

Genome sequence of the model rice variety KitaakeX

2 Rashmi Jain^{1,2}, Jerry Jenkins^{3,4}, Shengqiang Shu³, Mawsheng Chern^{1,2}, Joel A. Martin³, Dario Copetti^{7,8,9},
3 Phat Q. Duong^{1,2}, Nikki T. Pham¹, David A. Kudrna^{7,8}, Jayson Talag^{7,8}, Wendy S. Schackwitz³, Anna M.
4 Lipzen³, David Dilworth³, Diane Bauer³, Jane Grimwood^{3,4}, Catherine R. Nelson¹, Feng Xing⁶, Weibo Xie⁶,
5 Kerrie W. Barry³, Rod A. Wing^{7,8,9}, Jeremy Schmutz^{3,4}, Guotian Li^{1,2,5*}, Pamela C. Ronald^{1,2*}

⁶ ¹Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA

⁷ ²Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA
⁸ 94720, USA

9 ³U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA

10 ⁴HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA

11 ⁵State Key Laboratory of Agricultural Microbiology and College of Plant Science and Technology,
12 Huazhong Agricultural University, Wuhan 430070, Hubei, China

13 ⁶National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research
14 (Wuhan), Huazhong Agricultural University, Wuhan 430070, China

15 ⁷Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA

¹⁶BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA

17 ⁹International Rice Research Institute, Genetic Resource Center, Los Baños, Laguna, Philippines

18 * co-corresponding authors

19 Address correspondence to pcronald@ucdavis.edu and li4@mail.hzau.edu.cn

20 **Corresponding authors:** Prof. Pamela C. Ronald

21 Department of Plant Pathology, and the Genome Center, University of
22 California, Davis

23 One Shields Avenue, Davis, CA 95616, USA

24 E-mail: pcronald@ucdavis.edu

25 Tel: 1-530-752-1654

26 Fax: 1-530-752-6088

27 Prof. Guotian Li
28 State Key Laboratory of Agricultural Microbiolog and College of Plant
29 Science and Technologyy, Huazhong Agricultural University, Wuhan
30 430070, Hubei, China
31 E-mail: li4@mail.hzau.edu.cn
32
33

34 **Abstract**

35 Here, we report the *de novo* genome sequencing and analysis of *Oryza sativa* ssp. *japonica* variety
36 KitaakeX, a Kitaake plant carrying the rice XA21 immune receptor. Our KitaakeX sequence assembly
37 contains 377.6 Mb, consisting of 33 scaffolds (476 contigs) with a contig N50 of 1.4 Mb. Complementing
38 the assembly are detailed gene annotations of 35,594 protein coding genes. We identified 331,335 genomic
39 variations between KitaakeX and Nipponbare (ssp. *japonica*), and 2,785,991 variations between KitaakeX
40 and Zhenshan97 (ssp. *indica*). We also compared Kitaake resequencing reads to the KitaakeX assembly
41 and identified 219 small variations. The high-quality genome of the model rice plant KitaakeX will accelerate
42 rice functional genomics.

43 Keywords: Rice, Kitaake, KitaakeX, XA21 immune receptor, Whole genome sequence, *De novo* genome
44 assembly, Nipponbare, Zhenshan97

45 **Background**

46 Rice (*Oryza sativa*) provides food for more than half of the world's population [1] and also serves
47 as a model for studies of other monocotyledonous species. Cultivated rice contains two major types of *O.*
48 *sativa*, the *O. sativa indica*/Xian group and the *O. sativa japonica*/Geng group. Using genomic markers, two
49 additional minor types have been recognized, the circum-Aus group and the circum-Basmati group [2].

50 The Kitaake cultivar (ssp. *japonica*), which originated at the northern limit of rice cultivation in
51 Hokkaido, Japan [3], has emerged as a model for rice research [4] because it is extremely early flowering,
52 easy to propagate, and short in stature [5]. Kitaake has been used to establish multiple mutant
53 populations, including an RNAi mutant collection [6], T-DNA insertion collections [4], [7], and a whole-
54 genome sequenced mutant population of KitaakeX, a Kitaake variety carrying the Xa21 immune receptor
55 gene (formerly called X.Kitaake) [8, 9]. Kitaake has been used to explore diverse aspects of rice biology,
56 including flowering time [10], disease resistance [11], [12], [13], small RNA biology [14], and the CRISPR-
57 Cas9 and TALEN technologies [15], [16].

58 The unavailability of the Kitaake genome sequence has posed an obstacle to the use of Kitaake
59 in rice research. For example, analysis of a fast-neutron (FN) induced mutant population in KitaakeX [8],
60 required the use of Nipponbare (ssp. *japonica*) as the reference. Additionally, CRISPR/Cas9 guide RNAs
61 cannot be accurately designed for Kitaake without a complete sequence. To address these issues, we
62 assembled a high-quality genome sequence of KitaakeX, compared its genome to the genomes of rice
63 varieties Nipponbare and Zhenshan97 (ssp. *indica*), and identified genomic variations.

64 **Results**

65 Kitaake has long been recognized as a rapid life-cycle variety [17], but it has yet to be systematically
66 compared to other rice varieties. We compared the flowering time of KitaakeX with other sequenced rice
67 varieties under long-day conditions (14 h light/10 h dark). Consistent with other studies, we found that
68 KitaakeX flowers much earlier than other varieties (Fig. 1a, 1b), heading at 54 days after germination. Other
69 rice varieties Nipponbare, 93-11 (ssp. *indica*), IR64 (ssp. *indica*), Zhenshan 97, Minghui 63 (ssp. *indica*),
70 and Kasalath (aus rice cultivar) start heading at 134, 99, 107, 79, 125, and 84 days after germination,
71 respectively (Fig. 1b).

