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Abstract

Many complex human traits exhibit differences between sexes. While numerous factors
likely contribute to this phenomenon, growing evidence from genome-wide studies suggest a
partial explanation: that males and females from the same popul ation possess differing genetic
architectures. Despite this, mapping gene-by-sex (GxS) interactions remains a challenge likely
because the magnitude of such an interaction istypically and exceedingly small; traditional
genome-wide associ ation techniques may be underpowered to detect such events partly dueto
the burden of multiple test correction. Here, we developed alocal Bayesian regression (LBR)
method to estimate sex-specific SNP marker effects after fully accounting for local linkage-
disequilibrium (LD) patterns. This enabled usto infer sex-specific effects and GxS interactions
either at the single SNP level, or by aggregating the effects of multiple SNPs to make inferences
at the level of small LD-based regions. Using simulations in which there was imperfect LD
between SNPs and causal variants, we showed that aggregating sex-specific marker effects with
LBR provides improved power and resolution to detect GxS interactions over traditional single-
SNP-based tests. When using LBR to analyze traits from the UK Biobank, we detected a
relatively large GxS interaction impacting bone-mineral density within ABO and replicated many
previously detected large-magnitude GxS interactions impacting wai st-to-hip ratio. We also
discovered many new GxS interactions impacting such traits as height and BMI within regions
of the genome where both male- and femal e-specific effects explain a small proportion of
phenotypic variance (R* < 1x10™), but are enriched in known expression quantitative trait loci.
By combining biobank-level data and techniques to estimate sex-specific SNP effects after
accounting for local-LD patterns, we are providing evidence that numerous small-magnitude

GxSinteractions exist to influence sex differences in avariety of complex traits.
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Author Summary

Many complex human traits are known to be influenced by an impressive number of
causal variants each with very small effects, posing great challenges for genome-wide
association studies (GWAS). To add to this challenge, many causal variants may possess
context-dependent effects such as effects that are dependent on biological sex. While GWAS are
commonly performed using specific methods in which one single nucleotide polymorphism
(SNP) at atimeistested for association with atrait, alternatively we utilize methods more
commonly observed in the genomic prediction literature. Such methods are advantageous in that
they are not burdened by multiple test correction in the same way as traditional GWAS
techniques are, and can fully account for linkage-disequilibrium patterns to accurately estimate
the true effects of SNP markers. Here we adapt such methods to estimate genetic effects within

sexes and provide a powerful means to compare sex-specific genetic effects.

I ntroduction

Sex differences are widespread in nature, observed readily among many human traits and
diseases. For quantitative traits, sex may affect the distribution of phenotypes at various levels,
including mean-differences between genetic males and genetic females (hereafter referred to as
males and females, respectively) aswell as differences in variance. Sex differences are likely due
to amyriad of factorsincluding differential environmental exposures, unequal gene dosages for
sex-linked genes as well as sex-heterogeneity in the architecture of genetic effects at one or more

autosomal loci (i.e. gene-by-sex (GxS) interactions). In thisway, sex is considered an
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environmental variable, providing two well-defined conditionsin which allele frequencies and
linkage disequilibrium (LD) patterns are equivalent but neverthel ess genetic effects of one or

many autosomal loci may differ.

Evidence for different genetic architectures between sexes among human populationsis
largely supported by genome-wide parameters [ 1-4] including unequal within-sex heritabilities
(h%mae # h%emae) and between-sex genetic correlations less than one (rg <1); the former suggests
that the proportion of phenotypic variance explained by genetic factors varies between sexes,
while the latter suggests genetic effects are disproportional between sexes [5]. Although many
traits seem to have between-sex genetic correlation that is evidentially less than one, genome-
wide association (GWA) studies intended to map GXS interactions have struggled to pinpoint
such loci [6,7]. Based on this dichotomy, GxS interactions presumably exist for many traits, but
the magnitude of atypical GxS interaction is suspected to be exceedingly small, explaining why
such events commonly elude detection, particularly after multiple test correction. However, just
as numerous small effect causal loci accumulate to affect phenotypic variance, small GxS

interactions may accumulate to influence both sex differences and phenotypic variance.

Most GWA studies utilize single-marker regression (SMR), in which the phenotypeis
regressed upon allele content one SNP at atime, thereby obtaining marginal SNP effect size
estimates that do not fully account for LD patterns. In contrast, whole-genome regression
methods, in which the phenotype is regressed upon all SNPs across the genome concurrently,
fully account for multi-locus LD. These methods are increasingly being used as a one-stop
solution to estimate true (conditional) effect sizes of SNP markers and to provide genome-wide
estimates including genomic heritability [8-10] and between-sex genetic correlations [2—4]. By

estimating true SNP effect sizes, the goal across many studiesis to select SNPs with non-zero
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85 effectsand to build amode for predicting polygenic scores [11-13]. Other works have directly
86 illustrated the use of whole-genome regression methods for GWAS [14-17]. Whole-genome

87  regressions are computationally challenging to use with biobank-level data; however, recent

88  work suggests relatively accurate genomic prediction and SNP effect estimation can be achieved

89 by simply accounting for local LD patterns (as opposed to global LD patterns) [18].

90 Building on the idea of utilizing true SNP marker effects, here we developed local

91 Bayesian regressions (LBR) in which the phenotype is regressed upon multiple SNPs spanning
92 multiple LD blocks (thereby accounting for local LD patterns) to study sex differencesin

93 complex traits from the UK Biobank. The LBR model uses random-effect SNP-by-sex

94  interactions[19,20] that decompose conditional SNP effects into three components: i) one shared
95  across sexes, ii) amale-specific deviation from the shared component, and iii) a female-specific
96 deviation from the shared component. Using samples from the posterior distribution of

97  conditional SNP effects, we devel oped methods to infer sex-specific effects and GxS interactions
98 atthesngle SNP level and by aggregating SNP effects within small LD-based regions, offering

99  multiple perspectives to study sex-specific genetic architectures.

