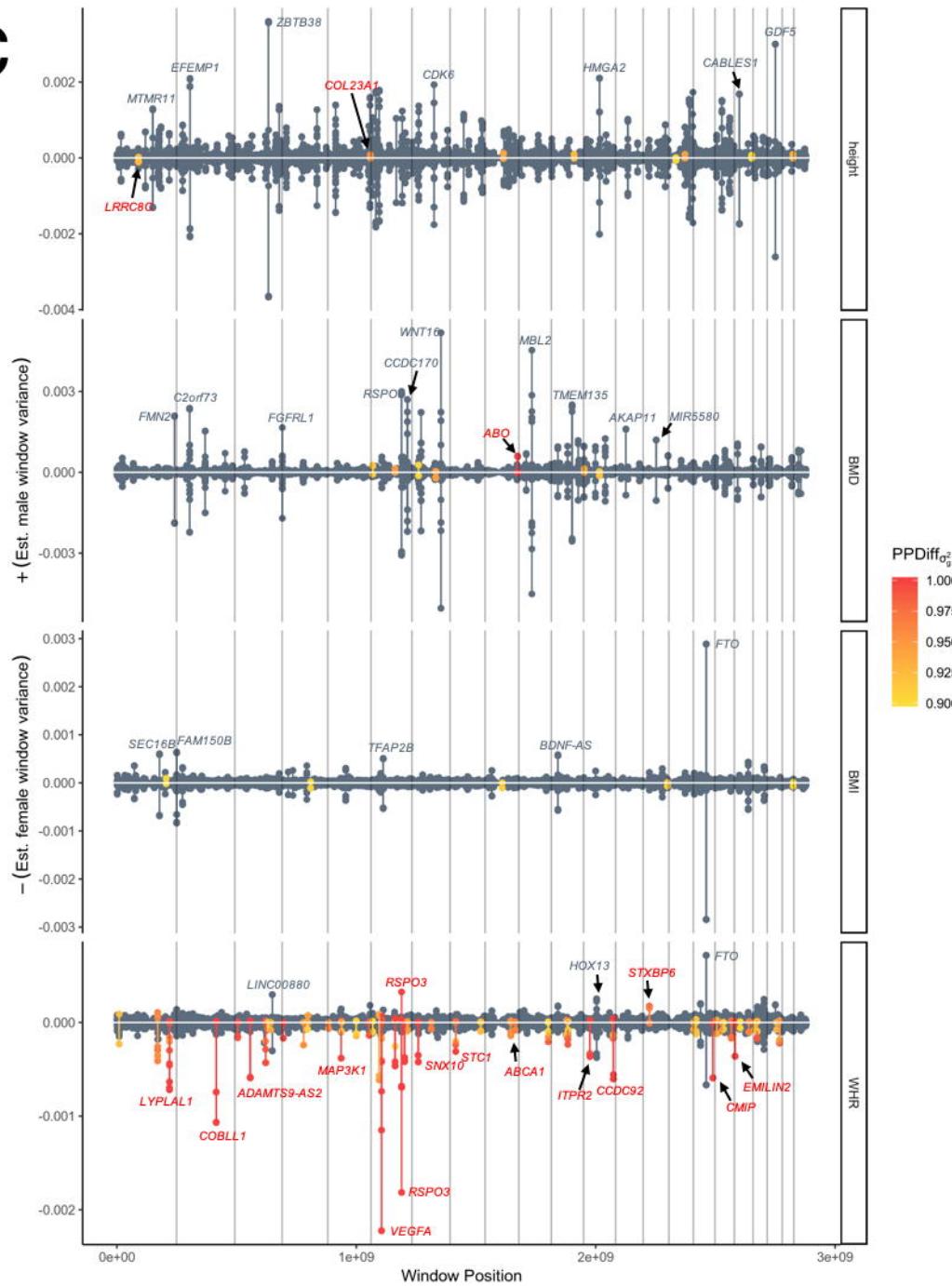


Assembled core parameters







A**C****B**