72 We assessed how KitaakeX is related to other rice varieties using a phylogenetic approach based
73 on the rice population structure and diversity published for 3,010 varieties [2]. The 3010 sequenced
74 accessions were classified into nine subpopulations, most of which could be connected to geographical
75 origins. The phylogenetic tree reveals that KitaakeX and Nipponbare are within the same subpopulation
76 closely related (Fig 1c).

77 To obtain a high-quality, *de novo* genome assembly, we sequenced the KitaakeX genome using a
78 strategy that combines short-read and long-read sequencing. Sequencing reads were collected using
79 Illumina, 10x Genomics, PACBIO, and Sanger platforms at the Joint Genome Institute (JGI) and the
80 HudsonAlpha Institute. The current release is version 3.0, which is a combination of a MECAT (Mapping,
81 Error Correction and *de novo* Assembly Tools) PACBIO based assembly and an Illumina sequenced 10x
82 genomics SuperNova assembly. The assembled sequence contains 377.6 Mb, consisting of 33 scaffolds
83 (476 contigs) with a contig N50 of 1.4 Mb, covering a total of 99.67% of assembled bases in chromosomes
84 (Table 1).

85 We assessed the quality of the KitaakeX assembly for sequence completeness and accuracy.
86 Completeness of the assembly was assessed by aligning the 34,651 annotated genes from the v7.0
87 Nipponbare to the KitaakeX assembly using BLAT [18]. The alignments indicate that 98.94% (34,285 of
88 genes) genes completely aligned to the KitaakeX assembly, 0.75% (259 genes) partially aligned, and 0.31%
89 (107 genes) were not detected. A bacterial artificial chromosome (BAC) library was constructed and a set
90 of 346 BAC clones (9.2x clone coverage) was sequenced using PACBIO sequencing. A range of variants
91 was detected by comparing the BAC clones to the assembly. Alignments were of high quality (<0.1% of
92 error) in 271 clones (Additional file 1: Figure S13). Sixty BACs indicate a higher error rate (0.45% of error)
93 due mainly to their placement in repetitive regions (Additional file 1: figure S14). Fifteen BAC clones indicate
94 a rearrangement (10 clones) or a putative overlap on adjacent contigs (5 clones) (Additional file 1: figure
95 S15). The overall error rate in the BAC clones is 0.09%, indicating the high quality of this assembly (for
96 detailed information, see Additional file 1).

97 We predicted 35,594 protein-coding genes in the KitaakeX genome (Table 1), representing 31.5%
98 genic space of the assembled genome size (Table 1). There is some transcriptome support for 89.5%
99 (31,854/35,594) of the KitaakeX genes, and 81.6% (29,039/35,594) genes are fully supported by the
100 transcriptome (Additional file 2 Table: S11). The predicted protein-coding genes are distributed unevenly
101 across each chromosome; gene density tends to be higher toward chromosome ends (Fig. 1i). The average
102 GC content of the genome is 43.7% (Fig. 1h, Table 1).

103 To assess the quality of the annotation of Kitaake genes, we compared the KitaakeX annotation to
104 those of other completed rice genomes using the BUSCO v2 method, which is based on a set of 1,440

105 conserved plant genes. The results confirm 99.0% completeness of the KitaakeX genome annotation
106 (Table1, Additional file 2: Table S7). To further evaluate the quality of the annotation, we studied the extent
107 of conservation of functional genes in KitaakeX. We selected 291 genes (Additional file 3) from three
108 pathways associated with stress resistance, flowering time and response to light [19], and then searched
109 for orthologous genes in the KitaakeX genome. We found that 275 of 291 (94.5%) of the selected KitaakeX
110 genes show greater than 90% identity with the corresponding Nipponbare genes at the protein level.
111 Twenty-three out of the 291 show 100% identity on the genome level but not on the protein level. Of these
112 23 genes, the KitaakeX gene model for 16 genes has better transcriptomic evidence than the Nipponbare
113 gene model. One of the 291 KitaakeX genes is slightly shorter than its Nipponbare ortholog due to an
114 alternative transcript (Additional file 3). These results indicate the high quality of the annotation, and
115 conservation between the KitaakeX and Nipponbare *japonica* rice varieties.

116 Using SynMap, we identified 2,469 pairs of colinear genes (88 blocks) in the KitaakeX genome
117 (Fig. 1j). These results correlate with already published findings [20]. We used RepeatMaker and Blaster
118 to identify transposable elements (TEs) in the KitaakeX genome, and identified 122.2 Mb of sequence
119 corresponding to TEs (32.0% of the genome). DNA transposons account for ~33 Mb; retrotransposons
120 account for ~90 Mb. The TEs belong mostly to the Gypsy and Copia retroelement families, and account for
121 23% of the genome (Additional file 2: Table S8), as is true in the Nipponbare and Zhenshan97 genomes
122 [21].