100 In this study, we have utilized genotypes for 607,497 autosomal SNPs from ~259,000
101 digantly related Caucasians from the UK Biobank for assessing LBR’ s performance in analyzing
102 simulated and real complex traitsincluding height, BMI, waist-to-hip ratio (WHR), and hed

103  bone-mineral density (BMD). Simulations showed that (i) for inferences of GxS interactions,
104 LBR offers higher power with lower FDR than methods based on marginal effects (aka single-
105 marker regression) and (ii) we show that under imperfect LD between SNPs and causal variants
106 (i.e, when causal variants are not genotyped), aggregating SNP effects within small LD-based

107  regions offers higher power than methods based on testing individual SNPs.
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108 The traits analyzed in this study span a range of genome-wide metrics and GxS

109  suggestibility; from height and BMI for which previous studies indicate males and females

110  possessvery similar genetic architectures [3], to WHR, atrait with well-documented GxS

111  interactions[21-24], and BMD, for which GxS interactions are thought to exist but have eluded
112  detection [25]. LBR provided evidence of GxS interactionsimpacting height, BMI, and BMD at
113  regions of the genome where sex-specific genetic effects are relatively small, however such

114  regionsare enriched in known eQTL. For WHR, LBR replicated many large-magnitude GxS
115 interactions previoudly discovered using single-marker regression, but also located novel GxS

116 interactions near such genes as the estrogen receptor ESR1.
117 Results

118 Overview of the LBR model, inference methods, and implementation

119 To study sex differences we regressed male and femal e phenotypes (y,,, and y¢) on male and

120 female genotypes (X,, and X) using a SNP-by-sex interaction model of the form

e P R MR R

121  Above, u,, and us are male and female intercepts, b, = {boj} (G=1,...,p)isavector of main

122  effects b, = {bmj} and by = {bfj} are male and female interactions, respectively and €, =

123 {ey,} and & = {&;,} are male and female errors which were assumed to follow normal
124  distributions with zero mean and sex-specific variances. Female-specific and male-specific SNP
125  effects are defined as[?fj = bo]- + bf]. and Bm]. = bo,- + bm]., respectively.

126
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127  Prior assumptions. For SNP effects we adopted priors from the spike-slab family with a point

128  of massat zero and a Gaussian slab [26] specifically, p (bkj) =mN(0,07,) + (1 -

129  mp)1 (bk}. = 0) (wherek = 0, f or m). Here, m;, and a,fk are hyper-parameters representing the

130 proportion of nonzero effects and the variance of the slab; these hyper-parameters were treated as
131  unknown and given their own hyperpriors (see Methods).

132

133  Local-regression. Implementing the above mode with whole-genome SNPs (p ~ 600K) and

134  very large sample size (n ~ 300K) is computationally extremely challenging. However, LD in
135  homogeneous un-structured human populations spans over relatively short regions (R* between
136 allele dosages typically vanishes within 1-2 Mb; S1 Fig). Therefore, we applied LBR to long,
137  overlapping chromosome segments (Fig. 1). Specifically, we divided the genome into “core”

138  segments containing 1,500 contiguous SNPs (roughly 8Mb, on average), then applied the

139 regression in equation (1) to SNPsin the core segment plus 250 SNPs (i.e., roughly 1IMb) in each
140 flanking region, which were added to account for LD between SNPs at the edge of each core

141  segment with SNPsin neighboring segments.

142

143 Inferences. We used the BGLR [27] software to draw samples from the posterior distribution of
144  the model parameters and used these samples to make inference about individual SNP effects

145  including: (i) the posterior probability that the | SNP has a nonzero effect in males (PPMSij)
146  and females (PPFSij) and (ii) the posterior probability that the female and male effects are
147  different (PPDiffSNPj).

148 In regions involving multiple SNPs in strong LD, inferences at the individual-SNP level

149  may be questionable. Therefore we borrowed upon previous work by Fernando et al. [14],
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150 enabling us to aggregate multiple sex-specific SNP effects within relatively small regions using
151  “window variances’. For each SNPj we defined awindow j* around the SNP based on local LD

152  patterns (see Methods). We then defined the male-specific and female-specific window variances

153 aso? , =var (Xj*ﬁmj*) and ang]_* = var (Xj*ﬁf]_*), respectively. Here, X represent

9m j*
154  genotypes at SNPswithinthej window and var( ) isthe sample variance operator. Prior to
155 modd fitting, the phenotype is scaled across sexes; thus, sex-specific window variances may be
156 interpreted asthe proportion of total phenotypic variance explained by sex-specific SNP effects.
157  From samples of sex-specific window variances, we computed the posterior probability of (i)

158  nonzero male-specific window variance (PPMaé ), (i) nonzero femal e-specific window variance
]*

159 (PPFoﬁ_ ), and (ii1) sex difference in window variances (denoted asPPDiffoﬁ_ ).
J* i

160
161 Local Bayesan regressonsoffer improved power with lower false-discovery rates

162 We used simulations to assess the power and false discovery rate (FDR) of LBR and to
163 compareit with that of standard single-marker-regression (SMR). Traits were simulated using
164  SNP genotypes from the Axiom UK-Biobank (119,190 males and 139,738 females, all distantly
165 related Caucasians). We simulated a highly complex trait with one causal variant (CV) per ~2Mb
166  which on average explained a proportion of the phenotypic variance equal to 3.3x10™*. Our

167 simulation used atotal of 60,000 SNPs (consisting of 6,000 consecutive SNPs taken from 10

168  different chromosomes) and 150 CV's; on the complete human genome “scale’ this corresponds

169 toatrait with 1,500 CVsand a heritability of 0.5 (see Methods for further details). 40% of the
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170 CVs(atotal of 60 SNPsin our simulation) had differing sex-specific effects and the remaining
171 60% (90 SNPs) had effects that were the same in males and females.

172

173 Power and FDR when causal variants are genotyped. First, we analyzed the simulated

174  phenotypes using al SNPs (including the 150 causal ones). Initially interested in inferring GxS
175 interactions, we ranked SNPsbased on LBR’s PPDiffSNPj metric and based on SMR’s p-value
176  for sex difference (pvalue-diff , see Methods) and used the two ranksto estimate power and FDR
177 asafunction of the number of SNPs selected (Fig 2). LBR showed consistently higher power

178 (achieving a power of ~80% when selecting the top 50 SNPs with highest PPDiffSij) and lower

179 FDR than SMR. The false discovery rate of LBR was very low when selecting the top-50 SNPs

180  with highest PPDiffSij and exhibited a very sharp phase-transition with fast increase in FDR

181  thereafter.
182 We also compared the two methods based on arbitrary, albeit commonly used, mapping

183  thresholdsfor SMR and LBR. At PPDiffSNp]. > 0.95, LBR selected an average (across smulation

184  replicates) of 38.33 SNPs with an estimated power of 0.634 and estimated FDR of 0.007.

185  Conversdy, at pvalue-diff < 5x10®, SMR selected an average of 50.7 SNPs with an estimated
186  power of 0.436 and estimated FDR of 0.451. Altogether, these results suggest that for GxS

187 discovery, LBR offers higher power and lower FDR than SMR—the method most widely used in
188 GWA studies—at least when GxS interactions are observed.

189 When trying to map SNPsthat had effect in at least one sex, we used PPsnp; =

190 max [PPMSij, PPFSNPJ.] and p-values from an F-test (see Methods) as metrics for LBR and

191 SMR methods, respectively. Again, LBR showed higher power with lower FDR than a standard

192 SMR p-value (S1 Fig). At traditional mapping thresholds, LBR and SMR had similar power but
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193 LBR achieved that power with much lower FDR; at PPsnp; 2 0.95, the average number of SNPs

194  selected was 120.83 with an estimated power of 0.799 and estimated FDR of 0.009 while at p-
195 value<5x10®, the number of SNPs selected was 374.56 with an estimated power of 0.794 and
196 FDR of 0.66.

197

198 Power and FDR under imperfect LD. In a second round of analyses, we removed all CV'sfrom
199 thepanel of SNPsused in the analysis to represent a situation where CV's are not observed, and
200 genotyped SNPs are tagging CVs at varying degrees. As before, weinitially assessed the relative
201 performance of LBR to infer segments harboring GxS interactions. Power and FDR were

202  assessed at several resolutions. 1IMb, 500K b and 250K b regions around each CV. At each

203  resolution, adiscovery was considered true if the finding laid within a segment harboring a GxS

204 CV. Power and FDR were computed at different thresholds (PPDiffSNp].and PPDiffag_ for LBR
]*

205  and pvalue-diff for SMR; Fig 3). When using a IMb target area—such that correct GxS

206  discoveries must be within 500Kb on either side of atrue GxS event—PPDiff,;> thresholds
]*

207  (LBR’swindow-based metrics) provided highest power within an FDR range of 0-0.3, thereafter
208 SMR provided slightly higher power. As expected, when removing CV's, power was estimated to

209  be much lower than when CVswere observed; at PPDiff%z’_ > 0.95, the estimated power and

A
210 FDR were 0.454 and 0.004, respectively, while at pvalue-diff < 5x10°®, estimated power and
211 FDR were0.22 and 0.006. As seen in Fig 3, when considering afiner resolution (500Kb and
212  250KDb) the performance of both LBR-based approaches was more robust than SVIR. Altogether
213 thisindicates that for the discovery and mapping of unobserved GxSinteractions, LBR’s

214  window-based metric provides higher power with equivalent FDR and finer resolution than

215  single-marker regression methods.

10
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To infer segments containing CVs that affect at least one sex, we again used LBR to
decide whether either sex-specific effect was nonzero at the level of individual SNPs or
windows. Using a IMB target area, LBR’ s window-based metrics provided the highest power
within an FDR range of 0-0.025. When decreasing the target area, LBR provided the highest

power over larger FDR ranges (S2 Fig).

For real human traits, many newly discover ed GxSinteractions show relatively small sex-

specific effects

We analyzed four complex human traits (height, BMI, BMD, and WHR) measured
among ~259,000 distantly related Caucasians from the UK Biobank (~119,000 males and
~140,000 females). For each trait, we fit the LBR model (eg. 1) across the entire autosome
consisting of 607,497 genotyped SNPs using 417 overlapping segments (Fig. 1) and obtained
evidence of GxS interactions at the level of SNPj and window j .

To compare both the magnitude and sign of sex-specific SNP effects, we plotted each
ij against Bm]. (Fig 4a). Thetrait was scaled across sexes prior to modd fitting; thus, male- and

female- specific effects were not constrained to the same scale. In this way, one might expect
male-specific SNP effectsto uniformly differ from female-specific SNP effects by a
multiplicative factor if the variance of the phenotype is different between sexes (sample statistics
within each sex are provided within S1 Table). Surprisingly, we did not observe evidence of sex-
specific SNP effects uniformly differing due to differences in phenotypic scale; for height, BMD,
and BMI, as seen in Fig. 4a, most large effect SNPs lie near the blue diagonal line. For WHR, we

observed largely consistent results from prior studies [21-23]: namely the preval ence of

11
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238 numerous SNPswith relatively large effects in females but little to no effect in males. No traits
239  exhibited evidence of any SNPs with (i) high confidence male- and female- specific effects (no

240  SNPswith PPMgnp; 2 0.9 and PPFgnp, 2 0.9) and (ii) differing signs between sexes.

241 We then aggregated sex-specific SNP effects within small LD-based regions to estimate

242  sex-specific window variances a;m]_* and angj* and compared the magnitude of each (Fig 4b).