123 Table 1 Summary of the KitaakeX genome assembly and annotation

Genome assembly	Estimated genome size	409.5 Mb
	Assembled contigs	377.6 Mb
	Contig N50	1.4 Mb
	Longest contig	8.6 Mb
	Assembled scaffolds	381.6 Mb
	Scaffold N50	30.3 Mb
	Longest scaffold	44.3 Mb
	GC content	43.7%

	Retrotransposons	89.6 Mb
Transposable elements	DNA transposons	32.6 Mb
	Total	122.2 Mb
	Protein-coding genes	35,594
	Complete BUSCOs	99.0%
Genome annotation	Average transcript length	1,874 bp
	Average coding sequence length	1,222 bp
	Functionally annotated	33,226

124 We compared the genome of KitaakeX to the Nipponbare and Zhenshan97 genomes to detect
125 genomic variations, including single nucleotide polymorphisms (SNPs), insertions and deletions under 30
126 bp (InDels), presence/absence variations (PAVs), and inversions using MUMmer (Kurtz, Phillippy et al.
127 2004). We found 331,335 variations between KitaakeX and Nipponbare (Additional file 4), and nearly 10
128 times as many (2,785,991) variations between KitaakeX and Zhenshan97 (Additional file 5). There are
129 253,295 SNPs and 75,183 InDels between KitaakeX and Nipponbare, and 2,328,319 SNPs and 442,962
130 InDels between KitaakeX and Zhenshan97 (Additional files 6 and Additional file 2: Table S3). With respect
131 to SNPs in both intersubspecies (*japonica* vs. *indica*) as well as intrasubspecies (*japonica* vs. *japonica*)
132 comparisons, transitions (Tss) (G ->A and C ->T) are about twice as abundant as transversions (Tvs) (G -
133 ->C and C ->G) (Additional file 2: Table S10). Genomic variations between KitaakeX and Nipponbare are
134 highly concentrated in some genomic regions (Fig. 1e), but variations between KitaakeX and Zhenshan97
135 are spread evenly through the genome (Fig. 1f). Intersubspecies genomic variations, then, are much more
136 extensive than intrasubspecies variations. We also detected multiple genomic inversions using comparative
137 genomics (Additional files 4 and 5).

138 For variations occurring in the genic regions, we found that single-base and 3 bp (without frame
139 shift) InDels are much more abundant than others (Additional file 7: Figure S16a), suggesting that these
140 genetic variations have been functionally selected. We carried out detailed analysis of gene structure
141 alterations that exist as a consequence of SNPs and InDels between KitaakeX and Nipponbare and Kitaake
142 and Zhenshan97. Between KitaakeX and Nipponbare, we identified 2,092 frameshifts, 78 changes affecting

143 splice-site acceptors, 71 changes affecting splice-site donors, 19 lost start codons, 161 gained stop codons,
144 and 15 lost stop codons. In the comparison of KitaakeX to Zhenshan97, 6,809 unique genes in KitaakeX
145 are affected by 8,640 frameshifts (Additional file 7: Figure S16b), 531 changes affecting splice-site
146 acceptors, 530 changes affecting splice-site donors, 185 lost start codons, 902 gained stop codons and
147 269 lost stop codons (Additional file 7: Figure S16b).

148 Based on PAV analysis, we identified 456 loci that are specific to KitaakeX (Additional file 4)
149 compared with Nipponbare. Pfam analysis of KitaakeX-specific regions revealed 275 proteins. Out of these
150 275 genes, 148 genes are from 19 different gene families with more than 2 genes in those regions. These
151 gene families include protein kinases, leucine-rich repeat proteins, NB-ARC domain-containing proteins, F-
152 box domain containing proteins, protein tyrosine kinases, Myb/SANt-like DNA binding domain proteins,
153 transferase family proteins, xylanase inhibitor C-terminal protein, and plant proteins of unknown function
154 (Additional file 7: Figure S16c). We identified 4589 loci specific to KitaakeX compared with Zhenshan97
155 (Additional file 5).

156 We also compared our *de novo* assembly of KitaakeX genome with Kitaake resequencing reads
157 using an established pipeline [22]. This analysis revealed 219 small variations (200 SNPs and 19 INDELs)
158 between the two genomes (Additional file 8). These variations affect 9 genes in KitaakeX besides the Ubi-
159 Xa21 transgene, including the selectable marker encoding a hygromycin B phosphotransferase on
160 chromosome 6 (Additional file 8, Additional file 9: Figure S17).

161 **Discussion**

162 In 2005 the Nipponbare genome was sequenced and annotated to a high-quality level (International Rice
163 Genome Sequencing and Sasaki 2005). Since that time, it has served as a reference genome for many
164 rice genomic studies [23]. Despite its use, the long life cycle of Nipponbare makes it time-consuming for
165 most genetic analyses. Here we report the *de novo* assembly and annotation of KitaakeX, an early-flowering
166 rice variety with a rapid life cycle that is easy to propagate under greenhouse conditions. We predict that
167 KitaakeX contains 35,594 protein-coding genes, comparable to the published genomes (39,045 for
168 Nipponbare and 34,610 for Zhenshan97) (Additional file 4 and Additional file 5). The availability of a high-

169 quality genome and annotation for KitaakeX will be useful for associating traits of interest with genetic
170 variations, and for identifying the genes controlling those traits.

171 We identified 219 SNPs and InDels between the KitaakeX and Kitaake genomes. These variations
172 may have resulted from somatic mutations that arose during tissue culture and regeneration, or they may
173 be spontaneous mutations [24]. For rice, 150 mutations are typically induced during tissue culture and 41
174 mutations occur spontaneously per three generations [24]. These numbers are consistent with the
175 independent propagation of KitaakeX and Kitaake over approximately 10 generations in the greenhouse.