243  Interestingly for traits such as height, many large effect regions bear dightly larger window
244 variances for males than for females. This was not observed at the single SNP level, suggesting
245  that many regions bearing numerous small effect SNPs produce aggregate effects that are

246  potentialy larger (although not reaching aPPDiffoﬁ > 0.9 threshold) in males than in females.
j*

247  One exampleisthe GDF5 locus, previously known to strongly associate with adult height [28],

248  where a peak PPDiffagj* signal centered on rs143384 had dlightly different estimated sex-specific
249  window variances (692[“}_* = 3.0x10"°% and 6929-* = 2.6x10°) but weak evidence of a GxSinteraction
250 (PPDiffagj* = 0.544). For BMD, several large effect regions show suggestive evidence of GxS
251 interactionsincluding the AKAP11 locus and the CCDC170 locus (PPDiffaél_* = 0.856 and 0.745,

252  respectively), both previously associated with bone mineral density [29-32].
253 To make GxS inferences at the level of window variances irrespective of the magnitude

254  of sex-gpecific effects, we adopted aPPDiffaé _ threshold of 0.9, whichin simulations (Fig 3)
J

255  provided optimal power at an estimated FDR of 0.029 when using a 1MB target area. For height,

*

256 atotal of eight distinct regions possessed aPPDiffag > 0.9, two of which possessed a PPDiffos_
j* j
257  >0.95. For BMI, 5 distinct regions possessed aPPDiffag. > 0.9 with none reaching amore
}*

258  stringent PPDiffag_ > 0.95 threshold, and none overlapping with two previously suggested BMI
]*

12
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259 GxSSNPs[33]. Asseenin Fig 4C, inferred GxSinteractions for height and BM | possess

260 reatively small sex-specific window variances; as an example, for height, the window centered

261 on SNPrs1535515 (near LRRCSC) hed aPPDIff,; =0.96, whiledy, = 2.1x10°and g, =
]'* * ]*

J

262  1.1x10™ For BMD, seven regions reached a 0.9 PPDiffaﬁ _threshold while one higher-
J
263  confidence GxSinteraction (PPDiffos > 0.95) was detected within ABO, the gene controlling
J

264  blood type.

265 For WHR, roughly 45 distinct genomic regions possessed aPPDiffaé 2 0.9, while 34 of
J
266  these possessed aPPDiffaé > 0.95. Wefound many previously detected GxS interactions known
J

267  to associate with WHR or arelated trait, WHR adjusted for BMI (WHRadjBM1) [21-24]. These
268 included interactionsat LYPLAL1, MAP3K1, COBLL1, RSPO3, and VEGFA among others. We
269  also detected numerous novel GxS interactions (Table 1) near physiologically intriguing genes
270  such asthe estrogen receptor gene ESR1 and the ATP binding cassette transporter A1 gene

271  ABCA1 known to play arolein HDL metabolism (PPDiffog > 0.95). Asseenin Table 1, both
]

272  novel signals possessed a high-confidence femal e-specific effect with weak evidence for amale-

273  gpecific effect (PPF%; =095 PPM(,; < 0.6), however the magnitude of the female-specific
J J
274 effect was relatively small (65, < 1.4x10). Asevident from Table 1, most novel WHR GxS
J

275 interactions detectable with LBR are those with relatively small sex-specific effects.
276
277
278

279

13
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280

281 Tablel GxSinteractionsinferred through sex-specific window variances. Listed are loci
282  with at least 0.95 posterior probability that sex-specific window variances differ. The tableis
283  sorted first by trait, then by magnitude of the female-specific window variance. Results are
284  filtered such that each window listed consisted of adistinct set of SNPs. A full list of all GxS
285 dSignalsata PPDiffag = 0.90 threshold is provided in S2 Table.

]

Focd SNP*  trait G, 65" PPMg  PPF;  PPDiff;;  Nearest gene location  eQTL"
rs8176719 BMD 0.06000 0.00182  1.000 0.794 1.000 ABO exon/frameshift ~ yes
rsl535515  height 0.00211 0.01170  0.819 0.999 0.956 LRRC8C intron yes
rsl544926  height 0.00763 0.00035  0.983 0.418 0.955 COL23A1 UTR-3 yes
rs6905288 WHR 0.00567 0.22200  0.920 1.000 1.000 VEGFA downstream
rsr2961013 WHR  0.03260 0.18100  1.000 1.000 1.000 RSPO3 downstream
rsl128249 WHR 0.00132 0.10700  0.614 1.000 1.000 COBLL1 intron yes
rs12022722. WHR 0.00080 0.07180  0.490 1.000 1.000 LYPLAL1 downstream yes
rsl776897 WHR 0.00870 0.06140  0.976 1.000 0.950 HMGA1 upstream yes
rsl1057401 WHR 0.00438 0.06030  0.846 1.000 1.000 CCDC92 exon/missense yes
rsl7777180 WHR 0.00031 0.05950  0.291 1.000 1.000 CMIP intron yes
rs4607103 WHR 0.00195 0.05920  0.809 1.000 1.000 ADAMTSO-AS2 intron yes
rs6937293 WHR  0.00457 0.04660  0.839 1.000 1.000 LOC728012 downstream yes
rsl6861373 WHR 0.00066 0.04300  0.389 1.000 0.995 PLXND1 intron
rs73068463 WHR  0.00068 0.04220  0.461 1.000 1.000 SNX10 intron yes
rs9376422 WHR  0.00107 0.04180  0.524 1.000 1.000 LOC645434 upstream
rs6867983 WHR 0.00192 0.03820  0.440 1.000 0.998 MAP3K1 upstream
rs2171522. WHR  0.00241  0.03650  0.561 1.000 0.998 ITPR2 downstream yes
rs3810068 ~WHR 0.00026 0.03590  0.174 1.000 1.000 EMILIN2 upstream yes
rs568890 ~ WHR  0.00129 0.03110  0.809 1.000 1.000 NKX2-6 upstream yes
rsl332955 WHR 0.00647 0.02940  0.970 1.000 0.973 LOC284688 downstream yes
rsl3133548 WHR 0.00019 0.02400  0.175 0.969 0.956 FAM13A intron yes
rsl1263641 WHR 0.00207 0.02340  0.723 1.000 0.991 MYEOV downstream yes
rs2800999 WHR  0.00201 0.02220  0.691 1.000 0.979 TSHZ2 intron
rs2244506 ~WHR  0.00101 0.02070  0.453 0.998 0.985 MIR5694 downstream
rsr259285 WHR  0.00182 0.01710  0.767 1.000 0.989 HAUSS downstream yes
rs4450871  WHR  0.00002 0.01680  0.027 1.000 1.000 CYTL1 downstream
rs4080890 WHR 0.00153 0.01630  0.594 0.999 0.975 KCNJ2 downstream
rs4684859 WHR 0.00039 0.01570  0.330 0.998 0.994 PPARG downstream
rs7704120 WHR 0.00049 0.01370  0.476 0.998 0.991 STC2 downstream
rs10991417  WHR 0.00048 0.01230  0.339 0.986 0.966 ABCAl intron yes
rsl2454712.  WHR  0.00087 0.01020  0.360 0.996 0.965 BCL2 intron yes
rs62070804 WHR  0.00004 0.00887  0.052 0.969 0.961 ABHD15 exon/missense yes
rsl0760322 WHR 0.00027 0.00812  0.282 0.986 0.968 LHX2 downstream
rsl361024 WHR 0.00022 0.00760  0.203 0.982 0.962 ESR1L intron
rsi358503 WHR 0.00021 0.00716  0.309 0.989 0.966 SEMA3C upstream yes
rsl3156948 WHR 0.00016 0.00660  0.079 0.970 0.957 IRX1 downstream
rsl2432376 ~ WHR  0.01740 0.00074  1.000 0.552 0.994 STXBP6 upstream

286 2Focal SNPis defined as the center SNPj in window .

287 " Male and female-specific window variances, expressed as a percentage.

288  “Nearest gene and location identified through Axiom UKB WCSG annotations, release 34. The
289 gen€ellocusisbold if it has been previously detected as a GxS interaction for WHR or WHR
290 adjusted for BMI [21-24].

291  9f “yes’, thefocal SNPis significantly associated with gene expression in at least one tissue,
292  accordingto GTEXx V7.

293

294 Additionally, we utilized atraditional SMR approach (see Methods) for the discovery of

295  GxSinteractions among traits to compare pvalue-diff signalsto PPDiff signals (S3 Fig). At
j*
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296 pvaluediff <5x107%, there were no genome-wide significant GxS-interacting SNPs for height,

297 onesignificant SNP for BMI nearby a window with PPDiffaé > 0.9, and one significant peak
]-*
298  within ABO for BMD (the same signal detected using PPDiff2 ). Regions with aPpDiff,, >09
J* i

299  generally coincided with at least nominally-significant pvalue-diff signals; for height and BMD,

300 regionswith PPDiff, > 0.9 also possessed a peak SNP with pvalue-diff <0.01. For BMI,
j*

301 PPDiff > > 0.9 signals possessed a peak SNP of pvalue-diff <0.1. This, together with the fact
j*

302 that novel GxSinteractions found using LBR possess relatively small sex-specific effects,
303  suggeststhat LBR may be detecting GxS interactions that are otherwise missed dueto low

304  power. Lastly for WHR, most of the high-confidence PPDiffag > 0.9 dgnals coincided with clear
j*

305 and obvious pvalue-diff peaks.

306

307 Inferred GxSinteractionsareenriched in tissue-specific eQTL

308 As seen previously, many GxS interactions inferred using LBR have exceedingly small

309 sex-specific effects. To further investigate whether GxS detections using the PPDiffc,éz7 ~metric
]*

310 may befunctionally relevant, we inferred whether such signals are enriched in eQTL identified

311 from GTEXx. Specifically, using a hypergeometric test we asked whether PPDiffag _-Selected
J

312 focal SNPs(SNPj within window j) were enriched in eQTL, then compared to eQTL
313  enrichment from pval ue-diff-selected SNPs as afunction of the number of SNPs selected ($4

314 Fg). PPDiffag _-selected focal SNPs showed consistently higher eQTL enrichment than pvalue-
J

315  diff-selected SNPsfor all traits except WHR. For instance, at PPDiff,;2 > 0.9, the total number
J
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of windows (focal SNPs) selected was 36, 264, 34, and 13, for height, WHR, BMD, and BMI,
respectively. With these selections, eQTL enrichment p-values were 2.39x10*, 1.52x10%2,
2.01x10*, and 8.33x10™ for height, WHR, BMD, and BMI, respectively. When selecting the
same number of SNPs using pvalue-diff, enrichment p-values were 2.25x102, 1.56x10°%,
5.54x10°% 1.93%, for height, WHR, BMD, and BMI, respectively.

To provide more information about how genetic regions bearing GxS interactions may

impact gene expression in specific tissues, we determined whether focal SNPs at PPDiff,,; - >09
]*

are enriched in tissue-specific eQTL (Fig. 5). For height, BMD, and WHR, such SNPs showed
significant eQTL enrichment in at least one tissue, using a conservative bonferroni corrected
enrichment p-value of 2.6x10™ (correcting for 192 tests in total; 48 tissues and 4 traits).
Interestingly, BMD’s GxS signals are very strongly enriched in eQTL with associated eGenes
(including ABO and CYP3A5) expressed in the adrenal gland, among other tissues. For height,
we observed small enrichment p-values across many tissues since GxS focal SNPs are enriched
in eQTL with associated eGenes (including LOC101927975 and CNDP2) expressed across many
tissues. Lastly for WHR, we observed GxS detections to be heavily enriched in eQTL with

associated eGenes expressed in fibroblast, adipose, and skin tissues.

Discussion

We have investigated the degree to which sex-specific genetic architectures differ at local
regions, using large biobank data (N ~ 119,000 males and ~140,000 females) and Bayesian
multiple regression techniques that estimate sex-specific marker effects accounting for local LD
patterns. The flexibility of the Bayesian approach enables multi-resolution inference of sex-

specific effects: from individual SNP effects to window-variances that aggregate SNP effects

16
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339  within chromosome segments. These inferences can be drawn all using the results of the same
340 mode fit (eg. 1) but different post-processing of samples of SNP effects from the posterior

341  digtribution.

342 The Bayesian multiple regression technigque performed in this study, along with

343  estimation of window variances, was largely inspired by Fernando et al. [14]. In that study,

344  windows were defined using digoint, fixed intervals. In contrast, for each SNP we define a

345  window based on local LD patterns, resulting in heavily overlapping, dynamically sized

346  windows. The methods presented here also bear resemblance to those of Vilhjdmsson et al. [18],
347  which utilized point-normal priors to estimate human SNP effects after accounting for local LD
348  patterns. In that study, posterior means of SNP effects were estimated for the purposes of

349  prediction whilein this study, we numerically derive the full posterior distribution, allowing for
350 inference of non-null SNP effects and window variances.