176 The KitaakeX genome will be useful for variety of studies. For example, we recently published the
177 whole genome sequences of 1,504 FN-mutated KitaakeX rice lines [22]. Mutations were identified by
178 aligning reads of the KitaakeX mutants to the Nipponbare reference genome [8]. On average, 97% of the
179 Nipponbare genome is covered by the KitaakeX reads. However, in some regions, the KitaakeX genome
180 diverges from Nipponbare to such an extent that no variants can be confidently identified. These appear
181 either as gaps in coverage or as regions containing a concentration of natural variations between KitaakeX
182 and Nipponbare. We can now use the KitaakeX sequence as the direct reference genome and detect
183 mutations in highly variable regions. This approach will simplify analysis and increase confidence in the
184 identification of FN-induced mutations.

185 **Conclusions:**

186 The *de novo* assembly of the KitaakeX genome serves as a useful reference genome for the model rice
187 variety Kitaake and will facilitate investigations into the genetic basis of diverse traits critical for rice biology
188 and genetic improvement.

189 **Methods**

190 **Plant Growth conditions**

191 Rice seeds were germinated on 1/2x MS (Murashige and Skoog) medium. Seedlings were transferred to
192 a greenhouse and planted 3 plants/pot during the springtime (Mar. 2, 2017) in Davis, California. The light
193 intensity was set at approximately 250 $\mu\text{mol m}^{-2} \text{s}^{-1}$. The day/night period was set to 14/10 h, and the
194 temperature was set between 28 and 30 $^{\circ}\text{C}$ [25]. Rice plants were grown in sandy soil supplemented with

195 nutrient water. The day when the first panicle of the plant emerged was recorded as the heading date for
196 that plant. Kasalath seeds were received later, and the heading date was recorded in the same way. The
197 experiment was repeated in winter.

198 **Construction of a phylogenetic tree**

199 We obtained 178,496 evenly distributed SNPs by dividing the genome into 3.8 kb bins and selecting one
200 or two SNPs per bin randomly according to the SNP density of the bin. Genotypes of all the rice
201 accessions, including 3,010 accessions of the 3K Rice Genomes Project and additional noted
202 accessions, were fetched from the SNP database RiceVarMap v2.0 [26] and related genomic data [27]
203 and used to calculate an IBS distance matrix which was then applied to construct a phylogenetic tree by
204 the unweighted neighbor-joining method, implemented in the R package APE [28]. Branches of the
205 phylogenetic tree were colored according to the classification of the 3,010 rice accessions [2].

206 **Genome Sequencing and Assembly**

207 High molecular weight DNA from young leaves of KitaakeX was isolated and used in sequencing.
208 See (Additional file 1) for further details.

209 **Annotation of Protein-Coding Genes**

210 To obtain high-quality annotations, we performed high throughput RNA-seq analysis of libraries from
211 diverse rice tissues (leaf, stem, panicle, and root). Approximately 683 million pairs of 2x151 paired-end
212 RNA-seq reads were obtained and assembled using a comprehensive pipeline PERTRAN (Shu,
213 unpublished). Gene models were predicted by combining *ab initio* gene prediction, protein-based
214 homology searches, experimentally cloned cDNAs/expressed-sequence tags (ESTs) and assembled
215 transcripts from the RNA-seq data. Gene functions were further annotated according to the best-matched
216 proteins from the SwissProt and TrEMBL databases [29] using BLASTP (E value < 10⁻⁵) (Additional file
217 11). Genes without hits in these databases were annotated as “hypothetical proteins”. Gene Ontology
218 (GO) [30] term assignments and protein domains and motifs were extracted with InterPro [31]. Pathway

219 analysis was derived from the best-match eukaryotic protein in the Kyoto encyclopedia of genes and
220 genomes (KEGG) database [32] using BLASTP (E value<1.0e⁻¹⁰).

221 **Genome Synteny**

222 We used SynMap (CoGe, www.genomevolution.org) to identify collinearity blocks using homologous CDS
223 pairs with parameters according to Daccord et al [33] and visualized collinearity blocks using Circos [34].

224 **Repeat Annotation**

225 The fraction of transposable elements and repeated sequences in the assembly was obtained merging
226 the output of RepeatMasker (<http://www.repeatmasker.org/>, v. 3.3.0) and Blaster (a component of the
227 REPET package) [35]. The two programs were run using nucleotide libraries (PReDa and
228 RepeatExplorer) from RiTE-db [36] and an in-house curated collection of transposable element (TE)
229 proteins, respectively. Reconciliation of masked repeats was carried out using custom Perl scripts and
230 formatted in gff3 files. Infernal [37] was adopted to identify non-coding RNAs (ncRNAs) using the Rfam
231 library Rfam.cm.12.2 [38]. Results with scores lower than the family-specific gathering threshold were
232 removed; when loci on both strands were predicted, only the hit with the highest score was kept. Transfer
233 RNAs were also predicted using tRNAscan-SE [39] at default parameters. Repeat density was calculated
234 from the file that contains the reconciled annotation (Additional file 10).