351 Through simulations, we showed that local Bayesian regressions (LBR) provide superior
352  power and precision to detect causal variants and those specifically bearing GxS interactions. We
353 rationalize improvementsin power upon traditional SMR methods by noting that the magnitude
354  of atypica causal variant or GxS interaction is exceedingly small and can ude hypothesis

355 testing partly due to the burden of multiple test correction. We also note that the resolution (peak
356 size) in SMR signalsisrelatively large when using large sample sizes (due to not fully

357  accounting for local LD patterns). To overcome this problem, we provided evidence that LBR
358 methods—either by estimating true marker effects or by aggregating true marker effects within
359 relatively small regions—can achieve improved resolution when working with large sample sizes

360 such as biobank-level data
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When using LBR to analyze real human traits, we have provided credence to our
posterior probability-based discoveries by determining that LBR-detected GxS interactions are
generally more enriched in eQTL than SMR-detected interactions. For BMD, we provided new
evidence that sex-specific effects differ within ABO and that GxS interactions are highly
enriched in adrenal gland-specific eQTL. This encourages the hypothesis that some GxS are
eQTL that may modulate gene expression in the adrenal gland, with gene function dependent on
the presence or absence of sex hormones. Thiswas aso an intriguing finding given that ABO
blood groups have been known to associate with osteoporosis and osteoporosis severity [34,35].
For WHR, we detected previously known, large-magnitude GxS interactions that were
discovered using WHR or WHRadjBMI [21-24], but additionally discovered novel, small
magnitude GXS interactions near such genes as ESR1 and ABCAL. In a previous work analyzing
WHRadjBMI, ABCAL1 showed a significant femal e-specific genetic effect only, however the test
for GxSinteraction failed to reach significance[24].

For traits like height and BMI, large effect loci are estimated to have very similar effects
between males and females and loci with evidence of GxS interactions were those possessing
relatively small sex-specific effects. As seen in Fig 4B, many relatively large window variances
for height are estimated to be dlightly higher for males than for females albeit not reaching a

PPDiff,,; = 0.9threshold. Thisis consistent with the fact that the global genomic variance for
J

height was estimated to be higher in males than in females in a previous study using the interim
release of the UK Biobank [4]. Similarly, the same prior study estimated the globa genomic
variance of BMI to be higher in females than in males and we observe, if anything, evidence of
sex-specific window variances leading to the same conclusion. These observations may

potentially indicate that relatively large causal variants have dightly different sex-specific effects
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384 for traitslike height and BMI, however, if that isthe case we are still underpowered to

385 confidently detect such interactions.

386 It isimportant to acknowledge that while the methods presented here appear useful to
387  decipher sex-specific genetic architectures from large human samples, additional work will be
388  required to determine how these techniques may infer heterogeneous genetic effectsin other
389  contexts (other types of gene-by-covariate interactions), or when using different sample sizes or
390 samplesfrom different populations. With large sample sizes, the increased power and flexibility
391 of the LBR comes with the cost of a significantly larger computational burden than the one

392 involved inthetraditional SMR approach; however, working with large datasets can be made
393 manageable by adjusting size of each fitted segment (Fig 1) and parallel processing the fitting of
394  each segment. Alternatively, LBR may be used as afollow up to traditional SMR tests, using
395 pre-selected regions of interest. Another limitation inherent to aggregating SNP effects using
396 window variancesisthat the sign of the effect islost. In thisway, when inferring GxS

397 interactions through window variance differences, we cannot comment on whether sex-specific
398 effects had the same sign or differing signs.

399 To conclude, we have demonstrated the powerful and flexible use of local Bayesian

400 regressions for GWA to infer sex-specific genetic effects and GxS interactions using the UK
401  Biobank. Thiswas largely done by showing various means to utilize estimates of true

402  (accounting for local LD), sex-specific SNP marker effects for GWA even when causal variants
403  are not on the SNP pand for analysis. We anticipate that many more traitswill be analyzed with
404  thismethod to increasingly learn more about what is contributing to differences between males
405 and femalesin human populations.

406
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407 Methods

408 Genotypedata

409 Individuals from the UK Biobank [36] were genotyped using the custom UK Biobank

410  Axiom Array (http://www.ukbiobank.ac.uk/scientists-3/uk-bi obank-axiom-array/) containing

411  ~800,000 SNPs. SNP quality control proceeded with the Caucasian cohort (N = 409,700); SNPs
412  with aminor allele frequency < 0.01 and missing call rate > 0.05 were removed. SNPs from sex
413  chromosomes and the mitochondrial chromosome were not considered in this study, resulting in
414 607,497 autosomal SNPs. Individuals with coefficient of relatedness of 0.03 or greater were
415 removed from analysis, resulting in 258,928 distantly related genotyped individuals for usein
416  thisstudy.

417

418 Phenotype data

419 All phenotypic data was collected using baseline measurements of UK Biobank

420 participants. For height, the description “ Standing height” from the UK Biobank was used.

421  Individuals with heights (cm) less than 147 or more than 210 were removed from analysis. For
422  BMD, the descriptions “Heel bone mineral density (BMD)”, “Heel bone mineral density (BMD)
423  (left)”, and “Heel bone mineral density (BMD) (right)” were used in conjunction; for individuals
424 with missing “Heel bone mineral density (BMD)” records, either the (left), the (right), or if

425 available, the average between (left) and (right) was used. For BMI, the description “Body mass
426  index (BMI)” was used and for WHR, the ratio of "Waist circumference’ to “Hip circumference’
427  wasused. Prior to model fitting, all traits were pre-corrected for sex, age, batch, genotyping

428  center, and the first 5 principle components derived from genomic data. The adjusted phenotypes
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429  consisted of least-squares residuals from a model that included the effects listed above. For each
430 trait, sample sizes and within-sex summary statistics are provided in S1 Table.

431
432 LBR hyperparameters

433 Hyperparameters used in the LBR model (eq. 1) were error variances for each sex, the
434  proportion of nonzero effects for each SNP effect component, and the variances of nonzero

435  effects for each SNP effect component {63, 67, 70, T, T, 05, , 05, 02, }. Variances (of either
436  SNP effect components or sex-specific errors) were given a scaled-inverse Chi-square prior,
437  parameterized by a degree of freedom parameter df (set to 5) and scaling parameter S. Sis set
438  according to built-in rules of the BGLR package using a prior model R-squared of 0.03 for main
439 effectsand 0.01 for the sex-interaction terms. More detail on how the scale parameter Sis

440 calculated can be found in Perez and de los Campos, 2014 [27]. m;, was given a beta prior with
441  shape parametersa = 2 and § = 2. An example of how to implement LBR (eg. 1) using BGLR

442  with the above hyperparameter specificationsis provided at https://github.com/funkhou9d/L BR-

443  sex-interactions.

445  Inference using post-processing of posterior samples
446 BGLR uses Markov chain Monte Carlo (MCMC) to sample from the posterior
447  distribution of sex-specific effects. For each MCMC sample we derived male and femal e effects

448  using ij(s) = bo,-(s) + bm,-(s) and ﬁf].(s) = bo,-(s) + bfj(s), wheres= 1,..., 4,350 indexesMCMC

449  samples. Here, results were obtained using three separate MCMC chains. Each chain was
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450 obtained using 3,400 MCMC samples; the first 500 samples were discarded as burn-in and the

451  remaining samples where thinned by an interval of 2, leading to 1,450 samples per chain.

452 Estimates of sex-specific SNP effects (5, and f;) were obtained from their posterior
453  means. We estimated the posterior probability of a female-specific non-zero SNP effect using
454 PPFgyp, = max [Pr (ﬁfj > 0] D) ,Pr (ﬁf]. <0 | 2))] where D represents the observed data.
455  Thiswas done by counting the proportion of ﬁf]. samples above zero and below zero. Thiswas
456  repeated for inferring the male-specific SNP effect. The posterior probability of sex-difference at

457 individual SNP-effects was estimated using PPDiffgyp, = max|Pr (B, > B¢, | D), Pr (S, <

458 ﬁfj | 1))] where again these probabilities were estimated using the corresponding frequencies

459  from the posterior distribution samples.
460 For each MCMC sample we also aggregated SNP effects within window j using
461 umj*(s) = Xj*ﬂm]-*

and Uy = X ﬂfj*(s). For this calculation we used a common genotype

) )
462  matrix X;- consisting of all N male and female genotypes to avoid differences in additive genetic
463 vauesarising from allele frequency differences between males and females occurring by random

464  sampling. Samples of sex-specific window variances were obtained using the sample variance:

2
465 of, =W =1L (g ~Tmy,) Aol = (V- 1)7 S (u

gm () ( fijrs)

466 afj* © )2 . Estimates of sex-specific window variances were obtained from their posterior means.

467  Inferring sex-specific window variances was done by estimating PPMUE, . =Pr (agzm > 0] D)
i i

9f

468 and PPFt,&z] _=Pr (02 >0 | D) and inferring a GxSinteraction at window j* was done by
j j*

469  estimating:

22


https://doi.org/10.1101/653386
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/653386; this version posted May 31, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2 2 .
Pr(agm'* o >t |D),

] ]

2 2
Pr <agmj* —og. <ty | D)

]

Y

PPDiff > = max

gj*

470  wheret;- was used to exert judgment about how different sex-specific window variances must be
471  to declare ameaningful GxSinteraction. Here, t;- was one-tenth of the mean of all posterior

472  samples of a;m and agz (L Functions to process posterior samples to estimate and infer non-null
j# ]-*

473  sex-specific effects and GxS interactions is provided at https.//github.com/funkhou9/L BR-sex-

474  interactions.
475
476  Defining local, L D-based windows

477 To define SNPs contained within window j*, aregion of LD centered on SNPj, we

478  collected all SNP ;' immediately surrounding SNPj for which Cor(xj,xjr)2 > 0.1. We allowed

479  up to two consecutive SNPs in which Cor(xj,xjr)z < 0.1 to allow for potential mapping errors
480  or other unexplained instances where LD with SNP | dips only briefly. The function
481 getWindows (), which provides windows given a genotype matrix X, isprovided in

482  https://github.com/funkhou9/L BR-sex-interactions.

483

484  Single marker regression

485 We also performed single-marker regression analyses using following mode:
64 o 3 ] R e S
Yt 1ps xg; | 0 17/es g )
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486  Aswiththe LBR modd (eg. 1), we assume sex-specific errors are distributed normally with zero

487  mean and sex-specific variances. SNP effects and interactions were estimated using wei ghted
488  least squares. To test for aGxSinteraction at SNPj, at-testisused: B, /SE(Bj..;) ~ tn-3-

489  The p-value from such atest isreferred to as pvalue-diff. To test for any association (either

490 among males, females, or both), we used an F-test, comparing a restricted model: [’; I?] =

491 [1”‘“] + [ssr?] againgt the unrestricted mode!: [yy“f“] = [”‘m] + l’;’?l B; + [xr:;f] Bicys T [Sm].
j

Lug Lus £f

492
493 Simulations

494 Simulated traits were devel oped using 60,000 genotyped SNPs (the first 6,000 SNPs from
495  thefirsgt ten chromosomes) from 119,190 males and 139,738 females. Using these SNP

496  genotypes, each trait was ssimulated as follows:

497 1. A total of 150 causal variants (CVs) were randomly sampled from 60,000 SNPs.
498 o La Zy = o T g 7, = [, )T genore
499 matrices of male and female genotypes at sampled CVs.

500 2. Additive CV effect sizes were randomly sampled from the gamma distribution. 90
501 CVss (those with homogenous effects) were sampled from Gamma(k = 10,6 =
502 1) and were made negative with a probability of 0.5. Of the 60 CVswith

503 differing sex-specific effects, 30 had nonzero effects in both sexes but with

504 deferring magnitudes: at random one sex’ s effects were sampled from

505 Gamma(k = 5,0 = 1) and the other from Gamma(k = 20,6 = 1). For the
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506 remaining 30 CVs, at random one sex’s effects were exactly zero while the other
507 sex’s effects were sampled from Gamma(k = 10,8 = 1).