235 **Analysis of Genomic Variations**

236 Analysis of SNPs and InDels: We used MUMmer (version 3.23) [40] to align the Nipponbare and
237 Zhenshan97 genomes to the KitaakeX genome using parameters -maxmatch -c 90 -l 40. To filter the
238 alignment results, we used the delta -filter -1 parameter with the one-to-one alignment block option. To
239 identify SNPs and InDels we used show-snp option with parameter (-C1r TH). We used snpEff [41] to
240 annotate the effects of SNPs and InDels. Distribution of SNPs and InDels along the KitaakeX genome
241 was visualized using Circos [34].

242 Analysis of PAVs and inversions: We used the show-coords option of MUMmer (version 3.23)
243 with parameters -TrHcl to identify gap regions and PAVs above >86 bp in size from the alignment blocks.

244 We used the inverted alignment blocks with ≥98% identity from the show-coords output file to identify
245 inversions.

246 To identify genomic variations between Kitaake and KitaakeX we sequenced and compared the
247 sequences using the established pipeline [22].

248 **BAC library construction**

249 Arrayed BAC libraries were constructed using established protocols [42]. Please see Additional
250 file 1 for further details.

251

252

253 **Additional files:**

254 Additional file 1: Supplemental method: Tables S1-S6, Figures S1-S15

255 Additional file 2: Comparison of the KitaakeX genome with other rice genomes and KitaakeX annotation;
256 Tables S7-S11

257 Additional file 3: Genes used in annotation quality control

258 Additional file 4: Comparative genomics between KitaakeX and Nipponbare

259 Additional file 5: Comparative genomics between KitaakeX and Zhenshan97

260 Additional file 6: SNPs between KitaakeX and Zhenshan97

261 Additional file 7: Figure S16. Genomic variations showing gene variations between KitaakeX and
262 Nipponbare and Zhenshan97

263 Additional file 8. Genomic variations between KitaakeX and Kitaake

264 Additional file 9: Figure S17. Position of the XA21 locus in the KitaakeX genome

265 Additional file 10: Repeat annotation

266 Additional file 11: Gene functional annotation

267 **ACKNOWLEDGMENTS**

268 We thank Rick A. Rios, Maria E. Hernandez, and Natasha Brown for assistance in genomic DNA isolation
269 and submission and seed organization. We thank Dr. Thomas W. Okita at Washington State University

270 for providing the Kitaake seeds to PCR in 1995. These seeds were provided to Dr. Okita by Dr. Hiroyuki
271 Ito, Akita National College of Technology, Japan. We thank Dr. Jan E. Leah at Colorado State University
272 for seeds of Zhenshan 97, Minghui 63, IR64 and 93-11, and the USDA Dale Bumpers National Rice
273 Research Center, Stuttgart, Arkansas for seeds of Kasalath.

274 **Funding:**

275 This work was supported by NIH (GM59962) NIH (GM122968) and NSF (IOS-1237975) grants to PCR. It
276 was also supported in part by the U. S. Department of Energy, Office of Science, Office of Biological and
277 Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National
278 Laboratory and the U. S. Department of Energy. The work conducted by the US Department of Energy
279 Joint Genome Institute (JGI) was supported by the Office of Science of the US Department of Energy
280 under Contract no. DE-AC02-05CH11231.

281 **Availability of data and material:**

282 The genome sequencing reads and assembly have been deposited under GenBank under accession
283 number PRJNA234782 and PRJNA448171 respectively. The assembly and annotation of the Kitaake
284 genome are available at Phytozome (<https://phytozome.jgi.doe.gov/pz/portal.html>). The RNA-Seq reads
285 of KitaakeX leaf, panicle, stem and root have been deposited under GenBank accession numbers
286 SRP182736, SRP182738, SRP182741, and SRP182737 respectively. Genome sequencing reads for
287 Kitaake have been deposited under GenBank under accession number SRP193308.

288 **AUTHOR CONTRIBUTIONS**

289 R.J, G.L, M.C.R. and P.C.R conceived and initiated the study. R.J. and G.L carried out sequencing,
290 assembly and annotation in collaboration with J.J., S.S., D.A.K., J.T., D.D., D.B., J.G., D.C., K.W.B.,
291 R.A.W., N.T.P, and J.S. R.J. and G.L conducted comparative genomics. F.X and W.X contributed to
292 phylogenetic tree. R.J., P.C.R, M.S C, G.L and C.R.N. wrote the manuscript. All authors read and
293 approved the final manuscript.

294 **Ethics approval and consent to participate**

295 Not applicable

296 **Consent to Publication**

297 Not applicable

298 **Competing interests:**

299 The authors declare no conflict of interest.

300 **Fig. 1 The early flowering rice variety KitaakeX.**

301 **a** KitaakeX and selected sequenced rice varieties under long-day conditions. Scale bar = 10 cm; **b**
302 Flowering time of KitaakeX and selected rice varieties under long-day conditions. DAG, days after
303 germination. Asterisks indicate significant differences using the unpaired Student's *t*-test ($P < 0.0001$); **c**
304 KitaakeX in the unweighted neighbor-joining tree comprising 3,010 accessions of the 3k rice genomes
305 project and indicated varieties. It includes four XI clusters (XI-1A from East Asia, XI-1B of modern varieties
306 of diverse origins, XI-2 from South Asia and XI-3 from Southeast Asia); three GJ clusters [primarily East
307 Asian temperate (named GJ-tmp), Southeast Asian subtropical (named GJ-sbtrp) and Southeast Asian
308 Tropical (named GJ-trp)]; and two groups for the mostly South Asian cA (circum-Aus) and cB (circum-
309 Basmati) accessions, 1 group Admix (accessions that fall between major groups were classified as
310 admixed) Branch length indicates the genetic distance between two haplotypes; **d** Circles indicate the 12
311 KitaakeX chromosomes represented on a Mb scale; **e,f** SNPs and InDels between KitaakeX and
312 Nipponbare (**e**) and Kitaake and Zhenshan97 (**f**); **g** Repeat density; **h** GC content; **i** Gene density; **j**
313 Homologous genes in the KitaakeX genome. Window size used in the circles is 500 kb.