508 e Lety, = {ymk}zzso and y; = {yfk}Z:SO denote vectors of male-specific
509 and female-specific CV effects, respectively, for all 150 CVs.

510 3. Error variances for males g and females o5, were adjusted such that the

511 proportion of phenotypic variance explained by all QTL is0.05 for both males
512 and females (on the complete genome scal e this corresponds to a heritability of
513 about 0.5).

514 o Letéy,, ~N(0,0f )andéd ~ N(0,03 ) denoteresidual error for the i™
515 male and i female.

516 4. Maetrats¢,, = {¢mi}?’=”;=119’190 and female traits ¢p; = {¢fi}?:139’738 were
517 simulated from alinear combination of QTL genotypes plus aresidual error:

518 I =Z ¥V + 0 and ¢ = Zeye + 6

519 5. Steps 1-4 are repeated for 30 Monte Carlo replicates.

520
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636 Sl Fig. LD statistics across distances.

637 S2Fig. Estimated power and false-discovery ratefor discovering observed SNPswith

638 effectsin at least one sex. Estimated power (left) and FDR (right) shown as a function of the
639 number of SNPs selected. Each point represents a sample average and error bars represent 95%
640 confidence intervals, each derived using 30 Monte Carlo replicates. LBR (SNP): local Bayesian
641  regression, utilizing PPsyp;. SMR: single-marker regression, utilizing the F-test-based p-value.
642 S3Fig. Power vsfalse-discovery ratefor discovering genomic regions containing masked
643 causal variants. Here power is defined as the expected proportion of causal variantsthat are
644  beingtagged by at least one selected SNPj or window j . False discovery rate is defined as the
645  proportion of selected SNPs or windows that are not tagging any causal variants. Each point is an
646 estimate and error bars for both axes represent 95% confidence intervals. Point estimates and
647 intervals were derived using 30 Monte Carlo replicates. Each facet correspondsto a different
648 “target area’, afixed width around each causal variant that defines the set of SNPs effectively

649 taggingit. LBR (SNP): usesthe PPsnp; metric spanning 1-0. LBR (Window): uses the maximum
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650 between PPMJE_ and PPF,,; spanning 1-0. SMR: uses the F-test-based p-value spanning (on
]wr ]*

651  the-logio scale) 30-0.
652 4 Fig. Comparison between SMR and LBR for discovering GxSinteractions. Manhattan
653  plot showing pvalue-diff for each analyzed SNP. SNPs are colored yellow if they were focal

654 SNPswith aPPDiff ; >0.9 and colored red if they were focal SNPs with aPPDiff, >0.95.
].* ]*

655  The dashed horizontal lines denote p-diff thresholds of 1x10™ and 5x10°.
656 S5 Fig. eQTL enrichment as afunction of the number of SNPs selected. LBR (Window):

657 usesthe PPDiff,z | metric. SMR: uses the pvalue-diff metric.

]

658 Sl Table. Sex-specific phenotype statistics. Height units: cm, BMD units: g/cm2, BMI units:
659 Kg/m2.
660 S2 Table. Inferred GxSinteractions using sex-specific window variances. Listed are all

661  windows with a PPDiff,, >0.9.
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Fig 1. Strategy for implementing local Bayesan regressons genome-wide. The phenotypeis
regressed upon multiple sequential SNPs using a sliding window approach. The core region
contained 1500 SNPs (roughly 8Mb, on average) and each buffer region contained 250 SNPs
(roughly 1Mb, on average). Core parameters (posterior samples) are stitched together, then sex-
specific effects and GxS interactions are inferred at the level of SNP j and window j*.

Fig 2. Estimated power and false-discovery rate for discovering observed SNPswith GxS
interactions. Shown as a function of the number of SNPs selected. Each point represents a
sample average and error bars represent 95% confidence intervals, each derived using 30 Monte
Carlo replicates. LBR (SNP): local Bayesian regression, utilizing PPDiffSNPj. SMR: single-
marker regression, utilizing pval ue-diff.

Fig 3. Power vsfalse-discovery ratefor discovering genomic regions containing masked
GxSinteractions. Here power is defined as the expected proportion of GxS interactionsthat are
being tagged by at least one selected SNPj or window j*. False discovery rate is defined as the
expected proportion of selected SNPs or windows that are not tagging any GxS interactions.
Each point is an estimate and error bars for both axes represent 95% confidence intervals. Point
estimates and intervals were derived using 30 Monte Carlo replicates. Each facet corresponds to
adifferent “target area’, afixed width around each GxS interaction that defines the set of SNPs
effectively tagging it. LBR (SNP): usesthe PPDiffSNp]. metric spanning 1-0. LBR (Window):
usesthe PPDiffggj* metric spanning 1-0. SMR: uses the pvalue-diff metric spanning (on the -
logio scale) 8-0.

Fig 4. Comparing sex-specific genetic effects. (A) Plot of estimated female SNP effects against

estimated male SNP effects for all 607,497 genotyped autosomal SNPs. Points are colored by

their posterior probability of sex difference at the level of individual SNPs. (B) Plot of estimated
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695 female window variances against estimated male window variances for all 607,497 LD-based
696  windows, with each window j centered on adifferent focal SNPj. Points are colored by their
697  posterior probability of sex difference at the level of window variances. (C) Miami-like plot
698  depicting location and magnitude of GxS interactions identified through sex-specific window
699  variances. For each trait, showing estimated male window variance above the x-axis and

700 estimated female window variance below the x-axis. Vertical lines denote changing

701  chromosomes. A sample of windows is labeled with nearest gene annotation, obtained from
702  Axiom UKB WCSG annotations, release 34. Gray labels indicate nearest genes with relatively
703 large window variances evidently shared across sexes, while red labels indicate nearest genes
704 with detected GxS interactions.

705 Fig5. Evidencethat LBR-identified GxSinteractionsare enriched in tissue-specific eQTL.
706  Plotted on the x-axisisthe p-value obtained from a hypergeometic test providing evidence that

707  focal SNPs selected using PPDiff%z’_ > 0.9 are enriched in tissue-specific eQTL. The dashed line
]wr

708  represents a Bonferroni corrected significance threshold of 2.6x10™.

709
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