314

315

316

317 **References for Section A**

318

319 1. Gross BL, Zhao Z: **Archaeological and genetic insights into the origins of**
320 **domesticated rice.** 2014, **111**:6190-6197.

321 2. Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR,
322 Zhang FJN: **Genomic variation in 3,010 diverse accessions of Asian cultivated rice.**
323 2018, **557**:43.

324 3. Ichitani K, Okumoto Y, Tanisaka T: **Photoperiod sensitivity gene of se-1 locus found in**
325 **photoperiod insensitive rice cultivars of the northern limit region of rice cultivation.**
326 *Breeding science* 1997, **47**:8.

327 4. Kim SL, Choi M, Jung KH, An G: **Analysis of the early-flowering mechanisms and**
328 **generation of T-DNA tagging lines in Kitaake, a model rice cultivar.** *J Exp Bot* 2013,
329 **64**:4169-4182.

330 5. Kunihiro Y, Ebe Y, Wada S, Shinbashi N, Honma A, Sasaki T, Sasaki K, Numao Y,
331 Morimura K, Tan No H: **The new rice variety Kita-ake.** *Bulletin of Hokkaido*
332 *prefectural agricultural experiment stations* 1989, **59**:4.

333 6. Wang L, Zheng J, Luo Y, Xu T, Zhang Q, Zhang L, Xu M, Wan J, Wang MB, Zhang
334 CJPbj: **Construction of a genomewide RNA i mutant library in rice.** 2013, **11**:997-
335 1005.

336 7. Gao H, Zheng XM, Fei G, Chen J, Jin M, Ren Y, Wu W, Zhou K, Sheng P, Zhou F, et al:
337 **Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic**
338 **flowering in rice.** *PLoS Genet* 2013, **9**:e1003281.

339 8. Li G, Jain R, Chern M, Pham NT, Martin JA, Wei T, Schackwitz WS, Lipzen AM,
340 Duong PQ, Jones KC, et al: **The Sequences of 1504 Mutants in the Model Rice**
341 **Variety Kitaake Facilitate Rapid Functional Genomic Studies.** *Plant Cell* 2017,
342 **29**:1218-1231.

343 9. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai
344 WX, Zhu LH, et al: **A receptor kinase-like protein encoded by the rice disease**
345 **resistance gene, Xa21.** *Science* 1995, **270**:1804-1806.

346 10. Gao H, Jin M, Zheng X-M, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou
347 KJPotNAoS: **Days to heading 7, a major quantitative locus determining photoperiod**
348 **sensitivity and regional adaptation in rice.** 2014, **111**:16337-16342.

349 11. Ronald PC, Beutler B: **Plant and animal sensors of conserved microbial signatures.**
350 *Science* 2010, **330**:1061-1064.

351 12. Liu Y, Wu H, Chen H, Liu Y, He J, Kang H, Sun Z, Pan G, Wang Q, Hu JJNb: **A gene**
352 **cluster encoding lectin receptor kinases confers broad-spectrum and durable insect**
353 **resistance in rice.** 2015, **33**:301.

354 13. Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao
355 WJPotNAoS: **Loss of function of a rice TPR-domain RNA-binding protein confers**
356 **broad-spectrum disease resistance.** 2018:201705927.

357 14. Rodrigues JA, Ruan R, Nishimura T, Sharma MK, Sharma R, Ronald PC, Fischer RL,
358 Zilberman D: **Imprinted expression of genes and small RNA is associated with**
359 **localized hypomethylation of the maternal genome in rice endosperm.** *Proc Natl*
360 *Acad Sci U S A* 2013, **110**:7934-7939.

361 15. Li T, Liu B, Spalding MH, Weeks DP, Yang B: **High-efficiency TALEN-based gene**
362 **editing produces disease-resistant rice.** *Nat Biotechnol* 2012, **30**:390-392.

363 16. Xie K, Minkenberg B, Yang Y: **Boosting CRISPR/Cas9 multiplex editing capability**
364 **with the endogenous tRNA-processing system.** *Proc Natl Acad Sci U S A* 2015,
365 **112:3570-3575.**

366 17. Jung K-H, An G, Ronald PC: **Towards a better bowl of rice: assigning function to tens**
367 **of thousands of rice genes.** *Nature Reviews Genetics* 2008, **9:91.**

368 18. Kent WJ: **BLAT--the BLAST-like alignment tool.** *Genome Res* 2002, **12:656-664.**

369 19. Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, Zuccolo A, Song X,
370 Kudrna D, Ammiraju JS, et al: **The genome sequence of African rice (*Oryza***
371 **glaberrima) and evidence for independent domestication.** *Nat Genet* 2014, **46:982-**
372 **988.**

373 20. Guyot R, Keller BJJ: **Ancestral genome duplication in rice.** 2004, **47:610-614.**

374 21. Zhang J, Chen L-L, Xing F, Kudrna DA, Yao W, Copetti D, Mu T, Li W, Song J-M, Xie
375 **W, et al: Extensive sequence divergence between the reference genomes of two elite**
376 **indica rice varieties Zhenshan 97 and Minghui 63.** 2016, **113:E5163-**
377 **E5171.**

378 22. Li G, Jain R, Chern M, Pham NT, Martin JA, Wei T, Schackwitz WS, Lipzen AM,
379 Duong PQ, Jones KCJTPC: **The sequences of 1,504 mutants in the model rice variety**
380 **Kitaake facilitate rapid functional genomic studies.** 2017:tpc. 00154.02017.

381 23. Matsumoto T, Wu J, Itoh T, Numa H, Antonio B, Sasaki T: **The Nipponbare genome**
382 **and the next-generation of rice genomics research in Japan.** *Rice (New York, NY)*
383 2016, **9:33-33.**

384 24. Tang X, Liu G, Zhou J, Ren Q, You Q, Tian L, Xin X, Zhong Z, Liu B, Zheng XJGb: **A**
385 **large-scale whole-genome sequencing analysis reveals highly specific genome editing**
386 **by both Cas9 and Cpf1 (Cas12a) nucleases in rice.** 2018, **19:84.**

387 25. Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, Canlas PE, Daudi
388 A, Petzold CJ, Singan VR, et al: **Transgenic expression of the dicotyledonous pattern**
389 **recognition receptor EFR in rice leads to ligand-dependent activation of defense**
390 **responses.** *PLoS Pathog* 2015, **11:e1004809.**

391 26. Zhao H, Yao W, Ouyang Y, Yang W, Wang G, Lian X, Xing Y, Chen L, Xie W:
392 **RiceVarMap: a comprehensive database of rice genomic variations.** *Nucleic Acids*
393 *Res* 2015, **43:D1018-1022.**

394 27. Li G, Chern M, Jain R, Martin JA, Schackwitz WS, Jiang L, Vega-Sanchez ME, Lipzen
395 AM, Barry KW, Schmutz J, Ronald PC: **Genome-Wide Sequencing of 41 Rice (*Oryza***
396 **sativa L.) Mutated Lines Reveals Diverse Mutations Induced by Fast-Neutron**
397 **Irradiation.** *Mol Plant* 2016, **9:1078-1081.**

398 28. Paradis E, Claude J, Strimmer K: **ape: Analyses of Phylogenetics and Evolution in R**
399 **language.** *Bioinformatics* 2004, **20:289-290.**

400 29. Bairoch A, Apweiler R: **The SWISS-PROT protein sequence database and its**
401 **supplement TrEMBL in 2000.** *Nucleic Acids Res* 2000, **28:45-48.**

402 30. Dutkowski J, Kramer M, Surma MA, Balakrishnan R, Cherry JM, Krogan NJ, Ideker T:
403 **A gene ontology inferred from molecular networks.** *Nat Biotechnol* 2013, **31:38-45.**

404 31. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY,
405 Dosztanyi Z, El-Gebali S, Fraser M, et al: **InterPro in 2017-beyond protein family and**
406 **domain annotations.** *Nucleic Acids Res* 2017, **45:D190-D199.**

407 32. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K: **KEGG: new perspectives**
408 **on genomes, pathways, diseases and drugs.** *Nucleic Acids Res* 2017, **45:D353-D361.**

409 33. Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, Schijlen E, van de Geest H,
410 Bianco L, Micheletti D, Velasco R, et al: **High-quality de novo assembly of the apple**
411 **genome and methylome dynamics of early fruit development.** *Nat Genet* 2017,
412 **49**:1099-1106.

413 34. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra
414 MA: **Circos: an information aesthetic for comparative genomics.** *Genome Res* 2009,
415 **19**:1639-1645.

416 35. Flutre T, Duprat E, Feuillet C, Quesneville H: **Considering transposable element**
417 **diversification in de novo annotation approaches.** *PLoS One* 2011, **6**:e16526.

418 36. Copetti D, Zhang J, El Baidouri M, Gao D, Wang J, Barghini E, Cossu RM, Angelova A,
419 Maldonado LC, Roffler S, et al: **RiTE database: a resource database for genus-wide**
420 **rice genomics and evolutionary biology.** *BMC Genomics* 2015, **16**:538.

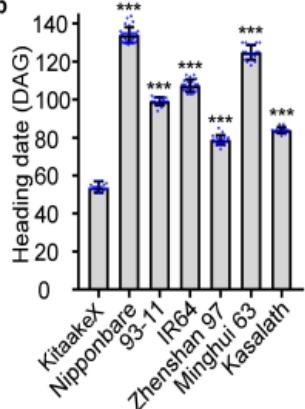
421 37. Nawrocki EP, Eddy SR: **Infernal 1.1: 100-fold faster RNA homology searches.**
422 *Bioinformatics* 2013, **29**:2933-2935.

423 38. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW,
424 Gardner PP, Jones TA, Tate J, Finn RD: **Rfam 12.0: updates to the RNA families**
425 **database.** *Nucleic Acids Res* 2015, **43**:D130-137.

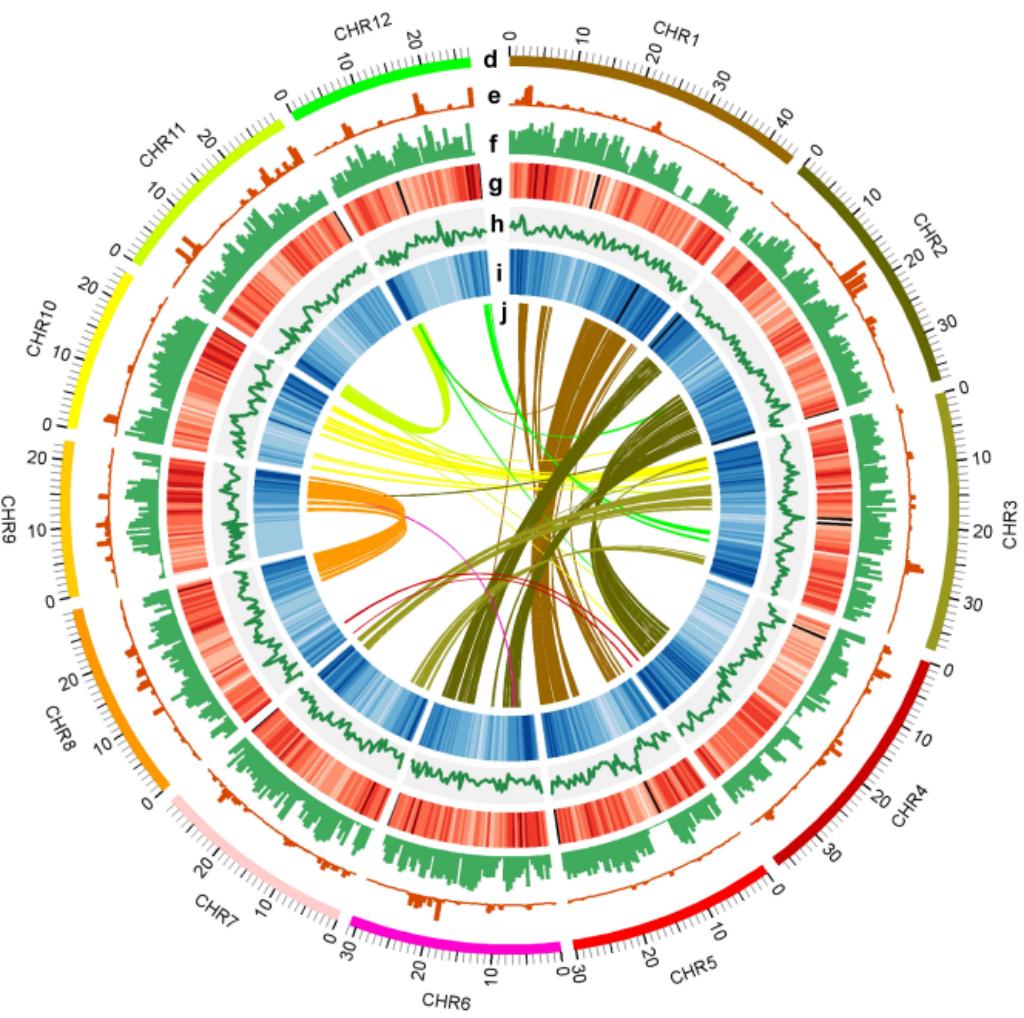
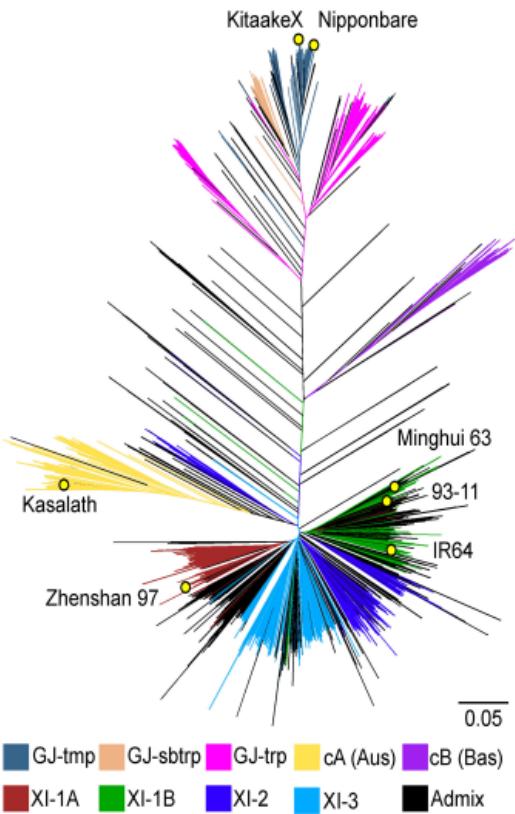
426 39. Schattner P, Brooks AN, Lowe TM: **The tRNAscan-SE, snoScan and snoGPS web**
427 **servers for the detection of tRNAs and snoRNAs.** *Nucleic Acids Res* 2005, **33**:W686-
428 689.

429 40. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg
430 **SLJGb: Versatile and open software for comparing large genomes.** 2004, **5**:R12.

431 41. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden
432 DM: **A program for annotating and predicting the effects of single nucleotide**
433 **polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain**
434 **w1118; iso-2; iso-3.** *Fly (Austin)* 2012, **6**:80-92.


435 42. Luo M, Wing RA: **An Improved Method for Plant BAC Library Construction.** In
436 *Plant Functional Genomics.* Edited by Grotewold E. Totowa, NJ: Humana Press; 2003:
437 3-19

438



a

b

c

